(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-14
(45)【発行日】2022-06-22
(54)【発明の名称】アクチュエータ及び光走査装置
(51)【国際特許分類】
G02B 26/10 20060101AFI20220615BHJP
G02B 26/08 20060101ALI20220615BHJP
B81B 3/00 20060101ALI20220615BHJP
【FI】
G02B26/10 104Z
G02B26/08 E
B81B3/00
(21)【出願番号】P 2018037056
(22)【出願日】2018-03-02
【審査請求日】2021-02-10
(73)【特許権者】
【識別番号】000006220
【氏名又は名称】ミツミ電機株式会社
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】山田 健介
【審査官】鈴木 俊光
(56)【参考文献】
【文献】特開2014-235298(JP,A)
【文献】特開2013-078219(JP,A)
【文献】米国特許出願公開第2013/0194555(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 26/08 - 26/10
B81B 3/00
(57)【特許請求の範囲】
【請求項1】
所定の軸に垂直な方向に延在する梁を有し、駆動対象物を支持する駆動梁と、
前記梁の一方の面上に形成された駆動源と、
前記梁の他方の面において形成されたリブと、を有し、
前記駆動梁は、前記所定の軸に垂直な方向に延在する複数の前記梁を有し、隣接する前記梁の端部同士が折り返し部で連結されて全体としてジグザグ状の蛇腹構造を有し、
前記リブは前記梁の長手方向に短く、短手方向に長い形状であり、
前記駆動源の
前記リブの端部と対向する部分に切欠き部が形成されており、
前記駆動源の駆動により前記駆動対象物を前記所定の軸を回転する方向に揺動駆動する
アクチュエータ。
【請求項2】
前記梁と前記折り返し部の連結位置から前記リブまでの距離は、前記所定の軸に垂直な方向における前記梁の長さの10%以上20%以下である
請求項
1に記載のアクチュエータ。
【請求項3】
前記所定の軸の方向における前記リブの長さは前記梁の幅の70%以上である
請求項1
または2に記載のアクチュエータ。
【請求項4】
前記切欠き部は、前記梁の一方の面における平面視で前記駆動源の一部が半円形状に除去されてなる切欠き部である
請求項1乃至
3のいずれか1項に記載のアクチュエータ。
【請求項5】
前記所定の軸の方向における前記切欠き部の深さは前記リブの長さの14%以上である
請求項1乃至
4のいずれか1項に記載のアクチュエータ。
【請求項6】
前記所定の軸に垂直な方向における前記切欠き部の幅と前記リブの幅の差が0.2mm以上である
請求項1乃至
5のいずれか1項に記載のアクチュエータ。
【請求項7】
所定の軸に垂直な方向に延在する複数の梁を有し、隣接する前記梁の端部同士が折り返し部で連結されて全体としてジグザグ状の蛇腹構造を有し、駆動対象物に接続された駆動梁と、
前記梁の一方の面上に形成された駆動源と、
前記梁の他方の面において形成されたリブと、を有し、
前記リブは前記梁の長手方向に短く、短手方向に長い形状であり、
前記梁と前記折り返し部の連結位置から前記リブまでの距離は、前記所定の軸に垂直な方向における前記梁の長さの10%以上20%以下であり、
前記駆動源の駆動により前記駆動対象物を前記所定の軸を回転する方向に揺動駆動する
アクチュエータ。
【請求項8】
前記所定の軸の方向における前記リブの長さは前記梁の幅の70%以上である
請求項
7に記載のアクチュエータ。
【請求項9】
光反射面を有するミラーと、
前記ミラーを支持するミラー支持体と、
所定の軸に垂直な方向に延在する梁を有し、前記ミラー支持体に接続された駆動梁と、
前記梁の一方の面上に形成された駆動源と、
前記梁の他方の面において形成されたリブと、を有し、
前記駆動梁は、前記所定の軸に垂直な方向に延在する複数の前記梁を有し、隣接する前記梁の端部同士が折り返し部で連結されて全体としてジグザグ状の蛇腹構造を有し、
前記リブは前記梁の長手方向に短く、短手方向に長い形状であり、
前記駆動源の
前記リブの端部と対向する部分に切欠き部が形成されており、
前記駆動源の駆動により前記ミラー支持体を前記所定の軸を回転する方向に揺動駆動する
