IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

7091264磁気テープ、磁気テープカートリッジおよび磁気テープ装置
<>
  • -磁気テープ、磁気テープカートリッジおよび磁気テープ装置 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-17
(45)【発行日】2022-06-27
(54)【発明の名称】磁気テープ、磁気テープカートリッジおよび磁気テープ装置
(51)【国際特許分類】
   G11B 5/70 20060101AFI20220620BHJP
   G11B 5/71 20060101ALI20220620BHJP
   G11B 5/708 20060101ALI20220620BHJP
   G11B 5/738 20060101ALI20220620BHJP
   G11B 5/735 20060101ALI20220620BHJP
   G11B 5/78 20060101ALI20220620BHJP
   G11B 5/84 20060101ALI20220620BHJP
【FI】
G11B5/70
G11B5/71
G11B5/708
G11B5/738
G11B5/735
G11B5/78
G11B5/84 C
【請求項の数】 10
(21)【出願番号】P 2019016499
(22)【出願日】2019-01-31
(65)【公開番号】P2020123419
(43)【公開日】2020-08-13
【審査請求日】2021-02-18
(73)【特許権者】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110000109
【氏名又は名称】特許業務法人特許事務所サイクス
(72)【発明者】
【氏名】小沢 栄貴
(72)【発明者】
【氏名】笠田 成人
【審査官】中野 和彦
(56)【参考文献】
【文献】特開2017-174476(JP,A)
【文献】特開2010-192065(JP,A)
【文献】特開2013-164889(JP,A)
【文献】特開2009-087468(JP,A)
【文献】特開2007-299513(JP,A)
【文献】特開2015-130214(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G11B 5/70
G11B 5/71
G11B 5/708
G11B 5/738
G11B 5/735
G11B 5/78
G11B 5/84
(57)【特許請求の範囲】
【請求項1】
非磁性支持体と、強磁性粉末、結合剤および脂肪酸エステルを含む磁性層と、を有し、
雰囲気温度20~25℃および相対湿度40~60%の環境下で、金属ロールのみから構成される7段のカレンダロールを備えたカレンダ処理機を用いて、20m/minの速度で磁気テープを長手方向に0.5N/mの張力を加えた状態で走行させながら、2つのロール間(ロールの加熱なし)を合計6回通過させることにより、各ロール間を通過する際にそれぞれ磁性層の表面に70atmの面圧を加えて押圧した後に下記(1)~(3)を満たす、磁気テープ;
(1)前記磁気テープを真空加熱する前に前記磁性層の表面において光学干渉法により測定されるスペーシング分布の半値全幅が、0nm超15.0nm以下である;
(2)前記磁気テープを真空加熱した後に前記磁性層の表面において光学干渉法により測定されるスペーシング分布の半値全幅が、0nm超15.0nm以下である;
(3)前記磁気テープを真空加熱した後に前記磁性層の表面において光学干渉法により測定されるスペーシングSafterと、前記磁気テープを真空加熱する前に前記磁性層の表面において光学干渉法により測定されるスペーシングSbeforeとの差分、Safter-Sbefore、が、0nm超12.0nm以下である。
【請求項2】
前記(1)のスペーシング分布の半値全幅は、0.5nm以上15.0nm以下である、請求項1に記載の磁気テープ。
【請求項3】
前記(2)のスペーシング分布の半値全幅は、0.5nm以上15.0nm以下である、請求項1または2に記載の磁気テープ。
【請求項4】
前記(3)の差分は、3.0nm以上12.0nm以下である、請求項1~3のいずれか1項に記載の磁気テープ。
【請求項5】
前記磁性層は、無機酸化物系粒子を含む、請求項1~4のいずれか1項に記載の磁気テープ。
【請求項6】
前記無機酸化物系粒子は、無機酸化物とポリマーとの複合粒子である、請求項5に記載の磁気テープ。
【請求項7】
前記非磁性支持体と前記磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有する、請求項1~6のいずれか1項に記載の磁気テープ。
【請求項8】
前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有する、請求項1~7のいずれか1項に記載の磁気テープ。
【請求項9】
請求項1~8のいずれか1項に記載の磁気テープを含む磁気テープカートリッジ。
【請求項10】
請求項1~8のいずれか1項に記載の磁気テープと、
磁気ヘッドと、
を含む磁気テープ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気テープ、磁気テープカートリッジおよび磁気テープ装置に関する。
【背景技術】
【0002】
磁気記録媒体にはテープ状のものとディスク状のものがあり、各種データストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープが主に用いられている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2012-43495号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
磁気テープは、通常、磁気テープカートリッジ内にリールに巻き取られた状態で収容される。一方、磁気テープに記録された情報の再生は、一般に、磁気テープカートリッジを、ドライブと呼ばれる磁気テープ装置にセットし、磁気テープを磁気テープ装置内で走行させて行われる。しかし、磁気テープが走行安定性に劣るものであると、オフトラックにより再生出力が低下してしまう。そのため、磁気テープには、走行安定性に優れることが望まれる。
【0005】
ところで、磁気記録媒体等の各種記録媒体に記録されるデータは、アクセス頻度(再生頻度)に応じて、ホットデータ、ウォームデータ、コールドデータと呼ばれる。アクセス頻度は、ホットデータ、ウォームデータ、コールドデータの順に低くなり、アクセス頻度が低いデータ(例えばコールドデータ)を記録し長期間保管することは、アーカイブ(archive)と呼ばれる。近年の情報量の飛躍的な増大および各種情報のデジタル化に伴い、アーカイブのために磁気記録媒体に記録し保管されるデータ量は増大しているため、アーカイブに適した磁気記録再生システムに対する注目が高まりつつある。
【0006】
そこで本発明者らが、磁気テープをアーカイブのために適用することを検討したところ、長期保管相当の加速試験後に磁気テープを走行させると、走行安定性が低下する現象が確認された。
【0007】
本発明の一態様は、長期保管後の走行安定性に優れる磁気テープを提供することを目的とする。
【課題を解決するための手段】
【0008】
先に記載したように、磁気テープは、通常、磁気テープカートリッジ内にリールに巻き取られた状態で収容される。したがって、アクセス頻度が低いデータが記録された後の磁気テープの長期間の保管も、磁気テープカートリッジに収容された状態で行われる。リールに巻き取られた磁気テープは、磁性層表面とバックコート層(バックコート層を有する場合)または非磁性支持体の磁性層側とは反対側の表面(バックコート層を有さない場合)とが接触しているため、磁気テープカートリッジ内で磁性層は押圧された状態にある。本発明者らは、各種シミュレーションを行った結果、相対湿度40~60%の室温環境下での約10年の長期保管(アーカイブの一例)に相当する加速試験としては、磁性層を70atmの圧力で押圧することが適切であると判断するに至った。なお、本発明および本明細書において、室温とは、20~25℃の範囲の温度をいうものとする。そこで磁性層を70atmで押圧した後に走行安定性試験を行ったところ、何ら対策を施さない場合、走行安定性に劣るものとなることが判明した。これに対し、本発明者らは鋭意検討を重ねた結果、下記(1)~(3)を満たす磁気テープは、磁性層を70atmで押圧した後の走行安定性、即ち上記長期保管後に相当する状態での走行安定性に優れるという、従来知られていなかった新たな知見を得て、本発明の一態様を完成させた。
【0009】
即ち、本発明の一態様は、非磁性支持体と、強磁性粉末、結合剤および脂肪酸エステルを含む磁性層と、を有し、上記磁性層を70atmの圧力で押圧した後に下記(1)~(3)を満たす磁気テープに関する。
(1)上記磁気テープを真空加熱する前に上記磁性層の表面において光学干渉法により測定されるスペーシング分布の半値全幅が、0nm超15.0nm以下である;
(2)上記磁気テープを真空加熱した後に上記磁性層の表面において光学干渉法により測定されるスペーシング分布の半値全幅が、0nm超15.0nm以下である;
(3)上記磁気テープを真空加熱した後に上記磁性層の表面において光学干渉法により測定されるスペーシングSafterと、上記磁気テープを真空加熱する前に上記磁性層の表面において光学干渉法により測定されるスペーシングSbeforeとの差分(Safter-Sbefore)が、0nm超12.0nm以下である。
【0010】
