IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱自動車工業株式会社の特許一覧

<>
  • 特許-車両用フロー電池 図1
  • 特許-車両用フロー電池 図2
  • 特許-車両用フロー電池 図3
  • 特許-車両用フロー電池 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-20
(45)【発行日】2022-06-28
(54)【発明の名称】車両用フロー電池
(51)【国際特許分類】
   H01M 8/18 20060101AFI20220621BHJP
   H01M 8/00 20160101ALI20220621BHJP
   H01M 8/04 20160101ALI20220621BHJP
   H01M 8/04276 20160101ALI20220621BHJP
   H01M 8/04746 20160101ALI20220621BHJP
【FI】
H01M8/18
H01M8/00 Z
H01M8/04 J
H01M8/04276
H01M8/04746
【請求項の数】 10
(21)【出願番号】P 2018155631
(22)【出願日】2018-08-22
(65)【公開番号】P2020030964
(43)【公開日】2020-02-27
【審査請求日】2021-07-30
(73)【特許権者】
【識別番号】000006286
【氏名又は名称】三菱自動車工業株式会社
(74)【代理人】
【識別番号】110001737
【氏名又は名称】特許業務法人スズエ国際特許事務所
(72)【発明者】
【氏名】田丸 奏
(72)【発明者】
【氏名】恒川 肇
【審査官】渡部 朋也
(56)【参考文献】
【文献】特表2017-500692(JP,A)
【文献】特開2018-106913(JP,A)
【文献】特開2012-226974(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/18
H01M 8/00
H01M 8/04
H01M 8/04276
H01M 8/04746
B60L 50/40
(57)【特許請求の範囲】
【請求項1】
正極電極が収容された正極セルと、負極電極が収容された負極セルと、を有する発電セルと、
正極活物質を含む正極電解液を貯蔵する正極側溶液タンクを有し、正極側循環配管を介して前記正極セルと該正極側溶液タンクとの間で該正極電解液を循環させる正極側循環部と、
負極活物質を含む負極電解液を貯蔵する負極側溶液タンクを有し、負極側循環配管を介して前記負極セルと該正極側溶液タンクとの間で該負極電解液を循環させる負極側循環部と、を備えた車両用フロー電池であって、
酸化部材を収容する酸化部材収容部を有し、前記正極電解液を該酸化部材収容部へ流通させる酸化部と、
還元部材を収容する還元部材収容部を有し、前記負極電解液を該還元部材収容部へ流通させる還元部と、
前記正極電解液の前記酸化部材収容部への流通状態を調整する第1流通状態調整部と、
前記負極電解液の前記還元部材収容部への流通状態を調整する第2流通状態調整部と、
前記第1流通状態調整部及び前記第2流通状態調整部を制御する制御部と、を有する車両用フロー電池。
【請求項2】
前記酸化部材収容部は、前記正極側溶液タンクに対して並列に接続され、
前記還元部材収容部は、前記負極側溶液タンクに対して並列に接続され、
前記第1流通状態調整部は、前記酸化部材収容部の上流側及び下流側の少なくとも一方に設けられた正極側開閉弁を含み、
前記第2流通状態調整部は、前記還元部材収容部の上流側及び下流側の少なくとも一方に設けられた負極側開閉弁を含む、請求項1に記載の車両用フロー電池。
【請求項3】
前記酸化部材収容部は、上流側は前記正極セルに接続され、下流側は前記正極側溶液タンクに接続され、
前記還元部材収容部は、上流側は前記負極セルに接続され、下流側は前記負極側溶液タンクに接続され、
前記第1流通状態調整部は、前記正極セルと前記酸化部材収容部との間及び前記酸化部材収容部と前記正極側溶液タンクとの間の少なくとも一方に設けられた正極側開閉弁を含み、
前記第2流通状態調整部は、前記負極セルと前記還元部材収容部との間及び前記還元部材収容部と前記負極側溶液タンクとの間の少なくとも一方に設けられた負極側開閉弁を含む、請求項1に記載の車両用フロー電池。
【請求項4】
前記酸化部材収容部の体積と前記還元部材収容部の体積との比が、前記酸化部材の体積容量密度と前記還元部材の体積容量密度との比の逆数に基づいて設定された、請求項1~3の何れか一項に記載の車両用フロー電池。
【請求項5】
前記酸化部材収容部及び前記還元部材収容部の少なくとも一方が、車両に対して少なくとも交換可能又は補充可能に構成された、請求項1~4の何れか一項に記載の車両用フロー電池。
【請求項6】
前記制御部は、車両の加速状態を測定する加速状態測定手段を更に有し、
前記制御部は、
前記加速状態測定手段により測定される加速度が所定値以上の場合に、前記第1流通状態調整部により前記正極電解液を前記酸化部材収容部へ流通させ、
前記第2流通状態調整部により前記負極電解液を前記還元部材収容部へ流通させる、請求項1~5の何れか一項に記載の車両用フロー電池。
【請求項7】
前記制御部は、正極側及び負極側の充電率を測定する充電率測定手段を更に有し、
前記制御部は、
前記充電率測定手段により測定される正極側の充電率が所定の値未満となった場合に、
前記第1流通状態調整部により前記正極電解液を前記酸化部材収容部へ流通させ、
前記充電率測定手段により測定される負極側の充電率が所定の値未満となった場合に、
前記第2流通状態調整部により前記負極電解液を前記還元部材収容部へ流通させる、請求項1~5の何れか一項に記載の車両用フロー電池。
【請求項8】
前記制御部は、正極側及び負極側の充電率を測定する充電率測定手段を更に有し、
前記制御部は、
前記充電率測定手段により測定される正極側の充電率が単位時間当たりに所定の割合を超えて減少した場合に、前記第1流通状態調整部により前記正極電解液を前記酸化部材収容部へ流通させ、
前記充電率測定手段により測定される負極側の充電率が単位時間当たりに所定の割合を超えて減少した場合に、前記第2流通状態調整部により前記負極電解液を前記還元部材収容部へ流通させる、請求項1~5の何れか一項に記載の車両用フロー電池。
【請求項9】
前記制御部は、
前記充電率測定手段により測定される正極側の充電率が所定の値以上になるまで、前記第1流通状態調整部により前記酸化部材収容部への前記正極電解液の流量を調整し、
前記充電率測定手段により測定される負極側の充電率が所定の値以上になるまで、前記第2流通状態調整部により前記還元部材収容部への前記負極電解液の流量を調整する、請求項7または8に記載の車両用フロー電池。
【請求項10】
前記制御部は、
前記第1流通状態調整部により前記酸化部材収容部に流通させる前記正極電解液の流量を、前記正極セルに循環させる前記正極電解液の流量に対して増加させ、