光走査装置。
【請求項10】
光反射面を有するミラーと、
前記ミラーを支持するミラー支持体と、
所定の軸に垂直な方向に延在する複数の梁を有し、隣接する前記梁の端部同士が折り返し部で連結されて全体としてジグザグ状の蛇腹構造を有し、前記ミラー支持体に接続された駆動梁と、
前記梁の一方の面上に形成された駆動源と、
前記梁の他方の面において形成されたリブと、を有し、
前記リブは前記梁の長手方向に短く、短手方向に長い形状であり、
前記梁と前記折り返し部の連結位置から前記リブまでの距離は、前記所定の軸に垂直な方向における前記梁の長さの10%以上20%以下であり、
前記駆動源の駆動により前記ミラー支持体を前記所定の軸を回転する方向に揺動駆動する
光走査装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アクチュエータ及び光走査装置に関する。
【背景技術】
【0002】
従来から圧電薄膜の上面に上部電極、下面に下部電極を形成した圧電素子を駆動源とするアクチュエータを用いて、入射光を反射させるミラー部を回転軸回りに回転させ、反射光を走査する光走査装置が知られている。このアクチュエータでは、圧電薄膜に電圧を印加するために、上部電極に接続される上部配線と、下部電極に接続される下部配線とが形成されている(例えば特許文献1及び特許文献2参照)。
【0003】
上記のアクチュエータは、ミラー部を回転軸回りに回転させるためのMEMS構造体を有しており、MEMS構造体は厚さ方向に大きく変形する。MEMS構造体としては、表面の面内方向の剛性を確保しつつ、厚さ方向の剛性を下げるために蛇腹構造とすることができる。
【0004】
特許文献3の
図4で示される蛇腹構造を有するMEMS構造体においては、蛇腹のカンチレバー部に圧電素子を配置し、これを変形させることによってミラーを揺動させている。この挙動は圧電素子が伸び縮みすることで蛇腹のカンチレバー部が反ることでMEMS構造体として機能しているが、圧電素子はカンチレバーの長手方向だけでなく短手方向にも伸び縮みするため、その影響によりミラー部は揺動だけでなく厚さ方向の並進移動も行っており、即ち、厚さ方向の変位がある。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2016-1325号公報
【文献】特許5876329号
【文献】特開2012-123364号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
レーザを走査して画像を表示するプロジェクション装置に使用される場合、画像の走査範囲に比べてミラー部の厚さ方向の変位は十分に小さいため、大きな問題とはならないと考えられる。一方で、光干渉断層画像診断装置(OCT;Optical Coherence Tomography)やフーリエ変換赤外分光光度計(FTIR;Fourier Transform Infrared Spectrometer)のように光の干渉を利用する装置の場合、ミラー部の厚さ方向の変位はミラー部が反射する光の位相の変化してしまう。このため、OCTやFTIRとしての出力に大きな影響を与えるため、問題となる。
【0007】
本発明は、上記の点に鑑みてなされたもので、アクチュエータの厚さ方向の変位を抑制することで、光の干渉を利用した測定装置でも利用できるようにすることを目的とする。
【課題を解決するための手段】
【0008】
本発明の一態様に係るアクチュエータは、所定の軸(AXV)に垂直な方向に延在する梁(173X1、173X2、173Y1、173Y2)を有し、駆動対象物(120)に接続された駆動梁(170A、170B)と、前記梁の一方の面上に形成された駆動源(171A、171B)と、前記梁の他方の面において形成されたリブ(172)と、を有し、前記駆動梁は、前記所定の軸に垂直な方向に延在する複数の前記梁を有し、隣接する前記梁の端部同士が折り返し部で連結されて全体としてジグザグ状の蛇腹構造を有し、前記リブは前記梁の長手方向に短く、短手方向に長い形状であり、前記駆動源の前記リブの端部と対向する部分に切欠き部(Z)が形成されており、前記駆動源の駆動により前記駆動対象物を前記所定の軸を回転する方向に揺動駆動する。
【0009】