一態様では、上記(1)のスペーシング分布の半値全幅は、0.5nm以上15.0nm以下であることができる。
【0011】
一態様では、上記(2)のスペーシング分布の半値全幅は、0.5nm以上15.0nm以下であることができる。
【0012】
一態様では、上記(3)の差分は、3.0nm以上12.0nm以下であることができる。
【0013】
一態様では、上記磁性層は、無機酸化物系粒子を含むことができる。
【0014】
一態様では、上記無機酸化物系粒子は、無機酸化物とポリマーとの複合粒子であることができる。
【0015】
一態様では、上記磁気テープは、上記非磁性支持体と上記磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有することができる。
【0016】
一態様では、上記磁気テープは、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することができる。
【0017】
本発明の一態様は、上記磁気テープを含む磁気テープカートリッジに関する。
【0018】
本発明の一態様は、上記磁気テープと、磁気ヘッドと、を含む磁気テープ装置に関する。
【発明の効果】
【0019】
本発明の一態様によれば、長期保管後の走行安定性に優れる磁気テープを提供することができる。また、本発明の一態様によれば、上記磁気テープを含む磁気テープカートリッジおよび上記磁気テープを含む磁気テープ装置を提供することができる。
【図面の簡単な説明】
【0020】
図1】実施例で用いた振動付与装置の概略構成図である。
【発明を実施するための形態】
【0021】
[磁気テープ]
本発明の一態様は、非磁性支持体と、強磁性粉末、結合剤および脂肪酸エステルを含む磁性層と、を有し、上記磁性層を70atmの圧力で押圧した後に下記(1)~(3)を満たす磁気テープに関する。1atm=101325Pa(パスカル)=101325N(ニュートン)/mである。
(1)上記磁気テープを真空加熱する前に上記磁性層の表面において光学干渉法により測定されるスペーシング分布の半値全幅(以下、「FWHMbefore」とも記載する。)が、0nm超15.0nm以下である;
(2)上記磁気テープを真空加熱した後に上記磁性層の表面において光学干渉法により測定されるスペーシング分布の半値全幅(以下、「FWHMafter」とも記載する。)が、0nm超15.0nm以下である;
(3)上記磁気テープを真空加熱した後に上記磁性層の表面において光学干渉法により測定されるスペーシングSafterと、上記磁気テープを真空加熱する前に上記磁性層の表面において光学干渉法により測定されるスペーシングSbeforeとの差分(Safter-Sbefore)が、0nm超12.0nm以下である。
【0022】
上記の磁性層の押圧の圧力70atmは、押圧により磁性層の表面に加わる面圧である。20m/minの速度で磁気テープを走行させながら、2つのロール間を通過させることにより、磁性層の表面に70atmの面圧が加えられる。走行中の磁気テープには、磁気テープの長手方向に、0.5N/mの張力が加えられる。上記押圧は、磁気テープを2つのロール間を合計6回通過させ、各ロール間を通過する際にそれぞれ70atmの面圧を加えて行う。上記ロールとしては、金属ロールを使用し、ロールは加熱しない。押圧を行う環境は、雰囲気温度20~25℃、相対湿度40~60%の環境とする。上記の押圧が行われる磁気テープは、相対湿度40~60%の室温環境下での10年以上の長期保管も、かかる長期保管に相当する保管またはかかる長期保管に相当する加速試験も行われていない磁気テープとする。この点は、特記しない限り、本発明および本明細書に記載の磁気テープに関する各種物性についても同様とする。
以上の押圧は、例えば、磁気記録媒体の製造のために使用されるカレンダ処理機を利用して行うことができる。例えば、磁気テープカートリッジに収容されている磁気テープを取り出し、カレンダ処理機においてカレンダロール間を通過させることにより、磁気テープを70atmの圧力で押圧することができる。
【0023】
本発明の一態様にかかる磁気テープは、上記押圧後に上記(1)~(3)を満たす。上記(1)~(3)に関する物性を求めるために磁気テープの磁性層表面において光学干渉法により測定されるスペーシングとは、以下の方法により測定される値とする。また、本発明および本明細書において、磁気テープの「真空加熱」とは、磁気テープを200Pa以上0.01MPa以下の圧力かつ70~90℃の雰囲気温度の環境下に24時間保持することにより行われる。なお、本発明および本明細書において、磁気テープの「磁性層(の)表面」とは、磁気テープの磁性層側表面と同義である。
磁気テープと透明な板状部材(例えばガラス板等)を、磁気テープの磁性層表面が透明な板状部材と対向するように重ね合わせた状態で、磁気テープの磁性層側とは反対側から0.5atmの圧力で押圧部材を押しつける。この状態で、透明な板状部材を介して磁気テープの磁性層表面に光を照射し(照射領域:150000~200000μm)、磁気テープの磁性層表面からの反射光と透明な板状部材の磁気テープ側表面からの反射光との光路差によって発生する干渉光の強度(例えば干渉縞画像のコントラスト)に基づき、磁気テープの磁性層表面と透明な板状部材の磁気テープ側表面との間のスペーシング(距離)を求める。ここで照射される光は特に限定されるものではない。照射される光が、複数波長の光を含む白色光のように、比較的広範な波長範囲にわたり発光波長を有する光の場合には、透明な板状部材と反射光を受光する受光部との間に、干渉フィルタ等の特定波長または特定波長域以外の光を選択的にカットする機能を有する部材を配置し、反射光の中の一部の波長または一部の波長域の光を選択的に受光部に入射させる。照射させる光が単一の発光ピークを有する光(いわゆる単色光)の場合には、上記の部材は用いなくてもよい。受光部に入射させる光の波長は、一例として、例えば500~700nmの範囲にあることができる。ただし、受光部に入射させる光の波長は、上記範囲に限定されるものではない。また、透明な板状部材は、この部材を介して磁気テープに光を照射し干渉光が得られる程度に、照射される光が透過する透明性を有する部材であればよい。
以上の測定は、例えばMicro Physics社製Tape Spacing Analyzer等の市販のテープスペーシングアナライザー(TSA;Tape Spacing Analyzer)を用いて行うことができる。実施例におけるスペーシング測定は、Micro Physics社製Tape Spacing Analyzerを用いて実施した。
また、本発明および本明細書におけるスペーシング分布の半値全幅とは、上記スペーシングの測定により得られる干渉縞画像を300000ポイントに分割して各ポイントのスペーシング(磁気テープの磁性層表面と透明な板状部材の磁気テープ側表面との間の距離)を求め、これをヒストグラムとし、このヒストグラムをガウス分布でフィッティングしたときの半値全幅(FWHM;Full Width at Half Maximum)である。例えば、同じ磁気テープから2つのサンプルを切り出し、一方のサンプルを真空加熱した後に求められたFWHMをFWHMafterとし、他方のサンプルを真空加熱せずに求められたFWHMをFWHMbeforeとすることができる。
また、差分(Safter-Sbefore)は、上記300000ポイントにおける真空加熱後の最頻値から真空加熱前の最頻値を差し引いた値をいうものとする。例えば、同じ磁気テープから2つのサンプルを切り出し、一方のサンプルを真空加熱した後に求められた最頻値から、他方のサンプルを真空加熱せずに求められた最頻値を差し引いた値を、差分(Safter-Sbefore)とすることができる。
【0024】
磁気テープに記録されたデータ(情報)の再生は、通常、磁気テープの磁性層表面と再生素子を備えた磁気ヘッドとを接触させ摺動させることにより行われる。磁性層表面には、通常、磁気テープに記録されたデータを再生する際に磁気テープと磁気ヘッドとが主に接触(いわゆる真実接触)する部分(突起)と、この部分より低い部分(以下、「素地部分」と記載する。)とが存在する。上記のスペーシングは、磁気テープと磁気ヘッドとが接触し摺動する際の磁気ヘッドと素地部分との距離の指標になる値であると推察される。ただし磁性層に含まれる潤滑剤が磁性層表面に液膜を形成していると、素地部分と磁気ヘッドとの間に液膜が存在することにより、液膜の厚み分、スペーシングは狭くなると考えられる。
ところで、潤滑剤は、一般に流体潤滑剤と境界潤滑剤とに大別される。上記磁気テープの磁性層に含まれる脂肪酸エステルは、流体潤滑剤として機能し得る成分と言われている。流体潤滑剤は、それ自体が磁性層表面に液膜を形成することにより、磁性層表面を保護する役割を果たすことができると考えられる。磁性層表面に脂肪酸エステルの液膜が存在することが、磁気テープと磁気ヘッドとが円滑に摺動すること(摺動性の向上)に寄与すると考えられる。ただし、脂肪酸エステルが磁性層表面に過剰に存在すると、脂肪酸エステルにより磁性層表面と磁気ヘッドとの間にメニスカス(液架橋)が形成されて貼り付きの原因になり摺動性が低下すると考えられる。
以上の点に関して、脂肪酸エステルは真空加熱により揮発する性質を有する成分であり、真空加熱後(脂肪酸エステルの液膜が揮発し除去された状態)と真空加熱前(脂肪酸エステルの液膜が存在している状態)のスペーシングの差分(Safter-Sbefore)は、磁性層表面における脂肪酸エステルにより形成される液膜の厚みの指標となり得ると推察される。上記押圧後、即ち長期保管後に相当する状態にある磁気テープにおいて、この値が0nm超12.0nm以下となるように磁性層表面に脂肪酸エステルの液膜が存在することは、貼り付きの発生を抑制しつつ、磁気ヘッドと磁気テープとの摺動性を向上させることにつながると推察される。
