(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-14
(45)【発行日】2022-06-22
(54)【発明の名称】スパイラル型膜エレメント
(51)【国際特許分類】
B01D 63/10 20060101AFI20220615BHJP
B01D 63/00 20060101ALI20220615BHJP
B01D 69/12 20060101ALI20220615BHJP
B01D 69/10 20060101ALI20220615BHJP
D04B 21/00 20060101ALI20220615BHJP
【FI】
B01D63/10
B01D63/00 500
B01D63/00 510
B01D69/12
B01D69/10
D04B21/00 Z
(21)【出願番号】P 2017175464
(22)【出願日】2017-09-13
【審査請求日】2020-08-21
(31)【優先権主張番号】P 2016181478
(32)【優先日】2016-09-16
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】110000729
【氏名又は名称】特許業務法人 ユニアス国際特許事務所
(72)【発明者】
【氏名】西 美詠子
(72)【発明者】
【氏名】宇田 康弘
【審査官】相田 元
(56)【参考文献】
【文献】特開2006-247629(JP,A)
【文献】国際公開第2012/133153(WO,A1)
【文献】特表2006-507117(JP,A)
【文献】特開2016-064363(JP,A)
【文献】特開2013-158713(JP,A)
【文献】国際公開第2014/208602(WO,A1)
【文献】特開2000-051668(JP,A)
【文献】特開平09-276671(JP,A)
【文献】国際公開第2017/115653(WO,A1)
【文献】特開2012-040546(JP,A)
【文献】特開2000-288542(JP,A)
【文献】国際公開第2015/115575(WO,A1)
【文献】国際公開第2011/049231(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 53/22
B01D 61/00-71/82
C02F 1/44
D04B 21/00
(57)【特許請求の範囲】
【請求項1】
対向する分離膜の間に透過側流路材が介在する複数の膜リーフと、前記膜リーフの間に介在する供給側流路材と、前記膜リーフ及び前記供給側流路材を巻回した有孔の中心管と、供給側流路と透過側流路との混合を防止する封止部と、を備えるスパイラル型膜エレメントであって、
前記分離膜は、多孔性支持体の表面に分離機能層を有する複合半透膜であり、前記膜リーフの外側面に前記分離機能層が配置されており、前記多孔性支持体は、密度が0.85~1.0g/cm
3
である不織布層の片面にポリマー多孔質層を有するものであり、
前記透過側流路材は、密度が0.4~0.8g/cm
3
であり、
前記封止部は、前記膜リーフの軸心方向の両側における二辺端部を接着剤で封止した両端封止部を含み、
前記両端封止部の厚みは、390~540μmであるスパイラル型膜エレメント。
【請求項2】
前記分離膜
は、厚みが80~100μmである複合半透膜である請求項1記載のスパイラル型膜エレメント。
【請求項3】
前記透過側流路材
は、トリコット編物である
請求項2に記載のスパイラル型膜エレメント。
【請求項4】
前記透過側流路材は、縦方向に直線状に繰り返すループにより形成される複数の畝と、それらの畝同士の間に存在する複数の溝とを有するトリコット編物により形成され、
25mm当たりの溝数(wale)×{畝幅(mm)/溝幅(mm)}から計算される膜支持指数が60以上である
請求項3に記載のスパイラル型膜エレメント。
【請求項5】
前記供給側流路材の厚みは、0.4~1.2mmである
請求項1~4いずれか1項に記載のスパイラル型膜エレメント。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体中に浮遊又は溶存している成分を分離するスパイラル型膜エレメント(以下、「膜エレメント」と略称する場合がある)に関し、規格化され制限のある外径をもつ膜エレメント中の有効膜面積を高めるための技術として有用である。
【背景技術】
【0002】
近年、水資源を安定的に確保することが難しい乾燥・半乾燥地域の沿岸部大都市においては海水を脱塩して淡水化することが試みられている。さらに水資源の乏しい地域では工業排水や家庭排水を浄化し再利用する試みがなされている。さらに最近では、油田プラント等から出る油分まじりの濁質度の高い排水から油分や塩分を除去することで、このような水を再利用するといった取り組みも試みられている。
【0003】
このような水処理に用いる膜エレメントとしては、
図1(a)~(b)に示すように、対向する分離膜1の間に透過側流路材3が介在する複数の膜リーフLと、膜リーフLの間に介在する供給側流路材2と、膜リーフL及び供給側流路材2を巻回した有孔の中心管5と、供給側流路と透過側流路との混合を防止する封止部11,12と、を備えるスパイラル型膜エレメントが知られている。
【0004】
このような膜エレメントでは、運転コストやエネルギー効率等の面から透水性を向上させることが重要であり、そのためには分離膜の有効膜面積を高めることが有効である。しかし、スパイラル型膜エレメントの外径は、規格化されているため、当該規格に応じた外径の制限があるので、スパイラル型膜エレメントの外径を維持しながら、有効膜面積を高める必要があった。
【0005】
膜エレメントの有効膜面積を高める技術としては、例えば、特許文献1には、透過側流路材を薄くすることで、分離膜の充填密度を上げ、有効膜面積を高める手法が開示されている。しかし、この方法では、対向する分離膜の間に存在する透過水流路が狭くなることにより、圧力損失がより大きくなるため、膜面積に比例した透水性の向上は見込めない。
【0006】
また、特許文献2には、中心管と膜リーフが接着する封止部のみ、接着剤の塗工幅を大きくし、他の封止部の塗布幅を相対的に小さくすることで、膜エレメントの全体の有効膜面積を高める方法が開示されている。