本発明の他の一態様に係るアクチュエータは、所定の軸(AXV)に垂直な方向に延在する複数の梁(173X1、173X2、173Y1、173Y2)を有し、隣接する前記梁の端部同士が折り返し部(171X、171Y)で連結されて全体としてジグザグ状の蛇腹構造を有し、駆動対象物に接続された駆動梁(170A、170B)と、前記梁の一方の面上に形成された駆動源(171A、171B)と、前記梁の他方の面において形成されたリブ(172)と、を有し、前記リブは前記梁の長手方向に短く、短手方向に長い形状であり、前記梁と前記折り返し部の連結位置から前記リブまでの距離は、前記所定の軸に垂直な方向における前記梁の長さの10%以上20%以下であり、前記駆動源の駆動により前記駆動対象物を前記所定の軸を回転する方向に揺動駆動する。
【0010】
なお、上記括弧内の参照符号は、理解を容易にするために付したものであり、一例にすぎず、図示の態様に限定されるものではない。
【発明の効果】
【0011】
開示の技術によれば、アクチュエータの厚さ方向の変位を抑制することで、光の干渉を利用した測定装置でも利用できる。
【図面の簡単な説明】
【0012】
【
図1】実施の形態に係る光走査装置の光走査部の一例を示す上面側の斜視図(A)と下面側の斜視図(B)である。
【
図2】実施の形態に係る光走査装置の光走査部の一例を示す上面側の平面図である。
【
図3】実施の形態に係る光走査装置の光走査部の要部を拡大した上面側の平面図である。
【
図4】実施例1に係る厚さ方向変位の特性を示す図である。
【
図5】実施例2に係る厚さ方向変位の特性を示す図である。
【
図6】実施例3に係る光走査装置の光走査部の駆動時の駆動梁の姿勢を説明する斜視図(A)と駆動時に発生する応力を説明する図(B)である。
【
図7】実施例4に係るリブ最大応力の特性を示す図である。
【
図8】実施例5に係るリブ最大応力の特性を示す図である。
【発明を実施するための形態】
【0013】
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
【0014】
<実施の形態>
図1(A)は、実施の形態に係る光走査装置の光走査部の一例を示す上面側の斜視図である。
図1(B)は、実施の形態に係る光走査装置の光走査部の一例を示す下面側の斜視図である。
図2は、実施の形態に係る光走査装置の光走査部の一例を示す上面側の平面図である。本実施の形態に係る光走査部100は、セラミックパッケージとパッケージカバー等のパッケージ部材に収容して用いることができる。
【0015】
光走査部100は、ミラー110を揺動させて光源から照射されるレーザ入射光を走査する部分である。光走査部100は、例えば圧電素子である駆動源によりミラー110を駆動させるMEMSミラー等である。光走査部100に設けられたミラー110にレーザ入射光を入射して、ミラー110から出射される光を2次元に走査する。
【0016】
図1(A)、
図1(B)及び
図2に示されるように、光走査部100は、ミラー110と、ミラー支持部120と、連結梁121A、121Bと、水平駆動梁130A、130Bと、可動枠160と、垂直駆動梁170A、170Bと、固定枠180とを有する。ミラー支持部120の上面にミラー110が支持されている。
【0017】
ミラー110を支持するミラー支持部120の両側に、ミラー支持部120に接続され、ミラー110及びミラー支持部120を支持する一対の水平駆動梁130A、130Bが配置されている。ミラー支持部120と水平駆動梁130A、130Bは連結梁121A、121Bにより接続されている。また、水平駆動梁130A、130B、連結梁121A、121B、ミラー支持部120及びミラー110は、可動枠160によって外側から支持されている。水平駆動梁130Aは、水平回転軸AXHと直交する垂直回転軸AXVの方向に延在する複数の矩形状の水平梁を有し、隣接する水平梁の端部同士が折り返し部131X2、131X3、131X4により連結され、全体としてジグザグ状の蛇腹構造を有する。水平駆動梁130Aの一方が可動枠160の内周側に、他方が折り返し部131X1及び連結梁121Aを介してミラー支持部120に接続される。また、水平駆動梁130Bは、水平回転軸AXHと直交する垂直回転軸AXVの方向に延在する複数の矩形状の水平梁を有し、隣接する水平梁の端部同士が折り返し部131Y2、131Y3、131Y4により連結され、全体としてジグザグ状の蛇腹構造を有する。水平駆動梁130Bの一方が可動枠160の内周側に、他方が折り返し部131Y1及び連結梁121Bを介してミラー支持部120に接続される。
【0018】