一方、上記のスペーシング分布の半値全幅は、この値が小さいほど、磁性層表面の各部において測定されるスペーシングの値にばらつきが少ないことを意味する。磁気テープと磁気ヘッドとを円滑に摺動させるためには、磁性層表面に存在する突起の高さの均一性を高め、かつ脂肪酸エステルの液膜の厚みの均一性を高めることにより、磁性層表面と磁気ヘッドとの接触状態の均一性を高めることが有効であると考えられる。
この点に関し、上記のスペーシングの値がばらつく要因は、磁性層表面の突起の高さのばらつきと、脂肪酸エステルの液膜の厚みのばらつきにあると考えられる。真空加熱前、即ち磁性層表面に脂肪酸エステルの液膜が存在する状態で測定されるスペーシング分布の半値全幅FWHMbeforeは、突起の高さのばらつきと脂肪酸エステルの液膜の厚みのばらつきが大きいほど大きくなり、中でも脂肪酸エステルの液膜の厚みのばらつきが大きく影響すると推察される。これに対し、真空加熱後、即ち磁性層表面から脂肪酸エステルの液膜が除去された状態で測定されるスペーシング分布の半値全幅FWHMafterは、突起の高さのばらつきが大きいほど大きくなると考えられる。即ち、スペーシング分布の半値全幅FWHMbeforeおよびFWHMafterがともに小さいほど、磁性層表面の脂肪酸エステルの液膜の厚みのばらつきも突起の高さのばらつきも小さいことを意味すると推察される。そして、上記押圧後、即ち長期保管後に相当する状態にある磁気テープにおいて、スペーシング分布の半値全幅FWHMbeforeおよびFWHMafterがともに0nm超15.0nm以下となるように、突起の高さおよび脂肪酸エステルの液膜の厚みの均一性を高めることが、磁気テープと磁気ヘッドとを円滑に摺動させることに寄与すると考えられる。
そして以上のように上記押圧後、即ち長期保管後に相当する状態にある磁気テープと磁気ヘッドとの摺動性を向上させることが、長期保管後の走行安定性の向上につながると考えられる。
ただし以上は推察であって、かかる推察に本発明は何ら限定されない。また、本明細書に記載の他の推察にも、本発明は何ら限定されるものではない。
以下、上記磁気テープについて、更に詳細に説明する。
【0025】
<スペーシング分布の半値全幅FWHMbefore、FWHMafter
上記押圧後の磁気テープにおいて測定される真空加熱前のスペーシング分布の半値全幅FWHMbefore、および真空加熱後のスペーシング分布の半値全幅FWHMafterは、ともに0nm超15.0nm以下である。先に記載したように、このことが、長期保管後の走行安定性の向上につながると推察される。以上の観点から、FWHMbeforeおよびFWHMafterは、14.0nm以下であることが好ましく、13.0nm以下であることがより好ましく、12.0nm以下であることが更に好ましく、11.0nm以下であることが一層好ましく、10.0nm以下であることが更に一層好ましい。FWHMbeforeおよびFWHMafterは、例えば0.5nm以上、1.0nm以上、2.0nm以上、または3.0nm以上であることができる。ただし、値が小さいほど上記観点から好ましいため、上記の例示した値を下回ってもよい。
上記押圧後の磁気テープの真空加熱前のスペーシング分布の半値全幅FWHMbeforeは、主に、脂肪酸エステルの液膜の厚みのばらつきを低減し、このばらつきが上記押圧の影響を受けて大きくなってしまうことを抑制できれば、小さくすることができる。具体的な手段の一例は後述する。一方、上記押圧後の磁気テープの真空加熱後のスペーシング分布の半値全幅FWHMafterは、磁性層表面の突起の高さのばらつきを低減し、このばらつきが上記押圧の影響を受けて大きくなってしまうことを抑制できれば、小さくすることができる。磁性層表面の突起の高さのばらつきを低減するためには、磁性層に含まれる粉末成分、例えば詳細を後述する非磁性フィラーの磁性層における存在状態を制御することが好ましい。具体的な手段の一例は後述する。また、脂肪酸エステルの液膜の厚みのばらつきおよび磁性層表面の突起の高さのばらつきが、上記押圧の影響を受けて大きくなってしまうことを抑制するためには、磁性層に含まれる非磁性フィラーとして、押圧されても磁性層内部に押し込まれ難い非磁性フィラーを使用することが好ましいと推察される。かかる非磁性フィラーの詳細は後述する。
【0026】
<差分(Safter-Sbefore)>
上記押圧後の磁気テープにおいて測定される真空加熱前後のスペーシングの差分(Safter-Sbefore)は、0nm超12.0nm以下である。このことも、先に記載したように、長期保管後の走行安定性の向上につながると推察される。以上の観点から、差分(Safter-Sbefore)は、0.1nm以上であることが好ましく、0.5nm以上であることがより好ましく、1.0nm以上であることが更に好ましく、1.5nm以上であることが一層好ましく、2.0nm以上であることがより一層好ましく、2.5nm以上であることが更に一層好ましい。また、同様の観点から、差分(Safter-Sbefore)は、11.0nm以下であることが好ましく、10.0nm以下であることがより好ましく、9.0nm以下であることが更に好ましく、8.0nm以下であることが一層好ましく、7.0nm以下であることがより一層好ましく、6.0nm以下であることが更に一層好ましく、5.0nm以下であることが更により一層好ましく、4.0nm以下であることが更になお一層好ましい。差分(Safter-Sbefore)は、磁性層形成用組成物に添加する脂肪酸エステル量によって制御することができる。また、非磁性支持体と磁性層との間に非磁性層を有する磁気テープについては、非磁性層形成用組成物に添加する脂肪酸エステル量によっても制御することができる。非磁性層は、脂肪酸エステル等の潤滑剤を保持し磁性層に供給する役割を果たすことができ、非磁性層に含まれる脂肪酸エステルは磁性層に移行し磁性層表面に存在し得るからである。
【0027】
次に、上記磁気テープに含まれる磁性層等について、更に詳細に説明する。
【0028】
<磁性層>
(強磁性粉末)
磁性層は、強磁性粉末および結合剤を含む。磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
【0029】
-六方晶フェライト粉末-
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
【0030】
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
【0031】
以下に、六方晶フェライト粉末の一態様である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。
【0032】
六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
【0033】
「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁束計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
【0034】
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
【0035】
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一態様では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶フェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
【0036】
六方晶フェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気テープの走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
【0037】
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として一種の希土類原子のみ含んでもよく、二種以上の希土類原子を含んでもよい。二種以上の希土類原子を含む場合の上記バルク含有率とは、二種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、一種のみ用いてもよく、二種以上用いてもよい。二種以上用いられる場合の含有量または含有率とは、二種以上の合計についていうものとする。
【0038】
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか一種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
【0039】
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
【0040】
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気テープの磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mlを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mlを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
【0041】
磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一態様では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁束計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度1194kA/m(15kOe)で測定される値とする。
【0042】
六方晶フェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一態様では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一態様では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて一種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。
【0043】
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または二種以上の結晶構造が検出されるものであることができる。例えば一態様では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一態様では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一態様では、ビスマス原子(Bi)を含まないものであることができる。
【0044】
-金属粉末-
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
【0045】
-ε-酸化鉄粉末-
強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気テープの磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
【0046】
ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
【0047】
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
【0048】
磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一態様では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
【0049】
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している態様に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している態様も包含される。粒子との語が、粉末を表すために用いられることもある。
【0050】
粒子サイズ測定のために磁気テープから試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
【0051】
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
【0052】
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
【0053】
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層の強磁性粉末以外の成分は、少なくとも結合剤および脂肪酸エステルであり、任意に一種以上の更なる添加剤が含まれ得る。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
【0054】
(結合剤、硬化剤)
上記磁気テープは塗布型磁気テープであって、磁性層に結合剤を含む。結合剤は、一種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。
以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。また、結合剤は、電子線硬化型樹脂等の放射線硬化型樹脂であってもよい。放射線硬化型樹脂については、特開2011-048878号公報の段落0044~0045を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
【0055】
また、結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。磁性層形成用組成物の硬化剤の含有量は、結合剤100.0質量部に対して例えば0~80.0質量部であることができ、磁性層の強度向上の観点からは50.0~80.0質量部であることができる。
【0056】
(脂肪酸エステル)
上記磁気テープは、磁性層に脂肪酸エステルを含む。脂肪酸エステルは、一種のみ含まれていてもよく、二種以上が含まれていてもよい。脂肪酸エステルとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等のエステルを挙げることができる。具体例としては、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル(ブチルステアレート)、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、ステアリン酸ブトキシエチル等を挙げることができる。
脂肪酸エステル含有量は、磁性層形成用組成物における含有量として、強磁性粉末100.0質量部あたり、例えば0.1~10.0質量部であり、好ましくは1.0~7.0質量部である。脂肪酸エステルとして二種以上の異なる脂肪酸エステルを使用する場合、含有量とは、それらの合計含有量をいうものとする。この点は、本発明および本明細書において、特記しない限り、他の成分の含有量についても同様である。また、本発明および本明細書において、特記しない限り、ある成分は、一種のみ用いてもよく二種以上用いてもよい。
また、上記磁気テープが非磁性支持体と磁性層との間に非磁性層を有する場合、非磁性層形成用組成物における脂肪酸エステル含有量は、非磁性粉末100.0質量部あたり、例えば0~15.0質量部であり、好ましくは0.1~10.0質量部である。
【0057】
(その他の潤滑剤)
上記磁気テープは、少なくとも磁性層に、潤滑剤の一種である脂肪酸エステルを含む。脂肪酸エステル以外の潤滑剤が、任意に磁性層および/または非磁性層に含まれていてもよい。上記の通り、非磁性層に含まれる潤滑剤は、磁性層に移行し得る。任意に含まれ得る潤滑剤としては、脂肪酸を挙げることができる。また、脂肪酸アミド等を挙げることもできる。なお脂肪酸エステルは流体潤滑剤として機能することができる成分と言われているのに対し、脂肪酸および脂肪酸アミドは、境界潤滑剤として機能することができる成分と言われている。境界潤滑剤は、粉末(例えば強磁性粉末)の表面に吸着し強固な潤滑膜を形成することで接触摩擦を下げることのできる潤滑剤と考えられる。
脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等を挙げることができ、ステアリン酸、ミリスチン酸、パルミチン酸が好ましく、ステアリン酸がより好ましい。脂肪酸は、金属塩等の塩の形態で磁性層に含まれていてもよい。
脂肪酸アミドとしては、上記の各種脂肪酸のアミド、例えば、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。
脂肪酸と脂肪酸の誘導体(アミドおよびエステル等)については、脂肪酸誘導体の脂肪酸由来部位は、併用される脂肪酸と同様または類似の構造を有することが好ましい。例えば、一例として、脂肪酸としてステアリン酸を用いる場合にステアリン酸エステルおよび/またはステアリン酸アミドを使用することは好ましい。
磁性層形成用組成物における脂肪酸含有量は、強磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは0.1~10.0質量部であり、より好ましくは1.0~7.0質量部である。磁性層形成用組成物における脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~2.0質量部であり、より好ましくは0~1.0質量部である。
また、上記磁気テープが非磁性支持体と磁性層との間に非磁性層を有する場合、非磁性層形成用組成物における脂肪酸含有量は、非磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは1.0~10.0質量部であり、より好ましくは1.0~7.0質量部である。非磁性層形成用組成物における脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~1.0質量部である。
【0058】
(その他の成分)
磁性層には、上記の各種成分とともに、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。または、公知の方法で合成された化合物を添加剤として使用することもできる。添加剤の一例としては、上記の硬化剤が挙げられる。また、磁性層に含まれ得る添加剤としては、非磁性フィラー、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。非磁性フィラーとは、非磁性粒子または非磁性粉末と同義である。非磁性フィラーとしては、突起形成剤として機能することができる非磁性フィラーおよび研磨剤として機能することができる非磁性フィラーを挙げることができる。また、添加剤としては、特開2016-051493号公報の段落0030~0080に記載されている各種ポリマー等の公知の添加剤を用いることもできる。