【先行技術文献】
【特許文献】
【0007】
【文献】特開平2-218421号公報
【文献】特開2015-150545号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、従来から、膜リーフの封止部の幅を極力小さくする工夫がされており、特許文献2のように、膜エレメントの製造工程において、部分的に封止部の塗工幅を変える方法では、飛躍的な有効膜面積の増加は見込めない。
【0009】
一方、膜エレメントの有効膜面積を高める方法として、分離膜自体の厚みを小さくする方法も有効である。しかし、例えば複合半透膜の厚みを薄くする場合、強度を持たせるために、支持体である不織布の密度を高くする必要があり、また、膜エレメントを製造する際には、複合半透膜の陥没が起きないように、密度の高い透過側流路材を使用する必要がある。
【0010】
本発明者らの検討によると、このような高密度の材料を使用する場合、接着剤が分離膜の支持体や透過側流路材へ含浸しにくく、膜リーフの封止部の厚みが大きくなり易いため、複合半透膜の厚みを薄くしても、封止部の厚みの影響により、有効膜面積を十分増加させられないことが判明した。
【0011】
他方、供給側流路材を薄くすることでも、充填される分離膜の有効膜面積を大きくすることが可能である。しかし、供給側流路材を薄くすると、膜エレメントの入口-出口の圧力損失が増加し、運転エネルギーの増加によって、運転コストが大きくなるという問題が生じる。
【0012】
以上のように、外径に制約がある膜エレメントにおいて、従来技術では、流路材の厚みを小さくして有効膜面積を増加させると、圧力損失の増加等により、運転エネルギーが増加するという問題が生じるため、このような二律背反する課題を同時に解決する必要があった。
【0013】
そこで、本発明の目的は、制限のある外径をもつ膜エレメント中の有効膜面積を高めると共に、運転エネルギーも低減できるスパイラル型膜エレメントを提供することにある。
【課題を解決するための手段】
【0014】
上記目的は、以下の如き本発明によって達成できる。
【0015】
即ち、本発明のスパイラル型膜エレメントは、対向する分離膜の間に透過側流路材が介在する複数の膜リーフと、前記膜リーフの間に介在する供給側流路材と、前記膜リーフ及び前記供給側流路材を巻回した有孔の中心管と、供給側流路と透過側流路との混合を防止する封止部と、を備えるスパイラル型膜エレメントであって、前記封止部は、前記膜リーフの軸心方向の両側における二辺端部を接着剤で封止した両端封止部を含み、前記両端封止部の厚みは、390~540μmであることを特徴とする。
【0016】
本発明のスパイラル型膜エレメントによると、分離膜を充填する際に最も充填密度に影響する部分である両端封止部の厚みを、従来の値より小さい390~540μmとすることで、制限のある外径をもつ膜エレメント中の有効膜面積を高めることができる。また、両端封止部の厚みを従来の値より小さくすることにより、同じ有効膜面積の場合に、より厚い供給側流路材を使用することができ、膜エレメントの入口-出口の圧力損失をより小さくすることで、運転エネルギーも低減できるようになる。
【0017】
上記において、前記分離膜は、多孔性支持体の表面に分離機能層を有し、厚みが80~100μmである複合半透膜であることが好ましい。このような薄い複合半透膜では、強度を持たせるために、支持体である不織布の密度を高くする必要があり、また、膜エレメントを製造する際には、複合半透膜の陥没が起きないように、密度の高い透過側流路材を使用する必要がある。このような高密度の材料を使用する場合、接着剤が分離膜の支持体や透過側流路材へ含浸しにくく、膜リーフの封止部の厚みが大きくなり易いため、本発明のスパイラル型膜エレメントのように、両端封止部の厚みを390~540μmとすることが、有効膜面積を高める上で特に有効になる。
【0018】
このことから、本発明では、前記複合半透膜は、前記膜リーフの外側面に前記分離機能層が配置されており、前記多孔性支持体は、密度が0.85~1.0g/cm3である不織布層の片面にポリマー多孔質層を有するものであることが好ましい。
【0019】
また、透過側流路材は、密度が0.4~0.8g/cm3のトリコット編物であることが好ましく、なかでも、前記透過側流路材は、縦方向に直線状に繰り返すループにより形成される複数の畝と、それらの畝同士の間に存在する複数の溝とを有するトリコット編物により形成され、25mm当たりの溝数(wale)×{畝幅(mm)/溝幅(mm)}から計算される膜支持指数が60以上であることがより好ましい。このような透過側流路材を用いることで、前記のようにより薄い分離膜を用いた場合でも、膜エレメントの阻止率をより高く維持することができ、しかも分離膜の変形による透過側流路の閉塞による透水量の低下も、抑制することができるため、膜エレメントの運転エネルギーをより低減することができる。
【0020】
また、前記供給側流路材の厚みは、0.4~1.2 mmであることが好ましい。これにより、有効膜面積と膜エレメントの圧力損失とのバランスが良好になり、膜エレメントの運転エネルギーをより低減することができる。
【図面の簡単な説明】
【0021】
【
図1】本発明のスパイラル型膜エレメントの一例を示す図であり、(a)は一部を分解した斜視図、(b)は膜リーフの端部を示す斜視図である。
【
図2】本発明のスパイラル型膜エレメントの製造工程の一例を示す図であり、(a)は分離膜ユニットの平面図であり、(b)は分離膜ユニットの正面図であり、(c)は分離膜ユニットを積層して巻回する前の状態を示す正面図である。
【
図3】膜リーフ及び供給側流路材が中心管に巻回された巻回体の一例を示す、一部を切り欠いた斜視図である。
【
図4】本発明のスパイラル型膜エレメントの透過側流路材の一例を示す図であり、(a)は底面図、(b)はループと斜め糸との関係を模式的に示す正面図である。
【
図5】本発明のスパイラル型膜エレメントの透過側流路材の他の例を示す底面図であり、(a)はデンビー編物(閉じ目)の例を、(b)はデンビー編物(開き目)の例を示している。
【発明を実施するための形態】
【0022】
(スパイラル型膜エレメント)
【0023】
本発明のスパイラル型膜エレメントは、