また、可動枠160の両側に、可動枠160に接続される一対の垂直駆動梁170A、170Bが配置されている。垂直駆動梁170Aは、水平回転軸AXH方向に延在する複数の矩形状の垂直梁173X1、173X2を有し、隣接する垂直梁の端部同士が折り返し部171Xにより連結され、全体としてジグザグ状の蛇腹構造を有する。垂直駆動梁170Aの一方が固定枠180の内周側に、他方が可動枠160の外周側に接続される。また、垂直駆動梁170Bは、水平回転軸AXH方向に延在する複数の矩形状の垂直梁173Y1、173Y2を有し、隣接する垂直梁の端部同士が折り返し部171Yにより連結され、全体としてジグザグ状の蛇腹構造を有する。垂直駆動梁170Bの一方が固定枠180の内周側に、他方が可動枠160の外周側に接続される。
【0019】
水平駆動梁130A、130Bは、それぞれ圧電素子である水平駆動源131A、131Bを有する。また、垂直駆動梁170A、170Bは、それぞれ圧電素子である垂直駆動源171A、171Bを有する。水平駆動梁130A、130B、垂直駆動梁170A、170Bは、ミラー110を上下又は左右に揺動駆動してレーザ光を走査するアクチュエータとして機能する。
【0020】
水平駆動梁130A、130Bの上面には、それぞれ曲線部を含まない矩形単位である水平梁ごとに水平駆動源131A、131Bが形成されている。水平駆動源131Aは、水平駆動梁130Aの上面に形成された圧電素子であり、圧電薄膜と、圧電薄膜の上に形成された上部電極と、圧電薄膜の下面に形成された下部電極とを含む。水平駆動源131Bは、水平駆動梁130Bの上面に形成された圧電素子であり、圧電薄膜と、圧電薄膜の上に形成された上部電極と、圧電薄膜の下面に形成された下部電極とを含む。
【0021】
水平駆動梁130A、130Bは、水平梁ごとに隣接している水平駆動源131A、131B同士で、駆動波形の中央値を基準に上下反転した波形の駆動電圧を印加することにより、隣接する水平梁を上方向に反らせ、各水平梁の上下動の蓄積をミラー支持部120に伝達する。水平駆動梁130A、130Bの動作によりミラー110及びミラー支持部120が水平回転軸AXHを回転する方向に揺動駆動され、この揺動する方向を水平方向と呼び、ミラー110の光反射面の中心を通る上記の揺動軸を水平回転軸AXHという。例えば水平駆動梁130A、130Bによる水平駆動には、非共振振動を用いることができる。
【0022】
例えば、水平駆動源131Aは、水平駆動梁130Aを構成する1番目から4番目の各水平梁の上にそれぞれ形成された4つの水平駆動源131A1、131A2、131A3、131A4を含む。また、水平駆動源131Bは、水平駆動梁130Bを構成する1番目から4番目の各水平梁の上にそれぞれ形成された4つの水平駆動源131B1、131B2、131B3、131B4を含む。この場合、水平駆動源131A1、131B1、131A3、131B3を同波形、水平駆動源131A2、131B2、131A4、131B4を前者と駆動波形の中央値を基準に上下反転した波形で駆動することで、ミラー110及びミラー支持部120を水平方向へ揺動駆動できる。
【0023】
垂直駆動梁170A、170Bの上面には、それぞれ曲線部を含まない矩形単位である垂直梁173X1、173X2、173Y1、173Y2ごとに垂直駆動源171A、171Bが形成されている。垂直駆動源171Aは、垂直駆動梁170Aの上面に形成された圧電素子であり、圧電薄膜と、圧電薄膜の上に形成された上部電極と、圧電薄膜の下面に形成された下部電極とを含む。垂直駆動源171Bは、垂直駆動梁170Bの上面に形成された圧電素子であり、圧電薄膜と、圧電薄膜の上に形成された上部電極と、圧電薄膜の下面に形成された下部電極とを含む。
【0024】
垂直駆動梁170A、170Bは、垂直梁173X1、173X2、173Y1、173Y2ごとに隣接している垂直駆動源171A、171B同士で、駆動波形の中央値を基準に上下反転した波形の駆動電圧を印加することにより、隣接する垂直梁を上方向に反らせ、各垂直梁の上下動の蓄積を可動枠160に伝達する。垂直駆動梁170A、170Bの動作により可動枠160に接続されたミラー110が水平回転軸AXHの方向と直交する方向に揺動駆動され、この揺動する方向を垂直方向と呼び、ミラー110の光反射面の中心を通る上記の揺動軸を垂直回転軸AXVという。例えば垂直駆動梁170A、170Bによる垂直駆動には、非共振振動を用いることができる。
【0025】
