IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ディグニティ・ヘルスの特許一覧

特許7092781所定の解剖学的、生物力学的、および生理学的プロパティを有する合成解剖モデルを構築するためのシステムおよび方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-20
(45)【発行日】2022-06-28
(54)【発明の名称】所定の解剖学的、生物力学的、および生理学的プロパティを有する合成解剖モデルを構築するためのシステムおよび方法
(51)【国際特許分類】
   B29C 64/386 20170101AFI20220621BHJP
   A61B 17/56 20060101ALI20220621BHJP
   B29C 64/118 20170101ALI20220621BHJP
   B33Y 50/00 20150101ALI20220621BHJP
   B33Y 10/00 20150101ALI20220621BHJP
【FI】
B29C64/386
A61B17/56
B29C64/118
B33Y50/00
B33Y10/00
【請求項の数】 18
(21)【出願番号】P 2019544677
(86)(22)【出願日】2018-05-30
(65)【公表番号】
(43)【公表日】2020-07-30
(86)【国際出願番号】 US2018035223
(87)【国際公開番号】W WO2018222779
(87)【国際公開日】2018-12-06
【審査請求日】2021-04-23
(31)【優先権主張番号】62/512,243
(32)【優先日】2017-05-30
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/518,653
(32)【優先日】2017-06-13
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/589,756
(32)【優先日】2017-11-22
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/589,788
(32)【優先日】2017-11-22
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/589,733
(32)【優先日】2017-11-22
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/589,768
(32)【優先日】2017-11-22
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/589,780
(32)【優先日】2017-11-22
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/591,241
(32)【優先日】2017-11-28
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】519294310
【氏名又は名称】ディグニティ・ヘルス
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100120112
【氏名又は名称】中西 基晴
(74)【代理人】
【識別番号】100173565
【弁理士】
【氏名又は名称】末松 亮太
(72)【発明者】
【氏名】ボール,マイケル・エイ
【審査官】坂本 薫昭
(56)【参考文献】
【文献】米国特許出願公開第2013/0085736(US,A1)
【文献】国際公開第2012/132463(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 17/56
B29C 64/10,64/118,64/20,64/386
B33Y 10/00,30/00,50/00,70/00,80/00
(57)【特許請求の範囲】
【請求項1】
方法であって、
モデリングのために、複数の患者からの、骨組織の複数の基準成体に基づいて生成された統合撮像データにアクセスするステップと、
前記統合撮像データから3Dプリンティング・ファイルを作成するように構成されたコンピューティング・デバイスと、前記コンピューティング・デバイスと動作可能に通信する3Dプリンタとを利用するステップであって、前記3Dプリンティング・ファイルが、前記骨組織の複数の基準構成体の合成モデルをプリントするためのパラメータを定める、ステップと、
前記骨組織の複数の基準構成体に特異的な解剖学的、生理学的、および生物力学的プロパティに関連付けられた実験導出データ集合にしたがって、前記3Dプリンティング・ファイルのパラメータを調節するステップと、
前記調節されたパラメータを使用して、前記骨組織の複数の基準構成体の合成モデルの少なくとも一部をプリントするステップと、
を含む、方法。
【請求項2】
請求項1記載の方法であって、更に、少なくとも1つの生物力学的検査を前記合成モデルに適用するステップを含む、方法。
【請求項3】
請求項2記載の方法であって、更に、前記合成モデルに適用された前記少なくとも1つの生物力学的検査に関連付けられた結果に基づいて、前記3Dプリンティング・ファイルの前記パラメータを再調節するステップを含む、方法。
【請求項4】
請求項1記載の方法において、前記骨組織の複数の基準構成体が、複数の患者のCTスキャンと関連付けられる、方法。
【請求項5】
請求項1記載の方法において、前記実験導出データ集合が、少なくとも、死体の脊髄分節に対する椎弓根スクリューの生物力学的検査に基づいて、導出される、方法。
【請求項6】
請求項1記載の方法において、前記合成モデルが、プリンティング・パラメータおよび材料の第1構成に対応する第1部分と、プリンティング・パラメータおよび材料の第2構成に対応する第2部分とをプリントされ、前記第1部分および前記第2部分が、自然な身体構造の異なる部分をシミュレートする、方法。
【請求項7】
請求項1記載の方法であって、更に、前記合成モデルを少なくとも部分的に合成軟組織内に埋め込むステップを含む、方法。
【請求項8】
請求項1記載の方法であって、更に、合成腱鞘嚢を前記合成モデルに沿って位置付けるステップを含む、方法。
【請求項9】
請求項1記載の方法において、前記合成モデルが、神経要素をシミュレートする部分をプリントされ、前記部分が、当該部分が導電性となるように、金属を含む、方法。
【請求項10】
請求項1記載の方法であって、更に、神経根を表すために、複数の導電性ワイヤを前記合成モデルに沿って位置付けるステップを含む、方法。
【請求項11】
請求項1記載の方法であって、更に、
前記合成モデルを貫通する複数のチャネルを形成するステップと、
前記複数のチャネルを通る外科用チューブを配置するステップと、
前記外科用チューブ内に、圧力をかけて人工血液を注入する(dispose)ステップと、
を含む、方法。
【請求項12】
請求項1記載の方法において、前記統合撮像データが、CADソフトウェア・パッケージから導き出され、前記コンピューティング・デバイスが、前記統合撮像データをSTLファイルに変換するように構成される、方法。
【請求項13】
請求項1記載の方法であって、更に、前記合成モデルの1つ以上の特徴を調節するために、前記3Dプリンティング・ファイルを修正するステップを含む、方法。
【請求項14】
請求項1記載の方法において、前記合成モデルが、ヒトの骨の皮質海面構造を模擬するためにプリントされ、前記合成モデルが、前記合成モデルの内部を埋め第1の厚さを有するメッシュ部分を含み、前記合成モデルが、更に、前記メッシュ部分の周囲に位置する、前記第1の厚さよりも厚い第2の厚さの皮質外殻を有する、方法。
【請求項15】
請求項1記載の方法において、前記合成モデルが、透視およびX線デバイス下で見ることができるように、前記合成モデルが放射線不透過性材料を用いてプリントされる、方法。
【請求項16】
請求項1記載の方法であって、更に、脊椎固定構造を前記合成モデルに取り付ける(apply)ことによって、脊椎矯正処置をシミュレートするステップを含む、方法。
【請求項17】
請求項16記載の方法であって、更に、前記合成モデルに適用された前記脊椎矯正処置に基づいて、前記骨組織の複数の基準構成体の破損点を識別するステップを含む、方法。
【請求項18】
命令を格納するメモリであって、前記命令がプリンティング・デバイスによって実行されると、複数の患者からの、骨組織の複数の基準構成体の所定の解剖学的、生物力学的、および生理学的プロパティを有する三次元(3D)合成デルを、前記プリンティング・デバイスにプリントさせ、前記命令が、1つ以上の実験導出データ集合に対応するプリンティング・パラメータおよび材料の選択のための構成を定める、メモリ。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願に対する相互引用
[0001] 本特許出願は、以下の特許出願に関連し、35U.S.C.§119(e)に基づいて優先権を主張する。"METHOD FOR CONSTRUCTING A SYNTHETIC SPINE MODEL WITH HIGH ANATOMIC AND BIOMECHANICAL FIDELITY TO A CADAVERIC SPINE MODEL”(死体脊椎モデルに対して高い解剖および生物力学的忠実度を有する合成脊椎モデルを構築するための方法)と題し、2017年5月30日に出願された米国仮特許出願第62/512,243号、"METHOD FOR CONSTRUCTING A SYNTHETIC SPINE MODEL WITH HIGH ANATOMIC AND BIOMECHANICAL FIDELITY TO A CADAVERIC SPINE MODEL”(死体脊椎モデルに対して高い解剖および生物力学的忠実度を有する合成脊椎モデルを構築するための方法)と題し、2017年6月13日に出願された米国仮特許出願第62/518,653号、"SYSTEM AND METHOD FOR CONSTRUCTING A SYNTHETIC SPINE MODEL WITH ANATOMIC, BIOMECHANICAL, AND PHYSIOLOGICAL FIDELITY TO A SPINE MODEL”(脊椎モデルに対して解剖学的、生物力学的、および生理学的忠実度を有する合成脊椎モデルを構築するための方法)と題し、2017年11月28日に出願された米国仮特許出願第62/591,241号、"SYSTEM AND METHOD FOR 3-D PRINTED OSTEOTOMY MODELS”(3Dプリントされた骨切り術モデルのためのシステムおよび方法)と題し、2017年11月22日に出願された米国仮特許出願第62/589,756号、"SYSTEM AND METHOD FOR 3-D PRINTED MODELS”(3Dプリント・モデルのためのシステムおよび方法)と題し、2017年11月22日に出願された米国仮特許出願第62/589,788号、"Systems and Methods for Fluoroscopic analysis of a synthetic spine model made of variable 3D-printed materials”(可変3Dプリント材料で作られた合成脊椎モデルの透視分析のためのシステムおよび方法)と題し、2017年11月22日に出願された米国仮特許出願第62/589,733号、"SYSTEM AND METHOD FOR 3-D PRINTED MODELS FOR PEDICLE SCREW INSERTION”(椎弓根スクリュー挿入のための3Dプリント・モデルのためのシステムおよび方法)と題し、2017年11月22日に出願された米国仮特許出願第62/589,768号、および"SYSTEM AND METHOD FOR 3-D PRINTED MODELS”(3Dプリント・モデルのためのシステムおよび方法)と題し、2017年11月22日に出願された米国仮特許出願第62/589,780号。これらの全てをここで引用したことにより、その内容が全て、あらゆる目的に対しても、本願にも含まれるものとする。
【0002】
分野
[0002] 本開示は、一般には、合成身体構造モデルを作成するためのシステムおよび方法に関する。更に特定すると、本願は、特定の予め定められた解剖学的、生物力学的、および生理学的プロパティを有する基本合成身体構造モデルを構築するための三次元プリンタおよびコンピューティング・デバイスを備え、処理前、処理中、または処理後に追加の合成身体構造構成体(component)で補足することができる機器を構成するためのシステムならびに方法について記載する。
【従来技術】
【0003】
[0003] 合成脊椎モデルおよびその他の身体構造モデルは、外科教育、患者の教育、新たな外科処置戦略の開発および検査、脊髄疾患の処置において使用するための新たなデバイスの開発および検査にとって非常に重要であり、更に脊椎の生物力学的研究における研究プラットフォームとしても非常に重要である。現在では、以上の目的の殆どに対して標準的な教育および研究プラットフォームとして、死体の脊椎が使用されている。死体の脊椎には多くの制限(limitations)が伴い、外科教育、生物力学的研究におけるそれらの利用、および/または新たなデバイス検査プラットフォームによる利用が、非常に限定されてしまう。
【0004】