図1(a)~(b)に示すように、対向する分離膜1の間に透過側流路材3が介在する複数の膜リーフLと、膜リーフLの間に介在する供給側流路材2と、膜リーフL及び供給側流路材2を巻回した有孔の中心管5と、供給側流路と透過側流路との混合を防止する封止部と、を備えている。本実施形態では、封止部が両端封止部11と外周側封止部12とを含む例を示す。
【0024】
封止部のうち、両端封止部11は、膜リーフLの軸心方向A1の両側における二辺端部を接着剤で封止したものである。外周側封止部12は、膜リーフLの外周側先端の端部を接着剤で封止したものである。
【0025】
また、本発明では、
図3に示すように、有孔の中心管5と膜リーフLの基端部とを接着剤で封止した中央側封止部13を有することが好ましい。本実施形態の膜エレメントは、このような中央側封止部13を介して、膜リーフL及び供給側流路材2が中心管5に巻回された巻回体Rを有している。
【0026】
上記の巻回体Rは、例えば
図2(a)~(c)に示す工程により製造することができる。
図2(a)は分離膜ユニットUの平面図であり、
図2(b)は分離膜ユニットUの正面図であり、
図2(c)は分離膜ユニットUを積層して巻回する前の状態を示す正面図である。また、
図3は、膜リーフL及び供給側流路材2が中心管5に巻回された巻回体Rの一例を示す、一部を切り欠いた斜視図である。
【0027】
まず、
図1(a)及び(b)に示すように、分離膜1を二つ折りにした間に供給側流路材2を配置したものと透過側流路材3とを積み重ね、両端封止部11と外周側封止部12とを形成するための接着剤4,6を、透過側流路材3の軸心方向A1の両端部及び巻回の先端部に塗布した分離膜ユニットUを準備する。このとき、分離膜1の折り目部分に保護テープを貼り付けてもよい。
【0028】
接着剤4,6としては、特に限定されるものではなく、従来公知のものを採用することができる。具体的には、例えばウレタン系接着剤、エポキシ系接着剤、ホットメルト接着剤等、従来公知のいずれの接着剤も使用することができる。
【0029】
次ぎに、
図1(c)に示すように、他のものより延長した部分を有する透過側流路材3の上に、膜リーフLと同数の分離膜ユニットUを積層して、分離膜ユニットUの積層体を準備する。このとき、最も下側の透過側流路材3の延長部分の軸心方向A1の両端部にも接着剤を塗布しておくことで、中央側封止部13を形成することができる。
【0030】
次いで、
図1(c)に示すように、有孔の中心管5を矢印の方向に回転させて、複数の分離膜ユニットUを中心管5に巻回する。このとき、接着剤4,6が、対向する分離膜1と透過側流路材3とを接着することにより、両端封止部11と外周側封止部12とを有する膜リーフLが形成される。
【0031】
その結果、
図3に示すように、膜リーフL及び供給側流路材2が中心管5に巻回された巻回体Rが形成される。封止後の巻回体Rは、軸芯方向A1の長さを調整するために、両端部のトリミング等を行ってもよい。
図1に示すように、この巻回体Rの上流側には、例えば、シールキャリア等の上流側端部材10が設けられ、下流側には、必要に応じてテレスコープ防止材等の下流側端部材20が設けられる。また、膜エレメントには、シール材、補強材、外装材などを必要に応じて設けることができる。
【0032】
本発明のスパイラル型膜エレメントは、膜リーフLの封止部が両端封止部11を有しており、その両端封止部11の厚みT1が、390~540μmであり、好ましくは400~510μmであり、より好ましくは430~490μmである。
【0033】
また、外周側封止部12を有する場合、膜リーフLの外周側封止部12の厚みT2が、390~540μmであることが好ましく、より好ましくは400~510μmであり、更に好ましくは430~490μmである。なお、両端封止部11の厚みT1と、外周側封止部12の厚みT2は、同じでも異なっていてもよい。
【0034】
両端封止部11の厚みT1と外周側封止部12の厚みT2は、接着剤の塗布量や粘度、温度などによって調整することも可能であるが(勿論、部材の厚みによっても調整可能である。)、上記の巻回体Rを形成する際の巻き付け圧によって調整することが好ましい。巻き付け圧は、例えば、分離膜ユニットUを中心管5に巻回する際に、中心管5の方向に押圧されるニップロールのニップ圧によって調整することができる。その際、中心管5を回転させて、中心管5とニップロールの間を分離膜ユニットUが通過する際に、分離膜1の間に介在する接着剤4が加圧されることで、両端封止部11の厚みT1が変化する。また、同様に、分離膜1の間に介在する接着剤6が加圧されることで、両端封止部12の厚みT2が変化する。
【0035】
つまり、巻回体Rを形成する際の巻き付け圧を高めることで、厚みT1を従来の値より小さくすることができ、特に、厚みの薄い複合半透膜を使用する場合に、この方法は有効である。即ち、薄い複合半透膜では、強度を持たせるために、支持体である不織布の密度を高くする必要があり、また、膜エレメントを製造する際には、複合半透膜の陥没が起きないように、密度の高い透過側流路材3を使用する必要がある。このような高密度の材料を使用する場合、接着剤が分離膜1の支持体や透過側流路材3へ含浸しにくく、膜リーフLの封止部11の厚みT1が大きくなり易いため、巻き付け圧を高めることで、厚みT1を所定の範囲に調整することが有効となる。
【0036】
ただし、巻き付け圧を高める際、樹脂量をそれに見合った最適な量に調整することが好ましい。なぜなら、巻き付け圧を高めた際に樹脂幅が大きく広がり過ぎることがあるためである。また、巻付け圧を高め過ぎると、中心管が破壊されたり、樹脂が広がり過ぎて樹脂部の密度が低くなり、封止性が落ちることがある。
【0037】
本発明では、このような方法で、厚みT1を従来の値より小さくすると共に、厚みの薄い複合半透膜を使用することが、制限のある外径をもつ膜エレメント中の有効膜面積を高める上で好ましい。
【0038】
つまり、本発明では、分離膜1として、多孔性支持体の表面に分離機能層を有し、厚みが80~100μmである複合半透膜を用いることが好ましい。また、このような複合半透膜は、膜リーフLの外側面に分離機能層が配置されており、多孔性支持体は、密度が0.85~1.0g/cm3である不織布層の片面にポリマー多孔質層を有するものであることが好ましい。更に、このような厚みの薄い複合半透膜を使用する場合、特に、透過側流路材3として、密度が0.4~0.8g/cm3のトリコット編物を使用することが好ましい。