前記第1流通状態調整部により前記還元部材収容部に流通させる前記負極電解液の流量を、前記負極セルに循環させる前記負極電解液の流量に対して増加させる、請求項1~9の何れか一項に記載の車両用フロー電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両に設けるフロー電池に関する。
【背景技術】
【0002】
従来から、フロー型の電池が知られている(例えば、特許文献1を参照)。このような電池では、正極側電解液室に循環される正極活物質を含む正極側電解液に対して、粉末状の酸化剤を供給することによって、正極活物質を酸化させる。また、負極側電解液室に循環される負極活物質を含む負極側電解液に対して、粉末状の還元剤を供給することによって、負極活物質を還元させる。したがって、特許文献1の構成によれば、車両の走行距離を伸ばすことができる。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2017-117527号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1の構成では、正極活物質を酸化させることによってエネルギーを消耗した酸化剤は正極電解液中に溶解しており、分離して排出するのは困難である。また、負極活物質を還元させることによってエネルギーを消耗した還元剤は負極電解液中に溶解しており、分離して排出するのは困難である。よって、酸化剤及び還元剤の供給を繰り返すことで電解液濃度は高まり、飽和濃度に達した状態では更なる供給が不可能になり、車両の走行距離を伸ばすことができない。酸化剤及び還元剤の供給を繰り返した際は、電解液の交換が必要になる。
【0005】
本発明の目的は、電解液の交換が不要で、車両の走行距離を効率良く伸ばすことができる車両用フロー電池及びその制御方法を提供することにある。
【課題を解決するための手段】
【0006】
かかる目的を達成するために、本発明の車両用フロー電池は、正極電極が収容された正極セルと、負極電極が収容された負極セルと、を有する発電セルと、正極活物質を含む正極電解液を貯蔵する正極側溶液タンクを有し、正極側循環配管を介して正極セルと該正極側溶液タンクとの間で該正極電解液を循環させる正極側循環部と、負極活物質を含む負極電解液を貯蔵する負極側溶液タンクを有し、負極側循環配管を介して負極セルと該正極側溶液タンクとの間で該負極電解液を循環させる負極側循環部と、を備えた車両用フロー電池である。ここで、本発明の車両用フロー電池は、酸化部材を収容する酸化部材収容部を有し、正極電解液を該酸化部材収容部へ流通させる酸化部と、還元部材を収容する還元部材収容部を有し、負極電解液を該還元部材収容部へ流通させる還元部と、正極電解液の酸化部材収容部への流通状態を調整する第1流通状態調整部と、負極電解液の還元部材収容部への流通状態を調整する第2流通状態調整部と、第1流通状態調整部及び第2流通状態調整部を制御する制御部と、を有する。
【発明の効果】
【0007】
本発明によれば、電解液交換が不要で、車両の走行距離を効率良く伸ばすことができる車両用フロー電池及びその制御方法を実現することができる。
【図面の簡単な説明】
【0008】
図1】車両に設けた第1実施形態の車両用フロー電池を示す模式図。
図2】第1実施形態の車両用フロー電池を示す模式図。
図3】第2実施形態の車両用フロー電池を示す模式図。
図4】第3実施形態の車両用フロー電池を示す模式図。
【発明を実施するための形態】
【0009】
「第1実施形態」
「車両用フロー電池100の構成」
図1及び図2を参照して、車両10に設けられた車両用フロー電池100の構成(発電セル110、正極側循環部120、負極側循環部130、酸化部140、還元部150及び制御部160)と、車両10に設けられ車両用フロー電池100と接続された電気ユニット20の構成を説明する。
【0010】
「発電セル110の構成」
発電セル110は、車両10に設けられた駆動機器25に対して電力を供給する。発電セル110は、図1又は図2に示すように、正極電極111と、正極セル112と、負極電極113と、負極セル114と、隔膜115と、を有している。
【0011】
正極電極111は、例えば、炭素繊維からなり、板状に形成されている。正極セル112には、正極電極111が収容され、正極活物質121を含む正極電解液122が循環される。負極電極113は、例えば、炭素繊維からなり、板状に形成されている。負極セル114には、負極電極113が収容され、負極活物質131を含む負極電解液132が循環される。隔膜115は、いわゆるセパレータであり、正極セル112と負極セル114との間を区切る。隔膜115は、正極活物質121を含む正極電解液122と、負極活物質131を含む負極電解液132とが混ざることを防ぐ。隔膜115は、正極電解液122と負極電解液132との間で、イオンを通す。隔膜115は、例えばイオン交換膜からなる。発電セル110は、例えば、車両10の前方に設けられている。
【0012】
「正極側循環部120の構成」
正極側循環部120は、正極活物質121を含む正極電解液122を貯蔵する正極側溶液タンク123を有し、正極側循環配管(正極側循環部導入管124及び正極側循環部導出管125)を介して正極セル112と正極側溶液タンク123との間で正極電解液122を循環させる。換言すると、正極側循環部120は、発電セル110の正極セル112に対して、酸化された状態の正極活物質121を含む正極電解液122を循環させる。正極側循環部120は、図2に示すように、正極活物質121と、正極電解液122と、正極側溶液タンク123と、正極側循環部導入管124と、正極側循環部導出管125と、正極側循環用ポンプ126と、を有している。
【0013】
正極活物質121は、例えば鉄イオンからなる。図2に示すように、充電時において、2価の正極活物質121aは、正極電極111から電子が流出することによって、3価の正極活物質121bに酸化される。なお、正極活物質121には、様々な材料を適用することができ、負極活物質よりも貴な電位を取る正極活物質を適用することができる。正極電解液122は、例えば、溶媒がプロピレンカーボネートで、電解質がヘキサフルオロリン酸リチウム(LiPF)からなる。正極側溶液タンク123は、正極活物質121を含む正極電解液122を収容する容器である。
【0014】
正極側循環部導入管124は、正極側溶液タンク123と正極セル112との間に接続された配管である。正極側循環部導入管124を用いて、正極側溶液タンク123から正極セル112に対して、酸化された状態の正極活物質121を含む正極電解液122が導入(供給)される。正極側循環部導出管125は、正極セル112と正極側溶液タンク123との間に接続された配管である。正極側循環部導出管125を用いて、正極セル112から正極側溶液タンク123に対して、還元された状態の正極活物質121を含む正極電解液122が導出(排出)される。正極側循環用ポンプ126は、例えば正極側循環部導出管125に接続された送液用のポンプである。正極側循環用ポンプ126を用いて、正極側溶液タンク123と正極セル112との間において、正極活物質121を含む正極電解液122を循環させる。