[0004] 死体脊椎モデルの欠点には、それらの費用、(死亡時にドナーからの)獲得が難しいこと、ヒトの組織の扱いにおける制約および死体検査に対する制度的要件、人体組織を処置するときに実験室要員に及ぶ危険性、特定の病理学のモデルを獲得できないこと(または非常に難しいこと)、そして検体間における生物力学的成果(biomechanical performance)の差が激しいことが含まれ(保存技法、死体検体の年齢、ならびに死亡時におけるドナーの骨および軟組織の品質のばらつきに起因すると考えられる)、このため、生物力学的検査において結果のばらつきが広がるという結果になる。この結果のばらつきが広がることに対しては、検査中に使用する死体数を増やすことによって克服しなければならないが、更にコストが増大し、組織処置要件が増大し、その後の危険が高まることになる。
【発明の概要】
【0005】
[0005] 本開示の種々の態様は、とりわけ、これらの観察を念頭において着想されそして開発された。
【図面の簡単な説明】
【0006】
図1】特定の予め定められた解剖学的、生物力学的、および生理学的プロパティを有する合成身体構造モデルを構築するために、三次元プリンタおよびコンピューティング・デバイスを備える機器を構成するためのシステムを示す簡略ブロック図である。
図2A】特定の予め定められた解剖学的、生物力学的、および生理学的プロパティを有する合成身体構造モデルを構築するために、図1のシステムを利用するための例示的なプロセス・フローである。
図2B】基準身体構造構成体(脊髄分節)の放射線撮影画像である。
図2C図2Bの基準骨髄分節の一定の(certain)既定された解剖学的、生物力学的、および生理学的プロパティを模擬するためにプリントされた合成脊髄分節の画像である。
図2D】外科的矯正後における図2Bの基準脊髄分節の放射線撮影画像である。
図2E】外科的矯正シミュレーション後の図2Cの合成脊髄分節の画像である。
図3図2Aにおいて説明し本明細書において論ずる方法にしたがって構築された合成脊椎モデルの側面図である。
図4】椎弓根スクリュー設置(pedicle screw placement)後における、図3において引用した同じ脊椎モデルを撮影したX線画像の側面図である。
図5】骨(白)、前縦靭帯(黒)、および線維輪(黒)を表し、生物力学的に動作する(perform)、異なる3Dプリント材料を明確に示す、図3における同じモデルの前外側の図(anterolateral view)である。
図6】骨(白)、および後縦靭帯(黒)を表し、生物力学的に動作する、異なる3Dプリント材料を明確に示す、図3における同じモデルの背面図である。このモデルでは、後柱骨切り術をシミュレートするために、椎間関節が除去されている。
図7】椎体モデルの生物力学的検査、具体的には、軸方向ねじ引き抜き強度検査を示す画像である。この検査は、モード特定健康または疾患骨状態に対して特定のプリンティング・パラメータを構成または選択するための、実験導出(experimentally derived)プロトコルに寄与した。
図8】椎弓根スクリュー挿入、ならびに椎弓根スクリューおよび椎間板圧迫の生物力学的検査後における、図3において引用した同じ脊椎モデルの側面図である。
図9】椎弓根スクリューおよび椎間板圧迫の生物力学的検査時における、図8において引用した同じ脊椎モデルを撮影した側面X線画像である。
図10】3Dプリントした椎本モデルを、椎弓根の所定のカニューレ軌道(cannulation trajectories)と共に示す画像である。
図11】椎弓根カニューレ軌道を含むようにプリントされた合成椎体モデルを示す画像である。
図12】本発明の概念による合成脊椎モデルに関連付けられた椎体を示す上面図であり、矢印は密な細胞層および密でないインフィルを示す。
図13】標準的な透視法の下で、そして本明細書において説明する方法を使用して構築された合成L5椎体モデルの軸方向図である。
図14】本明細書において説明する方法を使用して構築された、水平方向の合成脊椎モデルの写真である。
図15】本明細書において説明する方法を使用して構築された、垂直方向の合成脊椎モデルの他の写真である。
図16A図16A図16Cは、検査されるパラメータに対する材料の種類の影響を実証する箱ひげ図の概要である。
図16B図16A図16Cは、検査されるパラメータに対する材料の種類の影響を実証する箱ひげ図の概要である。
図16C図16A図16Cは、検査されるパラメータに対する材料の種類の影響を実証する箱ひげ図の概要である。
図17A図17A図17Iは、検査されるパラメータに対する材料およびインフィルの影響を実証する箱ひげ図の概要である。
図17B図17A図17Iは、検査されるパラメータに対する材料およびインフィルの影響を実証する箱ひげ図の概要である。
図17C図17A図17Iは、検査されるパラメータに対する材料およびインフィルの影響を実証する箱ひげ図の概要である。
図17D図17A図17Iは、検査されるパラメータに対する材料およびインフィルの影響を実証する箱ひげ図の概要である。
図17E図17A図17Iは、検査されるパラメータに対する材料およびインフィルの影響を実証する箱ひげ図の概要である。
図17F図17A図17Iは、検査されるパラメータに対する材料およびインフィルの影響を実証する箱ひげ図の概要である。
図17G図17A図17Iは、検査されるパラメータに対する材料およびインフィルの影響を実証する箱ひげ図の概要である。
図17H図17A図17Iは、検査されるパラメータに対する材料およびインフィルの影響を実証する箱ひげ図の概要である。
図17I図17A図17Iは、検査されるパラメータに対する材料およびインフィルの影響を実証する箱ひげ図の概要である。
図18】合成骨の人工出血(artificial bleeding)を明確に示す画像である。
図19】合成腱鞘嚢を明確に示す画像である。
図20】プリントされた導電性3D合成神経要素(printed conductive 3D synthetic neural elements)または神経根を明確に示す画像である。
図21】プリント処理後のモデルに追加された導電性合成神経根を明確に示す画像である。
図22】合成3Dプリントされた腰筋、およびそれを通過する神経根を明確に示す画像である。
図23】合成身体構造モデルに追加された人工血管を明確に示す画像である。
図24】身体構造モデルが配備された放射線透過性軟組織を明確に示す画像の顕微鏡手術の図である。
図25】モデルに統合された合成黄色靱帯を明確に示す画像である。
図26】骨を覆う骨膜組織層をシミュレートした合成コラーゲンと共に、合成脊髄分節を明確に示す画像である。
図27】本明細書において論ずる種々のサービス、システム、および方法を実装することができるコンピューティング・システムの例を示す簡略ブロック図である。
【発明を実施するための形態】
【0007】
[0037] 対応する参照符号は、図面の図の間で対応する要素を示す。図において使用する方向は、請求項の範囲を限定するのではない。
【0008】
[0038] 外科教育(例えば、医学生、外科医、医療産業従事者、患者等のための)、生物力学的検査、および新たな医療デバイス検査を実行するための理想的なプラットフォームは、少なくとも次の特徴を有するとよい。保存可能期間が無期限であるまたは非常に長い合成材料で構成される。合成骨材料の肉眼解剖学、放射線解剖学、生物力学的挙動(performance)、および合成軟組織材料の生物力学的挙動に関して、人体組織に非常に忠実であること。解剖学のあらゆる正常なまたは病的な状態を模擬するためにこのプラットフォームを構築する能力。生理学的機能を模擬することをこのプラットフォームに可能にする特定の構造(feature)を、このプラットフォームに含ませる能力。生理学的機能には、出血、導電性、脊椎液の漏洩、およびモデルの特定のエリア内における圧力の監視が含まれるが、これらに限定されるのではない。
【0009】
[0039] したがって、前述の観察およびその他の観察を考慮して、本開示は、合成脊椎モデルおよび/またはその他の合成身体構造構成体を含むことができる解剖モデルの構築のための独創的なシステムならびに方法に関する。死体脊椎または他の骨組織に関して高い解剖学的、生理学的、および生物力学的忠実度を呈する、あるいはそれ以外では特定の予め決められたプロパティに従う(conform with)特性を呈する合成3Dプリント脊椎基本モデル、もしくは他の脊髄分節のような、カスタム化した合成解剖学的基本モデルを形成するためのコンピューティング・デバイスおよび/または三次元(3D)プリンタを構成することに向けて有利であることがわかっている実験導出データ集合(experimentally derived dataset)を生成するために、総合的な研究および検査方法が行われている。具体的には,一実施形態では、複数の試料(生体または死体)脊髄分節から画像データを抽出または生成することができる。試料脊髄分節の各々は、種々の異なる生物力学的、解剖学的、および/または生理学的プロパティを呈するまたは含むことができ、統合された画像データは、望まれる通りの総合的なものとなり、即ち、可能な脊髄分節プロパティの適した範囲に及ぶ。試料脊椎分析の統合画像データは、次に、コンパイルして1つ以上の3Dプリンティング・ファイルにすることができ、試料脊髄分節の3Dモデルをプリントすることができる。試料脊髄分節の3Dモデルは、次に、本明細書において説明するような種々の生物力学的検査を受けて、実験導出データ集合を生成する。これらのデータ集合は、試料脊椎モデルおよび材料に関連するプロパティと、3Dプリンタまたは積層造形デバイスのためのプリンティング・パラメータとの間の関係を定める。言い換えると、実験導出データ集合は、適した材料の特定の構成、および試料脊髄分節の種々の例(異なる状態、解剖学的方向等を有する)に対応する特定のプロパティを有する合成脊椎モデルまたはその他の身体構造構成体を後に(3Dプリンティングまたは積層造形法によって)生成するための、一意のプリンティング・パラメータを定める、あるいはこれらに関して知識を与える。
【0010】
[0040] 次いで、実験導出データ集合を利用して、試料モデルの内任意のものの所望のプロパティ(または他の試料情報からのプロパティ)を有する、合成脊髄分節モデルまたは他の身体構造モデルを構築することができる。例えば、脊柱側弯症の特定の形態と同様または同一の解剖学的方向(anatomical orientation)を有する合成脊椎モデルを生成するために、試料死体モデルから既に生成されている実験導出データ集合を利用することができる。これらの実験導出データは、3Dプリンティング・プロセスの特定の態様について知らせることができる。特定の態様とは、特定の骨生物力学的プロパティを有するモデルを生成するための、シェルの厚さ、インフィルの密度が含まれるが、使用される材料には限定されない。同様に、特定の型の側弯症を有する患者または死体の画像データ集合を、特定の(specific)側弯症解剖模型(anatomy)のモデリングのための3Dファイルに変換することができる。次いで、プリンティング・パラメータ、椎間板の高さ(disc height)、椎間関節の修正、および/またはその他の3Dファイルもしくは3Dプリンタの修正を使用して、同じ脊柱側弯曲線を有する自然な(例えば、人体またはそれ以外)脊柱に対して非常に高い解剖学的および生物力学的忠実度を有するモデルを作成することができる。言い換えると、所与の3Dプリンティング・ファイルに対するプリンティング・パラメータおよび材料は、実験導出データ集合にしたがって構成または修正し、同じまたは同様の側弯症形態を呈する解剖学的方向を有する合成脊髄分節を構築することができる。したがって、実験導出データ集合を利用することにより、1組の所望のまたは所定の解剖学的、生物力学的、または生理学的特性を呈する合成脊椎または他の身体構造モデルの3Dプリンティングに対応する(accommodate)。
【0011】
[0041] ある実施形態では、以上で説明したのと同様の検査方法または他の研究を利用することにより、他の身体構造構成体を構築することもでき、合成血管、合成腱鞘嚢、合成筋肉、および合成骨膜、ならびに3Dプリント合成モデルに加えて、他の身体構造構成体の合成模擬品も含むことができる。これについては本明細書において更に説明する。図面を参照すると、特定の予め定められた解剖学的、生物力学的、および生理学的プロパティを有する合成身体構造モデルを構築するための三次元プリンタおよびコンピューティング・デバイスを備える機器を構成するためのシステムの一実施形態が、示されており、図1図27において全体的に100で示されている。
【0012】
[0042] 図1を参照すると、合成身体構造モデル(合成脊髄分節のような)の構築のための非限定的なシステム例(exemplary system)100が示されている。システム100は、概略的に、コンピューティング・デバイス104によって実行されるプリンティング・アプリケーション102と、ネットワーク108を通じてコンピューティング・デバイス104と通信する(有線接続によって、またはワイヤレス接続されて)ように動作可能な3Dプリンタ106とを含めばよい。プリンティング・アプリケーション102およびコンピューティング・デバイス104は、本明細書において説明するように、特徴の中でもとりわけ、所定のプロパティを有する合成脊髄分節または他の身体構造モデルを構築するための3Dプリンタ106にコマンドを発行するように構成することができる。
【0013】