【0059】
非磁性フィラーの一態様である突起形成剤としては、無機物質の粒子を用いることができ、有機物質の粒子を用いることもでき、無機物質と有機物質との複合粒子を用いることもできる。無機物質としては、金属酸化物等の無機酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等を挙げることができ、無機酸化物が好ましい。一態様では、突起形成剤は、無機酸化物系粒子であることができる。ここで「系」とは、「含む」との意味で用いられる。無機酸化物系粒子の一態様は、無機酸化物からなる粒子である。また、無機酸化物系粒子の他の一態様は、無機酸化物と有機物質との複合粒子であり、具体例としては、無機酸化物とポリマーとの複合粒子を挙げることができる。そのような粒子としては、例えば、無機酸化物粒子の表面にポリマーが結合した粒子を挙げることができる。
【0060】
突起形成剤の平均粒子サイズは、例えば30~300nmであり、好ましくは40~200nmである。粒子の形状が真球に近い粒子ほど、大きな圧力が加えられた際に働く押し込み抵抗が小さいため、磁性層内部に押し込まれやすくなる。これに対し、粒子の形状が真球から離れた形状、例えばいわゆる異形と呼ばれる形状であると、大きな圧力が加えられた際に大きな押し込み抵抗が働きやすいため、磁性層内部に押し込まれ難くなる。また、粒子表面が不均質であり表面平滑性が低い粒子も、大きな圧力が加えられた際に大きな押し込み抵抗が働きやすいため、磁性層内部に押し込まれ難くなる。磁性層内部に押し込まれ易い粒子が磁性層に含まれると、かかる粒子が押圧により磁性層内部に押し込まれることによって、磁性層表面の突起の高さのばらつきが大きくなり、上記の70atmの圧力での押圧後に測定されるFWHMafterは大きくなると考えられる。また、磁性層内部に押し込まれ易い粒子が押圧により磁性層内部に押し込まれることによって、磁性層表面に存在する脂肪酸エステルの液膜の厚みのばらつきが大きくなり、上記の70atmの圧力での押圧後に測定されるFWHMbeforeは大きくなると考えられる。したがって、突起形成剤の粒子が押圧により磁性層内部に押し込まれ難いことは、上記の70atmの圧力での押圧後に測定されるFWHMbeforeおよびFWHMafterを小さくすることに寄与すると推察される。
【0061】
非磁性フィラーの他の一態様である研磨剤は、好ましくはモース硬度8超の非磁性粉末であり、モース硬度9以上の非磁性粉末であることがより好ましい。これに対し、突起形成剤のモース硬度は、例えば8以下または7以下であることができる。なおモース硬度の最大値は、ダイヤモンドの10である。具体的には、アルミナ(Al)、炭化ケイ素、ボロンカーバイド(BC)、SiO、TiC、酸化クロム(Cr)、酸化セリウム、酸化ジルコニウム(ZrO)、酸化鉄、ダイヤモンド等の粉末を挙げることができ、中でもα-アルミナ等のアルミナ粉末および炭化ケイ素粉末が好ましい。また、研磨剤の平均粒子サイズは、例えば30~300nmの範囲であり、好ましくは50~200nmの範囲である。
【0062】
また、突起形成剤および研磨剤が、それらの機能をより良好に発揮することができるという観点から、磁性層における突起形成剤の含有量は、好ましくは強磁性粉末100.0質量部に対して、1.0~4.0質量部であり、より好ましくは1.5~3.5質量部である。一方、研磨剤については、磁性層における含有量は、好ましくは強磁性粉末100.0質量部に対して1.0~20.0質量部であり、より好ましくは3.0~15.0質量部であり、更に好ましくは4.0~10.0質量部である。
【0063】
研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を、磁性層形成用組成物における研磨剤の分散性を向上させるための分散剤として挙げることができる。また、分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
【0064】
<非磁性層>
次に非磁性層について説明する。上記磁気テープは、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末および結合剤を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
【0065】
非磁性層の結合剤、添加剤等のその他詳細は、非磁性層に関する公知技術が適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
【0066】
上記磁気テープの非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
【0067】
<非磁性支持体>
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、加熱処理等を行ってもよい。
【0068】
<バックコート層>
上記磁気テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することもでき、有さなくてもよい。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層に含まれる結合剤、任意に含まれ得る各種添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
【0069】
<各種厚み>
非磁性支持体の厚みは、好ましくは3.0~6.0μmである。
磁性層の厚みは、近年求められている高密度記録化の観点からは0.15μm以下であることが好ましく、0.1μm以下であることがより好ましい。磁性層の厚みは、更に好ましくは0.01~0.1μmの範囲である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
【0070】
非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
【0071】
バックコート層の厚みは、0.9μm以下であることが好ましく、0.1~0.7μmの範囲であることが更に好ましい。
【0072】
磁気テープの各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気テープの厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型電子顕微鏡を用いて断面観察を行う。断面観察において1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
【0073】
<製造方法>
(各層形成用組成物の調製)
磁性層、非磁性層またはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。中でも、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からは、各層形成用組成物には、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン等のケトン溶媒の一種以上が含まれることが好ましい。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。また、各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程、および分散後の粘度調整のための混合工程で分割して投入してもよい。磁気テープの製造工程では、従来の公知の製造技術を一部または全部の工程において用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報に記載されている。また、各層形成用組成物を分散させるために、ガラスビーズおよび/またはその他のビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズは、ビーズ径と充填率を最適化して用いることが好ましい。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
【0074】
(塗布工程)
磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。配向処理を行う態様では、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層に対して配向処理が行われる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける磁気テープの搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
【0075】
(その他の工程)
磁気テープ製造のためのその他の各種工程については、特開2010-231843号公報の段落0067~0070を参照できる。磁気テープには、磁気テープ装置における磁気ヘッドのトラッキング制御、磁気テープの走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することもできる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。サーボ信号は、通常、磁気テープの長手方向に沿って記録される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。以下、サーボ信号の記録について更に説明する。
【0076】