【0015】
「負極側循環部130の構成」
負極側循環部130は、負極活物質131を含む負極電解液132を貯蔵する負極側溶液タンク133を有し、負極側循環配管(負極側循環部導入管134及び負極側循環部導出管135)を介して負極セル114と正極側溶液タンク123との間で負極電解液132を循環させる。換言すると、負極側循環部130は、発電セル110の負極セル114に対して、還元された状態の負極活物質131を含む負極電解液132を循環させる。負極側循環部130は、図2に示すように、負極活物質131と、負極電解液132と、負極側溶液タンク133と、負極側循環部導入管134と、負極側循環部導出管135と、負極側循環用ポンプ136と、を有している。
【0016】
負極活物質131は、例えばコバルトイオンからなる。図2に示すように、充電時において、3価の負極活物質131aは、負極電極113から電子が流入することによって、2価の負極活物質131bに還元される。なお、負極活物質131には、様々な材料を適用することができ、正極活物質よりも卑な電位を持つ負極活物質の材料も適用することができる。負極電解液132は、例えば、溶媒がプロピレンカーボネートで、電解質がヘキサフルオロリン酸リチウム(LiPF)からなる。負極側溶液タンク133は、負極活物質131を含む負極電解液132を収容する容器である。
【0017】
負極側循環部導入管134は、負極側溶液タンク133と負極セル114との間に接続された配管である。負極側循環部導入管134を用いて、負極側溶液タンク133から負極セル114に対して、還元された状態の負極活物質131を含む負極電解液132が導入(供給)される。負極側循環部導出管135は、負極セル114と負極側溶液タンク133との間に接続された配管である。負極側循環部導出管135を用いて、負極セル114から負極側溶液タンク133に対して、酸化された状態の負極活物質131を含む負極電解液132が導出(排出)される。負極側循環用ポンプ136は、例えば負極側循環部導出管135に接続された送液用のポンプである。負極側循環用ポンプ136を用いて、負極側溶液タンク133と負極セル114との間において、負極活物質131を含む負極電解液132を循環させる。
【0018】
「酸化部140の構成」
酸化部140は、酸化部材(酸化剤141)を収容する酸化部材収容部(正極側充電タンク142)を有し、正極電解液122を該正極側充電タンク142へ流通させる。換言すると、酸化部140は、正極電解液122に含まれる正極活物質121を酸化させる。酸化部140は、図2に示すように、酸化剤141と、正極側充電タンク142(酸化剤タンク)と、酸化部導入管143と、酸化部導入弁144と、酸化部導出管145と、酸化部導出弁146と、正極側酸化用ポンプ147と、を有している。
【0019】
酸化剤141は、正極活物質121を酸化反応させる。酸化剤141には、例えば、FePO、Mn又はNi0.5Mn1.5が用いられる。酸化剤141は、粉状の状態のままで、正極側充電タンク142に充填する場合、正極側充電タンク142と酸化部導入管143との接続部分、及び正極側充電タンク142と酸化部導出管145との接続部分に、それぞれフィルタを備えた構成とすることができる。フィルタは、酸化剤141を通さず、正極活物質121を含む正極電解液122を通す構成のものが用いられる。
【0020】
酸化剤141は、上記の構成に限定されることなく、例えば、円柱形状に固形化した構成としてもよい。固形化された酸化剤141は、正極活物質121を含む正極電解液122が通過可能な孔を備える。このような構成とした場合、固形化された酸化剤141は、正極活物質121を含む正極電解液122が通過する場合に、溶出せずに、その形状の大部分が維持されればよい。
【0021】
酸化剤141は、正極側充電タンク142に対して交換可能(再充填可能)に構成されている。すなわち、酸化剤141は、正極側充電タンク142が設けられた車両10に対して交換可能に構成されている。また、酸化剤141は、固形化して構成した場合、正極側充電タンク142に対して複数個、設けることができる。この場合、複数個の固形化された酸化剤141は、正極側充電タンク142に対して選択的に補充可能(任意の固形化された酸化剤141を選択して着脱可能)に構成することもできる。
【0022】
正極側充電タンク142は、酸化剤141を収容する容器である。正極側充電タンク142は、正極側溶液タンク123に対して並列に接続されている。正極側充電タンク142は、例えば、1つから構成され、車両10の後方のトランクの部分などに設ける。正極側充電タンク142は、車両10に対して交換可能(着脱可能)に構成されている。正極側充電タンク142は、例えば、負極側充電タンク152と水平方向に並べて設けることができる。また、正極側充電タンク142は、例えば、負極側充電タンク152よりも交換頻度が高い場合、負極側充電タンク152の上方に位置するように、負極側充電タンク152と垂直方向に並べて設けることができる。正極側充電タンク142は、複数本から構成することもできる。この場合、複数本の正極側充電タンク142を、例えば、酸化部140の配管に対して並列接続又は直列接続することによって、車両10に対して選択的に補充可能(複数本のうち任意の正極側充電タンク142を着脱可能)に構成することもできる。
【0023】
酸化部導入管143は、正極側充電タンク142と正極側溶液タンク123との間に接続された配管である。酸化部導入管143を用いて、正極側充電タンク142から正極側溶液タンク123に対して、正極活物質121を含む正極電解液122を流通(供給)させる。酸化部導入弁144は、例えば、流体用の電磁弁であり、酸化部導入管143に接続されている。酸化部導入弁144を用いて、正極側充電タンク142から正極側溶液タンク123に対する、正極活物質121を含む正極電解液122の流通(供給)を制御する。酸化部導入弁144は、酸化部導出弁146と共に、正極電解液122の正極側充電タンク142への流通状態を調整する第1流通状態調整部に含まれている。酸化部導入弁144は、正極側充電タンク142の上流側に設けられた正極側開閉弁に相当する。
【0024】
酸化部導出管145は、正極側溶液タンク123と正極側充電タンク142との間に接続された配管である。酸化部導出管145を用いて、正極側溶液タンク123から正極側充電タンク142に対して、正極活物質121を含む正極電解液122を流通(排出)させる。酸化部導出弁146は、例えば、流体用の電磁弁であり、酸化部導出管145に接続されている。酸化部導出弁146を用いて、正極側溶液タンク123から正極側充電タンク142に対する、正極活物質121を含む正極電解液122の流通(供給)を制御する。酸化部導出弁146は、正極側充電タンク142の下流側に設けられた正極側開閉弁に相当する。正極側酸化用ポンプ147は、例えば、送液用のポンプであり、酸化部導出管145に接続されている。正極側酸化用ポンプ147を用いて、正極側充電タンク142と正極側溶液タンク123との間において、正極活物質121を含む正極電解液122を流通させる。