[0043] コンピューティング・デバイス104は、サーバ、コントローラ、パーソナル・コンピュータ、端末、ワークステーション、ラップトップ、移動体デバイス、タブレット、メインフレーム、あるいはアプリケーション102によって構成される、他のこのようなコンピューティング・デバイス、もしくは3Dプリンティングまたは本明細書において説明する積層造形法に関連する機能を実現するための他のこのようなコンピューティング・デバイスの内1つ以上を含むことができる。プリンティング・アプリケーション102は、特別に構成されたまたはそれ以外の1つ以上の3D撮像および/またはプリンティング・ソフトウェア・パッケージに関連付けられた機能を含む、またはアクセスすることができ、例えば、Blender、Cura、OpenSCAD、Slic3r、3D Slash、Design Spark Mechanical、Mimics、Simplify3D等を含むことができる。プリンティング・アプリケーション102は、画像(高解像度またはそれ以外)を3Dモデリング・ファイルに変換し、所望の身体構造構成体と関連付けられた画像の特徴を抽出し、これらの特徴を.stlフォーマットまたはその他のプリンティング・ファイル・フォーマットに、プリンティング命令として変換するように構成することができる。加えて、プリンティング・アプリケーション102は、更に、本明細書において説明するような合成モデルをプリントするために、命令をコンピューティング・デバイス104から3Dプリンタ106に送信するように構成することもできる。コンピューティング・システム100および/またはプリンティング・アプリケーション102の態様は、サービスとしてのプラットフォーム(PaaS:platform as a service)、および/またはサービスとしてのソフトウェア(SaaS:software as a service)を使用し、例えば、Amazon Web Servicesあるいはその他の分散型(distributed or decentralized)システムを使用して提供することができる。ネットワーク108は、インターネット、イントラネット、仮想プライベート・ネットワーク(VPN)、ローカル・エリア・ネットワーク(LAN)、ワイド・エリア・ネットワーク(LAN)、ピア-ツー-ピア・ネットワーク、クラウド等を含んでもよい。ある実施形態では、クラウド(図示せず)が、コンピューティング・システム100の1つ以上のコンポーネントを実行するために、実装されてもよい。
【0014】
[0044] 図示のように、コンピューティング・デバイス104は、データベース110に動作可能に接続することができ、またそうでなければデータベース110にアクセスすることができる。データベース110は、実験導出データ集合112、および本明細書において説明するようなその他の関連情報を格納することができる。データベース110に格納されたデータ集合112からのデータは、リアル・タイムで、またそうでなければ所望通りに、アプリケーション102およびコンピューティング・デバイス104によってアクセスすることができ、本明細書において説明する方法を使用して追加の実験導出データ集合112が生成または修正されるに連れて、更新することができる。
【0015】
[0045] 更に図示するように、コンピューティング・デバイス104、プリンティング・アプリケーション102、3Dプリンタ106、およびデータベース110(実験導出データ集合112を含む)は、集合的に機器114を定めることができる。本明細書において説明するように機器114を構成することによって、任意の数の特定の予め定められた解剖学的、生物力学的、および生理的プロパティを有する合成身体構造モデル116の構築に対応する。ある実施形態では、合成身体構造モデル116は、基本合成身体構造モデルを定めることができ、この基本合成身体構造モデルは、本明細書で更に説明するような後処理ステップの前、最中、または後において追加の合成構成体を補足することもできる。
【0016】
[0046] 加えて、プリンティング・アプリケーション102の少なくともいくつかの特徴は、ネットワーク108を通じてコンピューティング・デバイス104と通信する複数のユーザ・デバイス120に利用可能にすることができる。複数のユーザ・デバイス120は、限定ではなく、コントローラ、パーソナル・コンピュータ、端末、ワークステーション、携帯用コンピュータ、ラップトップ、移動体デバイス、タブレット、電話機、ページャ、またはマルチメディア・コンソールの内少なくとも1つを含むことができる。複数のユーザ・デバイス120は、そのいずれの1つでも、例えば、データベース110を修正または補足する、特定の合成身体構造モデルを要求する等のために、コンピューティング・デバイス104に情報を提出するように実装することができる。
【0017】
[0047] 引き続き図1を参照しつつ、図2Aを参照すると、実験導出データ集合112を利用して所望通りに特定の予め定められた解剖学的、生物力学的、および生理的プロパティを有する合成身体構造モデル116を構築するシステム100を実装するためのプロセス・フロー200が示されている。ブロック202に示すように、脊髄分節、骨盤骨、側頭骨、または所望の解剖学的プロパティというような、基準身体構造構成体を最初に選択し、アクセスし、識別することができる。基準身体構造構成体および/またはプロパティは、任意の数のデータ源から選択することができ、任意の数のアプリケーションと関連付けられても、または任意の数のアプリケーションを表してもよい。例えば、基準身体構造構成体は、脊柱固定手順および脊柱固定構造の適用が予定されている特定の患者の基準脊髄分節250(図2Bに示す)を含んでもよく、または表してもよい。この例では、患者の基準脊髄分節250は、種々の特定の解剖学的、生理学的、および生物力学的プロパティを含むことができ、合成身体構造モデル116(基準脊髄分節250を模擬するためにモデル化された)の内1つ以上を使用して、1回以上の試用脊椎固定処置を実行することによって、予定されている脊椎固定処置を模擬または複製し、例えば、外科医に手術準備時間および訓練を提供するため、そして自然の基準脊髄分節250の可能な失敗点を前もって識別するために、患者の基準脊髄分節250と同様のプロパティを有する合成身体構造モデル116を生成することが望ましいのはもっともである。このような準備時間が得られ、可能性がある失敗点を識別することができると、手順成功の確率を劇的に高め、手術の信頼性を総合的に高めることができる。
【0018】
[0048] 他の例として、基準脊髄分節250または所望のプロパティは、脊椎外科医にとって望まれる特定の訓練用途に基づいて選択されてもよい。具体的には、合成身体構造モデル116は、外科訓練を受ける者が外科解剖学の特定の側面を理解するのに役立つように、または特定の外科的手腕および技術を一層発揮できるように、プリントすることができる。このように、合成身体構造モデル116は、在宅教育および生物力学的検査双方の目的のために、死体脊椎の物理プロパティを複製することができるとよい。これは、在宅者(resident)が、ヒトの脊柱の物理プロパティを密接に模擬した3Dプリントによる脊椎の複製の実践的な外科的操作によって、複雑な脊椎処置(spinal procedures)を学習するのを補助する。これらの例によって実証されるように、基準脊髄分節または所望の解剖学的プロパティは、死体、生きているヒト、またはその他の動物/ほ乳類(例えば、獣医学的用途のための愛玩動物)から選択することができ、あるいはプロパティを個々に選択することもできる。例えば、特定の死体や生体動物に必ずしも一致しない特異性(specific properties)(例えば、特定の骨密度)を有する合成身体構造モデル116をプリントすることが望まれる場合もある。ある実施形態では、解剖学的プロパティは、人間以外の動物から導き出すこともでき、基準プロパティまたは基準身体構造構成体、ならびにその後に生成される合成モデルが、獣医学的用途、例えば、犬の背骨の一部(portions)をモデリングするために有用となるようにしてもよい。ユーザは、血管身体構造(vascular anatomy)を含む構成体、または電気を通すことができる人工神経要素、あるいは、例えば、その健康状態または疾患状態に対する解剖学的または生物力学的忠実性を有する任意の標準的な健康な身体構造(standard healthy anatomy)または任意の数の患者特定疾患状態というような、所望の合成身体構造モデル116を生成するためには、どんな情報が適切であるか判断することができる。合成身体構造モデル116を複製するときに随伴することが望まれると考えられる(そして、本明細書において説明するように、最終的に複製することができる)プロパティの具体的な例には、運動範囲または柔軟性、骨密度、解剖学的形状、表面模様(texture)、および寸法、骨を介した失血(blood loss through bone)、直接的な血管損傷からの出血、合成神経要素を通る電気信号の監視、特定の外科的手技の間における神経要素の損傷に対する潜在的可能性についてフィードバックを与えるための腱鞘嚢のようなモデルの特定部品における圧力の監視、ならびに透視またはコンピュータ化断層撮影のような、標準的な放射線撮像プロセスの下におけるモデルからの放射線撮影フィードバックを含むことができる。
【0019】
[0049] 図2Aにおけるブロック204を参照すると、ある実施形態では、基準身体構造構成体(例えば、基準脊髄分節250)、あるいは所望の合成身体構造モデル116、および/または脊髄分節プロパティに関連付けられた画像データ(図示せず)は、3Dプリンティング、または積層造形法(合成身体構造モデル116のための3Dプリント可能なモデルを生成するために最終的に使用することができる)のための準備において、プリンティング・アプリケーション102および/またはコンピューティング・デバイス104によって生成することができ、またそれ以外でもアクセスすることができる。ある実施形態では、画像データは、コンピュータ支援設計(CAD)パッケージ(別個に実装される、またはプリンティング・アプリケーション102内に統合される)を使用して生成することもでき、生成した画像データは、光造形CADソフトウェア(プリンティング・アプリケーション102によってアクセスされる、またはこれと一体化される)に関連付けられた1つ以上の.STLファイルを含むことができる。また、画像データは、例えば、基準脊髄分節250のボクセルに基づく形態計測、基準脊髄分節250の画素に基づく撮像等を定めるDICOM(登録商標)データも含むことができ、このデータはセグメント化またはスライス(slice)されてもよい。ある非限定的な実施形態では、ユーザが、磁気共鳴撮像(「MRI」)、コンピュータ化断層撮影(「CT」)、X線、超音波、または、例えば、基準脊髄分節250に適用される任意の他のディジタル可視化方法のような、可視化ツールによって、画像データにアクセスすることもできる。ある実施形態では、画像データは、3Dスキャナ、または、例えば、基準脊髄分節250に適用される一般的な写真測量ソフトウェアを使用して生成されてもよい。ある実施形態では、画像データは、例えば、基準脊髄分節250の画像をリアル・タイムで追跡またはスキャンすることによって、あるいは基準脊髄分節250に関連付けられたディジタル画像を、コンピューティング・デバイス104によってアクセス可能なメモリにダウンロードすることによって、コンピューティング・デバイス104に直接供給することもできる。以上で述べたスキャニング方法の内任意のものを使用して生成された画像データは、基準脊髄分節250または他の基準身体構造構成体の形状および外観に関連付けられた連続ディジタル・レイヤ(sequential digital layer)を定め、その後、本明細書において更に説明するように、このような画像データに基づいて、3Dディジタル・モデルの作成(レイヤ毎)のに対応する。
【0020】
[0050] 他の非限定的な実施形態では、ディジタル可視化方法を必要としない場合もある。例示のために、ユーザが望む特定の予め定められた解剖学的プロパティを表す人工生成データから、ディジタル画像をコンパイルすることを決定したとする。例えば、予め生成されている脊髄分節の3Dモデル、またはその他のデータをユーザ自身で使用すること、またはディジタル可視化方法によって組み合わせることができる。加えて、画像データは、複数の患者からの脊髄分節の複数のモデルから、または異なる時間期間にわたって1人の患者からコンパイルすることができる。更に、この方法は、ヒトまたはヒト以外の身体の任意の構成体を生成するためにも使用できることは、考慮されてしかるべきである。例えば、この方法が獣医学分野にも同様に使用できることも考えられる。
【0021】
[0051] ブロック206を参照すると、画像データの成分をプリンティング・アプリケーション102によってコンパイルする、プリンティング・アプリケーション102に供給する、またはプリンティング・アプリケーション102によってアクセスして、基準脊髄分節250のような、基準身体構造構成体の3Dモデルを定める1つ以上の3Dプリンティング・ファイル(または積層造形ファイル)を生成することができる。一実施形態では、プリンティング・アプリケーション102のコマンド階層を使用してもよい。例えば、ユーザが、「ファイル」を選択し(select)、次に「エクスポート」を選択し、次いで「.stl」ファイル・フォーマットを選択する(choose)と、画像データを1つ以上のSTL(光造形法)ファイルに変換することができる。また、これは、階層コマンドを実行するように設計されたプリンティング・アプリケーション102の機能によって、自動的に達成することもできる。言い換えると、プリンティング・アプリケーション102は、.STLファイルのような1つ以上の3Dプリンティング・ファイルを、画像データに基づいて生成するように構成することができる。3Dプリンティング・ファイルは、例えば、基準脊髄分節250の3Dプリンティング・モデルを定める。
【0022】
[0052] 他の実施形態では、プリンティング・アプリケーション102は、更に、基準脊髄分節のプリンティング・モデルを表す他の型の3Dプリンティング・ファイルを生成するように構成することもできる。例えば、積層造形アプリケーションに適用することができる基準脊髄分節の3Dプリンティング・モデルを定める1つ以上の積層造形ファイル(AMF)を生成することもできる。また、熱溶解積層法(FDM:fused deposit modeling)に関連付けられたプリンティング・ファイルも同様に生成し利用することができる。
【0023】