ECMA(European Computer Manufacturers Association)―319に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボ信号は、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。このように、サーボ信号が互いに非平行な一対の磁気ストライプにより構成される理由は、サーボ信号上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボ信号とサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボ信号上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
【0077】
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
【0078】
また、一態様では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
【0079】
なお、サーボバンドを一意に特定する方法には、ECMA―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボ信号を読み取る際に、サーボバンドを一意に特定することも可能となっている。
【0080】
また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
【0081】
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
【0082】
サーボ信号記録用(サーボパターン形成用)ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボ信号の記録の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボ信号を記録することができる。 各ギャップの幅は、記録するサーボ信号の密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
【0083】
磁気テープにサーボ信号を記録する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
【0084】
記録されるサーボ信号の磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボ信号の記録は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボ信号を読み取った際の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いたパターンの転写を行った場合、記録されたサーボ信号の読み取り信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いたパターンの転写を行った場合、記録されたサーボ信号の読み取り信号は、双極パルス形状となる。
【0085】
(好ましい製造方法の一態様)
上記磁気テープの好ましい製造方法としては、磁性層表面における脂肪酸エステルの液膜の厚みの均一性向上のために、磁性層に振動を加える製造方法を挙げることができる。振動を加えることにより、磁性層表面の脂肪酸エステルの液膜が流動し、液膜の厚みの均一性が向上されると推察される。即ち、上記磁気テープは、非磁性支持体上に、強磁性粉末、結合剤および脂肪酸エステルを含む磁性層形成用組成物を塗布し乾燥させることにより磁性層を形成し、形成した磁性層に振動を加えることを含む製造方法により製造することができる。
【0086】
上記振動を加える手段は特に限定されるものではない。例えば、磁性層を形成した非磁性支持体の磁性層とは反対側の面を、振動付与ユニットと接触させることにより、磁性層に振動を加えることができる。磁性層を形成した非磁性支持体を振動付与ユニットと接触させながら走行させてもよい。振動付与ユニットは、例えば、内部に超音波振動子を備えることにより、このユニットと接触した物品に振動を加えることができる。超音波振動子の振動周波数、強度、および/または振動付与ユニットとの接触時間によって、磁性層に加える振動を調整することができる。例えば接触時間は、磁性層を形成した非磁性支持体の振動付与ユニットとの接触中の走行速度によって調整することができる。これらの振動付与条件は特に限定されるものではなく、先に記載したスペーシング分布の半値全幅、特に、真空加熱前のスペーシング分布の半値全幅FWHMbeforeを制御できるように設定すればよい。振動付与条件の設定のために実製造前に予備実験を行い、条件を最適化することもできる。また、先に記載したように、押圧により磁性層内部に押し込まれ難い粒子を突起形成剤として使用して磁性層を形成することは、振動付与により低減した磁性層表面の脂肪酸エステルの液膜の厚みのばらつきが押圧により大きくなることを抑制することに寄与すると推察される。
【0087】
また、真空加熱後のスペーシング分布の半値全幅FWHMafterは、磁性層形成用組成物の分散条件を強化する(例えば分散回数を増やす、分散時間を延ばす等)、および/または、ろ過条件を強化する(例えばろ過に用いるフィルタとして孔径の小さいフィルタを用いる、フィルタろ過回数を増やす等)ことによって、小さくなる傾向がある。これらによって、磁性層形成用組成物に含まれる粒状物質、中でも先に記載した突起形成剤として機能し得る非磁性フィラーの分散性および/または粒子サイズの均一性が向上することにより、磁性層表面に存在する突起の高さの均一性が向上するためと推察される。分散条件および/またはろ過条件も、実製造前に予備実験を行い最適化することもできる。また、先に記載したように、押圧により磁性層内部に押し込まれ難い粒子を突起形成剤として使用して磁性層を形成することは、突起の高さのばらつきが押圧により大きくなることを抑制することに寄与すると推察される。
【0088】
以上により、本発明の一態様にかかる磁気テープを得ることができる。ただし上記の製造方法は例示であって、上記の70atmの圧力での押圧後に測定されるFWHMbefore、FWHMafterおよび差分(Safter-Sbefore)を調整可能な任意の手段によって、FWHMbefore、FWHMafterおよび差分(Safter-Sbefore)をそれぞれ上記範囲に制御することができ、そのような態様も本発明に包含される。
【0089】
以上説明した磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気テープ装置に装着される。
【0090】
[磁気テープカートリッジ]
本発明の一態様は、上記磁気テープを含む磁気テープカートリッジに関する。
【0091】
上記磁気テープカートリッジに含まれる磁気テープの詳細は、先に記載した通りである。上記磁気テープは、磁気テープカートリッジ内に収容された状態で長期間保管された後にも優れた走行安定性を示すことができる。
【0092】
磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻き取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータ(磁気信号)の記録および/または再生のために磁気テープ装置(ドライブ)に装着されると、磁気テープカートリッジから磁気テープが引き出されてドライブ側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)とドライブ側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。上記磁気テープカートリッジは、単リール型および双リール型のいずれの磁気テープカートリッジであってもよい。上記磁気テープカートリッジは、本発明の一態様にかかる磁気テープを含むものであればよく、その他については公知技術を適用することができる。
【0093】
[磁気テープ装置]
本発明の一態様は、上記磁気テープと、磁気ヘッドと、を含む磁気テープ装置に関する。
【0094】
本発明および本明細書において、「磁気テープ装置」とは、磁気テープへのデータの記録および磁気テープに記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気テープ装置は、摺動型の磁気テープ装置であることができる。摺動型の装置とは、磁気テープへのデータの記録および/または記録されたデータの再生を行う際に磁性層表面と磁気ヘッドとが接触し摺動する装置をいう。
【0095】
上記磁気テープ装置に含まれる磁気ヘッドは、磁気テープへのデータの記録を行うことができる記録ヘッドであることができ、磁気テープに記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気テープ装置は、一態様では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一態様では、上記磁気テープに含まれる磁気ヘッドは、データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)の両方を1つの磁気ヘッドに備えた構成を有することもできる。以下において、データの記録のための素子および再生のための素子を、「データ用素子」と総称する。再生ヘッドとしては、磁気テープに記録されたデータを感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、AMR(Anisotropic Magnetoresistive)ヘッド、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等の公知の各種MRヘッドを用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気テープ装置に含まれていてもよい。例えば、データの記録および/または再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、隣接する2つのサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。