【0025】
「還元部150の構成」
還元部150は、還元部材(還元剤151)を収容する還元部材収容部(負極側充電タンク152)を有し、負極電解液132を該負極側充電タンク152へ流通させる。換言すると、還元部150は、負極電解液132に含まれる負極活物質131を還元させる。還元部150は、図2に示すように、還元剤151と、負極側充電タンク152と、還元部導入管153と、還元部導入弁154と、還元部導出管155と、還元部導出弁156と、負極側還元用ポンプ157と、を有している。
【0026】
還元剤151は、負極活物質131を還元反応させる。還元剤151には、例えば、LiTi12、Li-Si合金又はLi金属が用いられる。還元剤151は、粉状の状態のままで、負極側充電タンク152に充填する場合、負極側充電タンク152と還元部導入管153との接続部分、及び負極側充電タンク152と還元部導出管155との接続部分に、それぞれフィルタを備えた構成とすることができる。フィルタは、還元剤151を通さず、負極活物質131を含む負極電解液132を通す構成のものが用いられる。
【0027】
還元剤151は、上記の構成に限定されることなく、例えば、円柱形状に固形化した構成としてもよい。固形化された還元剤151は、負極活物質131を含む負極電解液132が通過可能な孔を備える。このような構成とした場合、固形化された還元剤151は、負極活物質131を含む負極電解液132が通過する場合に、溶出せずに、その形状の大部分が維持されればよい。
【0028】
還元剤151は、負極側充電タンク152に対して交換可能(再充填可能)に構成されている。すなわち、還元剤151は、負極側充電タンク152が設けられた車両10に対して交換可能に構成されている。また、還元剤151は、固形化して構成した場合、負極側充電タンク152に対して複数個、設けることができる。この場合、複数個の固形化された還元剤151は、負極側充電タンク152に対して選択的に補充可能(任意の固形化された還元剤151を選択して着脱可能)に構成することもできる。
【0029】
負極側充電タンク152は、還元剤151を収容する容器である。負極側充電タンク152は、負極側溶液タンク133に対して並列に接続されている。負極側充電タンク152は、例えば、1つから構成され、車両10の後方のトランクの部分などに設ける。負極側充電タンク152は、車両10に対して交換可能(着脱可能)に構成されている。負極側充電タンク152は、複数本から構成することもできる。この場合、複数本の負極側充電タンク152を、例えば、還元部150の配管に対して並列接続又は直列接続することによって、車両10に対して選択的に補充可能(複数本のうち任意の負極側充電タンク152を着脱可能)に構成することもできる。
【0030】
還元部導入管153は、負極側充電タンク152と負極側溶液タンク133との間に接続された配管である。還元部導入管153を用いて、負極側充電タンク152から負極側溶液タンク133に対して、負極活物質131を含む負極電解液132を流通(供給)させる。還元部導入弁154は、例えば、流体用の電磁弁であり、還元部導入管153に接続されている。還元部導入弁154を用いて、負極側充電タンク152から負極側溶液タンク133に対する、負極活物質131を含む負極電解液132の流通(供給)を制御する。還元部導入弁154は、還元部導出弁156と共に、負極電解液132の負極側充電タンク152への流通状態を調整する第2流通状態調整部を構成している。還元部導入弁154は、負極側充電タンク152の上流側に設けられた負極側開閉弁に相当する。
【0031】
還元部導出管155は、負極側溶液タンク133と負極側充電タンク152との間に接続された配管である。還元部導出管155を用いて、負極側溶液タンク133から負極側充電タンク152に対して、負極活物質131を含む負極電解液132を流通(排出)する。還元部導出弁156は、例えば、流体用の電磁弁であり、還元部導出管155に接続されている。還元部導出弁156を用いて、負極側溶液タンク133から負極側充電タンク152に対する、負極活物質131を含む負極電解液132の流通(供給)を制御する。還元部導出弁156は、負極側充電タンク152の下流側に設けられた負極側開閉弁に相当する。負極側還元用ポンプ157は、例えば、送液用のポンプであり、還元部導出管155に接続されている。負極側還元用ポンプ157を用いて、負極側充電タンク152と負極側溶液タンク133との間において、負極活物質131を含む負極電解液132を流通させる。
【0032】
「制御部160の構成」
制御部160は、第1流通状態調整部(酸化部導入弁144及び酸化部導出弁146)及び第2流通状態調整部(還元部導入弁154及び還元部導出弁156)を制御する。制御部160は、図1等に示すように、車両10の加速状態を測定する加速センサ161a(加速状態測定手段)と、正極側及び負極側の充電率を測定する充電センサ161b(充電率測定手段)を備えたコントローラ161を有している。
【0033】
コントローラ161は、加速センサ161a及び充電センサ161b等から得られた情報に基づいて、酸化部導入弁144、酸化部導出弁146、還元部導入弁154及び還元部導出弁156等を制御する。コントローラ161は、上記の制御のために、ROM(Read Only Memory)、CPU(Central Processing Unit)及びRAM(Random Access Memory)を有している。ROMは、車両用フロー電池100の制御プログラムを格納している。CPUは、制御プログラムを実行する。RAMは、CPUが制御プログラムを実行している間、様々なデータを一時的に記憶する。
【0034】
「電気ユニット20の構成」
電気ユニット20は、車両10に設けられ、車両用フロー電池100と接続されている。電気ユニット20は、給電部21と、インバータ22と、正極端子23と、負極端子24と、駆動機器25と、を有している。給電部21は、例えば、車両10のエンジンであり、発電機として用いる。給電部21は、車両が駐車される施設に対して電力を送電する発電所や、車両10が駐車される施設に設けられ電力を生成する発電機器としてもよい。インバータ22は、給電部21から車両用フロー電池100に対して供給される電力を、交流から直流に変換する。また、インバータ22は、車両用フロー電池100から駆動機器25に対して供給される電力を、直流から交流に変換する。正極端子23は、インバータ22と発電セル110の正極電極111とを電気的に接続する。負極端子24は、インバータ22と発電セル110の負極電極113とを電気的に接続する。駆動機器25は、例えば、車載用モータである。
【0035】