【0039】
一般的なスパイラル型膜エレメントにおいては、膜リーフLは15~30組程度巻回されるが、複合半透膜の厚みが従来の値より小さい場合、20~35組の膜リーフLを巻回することが可能となる。これにより、複合半透膜の有効膜面積を高めることができ、さらに大量の処理が可能となるため、処理効率が格段に上がる。
【0040】
上記膜エレメントを使用する際は、
図1に示すように、供給液7は膜エレメントの一方の端面側から供給される。供給された供給液7は、供給側流路材2に沿って中心管5の軸芯方向A1に平行な方向に流れ、膜エレメントの他方の端面側から濃縮液9として排出される。また、供給液7が供給側流路材2に沿って流れる過程で分離膜1を透過した透過液8は、図中破線矢印に示すように透過側流路材3に沿って開孔5aから中心管5の内部に流れ込み、この中心管5の端部から排出される。
【0041】
供給側流路材2は一般に、膜面に流体を満遍なく供給するための間隙を確保する役割を有する。このような供給側流路材2は、例えばネット、編み物、凹凸加工シートなどを用いることができ、最大厚さが0.1~3mm程度のものを適宜必要に応じて用いることができる。このような供給側流路材2では、圧力損失が低い方が好ましく、さらに適度な乱流効果を生じさせるものが好ましい。また、流路材は分離膜の両面に設置するが、供給液側には供給側流路材2、透過液側には透過側流路材3として、異なる流路材を用いることが一般的である。供給側流路材2では目が粗く厚いネット状の流路材を用いる一方で、透過側流路材3では目の細かい織物や編物の流路材を用いる。
【0042】
供給側流路材2は、海水淡水化や排水処理等の用途において、RO膜やNF膜を用いる場合に、前記の二つ折りにした複合半透膜の内面側に設けられる。供給側流路材2の構造は、一般に線状物を格子状に配列した網目構造のものを好ましく利用することができる。
【0043】
構成する材料としては特に限定されるものではないが、ポリエチレンやポリプロピレンなどが用いられる。これらの樹脂は殺菌剤や抗菌剤を含有していてもよい。この供給側流路材2の厚さは、一般に0.2~2.0mmであり、0.5~1.0mmが好ましい。厚さが厚すぎると膜エレメントに収容できる膜の量とともに透過量が減ってしまい、逆に薄すぎると汚染物質が付着しやすくなるため、透過性能の劣化が生じやすくなる。
【0044】
特に本発明では、0.9~1.3mmの供給側流路材2と組みわせることで、汚染物質が堆積しにくくなるとともに、バイオファウリングも生じにくくなるため、連続使用時にもFluxの低下を抑制することができる。
【0045】
また、本発明では、厚さ0.4~1.2mm、好ましくは厚さ0.6~0.9mmの供給側流路材2と組みわせることで、有効膜面積と膜エレメントの圧力損失とのバランスが良好になり、膜エレメントの運転エネルギーをより低減することができる。
【0046】
中心管5は、管の周囲に開孔5aを有するものであれば良く、従来のものが何れも使用できる。一般に海水淡水化や排水処理等で用いる場合には、分離膜1を経た透過水が壁面の孔から中心管5中に侵入し、透過側流路を形成する。中心管5の長さは膜エレメントの軸方向長さより長いものが一般的だが、複数に分割するなど連結構造の中心管5を用いてもよい。中心管5を構成する材料としては特に限定されるものではないが、熱硬化性樹脂または熱可塑性樹脂が用いられる。
【0047】
以下、本発明において好ましく使用される複合半透膜と透過側流路材3について、詳述する。
【0048】
(透過側流路材)
透過側流路材は、海水淡水化や排水処理等の用途において、RO膜やNF膜を用いる場合に、
図1に示すように、膜リーフLにおいて対向する分離膜1の間に介在するように設けられる。この透過側流路材には膜にかかる圧力を膜背面から支えるとともに、透過液の流路を確保することが求められる。
【0049】
本発明では、このような機能を確保するために、トリコット編物により透過側流路材が形成されていることが好ましく、編物形成後に樹脂補強又は融着処理されたトリコット編物であることがより好ましい。
【0050】
トリコット編物としては、シングルデンビー編物、ダブルデンビー編物、シングルアトラス編物、シングルコード編物、ダブルコード編物(単にコード編物ともいう)、等が挙げられるが、本発明では、
図4(a)~(b)に示すような、コード編物もしくはデンビー編物に分類されるトリコット編物が好ましい。なお、
図4(a)では、1本の縦糸の編み形状を分かり易くするために、黒色で表記している。また、
図4(b)では、模式的にループ3aと斜め糸3dとの関係を示している。
【0051】
これらのトリコット編物は、例えば
図4(a)~(b)に示すコード編物のように、いずれも縦方向に直線状に繰り返すループ3aにより形成される複数の畝3bと、それらの畝3b同士の間に存在する複数の溝3cとを有している。溝3cの底部には、1つのループ3aから次ぎのループ3aに縦糸を繋げるための斜め糸3dを有している。つまり、1本の縦糸がループ3aの部分と斜め糸3dの部分とで構成されている。
【0052】
また、
図5には、透過側流路材の他の例を示してあり、(a)はデンビー編物(閉じ目)の例を、(b)はデンビー編物(開き目)の例を示している。これらの例においても、縦方向に直線状に繰り返すループ3aにより形成される複数の畝3bと、それらの畝3b同士の間に存在する複数の溝3cとを有している。溝3cの底部には、1つのループ3aから次ぎのループ3aに縦糸を繋げるための斜め糸3dを有している。つまり、1本の縦糸がループ3aの部分と斜め糸3dの部分とで構成されている。
【0053】
本発明における透過側流路材3は、25mm当たりの溝数(wale)×{畝幅Wb(mm)/溝幅Wc(mm)}から計算される膜支持指数が60以上であることが好ましく、60~135であることがより好ましく、70~120がより好ましい。
【0054】