例えば、垂直駆動源171Aは、垂直駆動梁170Aを構成する1番目から2番目の各垂直梁173X1、173X2の上にそれぞれ形成された2つの垂直駆動源171A1、171A2を含む。また、垂直駆動源171Bは、垂直駆動梁170Bを構成する1番目から2番目の各垂直梁173Y1、173Y2の上にそれぞれ形成された2つの垂直駆動源171B1、171B2を含む。この場合、垂直駆動源171A1、171B1を同波形、垂直駆動源171A2、171B2を前者と駆動波形の中央値を基準に上下反転した波形で駆動することで、ミラー110に接続されている可動枠160を垂直方向へ揺動できる。
【0026】
本実施の形態の光走査装置において、アクチュエータとして機能するMEMS構造体は、例えば支持層、埋め込み(BOX)層及び活性層を有するSOI基板から形成されている。上記の固定枠180と可動枠160等は、支持層、BOX層及び活性層の3層から形成されている。一方、水平駆動梁130A,130B及び垂直駆動梁170A、170B等の固定枠180と可動枠160等を除く部分は活性層の単層によって形成されている。あるいは、BOX層と活性層の2層で形成されていてもよい。
【0027】
本実施の形態の光走査装置において、水平駆動梁130A、130Bを構成する水平梁の一方の面(上面)には上記のように水平駆動源131A、131Bが形成されており、他方の面(裏面)には水平駆動梁130A、130Bを構成する水平梁の中央部である水平回転軸AXH上にリブ132が形成されている。リブ132は、水平梁の長手方向に短く、短手方向に長い形状である。水平駆動梁130A、130Bを構成する水平梁の他方の面(裏面)に形成されているリブ132は、例えば、MEMS構造体の製造工程においてダイシングを行う際に、振動や水流によって蛇腹部分が振動し破損することを抑制するために設けられている。
【0028】
また、本実施の形態の光走査装置においては、垂直駆動梁170A、170Bを構成する垂直梁173X1、173X2、173Y1、173Yの一方の面(上面)には上記のように垂直駆動源171A、171Bが形成されている。垂直梁173X1、173X2、173Y1、173Yの他方の面(裏面)にはリブ172が形成されている。リブ172は、例えば垂直梁173X1、173X2、173Y1、173Y2と折り返し部171X、171Yの連結部分からの距離が垂直梁173X1、173X2、173Y1、173Y2の長さの10~20%である位置に形成されている。リブ172は、垂直梁173X1、173X2、173Y1、173Y2の長手方向に短く、短手方向に長い形状である。垂直駆動梁170A、170Bを構成する垂直梁の他方の面(裏面)に形成されているリブ172を設けることで、垂直駆動梁170A、170Bの上方向への反りと直交する方向(垂直梁173X1、173X2、173Y1、173Y2の幅(短手)方向)へ不要に反ってしまうことを防止し、ミラー支持部120の厚さ方向の変位量を抑制できる。
【0029】
また、本実施の形態の光走査装置においては、ミラー支持部120のミラー110形成面の裏面にもリブが形成されている。ミラー支持部120の裏面に形成されているリブは、例えば、ミラー支持部が不要に反ってしまうことを防止する目的で設けられている。
【0030】
垂直駆動梁170A、170Bを構成する垂直梁173X1、173X2、173Y1、173Y2の他方の面(裏面)に形成されているリブ172は、固定枠180及び可動枠160と同じ高さ(厚さ)を有する。即ち、光走査装置のアクチュエータとして機能するMEMS構造体がSOI基板で形成される場合、活性層から形成される垂直梁173X1、173X2、173Y1、173Y2の裏面において、BOX層と支持層からリブ172が形成される。水平駆動梁130A、130Bを構成する水平梁は活性層から形成され、水平梁の他方の面(裏面)に形成されているリブ132は、BOX層と支持層から形成される。ミラー支持部120は活性層から形成され、ミラー支持部120のミラー110形成面の裏面に形成されているリブはBOX層と支持層から形成される。また、リブはSOI基板の支持層を利用するほかに、バルクシリコンをエッチングすることで段差を形成することで設けてもよい。
【0031】