[0053] ある実施形態では、一旦画像データがコンパイルされて1つ以上の3Dプリンティング・ファイルが得られたなら、この3Dプリンティング・ファイルに関連付けられたデータを処理する、あるいは可能なエラーまたは調節について検査することができ、所望に応じて修復することもできる。例えば、STLファイルは、通常、ホールの形態となった異常またはエラー、画像特徴の正しくない方向等を含むおそれがある。この段階において、3Dプリンティング・モデルのディメンションを変更して、例えば、3Dプリンティング・モデルの特徴の方向を調節するため、ギャップまたはホールを埋める、またはそれ以外でこのような特徴を調節するため、3Dプリンティング・モデルの不用意に溶解された構成体を分離して基準脊髄分節250を一層緊密にモデル化するため等で、機能を使用して、ユーザはプリンティング・アプリケーション102と対話処理することができ、またはアプリケーション102をプログラミングすることができる。また、ユーザは、最終的にプリントされるモデルが、開いたまたは溶解した椎間関節のいずれかを有するように、3Dプリンティング・モデルを修正することもできる。ある実施形態では、この段階において適用された3Dプリンティング・モデルに対する何らかの調節に続いて、ファイルをディジタル・レイヤに変換するために、特定の3Dプリンタまたは積層造形構成体に合わせて特別に作られた命令によって、3Dプリンティング・ファイルを処理することができる。
【0024】
[0054] 加えて、ユーザは、3Dプリンティング・モデルから対象領域、例えば、基準脊髄分節250の薄片(lamina)を表す領域を選択し、所望に応じて、そのデフォルト値、またはデフォルト3Dモデルによって定められた値を変更することができる。更に、コンピューティング・デバイス104は、連続的に、選択された画素またはボクセルをその近隣画素またはボクセルと比較して、マッチングのためにそれらの位置および特性を判定することができ、更に(プリンティング・アプリケーション102によってまたはその他の方法で)、ツールを用いて、3Dプリンティング・モデルのパラメータがユーザの目的に適するように、これらをモーフィングする(morph)または変更するように構成することもできる。1つの非限定的な実施形態では、合成身体構造モデル116の望ましい形状および構造を、単にユーザの判断のみで、シミュレートすることができる。あるいは、ユーザは、基準体(reference body)、個々の計算、基準データに基づいて、またはユーザの要望に合わせて、パラメータを識別し作成することができるソフトウェア・アルゴリズムによって、3Dプリンティング・モデルを生成することもできる。このようなアルゴリズムは、開示する方法の他のステップにおいても同様に実装することができ、このコンピュータ・ソフトウェアは、デフォルト3Dモデルが表すべきものの一部を判定または計算することができる。
【0025】
[0055] ブロック208を参照すると、実験導出データ集合112を参照して、ブロック202の基準脊髄分節250のような、基準身体構造構成体のプロパティをシミュレートするまたはそれに似せるプロパティを有する合成身体構造モデル116を最終的に構築するように、3Dプリンティング・モデルに関連付けられたプリンティング・パラメータおよび材料を構成することができる。実験導出データ集合112は、材料の具体的な構成または選択についての情報(intelligence)、および基準脊髄分節250の所望のプロパティを有する合成身体構造モデル116を構築するのに適したプリンティング・パラメータを含むことができる。プリンティング・パラメータは、例えば、とりわけ、プリント・シェルの数、インフィルの割合、フィラメント材料、押出機の温度、プリントの方向、インフィル・パターンを含むことができる。可能な材料には、アクリロニトリル・ブタジエン・スチレン(ABS)、プラスチック・ポリマー、ナイロン、ポリ乳酸(PLA: Polylactic Acid)、またはポリエチレン・テレフタレート(PET:Polyethylene terephthalate)のような他の3Dプリンティング・フィラメント、熱可塑性エラストマ(TPE)、熱可塑性ポリウレタン(TPU)、耐衝撃用ポリスチレン(HI PS)、ポリビニル・アルコール(PVA)、カーボン・ファイバ、ポリカーボネート、木材、金属、またはこれらの組み合わせ、あるいは基準脊髄分節250あるいは他の基準身体構造構成体または既定の解剖学的プロパティの態様を複製するのに適した任意の他の異なる種類の既知のプリンタ・フィラメントを含むことができる。
【0026】
[0056] 例示すると、骨欠乏症のような脊椎における欠陥は、被験者の脊髄分節において低骨密度のポケットを生ずるおそれがある。したがって、モデルの所定のエリアに沿って低骨密度のポケットを有する合成身体構造モデル116を構築することが望まれる場合もある。実験導出データ集合112を参照して、-1または-2.5のT-スコア、あるいは実際には望まれる密度であればいずれのスコアでも有するように、合成身体構造モデル116を構築するために、実験導出データ集合112に基づいてプリンティング・パラメータおよび材料を構成することができる。このように、ユーザは、合成身体構造モデル116上において骨欠乏症に関する外科手術技術を実践し、それを外科用補綴(surgical prosthetic)として使用することができる。非限定的な一実施形態では、プリンティング・アプリケーション102によって1つ以上のデフォルト・プリンティング・パラメータを提案することができ、次いで、患者または最終設計の所望の寸法あるいはプロパティに一致するように、このデフォルト・プリンティング・パラメータをユーザによって彼らの好みに調節することができる。本明細書において説明するように、これは、プリントに対するプリンティング・パラメータおよび材料の選択を変更することによって遂行することができ、これらの変更には、限定ではなく、構成体の全体または一部における形状、孔隙率、組成、構造が含まれる。
【0027】
[0057] ブロック210を参照すると、一旦3Dプリンティング・モデルがブロック206において所望通りに十分に調節されたなら、そしてプリンティング・パラメータおよび材料がブロック208において構成されたなら、プリンティング・アプリケーション102は3Dプリンタ106あるいは他のプリンティング・デバイスまたは積層造形デバイスと互換性のある1組の実行可能なプリンティング命令(図示せず)を生成することができる。実行可能なプリンティング命令は、3Dプリンティング・モデルを定め、合成身体構造モデル116をプリントするためにプリンティング・パラメータおよび材料設定ならびに選択から、特定の構成(configuration)を利用するように、3Dプリンタ106に命令することができる。
【0028】
[0058] 次いで、記載した材料およびプリンティング・パラメータを構成することによって既に決定されている所定の生理学的、解剖学的、および生物力学的プロパティを有する合成身体構造モデル116をプリントすることができる。異なる用途に合わせて所望通りに、カスタム化した仕様にモデルをプリントするために、実験導出データ集合112を利用することによって、合成身体構造モデル116の異なる変形を任意の数だけプリントすることができる(実行可能なプリンティング命令によってまたはそれ以外で)。非限定的な一実施形態では、図2Aに開示する方法は、生物力学的検査における死体モデルの使用を置き換えるまたは修正する(amend)役割を果たすことができる。死体モデルとは異なり、この独創的な方法は、完全にカスタム化可能な構成体で合成身体構造モデル116を作成することによって、生物力学的検査のために死体を供給する(implement)必要性に取って代わる。カスタム化可能な合成身体構造モデル116は、基準脊髄分節、および画像データから生成された3Dプリント可能モデル、またはそれ以外に対応することができる。
【0029】
[0059] 再度図2Bを参照し、更に図2Cを参照すると、(プリントした)合成身体構造モデル116は、基準脊髄分節250に関連付けられた同じ患者の高解像度コンピュータ断層撮影の形態で画像データを使用して作成され、基準脊髄分節250に似るようにまたは模擬するように形成された、プリント合成脊髄分節モデル260を含むことができる。合成脊髄分節モデル260には、異なるシミュレートされた/合成、解剖学的、生理学的、または生物力学的プロパティを有する異なる部分をプリントすることができる。図示のように、例えば、基準脊髄分節250に基づいてプリントされた合成脊髄分節モデル260は、少なくとも第1部分262、第2部分264、および第3部分266を含むようにプリントすることができる。第1部分262は、第1プリンティング構成にしたがって(例えば、特定の材料およびプリンティング・パラメータを用いて)印刷することができ、第2部分264は、第2プリンティング構成にしたがってプリントすることができ(例えば、第1構成の材料およびプリンティング・パラメータとは異なってもよい特定の材料およびプリンティング・パラメータを用いて)、そして第3部分266は、第3プリンティング構成にしたがってプリントすることができる(例えば、第1/第2構成の材料およびプリンティング・パラメータとは異なってもよい特定の材料およびプリンティング・パラメータを用いて)。言い換えると、合成脊髄分節モデル260は、椎弓根スクリューが装備されたときの肉眼解剖学的、放射線撮影による解剖学的(radiographic anatomy)、および生物力学的挙動に関して基準脊髄分節250の骨を模擬する合成骨でプリントすることができる。また、合成脊髄分節モデル260の相対的柔軟性が、基準脊髄分節250に関連付けられた患者の柔軟性を模擬するように、合成脊髄分節モデル260には椎間板(第1部分262)、前縦靭帯(第2部分264)、および後縦靭帯(第3部分266)をプリントすることもできる。
【0030】
[0060] 図2D図2Eを参照すると、合成身体構造モデル116は、訓練、準備、または外科的矯正のシミュレーションというようなその他の用途に利用することができる。図2Dでは、脊椎固定構造272を使用して、外科的矯正が基準脊髄分節250に応用される。同様に、脊椎固定構造274も合成脊髄分節モデル260に応用される。脊椎固定構造272は、脊椎固定構造274と同じまたは同様の構造であってもよいので、基準脊髄分節250の外科的矯正は、合成脊髄分節モデル260および脊椎固定構造274を使用してシミュレートすることができる。図示のように、外科的矯正が基準脊髄分節250および合成脊髄分節モデル260の双方に応用された後に残った残留曲線(remaining curve)は、値が同様であり、合成脊髄分節モデル260が、基準脊髄分節250と同様のプロパティで構築され、したがって教育および外科的準備のために適したツールを提供するという利点があることを明確に示す。
【0031】
[0061] 他の具体的な例として、図3図6を参照すると、死体脊椎モデルに対する解剖学的および生物力学的忠実度を有する身体構造モデルを構築するために、図2Aの方法を部分的にまたは全体的に使用して3Dプリントされたプリント脊髄分節302の非限定的な実施形態が示されている。この実施形態では、プリント脊髄分節302は、脊髄分節302を自然の身体構造と一体化することを可能にすると言ってもよい物理および化学的プロパティを有するように構成された生体適合性材料で構築される。具体的には、プリント脊髄分節302は、生物力学的に動作する(performing)骨(304)、前縦靭帯(306)、および線維輪(308)のような、プリントされた構成体を含む。これらの構成体の各々は、構成体毎に自然な身体構造をシミュレートするために、プリンティング材料およびプリンティング・パラメータの異なる具体的な構成にしたがってプリントすることができる。加えて、図示しないが、脊髄分節302は、椎弓根スクリューを受容するように構成された空洞を有するように、プリントすることができる。尚、分節は、使用に適するためには、完全な解剖学的な精度でプリントする必要はないことを注記しておく。この方法の非限定的な一実施形態では、椎弓根スクリュー空洞のサイズ、配置、および方向は、ユーザによって決定することができ、または、実際には、コンピュータ・アルゴリズムによって決定することができる。ねじ切り、ドリル終止(drill stop)、およびユーザが望むかもしれないその他の構成体または特性というような、他の構成体も椎弓根スクリュー空洞内に組み込むことができる。また、本開示の範囲から逸脱することなく、1組のまたは1つの椎弓根スクリュー(図示せず)を脊髄分節302と共にプリントし、次いで設置し、ねじ切りメカニズム、接着材、融着、または任意の他の取り付けメカニズムによって、適所に保持できることも考えられる。また、空洞は別個に穿設することもでき、椎弓根スクリューまたはその他の構成体を個別に3Dプリントできることも考えられる。このモデルを用いて、脊髄分節302には後柱骨切り術が施術されている。
【0032】