なお、トリコット編物における溝幅Wcは、隣接するループ3a同士の最も間隔の広い部分と最も間隔の狭い部分との平均値を指すものとする。実施例においては、光学顕微鏡写真から、隣接するループ3a同士の最も間隔の広い部分と最も間隔の狭い部分との平均値を測定し、これを10組のループ対について測定し、それらの平均値を求めている。なお、トリコット編物が樹脂補強されている場合、ループ3aの表面に存在する樹脂の厚みを加えた形状から求めた寸法とする(以下の各寸法についても同じ)。
【0055】
また、畝幅Wbは、ループ3aの最も広い部分と最も間隔の狭い部分との平均値を指すものとする。実施例においては、光学顕微鏡写真から、ループ3aの最も広い部分と最も間隔の狭い部分との平均値を測定し、これを10組のループ対について測定し、それらの平均値を求めている。
【0056】
また、本発明における透過側流路材3は、{溝幅Wc(mm)×溝深さD(mm)×25mm当たりの溝数(wale)}/25mm当たりの畝3bを形成するループ3aの数(course)から計算される流路指数が、0.18~0.45(mm2)であることが特徴であり、流路指数が0.20~0.40(mm2)であることが好ましく、0.22~0.35(mm2)であることがより好ましい。
【0057】
なお、トリコット編物における溝深さDは、隣接するループ3a同士の間に存在する斜め糸3dの表面から、ループ3aの最も高い部分までの高さを指すものとする。実施例においては、光学顕微鏡写真から、斜め糸3dの表面からループ3aの最も高い部分までの高さを10組のループ対について測定し、それらの平均値を求めている。
また、25mm当たりの溝数(wale)は、40~60が好ましく、畝幅Wbは、0.2~0.4mmが好ましい。
【0058】
トリコット編物における溝深さDは、0.10~0.15mmが好ましく、25mm当たりの畝3bを形成するループ3aの数が、40~55が好ましい。
【0059】
これらの寸法、並びに膜支持指数及び流路指数は、トリコット編物を製造する際の編み形式、waleとcourseの設定、糸径、編み込み時の張力、などによって調整することができる。
【0060】
透過側流路材の構成糸としては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン等のポリオレフィンなどが挙げられる。なかでも、加工性と生産性の観点からポリエチレンテレフタレートが特に好ましく用いられる。
【0061】
編物形成後に樹脂補強を行なう場合、繊維中に樹脂を含浸して硬化させたり、繊維表面に樹脂を被覆して硬化させる方法などが挙げられる。補強に使用する樹脂としては、メラミン樹脂、エポキシ樹脂、などが挙げられる。
【0062】
透過側流路材の構成糸は、モノフィラメントでもマルチフィラメントでもよいが、一定の太さの構成糸によって、トリコット編物が形成される。トリコット編物のなかでも、直線状に連続する溝の構造が明確なコード編物が好ましい。
【0063】
透過側流路材の厚みは、0.10~0.40mmが好ましく、0.15~0.35mmがより好ましく、0.20~0.30mmが更に好ましい。厚みが0.10mm未満であると、十分な流路が確保しにくく、透過液の圧力損失が大きくなるという問題がある。また、厚みが0.40mmを超えると、膜エレメントにおける複合半透膜の有効膜面積が小さくなり、透過液の流量が低下するという問題が生じる。透過側流路材の構成糸は、上記の厚みのトリコット編物を形成する上で、0.1~0.15mmが好ましい。
【0064】
本発明では、本発明では、トリコット編物における溝幅Wcが0.05~0.40mmであることが好ましいく、0.10~0.28mmがより好ましい。溝の幅が0.05mm未満であると、透過液の圧力損失が大きくなりすぎる傾向があり、溝の幅が0.40mmを超えると、複合半透膜の変形による阻止率の低下が起こり易くなる場合がある。
【0065】
なお、トリコット編物における直線状に連続する溝の幅は、隣接するループ同士の最も間隔の広い部分と最も間隔の狭い部分との平均値を指すものとする。マイクロスコープ写真から、10組のループ対について上記の平均値を測定し、その10個の平均値を更に平均して、連続する溝の幅を求めることができる。
【0066】
膜エレメントにおいて透過側流路材を配置する方向は、いずれでもよいが、直線状に連続する溝の方向が周方向に沿った方向で巻回されていることが好ましい。
【0067】
(複合半透膜)
本発明における複合半透膜は、多孔性支持体の表面に分離機能層を有するものであり、多孔性支持体としては、不織布層の片面にポリマー多孔質層を有するものが好ましい。複合半透膜の厚さは80~105μm程度であり、85~100μmが好ましい。
【0068】
このような複合半透膜はその濾過性能や処理方法に応じてRO(逆浸透)膜、NF(ナノ濾過)膜、FO(正浸透)膜と呼ばれ、超純水製造や、海水淡水化、かん水の脱塩処理、排水の再利用処理などに用いることができる。
【0069】
分離機能層としては、ポリアミド系、セルロース系、ポリエーテル系、シリコン系、などの分離機能層が挙げられるが、ポリアミド系の分離機能層を有するものが好ましい。ポリアミド系の分離機能層としては、一般に、視認できる孔のない均質膜であって、所望のイオン分離能を有する。この分離機能層としてはポリマー多孔質層から剥離しにくいポリアミド系薄膜であれば特に限定されるものではないが、例えば、多官能アミン成分と多官能酸ハライド成分とを多孔性支持膜上で界面重合させてなるポリアミド系分離機能層がよく知られている。
【0070】
このようなポリアミド系分離機能層はひだ状の微細構造を有することが知られており、この層の厚さは特に限定されるものではないが、0.05~2μm程度であって、好ましくは0.1~1μmである。この層が薄すぎると膜面欠陥が生じやすくなり、厚すぎると透過性能が悪化することが知られている。
【0071】
前記ポリアミド系分離機能層をポリマー多孔質層の表面に形成する方法は特に制限されずにあらゆる公知の方法を用いることができる。例えば、界面重合法、相分離法、薄膜塗布法などの方法が挙げられるが、本発明では特に界面重合法が好ましく用いられる。界面重合法は例えば、ポリマー多孔質層上を多官能アミン成分含有アミン水溶液で被覆した後、このアミン水溶液被覆面に多官能酸ハライド成分を含有する有機溶液を接触させることで界面重合が生じ、スキン層を形成する方法である。この方法では、アミン水溶液及び有機溶液の塗布後、適宜余剰分を除去して進めることが好ましく、この場合の除去方法としては対象膜を傾斜させて流す方法や、気体を吹き付けて飛ばす方法、ゴム等のブレードを接触させて掻き落とす方法などが好ましく用いられている。