図3は本実施の形態に係る光走査装置の光走査部の要部を拡大した上面側の平面図である。垂直駆動梁170Bを構成する垂直梁173Y1、173Y2の一方の面(上面)には圧電素子である垂直駆動源171B(171B1、171B2)が形成されており、他方の面(裏面)には破線で示される位置にリブ172が形成されている。また、本実施の形態に係る光走査装置の光走査部においては、圧電素子である垂直駆動源171B1、171B2のリブ172の端部と対向する部分に切欠き部Zが形成されている。切欠き部Zは、垂直梁173Y1、173Y2の一方の面における平面視で圧電素子である垂直駆動源171B1、171B2の一部が半円形状に除去されてなる切欠き部である。
【0032】
図3においては図面上垂直駆動梁170Bについて説明しているが、垂直駆動梁170Aについても同様の構成となっている。
【0033】
上記の光走査装置の垂直駆動梁170A、170Bにおいて、圧電素子である垂直駆動源171A、171Bに電圧を印加すると、垂直梁173X1、173X2、173Y1、173Y2は長手方向に反るとともに、短手方向にもわずかながら反りが発生する。ミラー支持部120を揺動させるには長手方向の反りが必要となるが、短手方向にも反ってしまうことで、ミラー支持部120は揺動動作と同期して厚さ方向の変位も発生する。
【0034】
本実施の形態の光走査装置においては、垂直駆動梁170A、170Bを構成する垂直梁173X1、173X2、173Y1、173Y2の他方の面(裏面)に、垂直梁173X1、173X2、173Y1、173Y2の長手方向に短く、短手方向に長い形状であるリブ172が形成されている。これにより、垂直梁173X1、173X2、173Y1、173Y2に短手方向の反りを抑制し、ミラー支持部120の厚さ方向の変位を抑制することができる。
【0035】
垂直梁173X1、173X2、173Y1、173Y2に短手方向の反りを抑制し、ミラー支持部120の厚さ方向の変位を抑制することで、OCTやFTIR等の光の干渉を利用して計測する装置の光走査装置に適用することが可能となる。
【0036】
例えば、外側から1本目の垂直梁173Y2では、垂直梁173Y2の幅WB2が1.83mmであり、リブ172の長さLRは1.79mmであり、リブ172の幅は0.1mmである。外側から2本目の垂直梁173Y1では、垂直梁173Y1の幅WB1が1.80mmであり、リブ172の長さLRは1.76mmであり、リブ172の幅は0.1mmである。
【0037】
垂直梁173X1、173X2、173Y1、173Y2の短手方向(幅方向)に対するリブ172の長さは、垂直梁173X1、173X2、173Y1、173Y2の幅の70%以上であることが好ましい。これにより、リブ172を設けてミラー支持部120の厚さ方向の変位量を抑制する効果を十分に享受できる。
【0038】
垂直梁173X1、173X2、173Y1、173Y2と折り返し部171X、171Yとの連結位置とリブ172の距離(折り返し部からの距離)は、垂直梁173X1、173X2、173Y1、173Y2の長手方向の長さに対して10%以上20%以下とすることが好ましい。これにより、ミラー支持部120の厚さ方向の変位を抑制し、かつ、ミラーの振れ角感度(圧電素子への印加電圧1Vあたりのミラーの振れ角)の低下を抑制できる。
【0039】
上記のようにミラー支持部120の厚さ方向の変位を抑制するためにリブ172を設けると、リブ172によって垂直梁173X1、173X2、173Y1、173Y2の反りを抑え込むため、リブ172の端部の付け根部分にはそれに応じた応力が発生する。これが限界応力を超えると亀裂が一気に進展して破壊に至る場合がある。本実施の形態においては、リブ172の端部に対向する部分において、圧電素子である垂直駆動源171A、171Bに切欠き部Zが設けられている。これにより、リブ172の直上の圧電素子である垂直駆動源171A、171Bの幅が細くなり短手方向の反りが小さくなり、応力が低減されるだけでなく、他の部分から伝わる応力もリブ172との間にあるシリコンの活性層で分散される。これにより、リブ172の端部における付け根部分にかかる応力を低減することができる。
【0040】
例えば、圧電素子である垂直駆動源171A、171Bの切欠き部Zの幅WCOは0.4mmであり、切欠き部Zの深さDCOは0.16mmである。
【0041】
