(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-20
(45)【発行日】2022-06-28
(54)【発明の名称】卒中サブタイプの判定装置および方法
(51)【国際特許分類】
G01N 33/49 20060101AFI20220621BHJP
【FI】
G01N33/49 Z
【外国語出願】
(21)【出願番号】P 2020139188
(22)【出願日】2020-08-20
(62)【分割の表示】P 2017544844の分割
【原出願日】2015-11-13
【審査請求日】2020-09-23
(32)【優先日】2014-11-14
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】517168727
【氏名又は名称】コラ ヘルスケア インコーポレイテッド
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100095898
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100196221
【氏名又は名称】上潟口 雅裕
(72)【発明者】
【氏名】コーエン イーライ
(72)【発明者】
【氏名】ラヴィヴ ガブリエル
(72)【発明者】
【氏名】ナヴィッカス アイリーン
【審査官】倉持 俊輔
(56)【参考文献】
【文献】国際公開第2014/144259(WO,A1)
【文献】国際公開第2012/109065(WO,A2)
【文献】国際公開第2014/104761(WO,A1)
【文献】国際公開第2013/124727(WO,A2)
【文献】特開2004-132966(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 33/49,33/86,
G01N 19/00,
A61B 5/15,
C12Q 1/56
(57)【特許請求の範囲】
【請求項1】
卒中サブタイプを判定するために止血試験装置に用いられるカートリッジであって、前記カートリッジは、
流体処理構造を含む試料前処理部分と、
試料保持構造を含む試料試験部分と、を有し、前記試料試験部分は、前記流体処理構造と前記試料保持構造とを流体連通させる流体通路を経て前記試料前処理部分に結合され、
前記試料保持構造は、試験されるべき
全血試料を支持して前記
全血試料を前記カートリッジに加えられた励振に応答して共振状態に励振させることができるようにし、前記試料保持構造は、
初期凝血塊生成から最終の凝血塊溶解までの止血プロセスの全体像のデータをもたらす前記
全血試料の前記共振の観察を可能にし、
前記試料試験部分は、
前記データに基づいて前記
全血試料の虚血性または出血性指標を提供するための第1の試験部分および
前記データに基づいて治療影響指標を提供するための第2の試験部分を含む、カートリッジ。
【請求項2】
カートリッジを用いて卒中サブタイプを判定する方法であって、
前記カートリッジは、
流体処理構造を含む試料前処理部分と、
試料保持構造を含む試料試験部分と、を有し、前記試料試験部分は、第1の試験部分および第2の試験部分を含み、前記流体処理構造と前記試料保持構造とを流体連通させる流体通路を経て前記試料前処理部分に結合され、
前記方法は、
前記カートリッジに励振を加え、
全血試料を前記カートリッジに加えられた励振に応答して共振状態に励振させるステップと、
初期凝血塊生成から最終の凝血塊溶解までの止血プロセスの全体像のデータをもたらす前記
全血試料の前記共振を観察するステップと、
前記データに基づいて前記第1の試験部分の前記
全血試料の虚血性または出血性指標を求めるステップと、
前記データに基づいて前記第2の試験部分の前記
全血試料の治療影響指標を判定するステップと、を含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本特許出願は、全血試料を選択的に変換することによって卒中サブタイプ(亜型)を出血性又は虚血性に分類する技術に関する。
【0002】
〔関連出願の説明〕
本特許出願は、2014年11月14日に出願された米国特許仮出願第62/079,631号の優先権主張出願であり、この米国特許仮出願を参照により引用し、その開示内容を本明細書の一部とする。
【背景技術】
【0003】