「車両用フロー電池100の制御方法」
「基本的な制御方法」
図2及び表1を参照して、車両用フロー電池100の基本的な制御方法を説明する。
【0036】
車両用フロー電池100の基本的な制御方法では、発電セル110における充電率の上昇に着目して説明する。特に、発電セル110の正極側における充電率の上昇について説明する。負極側の制御は、上記の正極側の制御と同様であることから、説明を省略する。
【0037】
表1に、正極セル112、正極側溶液タンク123及び正極側充電タンク142に関して、体積V[m]、V[m]及びV[m]を表している。また、表1に、正極セル112、正極側溶液タンク123及び正極側充電タンク142に関して、正極活物質121を含む正極電解液122の濃度M[mol/m]、M[mol/m]及びM[mol/m]を表している。また、表1に、正極側溶液タンク123から正極セル112に対する、及び正極側充電タンク142から正極側溶液タンク123に対する、正極活物質121を含む正極電解液122の流量J[m/s]、及びJ[m/s]を表している。
【0038】
【表1】
【0039】
正極セル112に循環させる正極活物質121を含む正極電解液122の流量J[m/s]と、酸化剤141に流通させる正極活物質121を含む正極電解液122の流量J[m/s]と関係は、数1に基づいて、数2によって表される。
【0040】
【数1】
【0041】
【数2】
【0042】
ここで、流量J[m/s]を流量J[m/s]に対して増加させることによって、正極側の充電率を上昇させるように制御する。
【0043】
「具体的な制御方法1」
図2を参照して、車両10を長距離にわたり走行させることによって、車両用フロー電池100の充電率が徐々に低下するような場合に好ましい制御方法1を説明する。
【0044】
このような制御は、例えば、車両10を走行中に充電する施設が無い場合、車両10を充電する施設が有っても混雑している場合、及び車両10の走行を長距離にわたって継続したい場合を想定している。なお、車両10を長距離にわたって継続して走行させる場合、例えば自動運転であれば、運転の疲れによる影響を考慮する必要がない。
【0045】
正極側の充電率は、次のようにして算出する。すなわち、正極側の充電率は、正極側溶液タンク123に収容された正極活物質121を含む正極電解液122の電圧、又は正極側循環部導出管125を流れる正極活物質121を含む正極電解液122の電圧を、一定時間ごとに充電センサ161bから算出する。
【0046】
正極側の充電率が所定の値未満となった場合に、正極側溶液タンク123に収容された正極活物質121を含む正極電解液122を、正極側充電タンク142に収容された酸化剤141に対して、正極側酸化用ポンプ147を運転させて送液する。正極側の充電率に関する所定の値は、例えば30%のように予め設定するが、車両10の運転者などが随時変更可能な構成としてもよい。
【0047】
正極側の充電率が設定値(例えば50%)まで上昇した場合、正極側酸化用ポンプ147の運転を止めて、正極側溶液タンク123から正極側充電タンク142に対する、正極活物質121を含む正極活物質121の流通を停止する。
【0048】
負極側の充電率は、次のようにして算出する。すなわち、負極側の充電率は、負極側溶液タンク133に収容された負極活物質131を含む負極電解液132の電圧、又は負極側循環部導出管135を流れる負極活物質131を含む負極電解液132の電圧を、一定時間ごとに充電センサ161bから算出する。
【0049】
負極側の充電率が所定の値未満となった場合に、負極側溶液タンク133に収容された負極活物質131を含む負極電解液132を、負極側充電タンク152に収容された還元剤151に対して、負極側還元用ポンプ157を運転させて送液する。負極側の充電率に関する所定の値は、例えば30%のように予め設定するが、車両10の運転者などが随時変更可能な構成としてもよい。負極側の充電率に関する所定の値は、正極側の充電率に関する所定の値と異ならせてもよい。
【0050】
負極側の充電率が設定値(例えば50%)まで上昇した場合、負極側還元用ポンプ157の運転を止めて、負極側溶液タンク133から負極側充電タンク152に対する、負極活物質131を含む負極活物質131の流通を停止する。
【0051】
「具体的な制御方法2」
図2を参照して、車両10に高負荷が発生することによって、車両用フロー電池100の充電率が急減するような場合に好ましい制御方法2を説明する。
【0052】
このような制御は、例えば、車両10が勾配の大きい坂道を走行する場合、車両10が重量物を積載又は牽引して走行する場合、高速走行する場合、及び車両10に設けた空調機器を最大で動作させる場合(例えば炎天下で駐車していた状態から急速に空冷しつつ走行する場合)を想定している。
【0053】
正極側の充電率が単位時間当たりに所定の割合を超えて減少した場合に、正極側溶液タンク123に収容された正極活物質121を含む正極電解液122を、正極側充電タンク142に収容された酸化剤141に対して、正極側酸化用ポンプ147を運転させて送液する。所定の割合は、車両10を通常の条件で走行させた場合における、正極側溶液タンク123での単位時間当たりの充電率の減少率を基準として、その減少率よりも高い値で設定する。すなわち、正極側の充電率が、車両10を通常の条件で走行させた場合よりも、例えば5倍以上の高い割合で急減した場合に、この制御を実行する。正極側の充電率の算出に関する構成、及び正極側の充電率が設定値(例えば50%)まで上昇した場合の構成は、制御方法1と同様である。
【0054】
負極側の充電率が単位時間当たりに所定の割合を超えて減少した場合に、負極側溶液タンク133に収容された負極活物質131を含む負極電解液132を、負極側充電タンク152に収容された還元剤151に対して、負極側還元用ポンプ157を運転させて送液する。所定の割合は、車両10を通常の条件で走行させた場合における、負極側溶液タンク133での単位時間当たりの充電率の減少率を基準として、その減少率よりも高い値で設定する。すなわち、負極側の充電率が、車両10を通常の条件で走行させた場合よりも、例えば5倍以上の高い割合で急減した場合に、この制御を実行する。負極側の充電率の算出に関する構成、及び負極側の充電率が設定値(例えば50%)まで上昇した場合の構成は、制御方法1と同様である。
【0055】
「具体的な制御方法3」
図2を参照して、車両10を走行状態に依存することなく、車両用フロー電池100の充電率を定の値(例えば30%)以上に維持する必要がある場合に好ましい制御方法3を説明する。
【0056】
このような制御は、例えば、タクシーのように車両10の走行の予測を立て難い場合、及び消防車のような緊急用車両において走行に一定の余裕を保つ必要がある場合を想定している。
【0057】