[0062] 最終的に、ユーザは、コスト、プリント時間、研究目的のような要因、または任意のその他の関連する目的というような要因に対応するために、本開示の範囲から逸脱することなく、任意の所望のカスタム化にしたがって、合成身体構造モデル116の構造および条件を設計することができる。例えば、合成身体構造モデル116は、脊椎変形を模擬する構成でプリントされてもよい。この実例では、特定の術中処置に習慣的な同じ技法および機材(instrument)を含むように、検査手順を変更することができ、限定ではないが、分離症および側弯症のような患者の脊椎変形を模擬するために、変形脊椎の具体的な構造は性質上異常であってもよい。加えて、前述のように、プリンティング材料または構築材料の多くの適した異形を使用してもよい。ユーザは、プロセス・フロー200の前述のステップの間またはその後に、プリンティング材料の種類、使用するプリンティング材料の量、およびユーザの要望に適した任意の他のパラメータの組み合わせを修正することができる。加えて、プリントされた構成体の物理および化学的プロパティに作用させるために、添加物を3Dプリンタ106のプリンティング・リザーバ(printing reservoir)に追加してもよい。例えば、最終的な合成身体構造モデル116が、医学的目的に適した抗菌プロパティを有することができるように、抗菌溶液をプリンティング材料に添加してもよい。更に、プロセス・フロー200の方法は、プリントした合成身体構造モデル116を完成させるために、補足プリンティング・プロセスを含むこともできる。例示すると、この非限定的な方法は、本開示の範囲から逸脱することなく、光造形ステップ、熱溶解積層法ステップ、電子ビーム積層造形ステップ、選択レーザ溶融ステップ、選択レーザ焼結ステップ(selective laser sintering step)、またはこれらのステップの任意の組み合わせを含むことができる。更に、図2Aにおいて説明したプリンティング・プロセスが無菌環境において実施できることも考えられる。実例をあげると、3Dプリンタ106を、フード内に置くこと、または無菌性を維持するように構成された高効率微粒子空気(HEPA:high-efficiency particulate air)濾過機能を備えた任意の環境内に置くことができる。また、プロセス・フロー200は、構成体がそのプリントされた形状を保持することを可能にする冷却ステップを含むこともできる。
【0033】
[0063] 図2Aのブロック212を参照すると、追加の合成構成体(図18図26に示す)を構築して合成身体構造モデル116と統合することもでき、あるいは後処理ステップ150またはステージ中に異なる用途に別々に形成/使用する(本明細書において説明する通り)ことができる。後処理ステップ150中に形成される追加の合成構成体には、合成腱鞘嚢、血管、神経根、種々の型の軟組織、合成真皮、皮下脂肪組織、傍脊柱筋、および脊椎またはその他の構成体の支持靱帯構造を含むことができる。追加の合成構成体は、(合成身体構造モデル116の)合成骨を介した失血、直接血管損傷からの出血を模擬するため、合成神経要素を通る電子信号の監視、患者の特定の外科的操作中における神経要素損傷の潜在的可能性についてのフィードバックを提供するために腱鞘嚢のような合成身体構造モデル116の特定部分における圧力の監視、および透視またはコンピュータ断層撮影のような、標準的な放射線撮像プロセスの下で合成身体構造モデル116から放射線撮影フィードバックを提供するために有用であるのはもっともである。このような追加の合成構成体は、合成身体構造モデル116の構築中に合成身体構造モデル116に統合する、あるいは合成身体構造モデル116と共に形成する、合成身体構造モデル116の構築の前または後に別個に構築する、形成後に合成身体構造モデル116と統合することもできる。
【0034】
[0064] 図2Aのブロック214を参照すると、合成身体構造モデル116は種々の検査手順を受けるまたは実行することができる。例えば、合成身体構造モデル116は、ケーブル、プーリー、ベルト、モータ、および荷重(weight)の可変システムによる、制御および測定された力を受ける、または計装が行われるとしてもよく、その間常に、光学追跡システムを使用して脊椎の運動範囲を測定し、機械的力センサを使用して、脊椎に加えられる力を測定する。検査中に取り込まれる種々の測定値には、屈曲、展開(extension)、横曲げ、および軸方向回転についての脊椎運動範囲、軸方向ねじ引き抜き強度、脊椎スクリュー挿入に対する最大トルク、ならびにその他数多くを含むことができるが、これらに限定されるのではない。これらの測定値の検査後の分析により、例えば、3Dプリンティング・ファイルの画像特徴に変更を加えることによって、またはプリンティング・パラメータおよび材料選択を変更することによって、合成身体構造モデル116の3Dプリンティング・モデルを調節すべきか否かについて情報を得ることができる。図2Aに示すように、合成身体構造モデル116を検査し、プリント設定値を調節するプロセスは、所望通りに、繰り返すことができる。
【0035】
[0065] 図7図9は、少なくとも1つの椎弓根スクリュー403に対する椎体モデル402の検査、具体的には、バイス型掴み具406を有する検査機器404を使用する軸方向ねじ引き抜き強度検査を示す。この検査は、モード特異的健康または疾患骨状態に対する具体的なプリンティング・パラメータを構成または選択するための実験導出データ集合112に寄与した。バイス型掴み具406は、本明細書において説明するように、椎弓根スクリュー403上に真の軸方向力を加えるように構成される(arrange)。図8は、椎弓根スクリューおよび椎間板圧縮の生物力学的検査後における、図3において引用した同じ脊椎モデルの側面図である。このモデルは、図3を手本にした死体研究において見られたものと同様の、過剰圧縮の結果としての、椎弓根骨折を明確に示す。
【0036】
[0066] 再度図7を参照すると、検査機器404は、本明細書において説明したように、椎弓根スクリュー403上に真の軸方向力を供給するように構成される。検査の期間、時間、および型式は、ユーザまたはコンピュータ・アルゴリズムによって、ユーザの要望に相応しい特異的状況に合わせて生成された所定の検査パラメータ毎に制御することができる。この検査を実行するために実装される検査機器404のようなデバイスは、ユーザまたはコンピュータ・アルゴリズムによって構成されてもよく、ユーザの好みに合わせるために必要な任意の形態を取ることができる。この非限定的な実施形態では、椎体モデル402は、バイス型掴み具406のジョー408Aおよび408Bと椎弓根スクリュー403の上位部409との間に配置され、および/または椎体モデル402は、カラビナ410に取り付けられる、または係合されるように構成され、ユーザが外力を椎弓根スクリュー403および/または椎体モデル402にかけて、圧力、力、角度、および患者の脊椎におけるその使用によって映し出すことができる(mirror)他の要因の変化に対するその抵抗を検査できるようにする。勿論、放射線検査、力学的検査、およびユーザの好みに合わせた任意の他の検査というような、他の検査を行ってもよいことも考えられる。本開示のこの非限定的な方法は、動物の部位(part)または生体以外の構成体にも使用されてもよい。例えば、犬の脊椎が、検査、訓練、および実証において使用されてもよいことが考えられる。
【0037】
[0067] 図10は、3Dプリント椎体モデル420を、椎弓根の所定のカニューレ挿入軌道(cannulation trajectories)422と共に示す。これは、椎弓根スクリューの軌道における変動性を排除し、これによって、合成モデルを使用したときに生ずる生物力学的検査における変動性を低減する。結果的に、このモデルは、死体椎体または他の合成骨および脊椎モデルに対して、著しい利点を明確に示す。図11は、椎弓根カニューレ挿入軌道を含むようにプリントされた合成椎体モデルを示す。この画像も、ヒトの骨の皮質海綿構造(corticocancellous architecture)を模擬するために、厚い皮質外殻、およびそれよりも薄くモデルの内部を埋めるメッシュによって、どのようにモデルをプリントするか明確に示す。このアーキテクチャは、標準的な透視およびコンピュータ断層撮影の下で、モデルの高忠実度放射線撮影身体構造(radiographic anatomy)を提供し、骨の出血のような特定の生理学的機能を可能にし(プリント後に変更が行われた後)、ヒトの骨の構造を一層正確に模擬するので、骨の生物力学的挙動(performance)を改良する。
【0038】
実験導出データ集合112
[0068] 前述のように、実験導出データ集合112は、プリンティング材料に適した構成、および所定のプロパティを有する身体構造モデルをプリントするためのプリンティング・パラメータに関して有益である(informative)。実験導出データ集合112に到達するために、実質的な研究および検査が行われた。具体的には、例えば、椎弓根スクリュー挿入トルク(IT)、軸方向引き抜き力(APO)、および剛性(ST)検査に対する三次元(3D)プリント脊椎の生物力学的挙動を記述するために、少なくとも1つの研究が行われた。73個の解剖学的に同一なL5椎体モデル(146個の椎弓根)をプリントし、同等の直径(6.5mm)、長さ(40.0mm)、および螺旋切りピッチ(2.6mm)のシングル・スレッド椎弓根スクリューを使用して、IT、APO、およびSTについて検査した。材料、皮質の厚さ(シェルの数)、海綿体密度(インフィル)、インフィル・パターン、およびプリント方向を、これらのモデル間で変化させた。結果に対する変数(variable)の効果を評価するために、一元配置分散分析を行った。
【0039】
摘要
[0069] 研究の間、プリンティング材料の種類がIT、APO、およびSTに大きく影響することが分かった(全ての比較についてP<0.001)。アクリルニトリル・ブタジエン・スチレン(ABS)モデルでは、インフィル密度(25~35%)は、正の線形相関関係(positive linear association)を有し、APO(P=0.002)、ST(P=0.008)、およびIT(P=0.10)であった。ポリ乳酸(PLA)モデルでも同様に、APO(P=0.001)、IT(P<0.001)、およびST(P=0.14)であった。ナイロン材料種では、インフィル密度は、検査したいずれのパラメータにも影響を及ぼさなかった。所与のインフィル密度、材料、およびプリント方向に対して、インフィル・パターンは、IT(P=0.002)およびAPO(P=0.03)に対して大きな影響を及ぼした。また、プリント方向もIT(P<0.001)、APO(P<0.001)、およびST(P=0.002)に大きく影響した。ABSおよびPLAで作った3Dプリント椎体モデルは、IT、APO、およびSTの椎弓根スクリュー検査に対して、ヒトの骨と同様に(analogously)動作した(perform)。合成椎体モデルの材料、インフィル密度、インフィル・パターン、およびプリント方向を変更することによって、特定の骨密度の骨を模擬するモデルを容易に生産することができる。
【0040】
検査および分析の詳細
[0070] 3Dプリント脊椎モデルと関連付けられた研究および検査に関する追加の詳細は、少なくとも部分的に、実験導出データ集合112の形成に寄与した。以下では、これについて開示する。この研究および実験導出データ集合112を利用することによって、その皮質海綿構造、ならびにスクリュー挿入トルク(IT)、軸方向引き抜き(APO)力、および剛性(ST)検査に対するその生物力学的挙動においてヒトの骨を模擬する 合成骨材料によって、合成脊椎モデルを最終的に形成した。このモデルは、BMDがもっと高いまたは低いヒトの骨を模擬するためにプリントしたときに、これらの生物力学的挙動の測定値(measures)において予測された変化を実証した。
【0041】
[0071] 暫定的分析の一部として、Materialise Mimicsソフトウェア(ベルギー国、NV、LeuvenのMaterialise社)を使用して、正常な腰椎の高解像度コンピュータ断層写真(CT)をセグメント化し、3Dファイルに変換した。この3Dファイルから完全なL5脊椎骨を抽出し、光造形(.stl)ファイル・フォーマットに変換した。.stlファイルをSimplify3Dソフトウェア・パッケージにインポートした(USA、オハイオ州、Blue AshのSimplify3D LLC)。次いで、FlashForge Creator Proを使用して、複数のL5脊椎骨モデル(「モデル」)をプリントした。
【0042】
[0072] 形成中およびその後に、モデルを使用して、3Dプリンティングのための基本材料に関連付けられた設定値を含む、合成脊椎に適した種々の3Dプリント設定値を評価した。非限定的な例として、3つの異なる材料、アクリロニトリル・ブタジエン・スチレン(ABS)、ポリ乳酸(PLA)、およびナイロンを使用して、モデルをプリントした。ABSは、石油系であり、その耐衝撃性および耐久性で知られる、一般的な熱可塑性ポリマーである。PLAは、砂糖系物質(例えば、コーンスターチ、サトウキビ、キャッサバの根)から由来する生物分解性および生物活性熱可塑性物質である。PLAは、ABSよりも遙かに低いガラス遷移温度を有し、脆いが、高い耐衝撃性および強靱性も有する。ナイロンは、熱可塑性合成ポリマー族である。ナイロン230は、他の種類のナイロンよりも、ガラス遷移温度が遙かに低い(230°C)ので、実装する(implement)ことができる。3Dプリント・ナイロンは、その高い耐久性、強度、および多様性で知られており、プリント・ナイロンの薄い層は非常に柔軟であり続けるのに対して、プリント・ナイロンの厚い層は硬く(rigid and stiff)なる。
【0043】
[0073] 他の評価された3Dプリント設定変数には、プリント・シェル、インフィルの割合、インフィル・パターン、プリント方向等が含まれる。3DプリントL5椎体モデル(vertebral body models)は、密度が濃いプラスチックの外側層(「シェル」と呼ぶ)および密度が遙かに低い内部構成体(「インフィル」と呼ぶ)でプリントされ、それぞれ、ヒトの骨の皮質構造および海綿構造に類似する。図12図13は、椎体モデル(図12)のシェルおよびインフィルを明確に示し、更に透視法の下で見たとき(図13)、この構造がどのようにヒトの骨の皮質海綿構造(architecture)を模擬するのか明確に示す。尚、シェルおよびインフィルは双方共、種々の厚さおよび密度でプリントするために、変更できることが発見された。更に、インフィルは、六角形、菱形、および直線(linear)を含む様々な異なるパターンの内の1つでプリントされるように、変更することができる。