卒中は、米国において死亡および重度の長期間障害の主因であり、このことは、毎年ほぼ90万人の人々が新たなまたは再発性の卒中をわずらい、誰かが4分毎に卒中で亡くなっていることを意味している。差し迫って必要なことは、虚血性(凝血塊)卒中サブタイプを出血性(ブリーディング)卒中サブタイプから迅速に識別して虚血性または出血性発作治療の開始を早めることにある。各サブタイプは、全く異なった治療を必要とし、誤った治療は、致命的である場合がある。虚血性発作治療の目的は、凝血塊を通常血栓溶解薬、例えばTPAで溶解させることであり、他方、出血性発作治療は、血小板、FFP、フィブリノーゲン(線維素)濃縮物、およびrFVIIaの輸血を用いて凝血塊形成を促進して出血を止めることである。
【0004】
卒中は、一般に不適切な凝血によって引き起こされる急性虚血症候群としてか不適切な出血を伴う脳内出血(ICH)としてかのいずれかのうっ血障害を表す言葉である。これにもかかわらず、止血は、大抵は、診断およびこれに続く卒中治療において無視されている。
【発明の概要】
【発明が解決しようとする課題】
【0005】
治療の際は「早ければ早いほど良い」ことが確立している。それゆえ、発作の徴候に続き卒中サブタイプを可能な限り早い時点で識別することが決定的に必要である。さらに、この問題および必要性が認識されているにもかかわらず、卒中サブタイプを早期に識別するための効果的な技術は依然として存在していない。
【課題を解決するための手段】
【0006】
本発明の一観点によれば、卒中サブタイプを判定するシステムであって、
全血試験用試料を受け入れ、試験用試料を刺激して凝血塊への試験用試料の変換を応じさせ、そして変換中、試験用試料の物理的特性を測定するよう構成された器具を含み、物理的性質は、データによって表され、
器具は、全血試験用試料の第1の変換を生じさせて物理的性質が虚血性または出血性指標を提供するようにし、器具は、全血試験用試料の第2の変換を生じさせて物理的特性が試料影響指標を提供するようにすることを特徴とするシステムが提供される。
【0007】
本発明の別の観点によれば、卒中サブタイプを判定するために止血試験装置に用いられるカートリッジであって、カートリッジは、
流体処理構造を含む試料前処理部分と、
試料保持構造を含む試料試験部分とを有し、試料試験部分は、流体処理部分と試料保持構造とを流体連通させる流体通路を経て試料前処理部分に結合され、
試料保持構造は、試験されるべき試料を支持して試料をカートリッジに加えられた励振に応答して共振状態に励振させることができるようにし、試料保持構造は、試料の共振の観察を可能にし、
試料試験部分は、試料の虚血性または出血性指標を提供するための第1の試験部分および治療影響指標を提供するための第2の試験部分を含むことを特徴とするカートリッジが提供される。
【0008】
本発明の別の観点によれば、卒中サブタイプを判定する方法であって、
被検者から全血試料を得るステップと、
励振によって全血試料の第1および第2の部分を凝血塊に変換するステップと、
全血試料の第1および第2の部分を変換中に測定して変換中に試験用試料の物理的特性を表すデータを得るステップと、
第1の部分のデータから虚血性または出血性指標を求めるとともに第2の部分のデータから治療影響を判定するステップと、
指標に基づいて卒中サブタイプを分類するステップとを含むことを特徴とする方法が提供される。
【図面の簡単な説明】
【0009】
【
図1】早期卒中サブタイプ判定を可能にするよう構成できるポイント・オブ・ケア(ケア時点における)止血試験器具を概略的に示す図である。
【
図2】早期卒中サブタイプ判定を可能にするよう構成できるポイント・オブ・ケア(ケア時点における)止血試験器具を概略的に示す図である。
【
図3】ポイント・オブ・ケア卒中サブタイプ判定向きに構成されるとともに
図1および
図2に示されている器具に使用するのに適した試験用カートリッジの図式的略図である。
【
図4】血栓弾性記録図の波形を示す図式的略図である。
【
図5】虚血性および出血性の危険を判定するために用いられる四分値を記載した2つの研究結果を示す図である。
【
図6】抗血栓治療前後の凝血塊強度を比較するとともに治療範囲を示す図である。
【発明を実施するための形態】
【0010】
本明細書において、急性虚血性および出血性発作の早期の識別を可能にする止血治療法を含む技術が開示される。変換装置および関連の作動方法が血栓弾性記録図によって全血を変換する。この効果的な変換により、止血データが得られるとともに更に卒中指標をもたらすことができる。好ましくは、変換装置は、止血を測定することができる適当に構成された装置を含む。止血データは、更にかつオプションとして、選択された患者に関して虚血性発作のための線維素溶解物質(例えば、rTPA)または出血性発作のための凝血塊促進剤(例えば、血小板)による治療を容易にするための他のマーカと一緒にNIHSSスコアのような関連の臨床指標、ならびにかかる治療に対するモニタリング応答と組み合わされるのが良い。