正極側の充電率が所定の値以上になるように、正極側溶液タンク123に収容された正極活物質121を含む正極電解液122を、正極側充電タンク142に収容された酸化剤141に対して、正極側酸化用ポンプ147の出力を可変しながら運転させて送液する。このような制御によって、酸化剤141に対する正極電解液122の流量を調整(増加又は減少)する。酸化剤141に対する正極電解液122の流量の調整は、正極側酸化用ポンプ147の出力を可変する制御に限定されることなく、正極側酸化用ポンプ147の出力を一定にして酸化部導入弁144又は酸化部導出弁146の開度を可変させる制御によって実行してもよい。正極側の充電率の算出に関する構成は、制御方法1と同様である。
【0058】
負極側の充電率が所定の値以上になるように、負極側溶液タンク133に収容された負極活物質131を含む負極電解液132を、負極側充電タンク152に収容された還元剤151に対して、負極側還元用ポンプ157の出力を可変しながら運転させて送液する。このような制御によって、還元剤151に対する負極電解液132の流量を調整(増加又は減少)する。還元剤151に対する負極電解液132の流量の調整は、負極側還元用ポンプ157の出力を可変する制御に限定されることなく、負極側還元用ポンプ157の出力を一定にして還元部導入弁154又は還元部導出弁156の開度を可変させる制御によって実行してもよい。負極側の充電率の算出に関する構成は、制御方法1と同様である。
【0059】
「車両用フロー電池100及びその制御方法の効果」
車両用フロー電池100及びその制御方法の効果を説明する。
【0060】
第1実施形態によれば、正極活物質121を含む正極電解液122を、第1流通状態調整部(酸化部導入弁144及び酸化部導出弁146)によって調整しながら、酸化剤141を収容する正極側充電タンク142へ流通させる。又、負極活物質131を含む負極電解液132を、第2流通状態調整部(還元部導入弁154及び還元部導出弁156)によって調整しながら、還元剤151を収容する負極側充電タンク152へ流通させる。
【0061】
このような構成及び制御によれば、正極セル112において還元された正極活物質121を酸化させる必要がある時には、第1流通状態調整部(酸化部導入弁144及び酸化部導出弁146)を調整し、酸化剤141を収容する正極側充電タンク142へ流通させ、酸化剤141によって正極活物質121を酸化させることができる。また、負極セル114において酸化された負極活物質131を還元させる必要がある時には、第2流通状態調整部(還元部導入弁154及び還元部導出弁156)を調整し、還元剤151を収容する負極側充電タンク152へ流通させ、還元剤151によって負極活物質131を還元させることができる。さらに、正極セル112において還元された正極活物質121を酸化させる必要がない時には、第1流通状態調整部(酸化部導入弁144及び酸化部導出弁146)を調整し、酸化剤141を収容する正極側充電タンク142への流通を減らすもしくは止めることにより、酸化剤141のエネルギーの無駄な消耗を防ぐことができる。また、負極セル114において酸化された負極活物質131を還元させる必要がない時には、第2流通状態調整部(還元部導入弁154及び還元部導出弁156)を調整し、還元剤151を収容する負極側充電タンク152への流通を減らすもしくは止めることにより、還元剤151のエネルギーの無駄な消耗を防ぐことができる。ここで、正極活物質121を酸化させることによってエネルギーが消耗した酸化剤141は溶出せずに固体状態を維持しており、正極活物質121を含んだ正極電解液122から回収する必要が無い。また、負極活物質131を還元させることによってエネルギーが消耗した還元剤151は溶出せずに固体状態を維持しており、負極活物質131を含んだ負極電解液132から回収する必要が無い。これにより、正極側充電タンク142及び負極側充電タンク152の交換頻度を減らすことができる。この結果、車両用フロー電池100及びその制御方法は、電解液を交換することなく、車両10の走行距離を効率良く伸ばすことができ、充電タンクの交換頻度を減らすことができる。
【0062】
第1実施形態によれば、正極側充電タンク142は、正極側溶液タンク123に対して並列に接続されている。同様に、負極側充電タンク152は、負極側溶液タンク133に対して並列に接続されている。
【0063】
このような構成によれば、非常に簡便であって、かつ、一定の応答性及び精度を満たした上で、正極活物質121を含む正極電解液122を、酸化剤141を収容する正極側充電タンク142へ流通させることができる。又、負極活物質131を含む負極電解液132を、還元剤151を収容する負極側充電タンク152へ流通させることができる。
【0064】
第1実施形態によれば、正極側充電タンク142及び負極側充電タンク152が、車両10に対して、それぞれ交換可能又は補充可能に構成されている。
【0065】
このような構成によれば、エネルギーを一定以上消耗した酸化剤141を収容した正極側充電タンク142及びエネルギーを一定以上消耗した還元剤151を収容した負極側充電タンク152を車両10から取り外し、十分なエネルギーを備えた酸化剤141を収容した正極側充電タンク142及び十分なエネルギーを備えた還元剤151を収容した負極側充電タンク152を車両10に取り付けるだけで、車両10の走行距離を伸ばすことができる。すなわち、ガソリンスタンドのような施設において、車両10を短時間停車させている間に正極側充電タンク142及び負極側充電タンク152を交換する構成とすれば、車両用フロー電池100を急速充電可能な二次電池のように扱うことができる。さらに、エネルギーを一定以上消耗した酸化剤141を収容した正極側充電タンク142又はエネルギーを一定以上消耗した還元剤151を収容した負極側充電タンク152だけを、選択して交換する構成としてもよい。このような構成とした場合、より短期間で無駄なく正極側充電タンク142又は負極側充電タンク152の交換を行うことができる。
【0066】
第1実施形態によれば、制御部160は、加速センサ161aにより測定される加速度が所定値以上の場合、又は充電センサ161bにより測定される正極側の充電率が所定の値未満となった場合に、第1流通状態調整部(酸化部導入弁144及び酸化部導出弁146)により正極電解液122を正極側充電タンク142へ流通させるように制御する。制御部160による負極側の制御は、上記の正極側の制御と同様である。
【0067】
このような制御方法(上記した具体的な制御方法1に相当)によれば、例えば、車両10を長距離にわたり走行させるような場合に、車両用フロー電池100の充電率を所定の値以上に維持することができる。なお、加速度が大きくなる程、充電率が低下する。この結果、車両10の航続距離が伸びた場合などに、車両10を安定して走行させることができる。また、例えば、車両10を日中(夜間)に一定の距離の範囲内で走行させつつ夜間(日中)に充電できるような場合に、酸化剤141及び還元剤151のエネルギーが消耗することを抑制できる。また、車両用フロー電池100の電圧値を、一定の範囲内に制御して、駆動機器25を安定して駆動させることができる。