【0044】
[0074] 研究の一例では、特定の材料でプリントされる全てのモデルに対して、多数のプリント設定値を一定に保持した。ABSモデルでは、プリント温度を240°Cに保持し、プリント・ベッド温度を110°Cに保持し、プリント解像度を0.2mmに保持し、プリント速度を60mm/sに保持した。PLAでは、プリント温度を230°Cに保持し、プリント・ベッド温度を30°Cに保持し、プリント解像度を0.2mmに保持し、プリント速度を60mm/sに保持した。ナイロンでは、プリント温度を230°Cに保持し、プリント・ベッド温度を50°Cに保持し、プリント解像度を0.2mmに保持し、プリント速度を30mm/sに保持した。これらのプリンタ設定値は、モデルの生物力学的挙動に対するそれらの影響については検査しなかった。これらは、これらの設定値のばらつきによって発生するあらゆるエラーを回避するために、同じ材料でプリントされた全てのモデルにわたって一定に保持した。
【0045】
比較に対する履歴結果
[0075] 生物力学検査における椎体モデルの合成骨代替品としての利用の妥当性を判断するために、死体および生体の骨についての履歴データを参照した。履歴データは、例えば、IT、APO、およびST検査に対するシングル・スレッド・スクリュー対デュアル・スレッド・スクリューの性能比較が含まれた。この情報を利用して、同様の方法を実施し、同等の直径(6.5mm)、長さ(40.0mm)、およびねじピッチ(2.6mm)のシングル・スレッド・スクリューを使用して、L5合成椎骨モデルを検査した。スクリュー挿入、IT、APO、およびST検査は全て、死体の骨を使用して得られた結果と合成L5椎骨モデルを使用してこの研究において生成された結果との有意な比較を可能にするために、L5合成椎骨モデル上で行われた。IT、APO、およびST検査中この研究のために使用した全ての機材(equipment)は、Brasiliense et al.によって使用された機器と同一または同様であった。何故なら、これらの研究が同じ実験室において行われたからである。
【0046】
研究用素案
[0076] 全てのモデルが解剖学的に同一となるように、同じ.stlファイルから73個のL5椎体モデル(146個の椎弓根)をプリントした。1~8シェルの範囲のシェル密度、および10%~50%の範囲のインフィル密度で、ABS、PLA、およびナイロン・モデルをプリントした。また、モデルには、異なるインフィル・パターン(六角形対線形対菱形)、およびプリント・ベッド上における異なる方向(水平対垂直プリント位置合わせ)で印刷した。図14および図15は、水平プリント位置合わせおよび垂直プリント位置合わせで印刷したモデル間の相違を明確に示す。水平および垂直とは、L5脊椎の解剖学的な最上位および最下位に関する3Dプリンタのz軸を指す。水平方向でモデルをプリントすると(図14)、プラスチック・フィラメントの層が、椎骨モデルの最下位から最上位に、互いに重ね合わせられる。垂直方向では(図15)、フィラメント層は、脊椎の最上位および最下位と平行になり、腹椎から背椎まで積み重ねられる。
【0047】
[0077] 各モデルには、シングル・スレッド・ピッチが2.6mmの6.5×40.0mmスクリューを使用して、両側椎弓根の椎弓根スクリュー挿入を行った。検査者は、モデル間における椎弓根スクリュー軌道の差を最小に抑えるように、全ての椎弓根スクリューを挿入した。バイアスを回避するために、この検査者にはトルク値を見せなかった。椎弓根スクリュー挿入の間、トルク・センサがITを5Hzのレートで測定および収集した。両側椎弓根スクリューをモデルに挿入した後、これらを金属製備品内に入れ、ポリメチル・メタクリレートの鋳造型に埋め込んだ(pot)。
【0048】
[0078] 椎体を埋め込んだ後、一軸油圧サーボ検査フレーム(米国、ミネソタ州、Eden PrairieのMTS Test Systems Corp.の858Mini Bionix)を使用して、各椎弓根スクリューのAPO検査を行った。要約すると、各モデルのポリメチル・メタクリレート成形品を、検査機器の底面に固定するために、アングル・バイズ(angle vise)を使用した。次いで、各椎弓根スクリュー上に純粋な軸方向力ベクトルを生ずるために、検査対象の椎弓根スクリューの長軸を、検査機器の軸に平行に位置合わせした。APO負荷力(loading force)は10mm/分変位レートであった。全スクリュー破壊まで、負荷対変位データを、連続的に10Hzの頻度で記録した。全スクリュー破壊を、急激な減少が発生する負荷-変位曲線上の点として定めた。次いで、APOを、破壊前の最大負荷として計算した。次いで、負荷-変位曲線を使用してスクリューSTを計算した。負荷-変位曲線上における最も急な傾斜として、スクリューSTを定めた。再度図7を参照すると、この図は、このようなAPO検査を受ける椎体モデルを明確に示す。
【0049】
統計的分析
[0079] 平均および標準偏差を含む、記述統計を全てのモデルについて収集した。データの正常性(normalcy)を判定するために、ダゴスティーノ-ピアソン正規性検定(D'Agostino-Pearson normality test)を使用した。左および右の椎弓根を別個にそして纏めて比較した。測定結果に対する材料、シェル密度、インフィル密度、インフィル・パターン、およびプリント・パターンの影響を評価するために、一元配置分散分析(ANOVA:One-way analysis of variance)検査を行った。
【0050】
結果
[0080] 37個のABSモデルをプリントし、完成品検査(complete testing)にかけた。これらのモデルは、1から8シェル層の範囲を取るシェル密度、10から50%の範囲を取るインフィル密度、3つの異なるインフィル・パターン(六角形、線形、菱形)、ならびに水平および垂直双方のプリント方向を有した。27個のPLAモデル、および27個のナイロン・モデルを印刷した。これらは全て、シェル密度が4または8層、インフィル密度が25%、30%、または35%であった。
【0051】
[0081] IT、APO、およびST検査値は、正規分布であった(ダゴスティーノ-ピアソン正規性検定、全てに対してP>0.05)。全ての異なる材料の種類、シェル、インフィル、インフィル・パターン、および方向からの全ての検査された変数の分析において、IT、APO、およびSTに対して左側および右側の椎弓根間に、重大な差違は見られなかった(全てに対してP>0.05)。材料の種類は、IT、APO、およびSTに大きな影響を及ぼした(全ての比較に対してP<0.001)。図16は、材料の種類の検査対象パラメータに対する影響の概要箱ひげ図(box plot summary)を示す。左側の概要箱ひげ図は、軸方向引き抜き(APO)検査に対する材料の種類の影響を示し、中央の概要箱ひげ図は、剛性(ST)検査の下における材料の種類の影響を示し、右側の概要箱ひげ図は、挿入トルク(IT)検査に対する材料の種類の影響を示す。
【0052】
[0082] PLAは、最も高いIT、APO、およびST値を実証し、これにABSおよびナイロンがそれぞれ続いた。ABSモデルでは、インフィル密度(25~35%)は、APO(P=0.002)、ST(P=0.008)、およびIT(P=0.10)と正の線形相関関係を有した。PLAモデルでは、APO(P=0.001)、IT(P<0.001)、およびST(P=0.14)は、同様に、インフィル密度と正の線形相関関係を有した。ナイロン材料種では、インフィル密度は、いずれの検査対象パラメータにも影響を及ぼさなかった。図17は、3つの材料の種類全てのモデルの検査対象パラメータに対するインフィルの影響についての概要箱ひげ図を示す。上段はABS、ナイロン、およびPLAモデルのAPOに対するインフィルの影響、中段はABS、ナイロン、およびPLAモデルのSTに対するインフィルの影響、そして下段はABS、ナイロン、およびPLAモデルのITに対するインフィルの影響を示す。
【0053】
[0083] 所与のインフィル密度、材料、およびプリント方向では、インフィル・パターンは、IT(P=0.002)およびAPO(P=0.03)に対しては大きな影響を及ぼしたが、ST(p=0.23)に対してはそうではなかった。また、プリント方向もIT(P<0.001)、APO(P<0.001)、およびST(P=0.002)に大きな影響を及ぼした。シェル密度は、合成骨モデルの生物力学的挙動には大きな影響を及ぼさなかった。
【0054】
結果の論述
[0084] ナイロンは、合成骨モデルのための優れた材料とは思われない。何故なら、評価したプリンティング・パラメータの変化が、検査結果における予測可能な変化にならかなったからである。しかしながら、ABSおよびPLAは、モデル・インフィル密度と生物力学的挙動測定値との間に高い相関を実証し、したがって両方共合成腰椎椎体モデル(synthetic lumbar vertebral body model)に使用するには、正しい候補材料である。興味深いのは、PLAモデルの方がABSモデルよりも、IT、APO、およびST値が遙かに大きいことである。しかしながら、ついでながらに言うと、椎弓根にカニューレ処理を行い椎弓根スクリューを入れるとき、ABSモデルは、PLAモデルよりも、遙かにヒトの骨に近いと感じられた。具体的には、PLAは、椎弓根発見プローブの圧力の下では破壊も変形もせず、多少柔らかくなっただけであった。この観察は、ABS(105°C)と比較すると、遙かに低いPLAのガラス遷移温度(60°C)によって説明することができる。椎弓根発見プローブを捻ることによって、または椎弓根スクリューをPLAモデルに挿入することによって生成される摩擦は、破壊ではなく、モデルが局所的に変形させる可能性が高い。一方、ABSは、ねじれ椎弓根プローブ(twisting pedicle probe)と接触すると容易に破壊し、ヒトの骨によく似た感覚を生じる。ABSおよびPLAモデルが、プリント変数および検査結果間におけるそれらの線形相関関係に関して、同等の信頼性を有して機能する(perform)と思われたことから、ABSは、椎骨の合成モデルとしての更なる開発および使用にとって、検査した3つの材料の中で最も有望であると考えられる。
【0055】
[0085] また、検査結果に重大な影響を及ぼしたのは、インフィル・パターンおよびプリント方向であった。興味深いのは、インフィル・パターンが3つの検査結果全てに予測可能な影響を及ぼしたことである。菱形パターンでは、六角形および線形パターンよりも高いIT、APO、およびST値が得られた。この発見は、計装される合成椎体モデルを作成するために特定のプリンティング・パラメータを選択するときに、重要となる。何故なら、インフィル・パターンの選択が、これらのモデルにおけるスクリューの性能に重大な影響を及ぼすからである。同様に、プリント方向も、検査結果に対して非常に重大な影響を及ぼすが、ITに対する効果の方向は、APOおよびSTとは異なった。この発見は、モデルがプリント方向に対して平行な平面においてAPO検査で破壊する傾向があったという観察に関係しそうである。ITはスクリュー挿入中に測定され、一方APOおよびSTはスクリュー引き抜きの間に測定された。したがって、プリント方向の影響は、これらの検査中に、検査結果に対して異なる影響を及ぼす可能性がある。
【0056】
[0086] ABSモデルでは、インフィルは、ITおよびAPOに対して重大な効果があったが、STにはなかった。同様に、インフィル・パターンはITおよびAPOに重大な影響を及ぼしたが、STには及ぼさなかった。しかしながら、STは、異なる材料の椎体モデル間では著しく異なった。おそらく、この発見が示すのは、STは、他の検査結果よりも、材料の種類による影響を受けることであろう。
【0057】
履歴データとの比較
[0087] 公開されたAPOおよびBMDを相関付ける線形回帰分析を使用することによって、模擬する可能性が高いBMDを、特定のモデル材料およびプリント設定値によって予測することができる。例えば、ナイロンは、223(103)Nの平均(SD)APO力を有した。ハルバーソンらの線形回帰を使用すると、この値は、BMD<0.6g/cmと相関する。この低いBMD値は、極端な骨粗鬆症を表し、正規曲線を完全に外れる。一方、ABS(1104[218]N)およびPLA(2713[684]N)モデルに対する平均APO力は、それぞれ、約1.0g/cmおよび>1.4g/cmのBMDと相関がある。履歴データに対する同じ種類の比較を、ITおよびSTについても行うことができる。BMDをITおよびSTと相関付ける以前の研究では、研究対象の合成モデルは、これらの履歴データにおいて記載されているのと同様のITおよびST値を生成すること、そしてこれらの変数は、モデル材料、インフィル密度、およびインフィル・パターンの変化を通じて信頼性高く予測できることが示されている[11-14]。つまり、研究された合成モデルが、IT、APO、およびSTに対して、特定のBMDの人の骨と類似する挙動を呈する(perform)ようにプリントされることが容易に想像できる。これらのモデルは、したがって、脊椎の生物力学的研究のための有望な新たなプラットフォームになる潜在的可能性がある。更に、この研究は、人体組織に対する高い解剖学的忠実度、放射線撮影に関する忠実度、および生物力学的忠実度を有する合成脊椎モデルを3Dプリントするという本発明者の継続的な努力における、それらの合成骨としての継続的な使用の正当性を証明する。
【0058】
今後の課題
[0088] 本研究が行われて以来、標準的な椎弓根軌道が印刷された合成椎体モデルが開発された。このモデルにおいてIT、APO、およびSTを検査し、この変更がモデル間における結果の変動性を低減するか否か判定するために、同様の検査が計画されている。
【0059】
[0089] また、脊髄分節の運動範囲の検査は、軟組織構成体の最良のプリンティング・パラメータを判定し、運動範囲および圧縮検査においてヒトの脊椎を模擬する合成脊椎モデルを達成するために、同様に行われている。