【0011】
イリノイ州グレンビュー所在のコラメド・テクノロジーズ・エルエルシー(Coramed Technologies LLC)から入手できるCORA(登録商標)ポイント・オブ・ケア止血システムは、全血試料に対して所要の変換作用をもたらし、かかる変換からガイドラインによって示唆されたINR/PTT試験を越えて順調に行き、しかも標的とされた60分ドア・トゥ・ニードル時間に十分に収まる時間内に重要な止血情報を作成することができ、この60分ドア・トゥ・ニードル時間は、卒中の衰弱効果を最小限に抑えるための臨界時間である。したがって、CORA(登録商標)器具は、早期卒中サブタイプ判定をもたらすよう本明細書において説明する実施形態にしたがって構成されるとともに利用できる。
【0012】
初期凝血塊生成から最終の凝血塊溶解までの止血プロセスの全体像をもたらし、更に出血性の疾患と血栓性の疾患の両方を識別することも可能である、凝血塊溶解変換装置すなわち全血血栓弾性記録式器具の能力は、血栓弾性記録法および特にCORA(登録商標)分析技術を他の凝固試験から区別する。例えば全血を用いるCORA(登録商標)技術は、単一の試料ランで止血に寄与する要因の全ての正味の統合効果をレポートすることができる。
【0013】
本明細書において説明する本発明の実施形態ならびに当業者には理解される改造例および変形例によれば、具体的には卒中サブタイプ判定を可能にすることを目的とする動作アルゴリズムおよび卒中指標判定機能を備えたポイント・オブ・ケア包括的全体的止血分析システムが提供される。卒中サブタイプの早期判定から得られる一成果は、卒中を治療するための一方式として虚血性および出血性発作の原因を理解して止血を用いることが初めて可能であるということにある。単純な機械的構造である凝血塊は、脳内の血液の流れを妨げまたは遮り、すなわち虚血性発作を引き起こす。要素が欠乏した血液、過度の高凝固レベル、および/または血小板抑制は、脳内の出血を引き起こす場合があり、すなわち出血性発作を引き起こす場合がある。
【0014】
新型の血小板を利用した試験が出現したが、大抵の標準実験室試験は、依然として血漿を利用しており、血小板の役割および患者止血の際の凝固タンパク質とのこれらの相互作用を無視している。標準凝固試験(PT、PTT、aPTTなど)は、血栓の約5%だけが形成された時点で終了する。Dダイマー試験は、真のフィブリン溶解ではなくフィブリン変性産物を測定するので、一次フィブリン溶解と二次フィブリン溶解を区別することができない。多くの他の型どおりに処方された試験は、隔離された成分の量をモニタするが、これら成分の機能および相互作用についてはモニタしない。患者止血の効果的な測定は、全ての相互作用の正味の効果を測定するために全血の全体的な止血試験、すなわち血栓弾性記録法を必要とする。
【0015】
CORA(登録商標)技術は、凝血塊の粘弾性特性が、外部励振に応答して試料の共振振動数の一連の非接触試験を実施することによって求められる新規な測定技術を含む。この方式は、多くの利点を有し、利点のうちの1つは、この方式がTEG5000アナライザからの広く受け入れられたパラメータと直接的に比較できる凝固測定値を与えるということにある。
【0016】
図1は、試料処理部分12、試料保持部分14および試料保持部分14を処理部分12に構造的に機械的に結合するサスペンション、例えばビーム16を有する試料試験カートリッジ10を図形的に示している。片持ち形態で示されたビーム16により、試料保持部分14は、試料処理部分12に対してばね上質量(sprung mass)として働くとともにカートリッジ10に加えられた刺激に応答して振動することができる。試料処理部分に対する試料保持部分の動的相対運動を可能にしながら機械的な結合を可能にする他の構造体、例えばばね、多リンクサスペンション、1つまたは複数の剛性または半剛性部材などを用いることができる。理解されるように、試料の相対的に僅かな変位、すなわち振動が必要である。ある特定の実施形態では、処理部分12を保持構造体14に直接接合し、これらを一体部材として形成することも可能である場合がある。
【0017】