【0068】
第1実施形態によれば、制御部160は、充電センサ161bにより測定される正極側の充電率が単位時間当たりに所定の割合を超えて減少した場合に、第1流通状態調整部(酸化部導入弁144及び酸化部導出弁146)により正極電解液122を正極側充電タンク142へ流通させるように制御する。制御部160による負極側の制御は、上記の正極側の制御と同様である。
【0069】
このような制御方法(上記した具体的な制御方法2に相当)によれば、例えば、車両10が勾配の大きい坂道を走行するような場合に、車両用フロー電池100の充電率が急速に減少することを抑制できる。この結果、車両10に高負荷が発生しても、車両10を安定して走行させることができる。また、例えば、車両10が平地のような負荷が低い環境で走行するような場合に、酸化剤141及び還元剤151のエネルギーが消耗することを抑制できる。また、車両用フロー電池100の電圧値を、一定の範囲内に制御して、駆動機器25を安定して駆動させることができる。
【0070】
第1実施形態によれば、制御部160は、充電センサ161bにより測定される正極側の充電率が所定の値以上になるまで、第1流通状態調整部(酸化部導入弁144及び酸化部導出弁146)により正極側充電タンク142への正極電解液122の流量を調整する。制御部160による負極側の制御は、上記の正極側の制御と同様である。
【0071】
このような制御方法(上記した具体的な制御方法3に相当)によれば、車両用フロー電池100の電圧値を、一定の範囲内に制御することができる。この結果、車両用フロー電池100から電力の供給を受ける駆動機器25を、安定して駆動させることができる。また、車両10の今後の走行状態を予測することが難しい場合でも、車両10を安定して走行させることができる。
【0072】
第1実施形態によれば、制御部160は、第1流通状態調整部(酸化部導入弁144及び酸化部導出弁146)により正極側充電タンク142に流通させる正極電解液122の流量を、正極セル112に循環させる正極電解液122の流量に対して増加させる。換言すると、酸化剤141に流通させる正極電解液122の流量Jを、正極セル112に循環させる正極電解液122の流量Jに対して増加させることによって、正極側の充電率を上昇させるように制御する。制御部160による負極側の制御は、上記の正極側の制御と同様である。
【0073】
このような制御方法(上記した基本的な制御方法に相当)によれば、一定の応答性及び精度を満たした上で、車両用フロー電池100の充電率を容易に制御することができる。この結果、車両用フロー電池100から車両10に対して安定的に電力を供給することができる。
【0074】
「第2実施形態」
第2実施形態では、負極側充電タンク252が、正極側充電タンク142よりも小さく構成されている。
【0075】
第2実施形態の車両用フロー電池200は、上記の構成のみが、第1実施形態の車両用フロー電池100と異なる。第2実施形態では、第1実施形態と異なる構成について説明する。第2実施形態では、第1実施形態と同一の構成について、第1実施形態と同一の参照符号を付すことで、その説明を省略する。
【0076】
「車両用フロー電池200に特有の構成」
図3を参照して、車両用フロー電池200に特有の構成(還元部250)を説明する。なお、還元部250に関連して、酸化部140の酸化剤141についても説明する。
【0077】
還元部250の還元剤151及び酸化部140の酸化剤141は、材料によって、それぞれ体積容量密度[Ah/L]が異なる。体積容量密度[Ah/L]は、単位体積[L]当たりに貯めることができる電流量[Ah]である。還元剤151の体積容量密度[Ah/L]は、LiTi12<Li金属<Li-Si合金である。酸化剤141の体積容量密度[Ah/L]は、FePO<Ni0.5Mn1.5<Mnである。さらに、材料の組み合わせに依存するが、材料の物性上、還元剤151の体積容量密度[Ah/L]は、酸化剤141の体積容量密度[Ah/L]と比較して大きくなる場合が多い。
【0078】
すなわち、材料の組み合わせに依存するが、材料の物性上、負極側充電タンク252を正極側充電タンク142よりも小さく構成しても、負極側充電タンク252に充填される還元剤151の体積容量[Ah]と、正極側充電タンク142に充填される酸化剤141の体積容量[Ah]とを同等にすることができる。このようなことから、正極側充電タンク142の体積[L]と負極側充電タンク252の体積[L]との比が、酸化剤141の体積容量密度と還元剤151の体積容量密度との比の逆数と同等になるように、負極側充電タンク152の体積[L]を小さく設定する。
【0079】
具体的には、例えば、還元剤151の体積容量密度[Ah/L]が酸化剤141の体積容量密度[Ah/L]よりも5倍大きい場合、負極側充電タンク252の体積[L]が正極側充電タンク142の体積[L]の1/5になるように、負極側充電タンク252の体積[L]を小さく構成する。
【0080】
「車両用フロー電池200に特有の効果」
車両用フロー電池200に特有の効果を説明する。
【0081】
第2実施形態によれば、正極側充電タンク142の体積と負極側充電タンク252の体積との比が、酸化剤141の体積容量密度と還元剤151の体積容量密度との比の逆数に基づいて設定されている。
【0082】
このような構成によれば、負極側充電タンク252を小型化することができる。この結果、車両用フロー電池200を車両10に設け易くすることができる。なお、車両用フロー電池200を使用する場合に、正極側における酸化エネルギーと負極側における還元エネルギーとが同等になるように構成していることから、正極側又は負極側のどちらか一方のエネルギーが先に尽きて片方の充電タンク内の酸化剤(もしくは還元剤)のみ交換する状況を避けることができる。
【0083】
さらに、このような構成によれば、例えば負極側充電タンク252を軽量化して、車両用フロー電池200の重量を削減することができる。この結果、車両10の航続距離を伸ばすことができる。また、車両10に積載可能な荷物の重量を増加させることができる。
【0084】
さらに、このような構成によれば、車両10における正極側充電タンク142と負極側充電タンク152の設置スペースの上限が決まっている場合、正極側充電タンク142を負極側充電タンク152よりも相対的に大きく構成して、その設置スペースを上限まで無駄なく用いることができる。すなわち、負極側充電タンク152を相対的に小さくしつつ、負極側充電タンク152を小さくすることによって空いた設置スペースを、相対的に大きくした正極側充電タンク142のために用いることができる。この結果、車両10の航続距離を最大化することができる。
【0085】
さらに、このような構成によれば、例えば負極側充電タンク252の小型化に伴い、車両用フロー電池200の製造コストを削減することができる。
【0086】
「第3実施形態」