【0060】
検査結果
[0090] ABSおよびPLAで作られた3Dプリント椎体モデルは、IT、APO、およびSTの椎弓根スクリュー検査において、ヒトの骨と類似する挙動を示した。合成椎体モデルの材料、インフィル密度、インフィル・パターン、およびプリント方向を変更することによって、特定のBMDを有する骨を模擬するモデルを容易に生産することができる。したがって、これらの合成モデルは、脊椎生物力学的研究において有望な新たなツールを表し、これらは、外科手術の計画および外科手術の教育の分野において、有望な潜在的利用価値(utility)を有する。
【0061】
追加の合成構成体および他の実施形態
[0091] 以上の説明を考慮して、多くの追加の合成身体構造構成体、ならびに追加の実施形態および特徴について考える。例えば、非限定的な一実施形態では、合成身体構造モデル116は、隣接する脊髄分節間に配置され、脊髄分節の内面上、脊髄分節の外面上、または双方の組み合わせに位置付けられた複数の接続ポートを備えてもよい。これらの接続ポートの内少なくとも1つは、外科用チューブを所望の位置に維持または固定するのに適したまたはそれが可能な任意のメカニズムまたは構造、あるいは方法またはプロセスによって、外科用チューブを1つ以上の脊髄分節に収容し、取り外し可能に係合する(engage)ように構成することができる。例えば、合成身体構造モデル116は、複数の接続ポートと共にプリントすることもでき、接続ポートは外科用チューブを受容することができ、外科用チューブは、接着材によって、または複数の接続ポートおよび外科用チューブの位置を予め決めておくことによって、同軸位置に保持され、複数の接続ポートと外科用チューブとの間の嵌め合わせ(fitting)によって、外科用チューブの望ましくない移動を制限するような方法で、複数の接続ポートの直径を設定する(configure)。尚、外科用チューブとは、医療分野において使用される液体、気体、半溶解固体、またはこれらの任意の組み合わせを転送するのに適した任意の実質的に可撓性のまたは硬質のチューブであると解釈することを意図していることは考慮されてしかるべきである。この実施形態では、複数の接続ポートおよび外科用チューブは、人工血液を形成することができる任意の材料、液体、または物質を収容あるいは搬送するように構成または設計することができる。例えば、図18は、例示のプリント身体構造モデル516を示す。この身体構造モデル516には、このような接続ポート518および外科用チューブ520が装備されており、出血する骨(bleeding bone)をシミュレートするために、プリント身体構造モデル516と一体化されている。図18では、図示する骨は、砕骨鉗子によってかみ切られ(bitten)、人工血液522が、プリント身体構造モデル516から(図示しない、接続ポートを通って)溢れ出ている様子が見られる。この例では、非限定的な一実施形態において、患者の血液の一貫性および外観(aesthetics)を忠実に複製するために、水または他の同様の水溶液、および赤色添加剤(ならびに、おそらくは他の含有物)で人工血液を構成することができる。
【0062】
[0092] 図2Aのブロック214に示すように、非限定的ないくつかの実施形態では、検査手順は、薄片を脊髄分節の残り部分から分離するため、または椎弓根スクリュー挿入用の下穴を作るために、合成身体構造モデル116の一部を穿孔する、または貫通するステップを含んでもよい。この非限定的な実施形態では、合成身体構造モデル116の脊髄分節は、複数の接続ポート518と、人工血液522を収容し、検査者の外科用ツールによって穿孔されたときに、死体出血を模擬する外科用チューブ520とを備えることもできる。このように、複数の接続ポート518は、自然の循環系と同様に出血する合成または人工循環系をシミュレートすることができる。
【0063】
[0093] 他の非限定的な実施形態では、説明した外科用チューブ520を外部ポンプ(図示せず)および人工血液源(図示せず)に接続し、患者の自然な循環系をエミュレートするために、外部ポンプを通り、次いで外科用チューブを通って、人工血液を送注できるようにしてもよい。尚、人工血液源は、人工血液を貯蔵するように構成され貯蔵することができる任意のコンテナまたは容器であってもよいと考えられる。この動作は、更に、チューブおよび合成身体構造モデル116を通る人工血液の流れを制御するように構成された一連のバルブ(図示せず)によって制御することができる。これらのバルブは、人工血液の特定エリアへの流入を妨げるように、合成身体構造モデル116内に加圧エリアのポケットを形成するために使用することもできる。
【0064】
[0094] 更に他の非限定的な実施形態では、合成身体構造モデル116は、更に、図18の軟組織層524として図示される、人工軟組織層も含んでもよい。これは、合成身体構造モデル116が完全にまたは部分的に人工軟組織層524内に配置されるように、合成モデルを覆う。この非限定的な実施形態では、人工軟組織層524は、例えば、発泡スチレンを含んでも良く、または本開示の範囲から逸脱することなく、検査者の好みに適した任意の材料または物質で構成されてもよい。例えば、軟組織層524は、シリコーン、ゴム、弾性重合体、発泡体、またはこれらの組み合わせのような、何らかの可撓性材料または非可撓性材料で構成されてもよいことが考えられる。更に、人工軟組織層524は、異なる厚さ、密度、および化学プロパティの複数のセグメントを含んでもよい。本質的に、人工軟組織層524は、ヒトの軟組織の主要な構造的特性および物理的特性を付与するだけでなく、検査手順に適することができる人体の任意の構造的特性および物理的特性も付与するように機能することができる。つまり、硬膜層、軟骨、骨、靱帯、補助組織は全て、高忠実度合成身体構造モデル116の軟組織層524の一部として形成することができる。
【0065】
[0095] 更に他の非限定的な実施形態では、合成身体構造モデル116には、図19に示す合成身体構造モデル530によって例示されるように、合成腱鞘嚢532を形成することができる。合成腱鞘嚢532は、患者の解剖学的体形(anatomical proportion)を反映する管状構造を有するように構成され、本開示の範囲から逸脱することなく、患者の腱鞘嚢を模擬する検査手順に適した任意の材料または物質で構築される。例示すると、腱鞘嚢532が任意の透過性または着色ポリマー、シリコーン、ゴム、ワックス、樹脂、コラーゲン、またはこれらの任意の組み合わせで構成されてもよいことが考えられる。更に、合成身体構造モデル16全体にわたる液体溶液の望ましくない浸透を防止するために、材料は水または他の液体溶液に対して実質的に不浸透性であるとよい。この構成では、腱鞘嚢532は、内側部分(図示せず)を含むように完全にまたは部分的に中空であってもよく、内側部分が、脳脊髄液を模擬する水または他の液体溶液で完全にまたは部分的に満たされるようにするとよい。このような非限定的な実施形態が選択されたとき、内側部分は、液体溶液が、比較的高い忠実度で、患者の腱鞘嚢の内側における脳脊髄液を模擬することができるように加圧環境を有してもよい。例示すると、検査手順の間、椎弓切除のような外科的処置を実施するために、腱鞘嚢532を使用することができる。この実例では、下に位置する腱鞘嚢が検査中に穿刺された場合、合成身体構造モデル116からの内圧が、モデルの穿刺部分を通って液体溶液を押し出す。これは外科医によって見ることができ、次いで、外科医は、一般的な硬膜切開処置にしたがって、腱鞘嚢532の修復を実践することができる。また、腱鞘嚢532は、外科訓練プラットフォームとして合成モデルの表面的妥当性(face validity)を高めるために、脊髄および/または神経根を模擬する特定の材料を含有することができる。加えて、説明した腱鞘嚢532は、腱鞘嚢532を所望の位置に維持するまたは固定するのに適したまたはそれが可能な任意メカニズムもしくは構造によって、あるいは任意の方法またはプロセスによって、合成身体構造モデル116に取り付けるように構成することができる。例えば、合成腱鞘嚢532および合成身体構造モデル116は、各々、別個の構成体としてプリントされ、接着材または同様の構成材(component)を使用して一緒に組み合わされてもよい。あるいは、腱鞘嚢532を3Dプリンティング以外のプロセスで構築し、合成身体構造モデル116に添付することもできる。図19の特定例では、腱鞘嚢532は合成コラーゲンで構成され、プリンティングの後に合成身体構造モデル530に添付される。腱鞘嚢532は、脳脊髄液を模擬する流体の供給源に接続することもできるので、腱鞘嚢532が損傷したとき(穿通または破裂)、腱鞘嚢532は、動作状態(operative conditions)を模擬するために、加圧流体を漏洩させることができる。
【0066】
[0096] 更に他の非限定的な実施形態では、説明した腱鞘嚢532は、少なくとも1つの圧力センサ(図示せず)を備えてもよい。圧力センサは、圧力を加える外力からの信号を検出し、この信号を受信機(図示せず)に送信する。具体的な信号送信方法は、外部信号を検出するのに適した任意の通信リンク、方法、またはプロセスを含むことができ、送信機、送受信機、コントローラ、プロセッサ受信機、および外部信号を外科医に表示するための手段、ならびに電源(図示せず)を含む。電源は、少なくとも1つの圧力センサと結合されるように構成され、少なくとも1つの圧力センサに、動作を維持するための十分な電力を供給することができる。この非限定的な実施形態を例示するために、パーソナル・コンピュータの外部表示画面(図示せず)を通じて、外部信号を外科医に表示することができる。圧力センサが1つよりも多い場合、各センサが合成身体構造モデル116内において異なる位置および方向を有することができ、特定の検査手順に有用であろう。実例をあげると、腱鞘嚢532内において、センサまたはセンサのネットワークを、外科医によって取り外されるべき脊髄分節の相対的位置に対応する種々の位置に配置することができる。この非限定的な実施形態によれば、外科医のツールが腱鞘嚢532および/または下地層を突き刺すことによって生じる硬膜切開において現実に起きている実例(real life instances)を回避するために、訓練手順が外科医の動きを正確に追跡しなければならないのはもっともである。したがって、センサを合成身体構造モデル116に統合すると、合成身体構造モデル116内における外科医のツールの位置の高精度測定値を外科医に提供することができ、次いで、この測定値を通信リンクを介してディスプレイ(図示せず)に転送することができる。この場合、ツールは、高速ドリル、メス等のような、この処置に適した任意の型式の医療用ツールであればよい。少なくとも1つのセンサは、検査手順の前または最中に、外科医の好みに合わせて較正することができる。
【0067】
[0097] 更に他の非限定的な実施形態では、圧力センサは、合成身体構造モデル116内の外科医のツールの位置についてリアル・タイムのフィードバックを外科医に提供するように、有効化されたときに、聴覚信号または視覚信号を直接引き出すように構成されてもよい。例えば、少なくとも1つの圧力センサは、薄片の直下、および合成身体構造モデル116の硬膜層上に位置付けて、外科医のツールがセンサに当たったとき、直ちに聴覚信号を引き出して、外科医にその外科用ツールの位置を警告するようにしてもよい。更に他の非限定的な実施形態では、少なくとも1つの圧力センサは、検査手順に適しており、ユーザの好みに合った任意の方法で、合成身体構造モデル116に統合されデバイスに沿ってまたはデバイス内に位置付けられた少なくとも1つの光学部品(図示せず)と結合するように構成されてもよい。この非限定的な実施形態では、少なくとも1つの圧力センサが有効化されたとき、光学部品に信号を送り、光学部品は発光応答(illuminatory response)を誘発し、外科医がリアル・タイムで信号応答を観察することを可能にする。例えば、この非限定的な実施形態では、合成身体構造モデル116が、デバイス内部に埋め込まれ、外科医の視野内にある1つのLEDまたは一連のLED(図示せず)を有してもよく、外科医のツールが圧力センサ(図示せず)に当たったときに、LEDを点灯し、外科医が彼らの技法を訂正することを可能にする。
【0068】
[0098] 他の実施形態では、合成身体構造モデル116には、神経要素および/または導電性神経根を形成することもできる。例えば、図20は、3Dプリントした後に通電することを可能にするグラファイトと混合した熱可塑性樹脂を使用して形成された合成神経要素542を有する、L3~L5分節の合成身体構造モデル540を示す。図21は、合成身体構造モデル550がプリントされた後に、合成身体構造モデル550全体または周囲に通電するように構成されたリードまたは導電性ワイヤ/層を使用して形成された合成導電性神経根552を有する合成身体構造モデル550を示す。図22は、銅線の形態とした(しかし、他の導電性材料で具体化してもよい)導電性神経要素562を有するL1-骨盤の合成身体構造モデル560を示す。この実施形態では、合成身体構造モデル560は、3Dプリント骨564、3Dプリント前縦靭帯および椎間板566、ならびに腰筋568を含む。導電性神経要素562は、ヒトにおいて解剖学的に見られるのと同じ軌道で、脊椎管570から腰筋568を貫通して張り巡らされる(run)。この例では、外科医は金属プローブで電気的刺激を与えることができ、プローブが、シミュレートされた導電性神経要素562の1つに接近し始めたとき、外科医には、神経根の存在について警報を出すことができる(聴覚的または視覚的刺激によって)。これによって、動作状態のシミュレーションが可能になり、生きているヒトの脊椎が外科医に与えるのと同じ生理学的フィードバックを提供する。
【0069】