【0072】
また、前記工程において、前記アミン水溶液と前記有機溶液が接触するまでの時間は、アミン水溶液の組成、粘度及び多孔性支持膜の表面の孔径にもよるが、1~120秒程度であり、好ましくは2~40秒程度である。前記の間隔が長すぎる場合には、アミン水溶液が多孔性支持膜の内部深くまで浸透・拡散し、未反応多官能アミン成分が多孔性支持膜中に大量に残留し、不具合が生じる場合がある。前記溶液の塗布間隔が短すぎる場合には、余分なアミン水溶液が残存しすぎるため、膜性能が低下する傾向にある。
【0073】
このアミン水溶液と有機溶液との接触後には、70℃以上の温度で加熱乾燥してスキン層を形成することが好ましい。これにより膜の機械的強度や耐熱性等を高めることができる。加熱温度は70~200℃であることがより好ましく、特に好ましくは80~130℃である。加熱時間は30秒~10分程度が好ましく、さらに好ましくは40秒~7分程度である。
【0074】
前記アミン水溶液に含まれる多官能アミン成分は、2以上の反応性アミノ基を有する多官能アミンであり、芳香族、脂肪族、及び脂環式の多官能アミンが挙げられる。前記芳香族多官能アミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、キシリレンジアミン等が挙げられる。前記脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2-アミノエチル)アミン、n-フェニル-エチレンジアミン等が挙げられる。前記脂環式多官能アミンとしては、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ピペラジン、2,5-ジメチルピペラジン、4-アミノメチルピペラジン等が挙げられる。これらの多官能アミンは1種で用いてもよく、2種以上を併用してもよい。特に本発明では、逆浸透膜性能において高阻止率を求める場合には緻密性の高い分離機能層が得られるm-フェニレンジアミンを主成分とすることが好ましく、また、NF膜性能において高いFlux保持率を求める場合にはピペラジンを主成分とすることが好ましい。
【0075】
前記有機溶液に含まれる多官能酸ハライド成分は、反応性カルボニル基を2個以上有する多官能酸ハライドであり、芳香族、脂肪族、及び脂環式の多官能酸ハライドが挙げられる。前記芳香族多官能酸ハライドとしては、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライド、クロロスルホニルベンゼンジカルボン酸ジクロライド等が挙げられる。前記脂肪族多官能酸ハライドとしては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド等が挙げられる。前記脂環式多官能酸ハライドとしては、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、テトラハイドロフランジカルボン酸ジクロライド等が挙げられる。これら多官能酸ハライドは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能酸ハライドを用いることが好ましい。また、多官能酸ハライド成分の少なくとも一部に3価以上の多官能酸ハライドを用いて、架橋構造を形成することが好ましい。
【0076】
前記界面重合法において、アミン水溶液中の多官能アミン成分の濃度は特に限定されるものではないが、0.1~7重量%が好ましく、さらに好ましくは1~5重量%である。多官能アミン成分の濃度が低すぎると、スキン層に欠陥が生じやすくなり、塩阻止性能が低下する傾向にある。一方で多官能アミン成分の濃度が高すぎる場合には、厚くなりすぎて透過流束が低下する傾向にある。
【0077】
前記有機溶液中の多官能酸ハライド成分の濃度は特に制限されないが、0.01~5重量%が好ましく、さらに好ましくは0.05~3重量%である。多官能酸ハライド成分の濃度が低すぎると、未反応多官能アミン成分が増加するため、スキン層に欠陥が生じやすくなる。一方、多官能酸ハライド成分の濃度が高すぎると、未反応多官能酸ハライド成分が増加するため、スキン層が厚くなりすぎて透過流束が低下する傾向にある。
【0078】
前記多官能酸ハライドを含有させる有機溶媒としては、水に対する溶解度が低く、多孔性支持膜を劣化させることなく、多官能酸ハライド成分を溶解するものであれば特に限定されず、例えば、シクロヘキサン、ヘプタン、オクタン、及びノナン等の飽和炭化水素、1,1,2-トリクロロトリフルオロエタン等のハロゲン置換炭化水素などを挙げることができる。好ましくは沸点が300℃以下、さらに好ましくは沸点が200℃以下の飽和炭化水素である。
【0079】
前記アミン水溶液や有機溶液には、各種性能や取り扱い性の向上を目的とした添加剤を加えてもよい。前記添加剤としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などのポリマー、ソルビトール、グリセリンなどの多価アルコールや、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、及びラウリル硫酸ナトリウム等の界面活性剤、重合により生成するハロゲン化水素を除去する水酸化ナトリウム、リン酸三ナトリウム、及びトリエチルアミン等の塩基性化合物、アシル化触媒及び、特開平8-224452号公報記載の溶解度パラメータが8~14(cal/cm3)1/2の化合物などが挙げられる。
【0080】
前記分離機能層の露出表面には、各種ポリマー成分からなるコーティング層を設けてもよい。前記ポリマー成分は、分離機能層及び多孔性支持膜を溶解せず、また水処理操作時に溶出しないポリマーであれば特に限定されるものではなく、例えば、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、ポリエチレングリコール、及びケン化ポリエチレン-酢酸ビニル共重合体などが挙げられる。これらのうち、ポリビニルアルコールを用いることが好ましく、特にケン化度が99%以上のポリビニルアルコールを用いるか、ケン化度90%以上のポリビニルアルコールを前記スキン層のポリアミド系樹脂と架橋させることで、水処理時に溶出しにくい構成とすることが好ましい。このようなコーティング層を設けることにより、膜表面の電荷状態が調整されるとともに親水性が付与されるため、汚染物質の付着を抑制することができ、さらに本発明との相乗効果によりFlux保持効果をより高めることができる。