上記のように、本実施の形態に係る光走査装置の光走査部と、光走査部となるアクチュエータによれば、垂直駆動梁170A、170Bを構成する垂直梁の他方の面(裏面)にはリブ172が形成されている。これにより、垂直駆動梁170A、170Bの上方向への反りと直交する方向(垂直梁173X1、173X2、173Y1、173Y2の幅(短手)方向)へ不要に反ってしまうことを防止し、ミラー支持部120の厚さ方向の変位量を抑制できる。さらに、リブ172の端部に対向する部分において、圧電素子である垂直駆動源171A、171Bに切欠き部Zが設けられており、これにより、リブ172の端部における付け根部分にかかる応力を低減することができる。また、リブ172が、垂直梁173X1、173X2、173Y1、173Y2と折り返し部171X、171Yとの連結位置から、垂直梁173X1、173X2、173Y1、173Y2の長手方向の長さに対して10%以上20%以下の距離の位置に設けられていることで、ミラー支持部120の厚さ方向の変位を抑制し、かつ、ミラーの振れ角感度(圧電素子への印加電圧1Vあたりのミラーの振れ角)の低下を抑制できる。
【0042】
<実施例1>
図4は実施例1に係る厚さ方向変位の特性を示す図である。上記の実施の形態の光走査装置において、ミラー支持部120を±1°傾ける際のミラー支持部120の厚さ方向変位が、垂直梁173X1,173X2、173Y1、173Y2の幅に対するリブ172の長さ(リブ長さ/梁幅)によってどのように変化するかシミュレーションにより算出した。
図4において、縦軸は厚さ方向変位であり、横軸はリブ長さ/梁幅である。ここで、リブ長さ/梁幅がゼロの場合は、リブが設けられていない場合に相当する。リブ172が設けられていない場合では厚さ方向変位は±2.6μmであるのに対して、リブ172が梁幅と同等の長さで設けられている場合では±0.03μmであった。リブ172を設けることでミラー支持部120の厚さ方向の変位量を抑制できることが確認された。リブ長さは長いほど厚さ方向変位を抑制することができるが、梁幅の70%以上の長さにすると十分な効果を得ることができるので好ましい。
【0043】
<実施例2>
図5は実施例2に係る厚さ方向変位の特性を示す図である。上記の実施の形態の光走査装置において、ミラー支持部120を±1°傾ける際のミラー支持部120の厚さ方向変位が、リブ172の位置によってどのように変化するかシミュレーションにより算出した。
図4において、縦軸は厚さ方向変位であり、横軸は折り返し部からの距離/梁長さである。折り返し部からの距離は、垂直梁173X1、173X2、173Y1、173Y2と折り返し部171X、171Yとの連結位置とリブ172の距離である。リブ172の位置は、折り返し部171X、171Yに近いほうが厚さ方向の変位に対する効果は大きいが、折り返し部171X、171Yに近づけて折り返し部からの距離/梁長さを10%未満とするとミラーの振れ角感度(圧電素子への印加電圧1Vあたりのミラーの振れ角)が低下する。従って、折り返し部からの距離/梁長さを10%以上20%以下とすることが好ましい。
【0044】
<実施例3>
図6(A)は実施例3に係る光走査装置の光走査部の駆動時の駆動梁の姿勢を説明する斜視図であり、
図6(B)は駆動時に発生する応力を説明する図である。
図6(A)に示されるように、光走査部を垂直駆動したとき、リブ172は垂直駆動梁170Bを構成する垂直梁の短手方向の反りを抑えことができる。このとき、リブ172の端部には剥離方向の応力が発生する。特に光走査部がSOI基板で形成されている場合では、BOX層の強度がシリコンの活性層に比べて低いため、そこからクラックが入り、破壊に至る場合がある。
【0045】
図6(B)は駆動時に発生する応力を説明するための
図6(A)のXで示される部分を拡大した図である。図面上グラデーションの濃度が濃いほど応力が大きいことを示している。圧電素子である垂直駆動源171A、171Bに切欠き部Zがもうけられていない場合、リブ172の端部の付け根部分には大きな応力が発生する。ミラーを1°傾ける際にリブ172にかかる剥離方向の応力は最大で7.8MPaであった。本実施の形態のように、圧電素子である垂直駆動源171A、171Bに切欠き部Zを設けると、リブ172の直上の圧電素子である垂直駆動源171A、171Bの幅が細くなり短手方向の反りが小さくなり、応力が低減される。さらに、切り欠いていない部分の短手方向の反りによる応力は、リブ172と圧電素子である垂直駆動源171A、171Bとの間のシリコンの活性層によって分散される。これにより、リブ172の端部の付け根部分にかかる応力は低減する。ミラーを1°傾ける際にリブ172にかかる剥離方向の応力は最大で5.8MPaとなり、約3割の応力を低減できていた。