[0099] 図23に示す頸椎の合成身体構造モデル580によって例示される他の非限定的実施形態では、合成身体構造モデル116には、損傷または破損したときに出血する脊椎動脈582を形成することもできる。この例では、合成身体構造モデル580は、更に、3Dプリント合成骨584、および合成靱帯構造586を含む。椎骨動脈582は、コラーゲン製の嚢(collagen sac)を使用して形成することができ、人工血液をモデル中に分配するために使用される複数の接続ポート518および外科用チューブ520を含む、図18の態様を組み込むことができる。
【0070】
[00100] 図24に示す頸椎の合成身体構造モデル600によって例示される他の非限定的な実施形態では、発泡体で作られた放射線透過性軟組織を、合成身体構造モデル116に沿って形成することができる。この例では、合成身体構造モデル600は、3Dプリント合成骨604、合成靱帯構造606、および合成腱鞘嚢608も含む。
【0071】
[00101] 図25の合成身体構造モデル620(L3~L5脊椎モデル)によって例示される他の非限定的な実施形態では、合成身体構造モデル116には、更に、図示する合成骨材料624の3Dプリンティング後に形成することができる層間空間内に方向付けられた合成黄色靱帯622を形成することもできる。図25は、更に、合成腱鞘嚢626の他の例も示す。
【0072】
[00102] 図26の合成身体構造モデル640(L3~L5脊椎モデル)によって例示される他の非限定的な実施形態では、合成身体構造モデル116には、更に、図示のような合成骨材料644の3Dプリンティング後に形成または追加することができるL3およびL4の棘突起上に位置付けられた合成骨膜組織層642を形成することもできる。合成骨膜組織層642は、コラーゲンまたは他の同様の材料を使用して形成することができ、合成骨材料644の3Dプリンティング後に追加することができる。他の非限定的な実施形態では、合成身体構造モデル116または説明した合成身体構造構成体の内任意のものを直接被験者内に埋め込むこと、または検査のために使用することができる。また、本開示の範囲から逸脱することなく、以上の構成体を直接被験者の身体構造内にプリントしてもよいことも考えられる。また、本発明の概念のプリント身体構造構成体、即ち、人工身体構造構成体は、一時的なインプラントとして使用されるのか、またはユーザの要望に相応しい他の目的に使用されるのかには関係なく、生分解、生吸収、または双方が可能であることも考えられる。例示すると、合成身体構造モデル116が分解可能または吸収可能な材料で構築され、被験者の身体における一時的支持構造として作用することによって、他の構造体の生物力学的安定性を高めるようにしてもよいことが考えられる。実際、合成身体構造モデル116は、骨移植体質顔料(bone graft extender)、骨形成タンパク質、または他の適した生物剤というような、生物剤を含むまたは支持する(carry)ようにプリントすることもできる。
【0073】
[00103] ある実施形態では、3Dプリンタ・フィラメント材料およびプリンティング・パラメータの異なる構成(実験導出データ集合112に基づく)を使用して、脊柱における異なる種類のヒトの組織をプリントすることもできる(皮質骨、髄骨、線維輪、髄核、前縦靭帯、後縦靭帯、黄色靱帯、棘間靭帯、棘上靭帯、椎間関節および嚢(facet joint and capsule)、血管、脊髄および神経根、硬膜、筋肉および筋付着部を含むがこれらには限定されない)。これらの材料は、直接互いの中にプリントすること、個々にプリントしその後組み立てること、積層造形法および他の製造プロセス(即ち、シリコーン・ラバーまたは発泡体注入)の組み合わせによって別個に構築し、次いでその後一緒に追加することもできる。
【0074】
[00104] ある実施形態では、合成身体構造モデル116の態様には、骨と同様に放射線不透過性の材料を使用して3Dプリントされた骨要素もプリントし、死体検体または生きている患者と同様に、モデルの透視またはX線画像を撮影し、同様の結果が得られるようにしてもよい。
【0075】
[00105] ある実施形態では、本明細書において説明した機能を利用して、合成身体構造構成体は、実験導出データ集合112、および所定の健康または疾患状態を正確に近似するために、予測可能にそして信頼性高く生物力学的に動作する(perform)ように構成されたプリンティング・パラメータ(プリント・シェル、インフィルの割合、フィラメント材料、押出機の温度、プリント方向、およびインフィル・パターンを含むが、これらには限定されない)にしたがって3Dプリントすることができる、線維輪、髄核、前縦靭帯、後縦靭帯、黄色靱帯、棘間靭帯、棘上靭帯、椎間関節および嚢、血管、脊髄および神経根、硬膜、筋付着部のような軟組織要素を含むことができる。
【0076】
[00106] ある実施形態は、合成脊椎モデル116には、ヒトの軟組織と同様に放射線不透過性の材料を使用して3Dプリントされた軟組織要素(線維輪、髄核、前縦靭帯、後縦靭帯、黄色靱帯、棘間靭帯、棘上靭帯、椎間関節および嚢、血管、脊髄および神経根、硬膜、ならびに筋付着部を含むが、これらには限定されない)も形成し、死体検体または生きている患者と同様に、モデルの透視またはX線画像を撮影し、同様の結果が得られるようにしてもよい。
【0077】
[00107] 本明細書において説明した合成脊椎モデル116およびその他の合成構成体は、多くの異なる用途にも有用であると言うのはもっともである。例えば、合成脊椎モデル116は、図2Aの方法を使用するときに、生物力学的検査結果の変動性を低減することができる。何故なら、このモデル、およびその後に構築された各モデルは、同じパラメータで作成された他のものとほぼ同一であり、したがって、死体検査では極一般的であるモデル間の変動性を低減することができるからである。合成脊椎モデル116およびその他の合成構成体は、更に、脊椎外科医およびその他の研修生のための外科的技能訓練様式(modality)として有用であると言って差し支えない。脊椎手術を含む、特殊外科手術分野における合成訓練モデルの開発に対する国の後押しがある。このようなモデルが訓練用ツールとして価値のある実用性を有する為に、これらは生きている患者に対して高い解剖学的忠実度および生物力学的忠実度を有さなければならない。本発明の方法は、死体疾患状態にカスタム化することができる生物力学的挙動を有する、あらゆる患者の身体構造に特異的な合成脊椎モデルを生産することができる。他の例として、合成脊椎モデル116およびその他の合成構成体は、脊椎インストゥルメンテーションのための検査プラットフォームの一部として有用であることも可能である。商業的に入手可能な技術および先行技術は、現在では、種々の健康および疾患脊椎状態にカスタム化することができる、解剖学的および生物力学的に忠実なモデルにおける脊椎インストゥルメンテーションの検査を可能にする合成脊椎モデルを欠いている。また、本発明の方法は、外科医のための手術計画ツールとして使用するためのモデルを作成するために使用することもできる。何故なら、患者の実際の手術に先立って、個々の患者の脊椎のカスタム・モデルを作成し、動作させることができるからである。
【0078】
[00108] 図27は、本明細書において論じた種々の方法を実装することができるコンピューティング・デバイスの一例700の模式図である。例えば、コンピューティング・デバイス700は、アプリケーション102の機能を実行する、および/またはアプリケーション102の複数の態様を利用する(access)コンピューティング・デバイス104を備えることができる。コンピューティング・デバイス700は、バス701(例えば、相互接続)、少なくとも1つのプロセッサ702またはその他のコンピューティング・エレメント、少なくとも1つの通信ポート703、主メモリ704、リムーバブル記憶媒体705、リード・オンリ・メモリ706、および大容量記憶デバイス707を含むことができる。プロセッサ(1つまたは複数)702は、Intel(登録商標)、 Itanium(登録商標)または Itanium2(登録商標)プロセッサ(1つまたは複数)、AMD(登録商標)Opteron(登録商標)またはAthlon MP(登録商標)プロセッサ(1つまたは複数)、あるいはMotorola(登録商標)のプロセッサ製品群(lines of processors)のような、しかしこれらには限定されない、任意の既知のプロセッサとすることができる。通信ポート703は、モデムを基本とするダイアルアップ接続と併せて使用するためのRS-232ポート、10/100イーサネット・ポート、銅またはファイバを使用するギガバイト・ポート、またはUSBポートの内任意のものにすることができる。通信ポート(1つまたは複数)703は、ローカル・エリア・ネットワーク(LAN)、ワイド・エリア・ネットワーク(WAN)、またはコンピュータ・デバイス700が接続することができる任意のネットワークというようなネットワークに応じて、選択すればよい。更に、コンピューティング・デバイスは、転送および/または中継ネットワーク (transport and/or transit network) 755、表示画面760、I/Oポート740、およびマウスまたはキーボードのような入力デバイス745も含むことができる。
【0079】
[00109] 主メモリ704は、ランダム・アクセス・メモリ(RAM)、または当技術分野において一般的に知られている任意の他のダイナミック記憶デバイス(1つまたは複数)とすることができる。リード・オンリ・メモリ706は、プログラマブル・リード・オンリ・メモリ(PROM)チップのような、プロセッサ702の命令のような静的情報を格納するための任意のスタティック記憶デバイス(1つまたは複数)とすることができる。大容量記憶デバイス707は、情報および命令を格納するために使用することができる。例えば、Adaptec(登録商標)の小型コンピュータ・シリアル・インターフェース(SCSI)ドライブ製品群のようなハード・ディスク、光ディスク、Adaptec(登録商標)のRAIDドライブ製品群のような、独立ディスクの冗長アレー(RAID)のような、ディスク・アレー、または任意の他の大容量記憶デバイスを使用してもよい。
【0080】
[00110] バス701は、プロセッサ(1つまたは複数)702を他のメモリ、ストレージ、および通信ブロックと通信可能に結合する。バス701は、使用する記憶デバイスに応じて、PCI/PCI-X、SCSI、またはユニバーサル・シリアル・バス(USB)系のシステム・バス(またはその他)とすることができる。リムーバブル記憶デバイス705は、任意の種類の外部ハード・ドライブ、サム・ドライブ(thumb drive)、コンパクト・ディスク-リード・オンリ・メモリ(CD-ROM)、コンパクト・ディスク-再書き込み可能(DC-RW)、ディジタル・ビデオ・ディスク-リード・オンリ・メモリ(DVD-ROM)等とすることができる。
【0081】
[00111] 本明細書における実施形態は、コンピュータ・プログラム製品として提供することもできる。コンピュータ・プログラム製品は、コンピュータ(または他の電子デバイス)にプロセスを実行するようにプログラミングするために使用することができる命令が格納されている機械読み取り可能媒体を含むことができる。機械読み取り可能媒体には、光ディスク、CD-ROM、光磁気ディスク、ROM、RAM、消去可能プログラマブル・リード・オンリ・メモリ(EPROM)、電気的消去可能プログラマブル・リード・オンリ・メモリ(EEPROM)、磁気または光カード、フラッシュ・メモリ、あるいは電子命令を格納するのに適した他の種類の媒体/機械読み取り可能媒体を含むことができるが、これらに限定されるのではない。更に、本明細書における実施形態は、コンピュータ・プログラム製品としてダウンロードすることもできる。このプログラムは、通信リンク(例えば、モデムまたはコンピュータ接続)を介して、搬送波または他の伝搬媒体内に具体化されたデータ信号によって、リモート・コンピュータから要求元のコンピュータに転送することができる。
【0082】
[00112] 図示のように、以上で論じた機能を支援するアプリケーション102を主メモリ704にエンコードすることができる。言い換えると、アプリケーション102(および/または本明細書において説明したような他のリソース)の態様は、本明細書において説明した異なる実施形態による処理機能を支援する、データおよび/または論理命令(例えば、メモリ内またはディスクのような他のコンピュータ読み取り可能媒体上に格納されたコード)のようなソフトウェア・コードとして具体化することができる。一実施形態の動作中、プロセッサ(1つまたは複数)702は、主メモリに格納されたまたはそれ以外で有形に格納されたアプリケーション102に基づいて、プロセッサ702上で実行する論理命令を通じてというようにして、プロセスを起動する、実行する(run)、実行する(execute)、解釈/実行する(interpret)、または言い換えると、実行する(perform)ために、バス701の使用によって主メモリ704にアクセスする。
【0083】
[00113] 尚、以上で述べたことから、特定の実施形態について例示および説明したが、当業者には明らかなように、本発明の概念の趣旨および範囲から逸脱することなく、種々の変更が行えることは理解されてしかるべきである。このような変更および修正は、添付する請求項において定められる本発明の概念の範囲および教示の範囲内に該当するものとする。
図1
図2A
図2B
図2C
図2D
図2E
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16A
図16B
図16C
図17A
図17B
図17C
図17D
図17E
図17F
図17G
図17H
図17I
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27