試料処理部分12は、ポート18を有し、ポート18を通って液体試料100を試料処理部分12中に導入することができる。ポート18は、試料がいったんカートリッジ10中に導入されると、カートリッジから流れ出ることがなく、漏れ出ることがなく、しみ出ることなどがないように自動密封式であるのが良い(隔膜または他の自動密封機構体の場合と同様)。ポート18は、試料が当初受け入れられるリザーバ20と連通している。試料処理部分12は、チャネル、バイア、破棄物チャンバ、通路および類似の構造22と、ベローまたはポンプ24と、試料100を試験のために前処理するためにベロー24の作動に応答して試料処理部分12を通る試料100またはその一部分の運動を制御する弁26とを更に有する。
【0018】
加えられた圧力であっても良く、引かれた真空であっても良く、またはこれらの組み合わせであっても良く、好ましい実施形態では真空である空気圧としての力を試料100に直接用いることができ、それによりこの試料をカートリッジ10中に動かすとともにカートリッジ10の種々の要素を操作することができる。図示の具体化例では、中央ポート19のところに加えられた真空により、試料100がステージング領域20中に入り、更に、試料100がベロー24中に引き込まれる。試料100は、疎水性ベント28まで引き上げられ、かくして、もっぱらカード幾何学的形状によって試料流体体積の注意深い制御が可能である。したがって、試料100のローディング時間をモニタしまたはその体積を違ったやり方で能動的に検出することは必要ではなく、それによりカートリッジ10の構造および作動が単純化される。
【0019】
真空をベロー24に適用するとともに選択された弁26を作動させることにより、試料部分100をステージング領域20から引き出して第1の通路22′を通ってそしてこの中に引き込む。第1の通路22′は、試料部分100が通路22′中にそしてこれを通って引き込まれているときに試料部分100によって再構成され、次に試料部分100と混合される試験用試薬を液体形態、ゲル形態、凍結乾燥形態、乾燥形態または他の適当な形態で収容するのが良い。ベロー24をサイクル動作させることにより、第1の通路22′中へのそしてこれを通る試料100の流通の繰り返しによって試料と試薬の混合が行われる。次に、弁26の制御およびベロー24の作動により、第2の通路22″を通って状態調整された試料部分100を試料保持構造14に導くことができる。
【0020】
カートリッジ10を通って試料部分100を連通させるベロー24の作動は、ベローを2値方式で作動させることには限定されない。所定の輪郭形状、例えば傾斜路、弧などを介して空気圧および/または真空ベロー24に加えることにより、試料処理部分12内での流体流れ輪郭形状への極めて制御された接近が得られ、それにより通路22内での流体の剪断が制限され、それにより試料活性化を得ることができ、更に気泡の生成を回避することができる。カードの外部に位置する流体絞りを通るカートリッジ10およびベロー24の空気圧入力は、ベロー24を制御する電磁弁のパルス幅変調(PWM)により生じる脈動を除去する。
【0021】
試薬の再構成および試料100との試料の混合は、1種類の試薬または他種類の試薬をカートリッジ10内の種々の場所に配置し、そして試料部分100を試薬にさらすことによって達成できる。試薬は、カートリッジ10内の事実上任意の他の場所、すなわち、ウェル、通路、バイア、チャンバ、ベロー、および試料保持器のところに配置することができ、この場所において、試薬は、試料部分100に接触することになる。試薬は、更に、試料収容構造30内に配置されても良い。例えば、ヘパリナーゼをカートリッジ10のステージング領域20または他の試料リザーバ領域内に配置することができる。次に、試料部分100は、ステージング領域20中に吸い込まれ、そして乾燥状態のヘパリナーゼを再構成するとともに試料100中のヘパリン化ナトリウムと拮抗するのに十分な時間の間ヘパリナーゼと接触状態のままになる。このことは、試料100がベロー中に引き込まれて試料ウェル、すなわち通路22′を通って流れる前に行われ、この通路内で、処理済みの試料100が他の試薬に接触することになる。スポット試薬をカートリッジ上の事実上任意の場所に塗布することができ、加うるに、試薬は、試料収容構造30を被覆するのが良い。かくして、理解されるように、本発明の種々の実施形態としてのカートリッジ10は、事実上任意の組をなす組み合わせをなすカートリッジの多くの互いに異なる場所に配置された多くの互いに異なる試薬を有することができ、したがって、カートリッジ10は、本明細書において説明する実施形態による構成に最適である。
【0022】