【0096】
上記磁気テープ装置において、磁気テープへの情報の記録および/または磁気テープに記録された情報の再生は、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気テープ装置は、本発明の一態様にかかる磁気テープを含むものであればよく、その他については公知技術を適用することができる。
【0097】
例えば、情報の記録および/または再生の際には、まず、サーボ信号を用いたトラッキングが行われる。すなわち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御される。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
【実施例
【0098】
以下に、本発明を実施例に基づき説明する。但し、本発明は実施例に示す態様に限定されるものではない。以下に記載の「部」および「%」は、特記しない限り、質量基準である。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。以下に記載の「eq」は、当量( equivalent)であり、SI単位に換算不可の単位である。
【0099】
実施例または比較例の磁気テープの製造のために使用した突起形成剤は、以下の通りである。突起形成剤1および突起形成剤3は、粒子表面の表面平滑性が低い粒子である。突起形成剤2の粒子形状は繭状の形状である。突起形成剤4の粒子形状はいわゆる不定形である。突起形成剤5の粒子形状は真球に近い形状である。
突起形成剤1:キャボット社製ATLAS(シリカとポリマーとの複合粒子)、平均粒子サイズ100nm
突起形成剤2:キャボット社製TGC6020N(シリカ粒子)、平均粒子サイズ140nm
突起形成剤3:日揮触媒化成社製Cataloid(シリカ粒子の水分散ゾル;後述の突起形成剤液調製のための突起形成剤として、上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ120nm
突起形成剤4:旭カーボン社製旭#50(カーボンブラック)、平均粒子サイズ300nm
突起形成剤5:扶桑化学工業社製PL-10L(シリカ粒子の水分散ゾル;後述の突起形成剤液調製のための突起形成剤として、上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ130nm
【0100】
下記の「BaFe」は、六方晶バリウムフェライト粉末を示し、「SrFe1」および「SrFe2」はそれぞれ六方晶ストロンチウムフェライト粉末を示し、「ε-酸化鉄」はε-酸化鉄粉末を示す。
【0101】
[実施例1]
<磁性層形成用組成物>
(磁性液)
強磁性粉末(BaFe(平均粒子サイズ25nm)):100.0部
スルホン酸基含有ポリウレタン樹脂:15.0部
シクロヘキサノン:150.0部
メチルエチルケトン:150.0部
(研磨剤液)
α-アルミナ(平均粒子サイズ110nm):9.0部
塩化ビニル共重合体(カネカ社製MR110):0.7部
シクロヘキサノン:20.0部
(突起形成剤液)
突起形成剤(表1参照):1.3部 メチルエチルケトン:9.0部
シクロヘキサノン:6.0部
(その他の成分)
ブチルステアレート:表1参照
ステアリン酸:表1参照
ポリイソシアネート(東ソー社製コロネート):2.5部
(仕上げ添加溶媒)
シクロヘキサノン:180.0部
メチルエチルケトン:180.0部
【0102】
<非磁性層形成用組成物>
非磁性無機粉末(α-酸化鉄):80.0部
(平均粒子サイズ:0.15μm、平均針状比:7、BET(Brunauer-Emmett-Teller)比表面積:52m/g)
カーボンブラック(平均粒子サイズ20nm):20.0部
電子線硬化型塩化ビニル共重合体:13.0部
電子線硬化型ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:140.0部
メチルエチルケトン:170.0部
ブチルステアレート:表1参照
ステアリン酸:表1参照
【0103】
<バックコート層形成用組成物>
非磁性無機粉末(α-酸化鉄):80.0部
(平均粒子サイズ:0.15μm、平均針状比:7、BET比表面積:52m2/g)
カーボンブラック(平均粒子サイズ20nm):20.0部
カーボンブラック(平均粒子サイズ100nm):3.0部
塩化ビニル共重合体:13.0部
スルホン酸基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:140.0部
メチルエチルケトン:170.0部
ステアリン酸:3.0部
ポリイソシアネート(東ソー社製コロネート):5.0部
メチルエチルケトン:400.0部
【0104】
<各層形成用組成物の調製>
磁性層形成用組成物は、以下の方法によって調製した。
上記磁性液の各種成分をオープンニーダにより混練および希釈処理した後、横型ビーズミル分散機により、ビーズ径0.5mmのジルコニア(ZrO)ビーズ(以下、「Zrビーズ」と記載する。)を用いて、ビーズ充填率80体積%およびローター先端周速10m/秒で、1パスあたりの滞留時間を2分として12パスの分散処理を行い、磁性液を調製した。
上記研磨剤液の各種成分を混合した後、ビーズ径1mmのZrビーズとともに縦型サンドミル分散機に入れ、研磨剤液体積とビーズ体積との合計に対するビーズ体積の割合が60%になるように調整し、180分間サンドミル分散処理を行った。サンドミル分散処理後の液を取り出し、フロー式の超音波分散ろ過装置を用いて、超音波分散ろ過処理を施すことにより、研磨剤液を調製した。
磁性液、突起形成剤液および研磨剤液と、その他の成分および仕上げ添加溶媒をディゾルバー撹拌機に導入し、周速10m/秒で30分間撹拌した。その後、フロー式超音波分散機により流量7.5kg/分で、表1に示すパス回数で処理を行った後に、表1に示す孔径のフィルタで表1に示す回数ろ過して磁性層形成用組成物を調製した。
【0105】
非磁性層形成用組成物は以下の方法によって調製した。
潤滑剤(ブチルステアレートおよびステアリン酸)を除く上記成分をオープンニーダにより混練および希釈処理した後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ブチルステアレートおよびステアリン酸)を添加して、ディゾルバー撹拌機にて撹拌および混合処理を施して非磁性層形成用組成物を調製した。
【0106】
バックコート層形成用組成物は以下の方法によって調製した。
潤滑剤(ステアリン酸)、ポリイソシアネートおよびメチルエチルケトン(400.0部)を除く上記成分をオープンニーダにより混練および希釈処理した後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ステアリン酸)、ポリイソシアネートおよびメチルエチルケトン(400.0部)を添加して、ディゾルバー撹拌機にて撹拌および混合処理を施し、バックコート層形成用組成物を調製した。
【0107】
<磁気テープの作製>
厚み5.0μmの二軸延伸ポリエチレンナフタレート支持体上に、乾燥後の厚みが1.0μmになるように非磁性層形成用組成物を塗布し乾燥させた後、125kVの加速電圧で40kGyのエネルギーとなるように電子線を照射した。その上に乾燥後の厚みが0.1μmになるように磁性層形成用組成物を塗布し乾燥させて磁性層形成用組成物の塗布層を形成した。
その後、上記塗布層を形成した支持体を、図1に示す振動付与装置に、上記塗布層を形成した表面とは反対側の表面が振動付与ユニットと接するように設置し、上記塗布層を形成した支持体(図1中、符号1)を搬送速度0.5m/秒で搬送させて上記塗布層に振動を付与した。図1中、符号2はガイドローラ(符号2は2つのガイドローラの一方に付した)、符号3は振動付与装置(超音波振動子を含む振動付与ユニット)、矢印は搬送方向を示す。上記塗布層を形成した支持体の任意の箇所が振動付与ユニットとの接触を開始してから接触が終了するまでの時間を振動付与時間として、表1に示す。使用した振動付与ユニットは内部に超音波振動子を備えている。超音波振動子の振動周波数および強度を表1に示す値として振動付与を行った。
その後、上記支持体の、非磁性層および磁性層を形成した表面とは反対側の表面上に、バックコート層形成用組成物を乾燥後の厚みが0.5μmになるように塗布し乾燥させた。
その後、金属ロールのみから構成されるカレンダロールを用いて、カレンダ処理速度80m/min、線圧300kg/cm(294kN/m)、およびカレンダロールの表面温度110℃にて、表面平滑化処理(カレンダ処理)を行った。
その後、雰囲気温度70℃の環境で36時間加熱処理を行った。加熱処理後、1/2インチ(0.0127メートル)幅にスリットし、スリット品の送り出しおよび巻き取り装置を持った装置に不織布とカミソリブレードが磁性層表面に押し当たるように取り付けたテープクリーニング装置で磁性層の表面のクリーニングを行った後、磁気テープの磁性層を消磁した状態で、サーボライターに搭載されたサーボライトヘッドによって、LTO(Linear-Tape-Open) Ultriumフォーマットにしたがう配置および形状のサーボパターンを磁性層に形成した。こうして、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する磁気テープを得た。