【0081】
本発明に用いられる不織布層としては、前記複合半透膜の分離性能および透過性能を保持しつつ、適度な機械強度を付与するものであれば特に限定されるものではなく、市販の不織布を用いることができる。この材料としては例えば、ポリオレフィン、ポリエステル、セルロースなどからなるものが用いられ、複数の素材を混合したものも使用することができる。特に成形性の点ではポリエステルを用いることが好ましい。また適宜、長繊維不織布や短繊維不織布を用いることができるが、ピンホール欠陥の原因となる微細な毛羽立ちや膜面の均一性の点から、長繊維不織布を好ましく用いることができる。また、このときの前記不織布層単体の通気度としては、これに限定されるものではないが、0.5~10cm3/cm2・s程度のものを用いることができ、1~5cm3/cm2・s程度のものが好ましく用いられる。
【0082】
不織布層の厚さは90μm以下が好ましく、80μm以下がより好ましく、70μm以下が特に好ましい。この厚さが厚すぎると透過抵抗が高くなりすぎるためFluxが低下しやすくなり、逆に薄すぎると複合半透膜支持体としての機械強度が低下し、安定した複合半透膜が得られにくくなるため、50μm以上が好ましく、55μm以上がより好ましい。
【0083】
前記ポリマー多孔質層としては、前記ポリアミド系分離機能層を形成しうるものであれば特に限定されないが、通常、0.01~0.4μm程度の孔径を有する微多孔層である。前記微多孔層の形成材料は、例えば、ポリスルホン、ポリエーテルスルホンに例示されるポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデンなど種々のものをあげることができる。特に化学的、機械的、熱的に安定である点からポリスルホン、ポリアリールエーテルスルホンを用いたポリマー多孔質層を形成することが好ましい。
【0084】
前記ポリマー多孔質層の厚さは、本発明では35μm以下とすることが好ましく、32μm以下がより好ましい。厚すぎると、加圧後のFlux保持率が低下しやすくなることが分かっている。さらには、29μm以下が特に好ましく、26μm以下が最も好ましい。この程度まで薄く形成することでさらにFlux保持率の安定性を高めることができる。また、薄すぎると欠陥が生じやすくなるため、10μm以上が好ましく、15μm以上がより好ましい。
【0085】
前記ポリマー多孔質層のポリマーがポリスルホンである場合の製造方法について例示する。ポリマー多孔質層は一般に湿式法または乾湿式法と呼ばれる方法により製造できる。まず、ポリスルホンと溶媒及び各種添加剤を溶解した溶液準備工程と、前記溶液で不織布上を被覆する被覆工程と、この溶液中の溶媒を蒸発させてミクロ相分離を生じさせる乾燥工程と、水浴等の凝固浴に浸漬することで固定化する固定化工程を経て、不織布上のポリマー多孔質層を形成することができる。前記ポリマー多孔質層の厚さは、不織布層に含浸される割合も計算の上、前記溶液濃度及び被覆量を調整することで設定することができる。
【0086】
(スパイラル型膜エレメントの用途)
本発明のスパイラル型膜エレメントは、海水淡水化や排水処理等の用途に使用できるが、近年、運転時の消費電力を低減する目的で、従来より低い圧力でも十分な透過流束が得られる複合半透膜が開発されている。このような複合半透膜を用いた用途では、膜の供給側と透過側の差圧(運転圧力)として、例えば0.3~3.0MPaが設定され、好ましくは0.5~1.5MPaが設定される。本発明のスパイラル型膜エレメントは、このような低圧で運転を行なう場合にも、従来より高密度の透過側流路材を用いることで、多孔性支持体の薄型化に対応できるようにしたものである。
【0087】
(スパイラル型膜エレメントの別の実施形態)
以上の説明に於いては、本発明の最も好適な実施態様について説明した。しかし、本発明は当該実施態様に限定されるものではなく、本発明の特許請求の範囲に記載された技術的思想と実質的に同一の範囲で種々の変更が可能である。
【0088】
即ち、前記の実施態様に於いては、
図2に示すように、供給側流路材2を挟みこむように二つ折りにした分離膜1の上に、透過側流路材3を重ねて、接着剤4,6を塗布する例で説明した。しかし、本発明では、透過側流路材3の上に二つ折りにした分離膜1を重ねその上に接着剤4,6を塗布することも可能である。また、二つ折りにした分離膜1の代わりに、2枚の分離膜1を用いて供給側流路材2を挟み、巻回開始側にも封止部を設けるようにしてもよい。更に、連続した分離膜1を用いて、外周側封止部12を不要にしてもよい。
【実施例】
【0089】
以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。各実施例等における物性等の評価は、次のようにして行なった。
【0090】
(厚さ測定)
厚さ測定は市販の厚さ測定器((株)尾崎製作所製:ダイヤルシックネスゲージ G-7C)を用いて測定を行った。不織布層とポリマー多孔質層の厚さ測定については、あらかじめ不織布層の厚さを測定しておき、その不織布層上にポリマー多孔質層を形成した状態で複合半透膜支持体全体の厚さを測定した。その後、複合半透膜支持体の厚さと不織布の厚さの差を求め、ポリマー多孔質層の厚さとした。各厚さ測定では同一膜面における任意十点測定値の平均値を用いた。
【0091】
(透水量及び阻止率)
0.15%食塩水を供給液として、水温25℃、圧力1.05MPa、濃縮液流量150L/minの条件で、膜エレメントの透水量及び阻止率について、性能評価した。
【0092】
(透過側流路材の膜支持指数)
透過側流路材の平面視及び断面の光学顕微鏡写真において、スケールを基準として任意十点で溝幅、畝幅、及び溝深さを測定し、その測定値の平均値を用いた。透過側流路材のウエルについては、光学顕微鏡下で、25mm×25mmの範囲における溝数(wale)を計測した。これに基づき、25mm当たりの溝数(wale)×{畝幅(mm)/溝幅(mm)}から膜支持指数を計算して求めた。