【0046】
<実施例4>
図7は実施例4に係るリブ最大応力の特性を示す図である。上記の実施の形態の光走査装置において、ミラー支持部120を±1°傾ける際にリブ172の端部の付け根部分に発生する最大応力(リブ最大応力)が、リブ172の長さに対する切欠き部Zの深さD
CO(切欠き深さ/リブ長さ)によってどのように変化するかシミュレーションにより算出した。
図7において、縦軸はリブ最大応力であり、横軸は切欠き深さ/リブ長さである。切欠き部Zの深さD
COは、
図3に示されるように、切欠き深さを、リブ172の先端と、切欠き部Zの外形のリブの先端からリブの長さ方向に最も離れた位置との間の距離とする。切欠き深さは、リブ172の長さ方向における切欠き部Zの大きさに相当する。切欠き深さをリブ長さの14%以上とすると、リブに発生する応力は抑制される。14%以上よりさらに大きくしても効果は大きくは変わらない。一方で、切欠き深さを大きくするほど圧電素子である垂直駆動源171A、171Bの面積が低下し、ミラー振れ角の感度は低下する。従って、切欠き深さをリブ長さの14%以下とすることが好ましく、14%程度にするのが最も好ましい。
【0047】
<実施例5>
図8は実施例5に係るリブ最大応力の特性を示す図である。上記の実施の形態の光走査装置において、ミラー支持部120を±1°傾ける際にリブ172の端部の付け根部分に発生する最大応力(リブ最大応力)が、切欠き部Zの幅W
COとリブ172の幅の差(切欠き幅-リブ幅)によってどのように変化するかシミュレーションにより算出した。
図8において、縦軸はリブ最大応力であり、横軸は切欠き幅-リブ幅である。切欠き部Zの幅とリブ172の幅の差が0.2mm未満の場合は切欠き部Zの幅が広いほうが応力は低下するが、0.2mm以上の場合はリブ最大応力に対する効果はほぼ変わらない。一方、切欠き部Zを大きくするほど圧電素子である垂直駆動源171A、171Bの面積が低下し、ミラー振れ角の感度は低下する。従って、切欠き幅-リブ幅は0.2mm以下にすることが好ましく、0.2mm程度が最も好ましい。
【0048】
以上、好ましい実施の形態について説明したが、上述した実施の形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。例えば、上記の実施の形態では、ミラーを有する光走査装置にアクチュエータを適用した形態を説明しているが、アクチュエータの駆動対象物はミラーでなくてもよく、本発明はミラーを持たないアクチュエータにも適用することが可能である。また、本発明の光走査装置は、眼底検査装置の光干渉断層計に好ましく適用することができる。眼底検査装置の光干渉断層計では、プロジェクタのように一方の軸が高速動作するため共振駆動を必要とされず、振角量を自由に設定して調整して光走査ができることを求められているため、本実施例のような二軸とも非共振駆動の構成が適している。また、プロジェクション装置にも適用可能である。また、上記の実施の形態においては、垂直駆動梁を構成する垂直梁の裏面にリブが形成され、リブの端部に対向する位置における圧電素子である垂直駆動源に切欠き部が設けられている構成について説明しているが、これに限定されない。垂直駆動源に切欠き部が設けられていない場合でも、リブの位置として、折り返し部からの距離/梁長さが10%以上20%以下である構成とすることができる。駆動時におけるミラー支持部の厚さ方向の変位を抑制でき、さらに、ミラーの振れ角感度(圧電素子への印加電圧1Vあたりのミラーの振れ角)を低下させないので、好ましく用いることができる。
【符号の説明】
【0049】
10 支持層
11 埋め込み(BOX)層
12 活性層
100 光走査部
110 ミラー
120 ミラー支持部
121A、121B 連結梁
130A、130B 水平駆動梁
131A、131B 水平駆動源
131A1、131A2、131A3、131A4 水平駆動源
131B1、131B2、131B3、131B4 水平駆動源
131X1、131X2、131X3、131X4 折り返し部
131Y1、131Y2、131Y3、131Y4 折り返し部
132 リブ
160 可動枠
170A、170B 垂直駆動梁
171A、171B 垂直駆動源
171A1、171A2 垂直駆動源
171B1、171B2 垂直駆動源
171X、171Y 折り返し部
172 リブ
173X1、173X2、173Y1、173Y2 垂直梁
180 固定枠
Z 切欠き部