第3実施形態では、正極側において、正極活物質121を含む正極電解液122が、正極セル112から導出された後に直接的に酸化部340に流通するように構成されている。負極側は、正極側と同様の構成としている。
【0087】
第3実施形態の車両用フロー電池300は、上記の構成のみが、第1及び第2実施形態の車両用フロー電池100及び200と異なる。第3実施形態では、第1及び第2実施形態と異なる構成について説明する。第3実施形態では、第1及び第2実施形態と同一の構成について、第1及び第2実施形態と同一の参照符号を付すことで、その説明を省略する。
【0088】
「車両用フロー電池300に特有の構成」
図4を参照して、車両用フロー電池300に特有の構成(酸化部340及び還元部350)を説明する。
【0089】
酸化部340において、正極側充電タンク142は、上流側は正極セル112に接続され、下流側は正極側溶液タンク123に接続されている。具体的には、酸化部340において、導出管345は、発電セル110の正極セル112と正極側充電タンク142との間に接続され、正極側酸化用ポンプ147が連結されている。導出管345には、導入弁346が設けられている。酸化部340では、酸化部導入弁144及び導入弁346が開かれた状態において、正極セル112から導出された正極電解液122が、正極側酸化用ポンプ147によって正極側充電タンク142に送液される。正極電解液122に含まれた正極活物質121は、発電セル110で還元された状態であり、正極側充電タンク142に収容された酸化剤141によって酸化される。酸化された正極活物質121を含む正極電解液122は、正極側溶液タンク123を介して正極セル112に送液される。
【0090】
還元部350において、負極側充電タンク152は、上流側は負極セル114に接続され、下流側は負極側溶液タンク133に接続されている。具体的には、導出管355は、発電セル110の負極セル114と負極側充電タンク152との間に接続され、負極側還元用ポンプ157が連結されている。導出管355には、導入弁356が設けられている。還元部350では、還元部導入弁154及び導入弁356が開かれた状態において、負極セル114から導出された負極電解液132が、負極側還元用ポンプ157によって負極側充電タンク152に送液される。負極電解液132に含まれた負極活物質131は、発電セル110で酸化された状態であり、負極側充電タンク152に収容された還元剤151によって還元される。還元された負極活物質131を含む負極電解液132は、負極側溶液タンク133を介して負極セル114に送液される。
【0091】
「車両用フロー電池300に特有の効果」
車両用フロー電池300に特有の効果を説明する。
【0092】
第3実施形態によれば、正極側充電タンク142は、上流側は正極セル112に接続され、下流側は正極側溶液タンク123に接続されている。同様に、負極側充電タンク152は、上流側は負極セル114に接続され、下流側は負極側溶液タンク133に接続されている。
【0093】
このような構成によれば、正極セル112に循環されて還元された(エネルギーを消耗した)正極活物質121を、エネルギーの供給源である酸化剤141に直送して、速やかに酸化させる(エネルギーを与える)ことができる。また、負極セル114に循環されて酸化された(エネルギーを消耗した)負極活物質131を、エネルギーの供給源である還元剤151に直送して、速やかに還元させる(エネルギーを与える)ことができる。すなわち、エネルギーを消耗した正極活物質121及び負極活物質131に対して、それぞれ効率良くエネルギーを供給することができる。この結果、車両10を安定して航続させることができる。
【0094】
特に、このような構成によれば、例えば車両10を長距離にわたり走行させるような場合に、エネルギーを消耗した正極活物質121及び負極活物質131に対して、それぞれ直接的にエネルギーを供給し続けることができる。この結果、長距離走行時においても、車両10を安定して航続させることができる。
【0095】
「第1~第3実施形態の変形例」
なお、本発明を実施するに当たり、上記した第1~第3実施形態の構成は、一例であり、種々変更して実施することができる。
【0096】
上記した第1~第3実施形態においては、活物質の組み合わせとして、鉄-コバルトを想定している。これに代えて、活物質の組み合わせとして、例えば、ヨウ素-コバルト、又は鉄-クロムとしてもよい。
【0097】
上記した第1~第3実施形態においては、車両10は、車両用フロー電池100、200及び300を電源として車載用モータを駆動する電気自動車を想定しているが、ガソリンを燃料とするエンジンを併用する構成としてもよい。
【0098】
上記した第2実施形態においては、還元剤151の体積容量密度と酸化剤141の体積容量密度との比に応じて、例えば、負極側充電タンク252の体積を正極側充電タンク142の体積よりも小さくする構成を想定している。これに代えて、還元剤151の体積容量密度と酸化剤141の体積容量密度とが同等であって、かつ、負極側充電タンク152の体積と正極側充電タンク142の体積とが同等になるように、還元剤151の材料と酸化剤141の材料とを選定する構成としてもよい。
【符号の説明】
【0099】
10…車両、20…電気ユニット、21…給電部、22…インバータ、23…正極端子、24…負極端子、25…駆動機器、100…車両用フロー電池、110…発電セル、111…正極電極、112…正極セル、113…負極電極、114…負極セル、115…隔膜、120…正極側循環部、121…正極活物質、121a…2価の正極活物質、121b…3価の正極活物質、122…正極電解液、123…正極側溶液タンク、124…正極側循環部導入管(正極側循環配管)、125…正極側循環部導出管(正極側循環配管)、126…正極側循環用ポンプ、130…負極側循環部、131…負極活物質、131a…3価の負極活物質、131b…2価の負極活物質、132…負極電解液、133…負極側溶液タンク、134…負極側循環部導入管(負極側循環配管)、135…負極側循環部導出管(負極側循環配管)、136…負極側循環用ポンプ、140…酸化部、141…酸化剤(酸化部材)、142…正極側充電タンク(酸化部材収容部)、143…酸化部導入管、144…酸化部導入弁(第1流通状態調整部の正極側開閉弁)、145…酸化部導出管、146…酸化部導出弁(第1流通状態調整部の正極側開閉弁)、147…正極側酸化用ポンプ、150…還元部、151…還元剤(還元部材)、152…負極側充電タンク、153…還元部導入管、154…還元部導入弁(第2流通状態調整部の負極側開閉弁)、155…還元部導出管、156…還元部導出弁(第2流通状態調整部の負極側開閉弁)、157…負極側還元用ポンプ、160…制御部、161a…加速センサ、161b…充電センサ、200…車両用フロー電池、250…還元部、252…負極側充電タンク、300…車両用フロー電池、320…正極側循環部、330…負極側循環部、340…酸化部、345…導出管、346…導入弁、350…還元部、355…導出管、356…導入弁。
図1
図2
図3
図4