試料保持構造14は、第2の通路22と連通し、この試料保持構造は、試料部分100の試験中、試料部分100を保持しまたは収容する収容構造30を有する。例えば、試料保持構造14は、共振またはほぼ共振振動の状態に自由に励振されて検出装置によって観察される試料表面を提供するアニュラス部、筒体、カップ、または類似の収容構造30を有するのが良い。1つの収容構造30は、試料の2つの表面を共振またはほぼ共振振動の状態に自由に励振させたままにする収容壁を有する。試料は、収容壁を貫通して延びる側部ポートを経て収容構造14に導入されるのが良い。米国特許第9,066,968号明細書、同第8,236,568号明細書、同第7,879,615号明細書および同第7,261,861号明細書は、幾つかの追加の考えられる試料収容構造30を記載しており、かかる試料収容構造は、カートリッジ10の実施形態に使用されるのに適した構造であると言える。
【0023】
試料100が装填されたカートリッジ10は、止血を測定する装置102で使用できる。
図2に図示されているように、装置102の構成要素は、励振器、シェーカまたは類似の刺激発生器104、センサ/検出器106、プロセッサ108、ユーザインターフェース110および通信リンク112である。適当な電源(図示せず)が設けられている。励振器104は、保持装置14の直接的な刺激またはカートリッジ10もしくはカートリッジ10の一部分の励振により間接的にあるいはこれらの組み合わせにより試料保持装置14内に試料100の共振による励振を生じさせるコイル、圧電デバイス、モータ、音響アクチュエータまたは任意適当な装置であるのが良い。センサ106は、光学/レーザ装置であるのが良い。ユーザインターフェース110は、ユーザが試験プロトコルを選択して開始させることができ、そして結果を視認しまたは結果の記録または伝送を行うことができるようにするためのハードボタン、タッチスクリーンまたは任意適当なインターフェースであるのが良い。プロセッサ108は、通信リンク112によってこれら機能要素を互いに作動的にリンクさせるとともに通信を容易にし、通信リンク112は、任意適当なプロトコルに従うワイヤレスまたはワイヤードネットワークインターフェースであるのが良い。例えば、通信リンク112は、結果としてのデータを分析および診断解釈のために遠隔の処理施設に伝送するとともに分析結果をユーザインターフェース110経由でデータおよび図形形態で表示するために受け取るために使用できる。プロセッサ108は、装置102の作動を制御するためにプロセッサによって実行可能なプログラミングまたはプログラム命令を含むのが良くまたは備えるのが良く、それにより試料物質の変換を行うとともに種々の変換段階中、試料に関する情報を集めることができる。
【0024】
カートリッジ10は、試験装置102内に配置される。血液試料100、例えば新鮮な全血、血液成分などがポート20を経てカートリッジ10内のリザーバ18中に導入される。装置102は、試料部分100を試薬と混合し、次にこれを保持構造14に送ることによって試料部分100を状態調節するための所定の試験プロトコルにおいて、カートリッジ10の表面32の選択された位置のところに空気圧信号を選択的に適用し、例えば真空を引き、またはカートリッジ10内の弁を作動させるよう構成されている。
【0025】
図3は、試料試験、例えば全血または血液成分試料の止血試料試験において使用できるカートリッジ200を図形的に示している。カートリッジ200は、カートリッジ10の特徴と類似した特徴を有するが、多数の同時試験の可能性を提供している。すなわち、カートリッジに設けられている各チャネルは、互いに異なる試薬を収容し、それゆえ、互いに異なる試験部を構成することができ、または余分の試験部を提供するよう構成されるのが良い。試験部の各々または組み合わせは、アッセイを構成することができる。カートリッジ200は、最大4個の試験部を同時に備えるよう構成されるのが良い。ただし、使用に当たり、1個から4個の試験部の任意の組み合わせを実施することができる。カートリッジ200はまた、カートリッジを事実上任意の数の試験部を備えるよう構成することができることを示しており、
図1および
図3は、少なくとも単一の試験部を有するカートリッジおよび4個の試験部を有するカートリッジを示しており、2個または3個の試験部のカートリッジを構成することができるとともに5個以上の試験部を備えたカートリッジを構成することができる。カートリッジの1本または複数のチャネルは、上述の米国特許に記載されているようなかかる止血関連特性、例えば血小板活動度、虚血性のリスクを示す指標などのアッセイで使用できる止血の特定の特徴を試験する1回または複数の試験であるのが良い。カートリッジ200は、複数の試験部を提供するよう構成されても良く、あるいは、複数の同じ試験部に複数の互いに異なる試料を提供しても良く、またこれらの組み合わせの状態にしても良い。