【0093】
(供給側-濃縮側の圧力及び差圧、ポンプ運転エネルギー)
Hydranautics社からウエブページ上で提供されているIMSDesign-2016を用いて、下記の共通する条件設定の下で、各々の膜エレメントの特性を入力することで、供給側-濃縮側の圧力[bar]及び差圧[bar]、並びにポンプ運転エネルギー[kWh/m3]を計算した。
【0094】
即ち、7本入りベッセルを前段へ2ベッセル、後段へ1ベッセルの形で配列し、そのベッセルへ、1.05MPaの水圧をかけたときに、純水透過水量が1.4m3/m2dである膜を使用して作製されたエレメントを21本装填し、電導度:775μS/cm、不純物総溶解度:409mg/L、pH:6.3、水温:30℃、の供給水を、回収率:75%、総透過水量15m3/hr、の条件で運転したときの運転圧力と単位造水量におけるポンプ運転エネルギーを算出した。
【0095】
実施例1
厚さ100μmの市販の水処理膜支持体用ポリエステル製不織布(幅約1m、密度0.8g/cm3)を搬送しつつ、その表面に、ポリスルホンとジメチルホルムアミドの混合溶液(ポリマー濃度18.35重量%)を連続的に塗布し、35℃の水中で凝固処理することで、厚さ30μmのポリマー多孔質層を形成した、長尺の多孔性支持体(厚み130μm)を作製した。
【0096】
この多孔性支持体を搬送しつつ、そのポリマー多孔質層表面に、m-フェニレンジアミン3重量%、ラウリル硫酸ナトリウム0.15重量%を混合した溶液Aを接触させた後、余分の溶液Aを除去して、溶液Aの被覆層を形成した。次いで、溶液A被覆層の表面に、ヘキサン溶媒中にトリメシン酸クロライド0.3重量%を含有する溶液Bを接触させた。その後、120℃の環境下で乾燥することで分離機能層を形成し、長尺の複合半透膜(厚み130μm)とした。
【0097】
この複合半透膜と表1に示す厚みと密度と膜支持指数の透過側流路材(ポリエチレンテレフタレート製のトリコット編物)、及び表1に示す厚みの供給側流路材(ポリエチレン製のネット)とを使用し、接着剤(サンユレック(株)社製ウレタン樹脂)を10~30mm幅の封止部となるように塗布し、表1に示す巻付け圧で膜リーフ(全膜リーフ数:23)を中心管(外径39mm)に巻付け、外径200mmのスパイラル型膜エレメントを製造した。その後、膜エレメントの性能として透水量及び阻止率を評価し、解体して膜リーフの両端封止部の厚み、及び膜面積を評価した。また、供給側-濃縮側の圧力及び差圧、ポンプ運転エネルギーを求めた。その結果を併せて表1に示す。
【0098】
実施例2~4
厚さ65μmの市販の水処理膜支持体用ポリエステル製不織布(幅約1m、密度0.9g/cm3)を搬送しつつ、その表面に、ポリスルホンとジメチルホルムアミドの混合溶液(ポリマー濃度18.35重量%)を連続的に塗布し、35℃の水中で凝固処理することで、厚さ25μmのポリマー多孔質層を形成した、長尺の多孔性支持体(厚み90μm)を作製した。
【0099】
実施例1において、この多孔性支持体を複合半透膜(厚み90μm)の製造に使用したこと、及び表1の条件で膜エレメントを作製したこと以外は、実施例1と同様にして膜エレメントを作製した。なお、このように構成部材や封止部等の厚みを変えることで、同じ外径であっても、膜リーフ数を増減させることができ、これにより有効膜面積も変化する(以下の実施例等についても同様)。その後、膜エレメントの性能を評価し、解体して膜リーフの両端封止部の厚み及び膜面積を評価した。また、供給側-濃縮側の圧力及び差圧、ポンプ運転エネルギーを求めた。その結果を併せて表1に示す。
【0100】
比較例1(従来品)
実施例1において、表1に示す巻付け圧で膜リーフを中心管に巻付けたこと以外は、実施例1と同様にして膜エレメントを作製した。その後、膜エレメントの性能を評価し、解体して膜リーフの両端封止部の厚み及び膜面積を評価した。また、供給側-濃縮側の圧力及び差圧、ポンプ運転エネルギーを求めた。その結果を併せて表1に示す。
【0101】
比較例2(従来品)
比較例1において、表1に示す供給側流路材を使用したこと以外は、比較例1と同様にして膜エレメントを作製した。その後、膜エレメントの性能を評価し、解体して膜リーフの両端封止部の厚み及び膜面積を評価した。また、供給側-濃縮側の圧力及び差圧、ポンプ運転エネルギーを求めた。その結果を併せて表1に示す。
【0102】
比較例3
比較例1において、実施例2と同じ複合半透膜を使用し、表1に示す巻付け圧で膜リーフを中心管に巻付けたこと以外は、比較例1と同様にして膜エレメントを作製した。その後、膜エレメントの性能を評価し、解体して膜リーフの両端封止部の厚み及び膜面積を評価した。また、供給側-濃縮側の圧力及び差圧、ポンプ運転エネルギーを求めた。その結果を併せて表1に示す。
【0103】
【0104】
表1における比較例1と実施例1の対比より、巻付け圧を大きくすることで、膜リーフの両端封止部の厚みが小さくなり、有効膜面積が増加することで、透水量が増加し、運転エネルギーも低減できることが分かる。
【0105】
また、実施例1と実施例2~4の対比より、より薄い複合半透膜を使用することで、膜リーフの両端封止部の厚みがより小さくなり、有効膜面積が増加することで、透水量が増加し、運転エネルギーも低減できることが分かる。
【0106】
また、実施例2と実施例3の対比より、より薄い供給側流路材を使用することによっても、有効膜面積が増加することで、透水量が増加するものの、運転エネルギーは増加してしまうことが分かる。
【0107】
更に、比較例3と実施例2の対比より、より薄い複合半透膜を使用しても、膜支持指数の小さい従来の透過側流路材を使用すると(比較例3)、複合半透膜の変形により阻止率が低下するだけでなく、透水量が小さくなることで、運転エネルギーは増加してしまうが、膜支持指数の大きい透過側流路材を使用すると(実施例2)、運転エネルギーも低減できることが分かる。
【符号の説明】
【0108】
1 分離膜
2 供給側流路材
3 透過側流路材
3a ループ
3b 畝
3c 溝
4 接着剤
5 中心管
6 接着剤
11 両端封止部
12 外周側封止部
R 巻回体
T1 両端封止部の厚み
T2 外周側封止部の厚み
U 分離膜ユニット
Wb 畝幅
Wc 溝幅
D 溝深さ