【0108】
[実施例2~15、比較例1~16]
表1に示す各種項目を表1に示すように変更した点以外、実施例1と同様に磁気テープを得た。
表1中、超音波振動付与条件の欄に「無し」と記載されている比較例では、振動付与を行わない製造工程により磁気テープを作製した。
【0109】
[実施例16]
強磁性粉末を、以下に示す方法にて得られた六方晶ストロンチウムフェライト粉末(表1中、「SrFe1」)に変更した以外、実施例1と同様に磁気テープを作製した。
(六方晶ストロンチウムフェライト粉末の作製方法)
SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800ml加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
【0110】
上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
【0111】
[実施例17]
強磁性粉末を、以下に示す方法にて得られた六方晶ストロンチウムフェライト粉末(表1中、「SrFe2」)に変更した以外、実施例1と同様に磁気テープを作製した。
(六方晶ストロンチウムフェライト粉末の作製方法)
SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1380℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで急冷圧延して非晶質体を作製した。
得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800ml加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
【0112】
[実施例18]
強磁性粉末を、以下に示す方法にて得られたε-酸化鉄粉末(表中、「ε-酸化鉄」)に変更した以外、実施例1と同様に磁気テープを作製した。
(ε-酸化鉄粉末の作製方法)
純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
加熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.58Fe1.42)であった。また、先に実施例16について記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄型の結晶構造)を有することを確認した。
得られたε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
【0113】
上記の六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁束計(東英工業社製)を用いて、先に記載の方法により求められた値である。
また、質量磁化σsは、振動試料型磁束計(東英工業社製)を用いて磁場強度1194kA/m(15kOe)で測定された値である。
【0114】
[磁気テープの評価]
(1)70atmの圧力での押圧後の真空加熱前後のスペーシング分布の半値全幅FWHMbefore、FWHMafter
実施例および比較例の各磁気テープについて、雰囲気温度20~25℃、相対湿度40~60%の環境下で、金属ロールのみから構成される7段のカレンダロールを備えたカレンダ処理機を用いて、20m/minの速度で磁気テープを長手方向に0.5N/mの張力を加えた状態で走行させながら、2つのロール間(ロールの加熱なし)を合計6回通過させることにより、各ロール間を通過する際にそれぞれ磁性層の表面に70atmの面圧を加えて押圧した。
上記押圧後の磁気テープから、長手方向に長さ5cm分のサンプルを2つ切り出し、一方のサンプルを真空加熱し、他方のサンプルを真空加熱せずに、TSA(Tape Spacing Analyzer(Micro Physics社製))を用いて、以下の方法により、スペーシング分布の半値全幅を求めた。真空加熱なし(即ち真空加熱前)のサンプルについて求められた値をFWHMbeforeとし、真空加熱ありのサンプルについて求められた値をFWHMafterとした。また、同じ磁気テープから長手方向に長さ100m分を切り出し、下記の走行安定性の評価を行った。
磁気テープの磁性層表面上に、TSAに備えられたガラス板(Thorlabs,Inc.社製ガラス板(型番:WG10530))を配置した状態で、押圧部材としてTSAに備えられているウレタン製の半球を用いて、この半球を磁気テープのバックコート層表面に、0.5atmの圧力で押しつけた。この状態で、TSAに備えられているストロボスコープから白色光を、ガラス板を通して磁気テープの磁性層表面の一定領域(150000~200000μm)に照射し、得られる反射光を、干渉フィルタ(波長633nmの光を選択的に透過させるフィルタ)を通してCCD(Charge-Coupled Device)で受光することで、この領域の凹凸で生じた干渉縞画像を得た。
この画像を300000ポイントに分割して各ポイントのガラス板の磁気テープ側の表面から磁気テープの磁性層表面までの距離(スペーシング)を求めこれをヒストグラムとし、ヒストグラムをガウス分布でフィッティングしたときの半値全幅をスペーシング分布の半値全幅とした。
真空加熱は、磁気テープを、200Pa以上0.01MPa以下の真空度の内部雰囲気温度70~90℃の真空定温乾燥機に24時間保存することにより行った。
【0115】
(2)70atmの圧力での押圧後の差分(Safter-Sbefore
上記(1)で得た真空加熱ありのサンプルについて得られたヒストグラムの最頻値から、真空加熱なしのサンプルについて得られたヒストグラムの最頻値を差し引いて、差分(Safter-Sbefore)とした。
【0116】
(3)70atmの圧力での押圧後の走行安定性の評価
実施例および比較例の各磁気テープについて、上記(1)での押圧後、以下の方法によりPES(Position Error Signal)を求めた。
サーボパターンの形成に用いたサーボライター上のベリファイ(verify)ヘッドでサーボパターンを読み取った。ベリファイヘッドは、磁気テープに形成されたサーボパターンの品質を確認するための読取用磁気ヘッドであり、公知の磁気テープ装置(ドライブ)の磁気ヘッドと同様に、サーボパターンの位置(磁気テープの幅方向の位置)に対応した位置に読取用の素子が配置されている。
ベリファイヘッドには、ベリファイヘッドでサーボパターンを読み取って得た電気信号から、サーボシステムにおけるヘッド位置決め精度をPESとして演算する公知のPES演算回路が接続されている。PES演算回路は、入力された電気信号(パルス信号)から磁気テープの幅方向への変位を随時計算し、この変位の時間的変化情報(信号)に対してハイパスフィルタ(カットオフ:500cycles/m)を適用した値を、PESとして算出した。PESは走行安定性の指標とすることができ、上記で算出されたPESが18nm以下であれば、走行安定性に優れると評価することができる。
【0117】
(4)磁性層の表面において測定される中心線平均表面粗さRa
実施例および比較例の各磁気テープについて、上記の押圧が行われていない状態で磁性層表面の中心線平均表面粗さRaを、以下の方法により測定した。
原子間力顕微鏡(Veeco社製Nanoscope4)をタッピングモードで用いて、磁気テープのバックコート層表面において測定面積40μm×40μmの範囲を測定し、中心線平均表面粗さRaを求めた。探針としてはBRUKER社製RTESP-300を使用し、スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとした。
磁気テープの磁性層表面の平滑性が高いことは、電磁変換特性向上の観点から好ましい。この観点から、磁気テープの磁性層表面において測定される中心線平均表面粗さRaは、2.8nm以下であることが好ましく、2.5nm以下であることがより好ましく、2.0nm以下であることが更に好ましい。また、上記中心線平均表面粗さRaは、例えば1.2nm以上または1.3nm以上であることができる。ただし、電磁変換特性向上の観点からは、磁気テープの磁性層表面の平滑性は高いことが好ましいため、上記例示した範囲を下回ってもよい。
【0118】
以上の結果を、表1(表1-1~表1-6)に示す。
【0119】
【表1-1】
【0120】
【表1-2】
【0121】
【表1-3】
【0122】
【表1-4】
【0123】
【表1-5】
【0124】
【表1-6】
【0125】
例えば、磁性層の突起形成剤の種類のみが相違している実施例1~3と比較例3、4とを対比すると、70atmでの押圧前の磁性層の中心線平均表面粗さRaは同様であるにもかかわらず、押圧後に測定されたFWHMbeforeおよびFWHMafterは相違している。このような相違が生じた理由は、実施例1~3で使用した突起形成剤が、押圧されても磁性層内部に沈み込み難かったことにあると推察される。
表1に示す結果から、実施例の磁気テープはいずれも、70atmの圧力での押圧後、即ち、長期保管後に相当する状態において、優れた走行安定性を示したことが確認できる。このような磁気テープであれば、アクセス頻度の低い情報が記録された後に磁気テープカートリッジ内で長期間リールに巻き取られた状態で収容された後でも、磁気テープ装置内で安定走行可能であり、アーカイブ用記録媒体として好適である。
【産業上の利用可能性】
【0126】
本発明の一態様は、各種データストレージ用途において有用である。
図1