【0026】
図3に示されているように、カートリッジ200は、4個の試験部A,B,C,Dを備えている。カートリッジ200上での各試験部は、試料処理部分212、試料保持部分214および試料保持部分214を処理部分212に構造的に機械的に結合するサスペンション、例えばビーム216を有する。それぞれの試験部の要素は、アルファベット文字A,B,CまたはDで別々に示されている。片持ち形態で示されている複数のビーム216により、試料保持部分214は、試料処理部分212に対してばね上質量として働くとともに保持構造214および/またはカートリッジ200に加えられた刺激に応答して振動することができる。試料処理部分に対する試料保持部分の動的相対運動を可能にしながら機械的な結合を可能にする他の構造体、例えばばね、多リンクサスペンション、1つまたは複数の剛性または半剛性機械的部材などを用いることができる。理解されるように、試料の相対的に僅かな変位、すなわち振動が必要である。ある特定の実施形態では、処理部分212を保持構造体214に直接接合し、これらを一体部材として形成することも可能である場合がある。
【0027】
試料処理部分212は、プレナムまたはマニフォルドもしくは個々のポート218を通る供給を行う共通ポートを有するのが良く、液体試料100をかかるポートを通って試料処理部分212の試験部中に導入することができる。ポート218は、試料がいったんカートリッジ200中に導入されると、カートリッジから流れ出ることがなく、漏れ出ることがなく、しみ出ることなどがないように自動密封式であるのが良い。ポート218は、試料が当初受け入れられるそれぞれのリザーバまたは試料保持領域220と連通している。試料処理部分212は、チャネル、バイア、通路および類似の構造222と、ベローまたはポンプ224と、試料100を試験のために前処理するためにベロー224の作動に応答して試料処理部分212を通る試料100またはその一部分の運動を制御する弁226とを更に有する。外部空気圧力をベロー224に適用するとともに選択された弁226を作動させることにより、試料部分100をリザーバ220から引き出して第1の通路222′およびベロー224を通ってそしてこれらの中に引き込む。第1の通路222′は、試料が通路222′中にそしてこれを通って引き込まれているときに試料と混合される試験用試薬を液体形態、ゲル形態、凍結乾燥形態または乾燥形態で収容するのが良い。本明細書において説明したように、試薬をカートリッジ200の他の配設場所に配置しても良い。ベロー224をサイクル動作させることにより(これは、圧力および真空信号のパルス幅変調によって上述したように達成できる)、第1の通路222′中へのそしてこれを通る試料100の流通の繰り返しによって試料と試薬の混合を行うことができる。次に、弁226の制御およびベロー224の作動により、第2の通路222″を通って状態調整済み試料部分100を試料保持構造214および試料収容構造230に導くことができる。適当な廃棄物チャンバが試料の収容を保証するようカートリッジ内に設けられている。
【0028】
試料100が装填されたカートリッジ200は、次に、試験を実施しまたはカートリッジの使用目的である試験を実施してそれぞれの結果を報告するよう準備されるとともに試験装置中にいつでも導入される準備ができている。
【0029】
例えば上述した使い捨てマイクロフルイディクスカートリッジを用いると、熟練オペレータを必要とする従来大きな労働力を要していたプロセスが不要になる。4チャンネル型カートリッジ、例えばカートリッジ200は、単一の血液試料から4つの別々の試験結果を提供することができる。カートリッジ200は、上述したように、種々の乾燥状態の試薬を収容し、このカートリッジは、安価な射出成形コンポーネントおよび多層積層品から構成されている。この方式には、稼働中の複雑なアッセイを単純化し、しかも訓練の必要性を著しく減少させる。この方式はまた、器械の実行毎のかつオペレータ毎のばらつきを減少させる。
【0030】
もとの試料のアリコート(一定分量)を採取し、乾燥状態の試薬を再構成し、試薬を計量して試料中に混合し、そして処理済み試料を試験領域に送り出す、といった試料前処理の全ての段階がマイクロフルイディクスカートリッジ内で実施される。本明細書において説明した実施形態によれば、適当なカートリッジは、単一の全血試料から互いに異なる試料を用いて同時アッセイを実施するよう構成されている。試料の自動前処理により、僅かな流体体積の正確な取り扱いおよび生物学的廃棄物の安全な処分が可能である。単一の標準化カートリッジ設計を製造中に塗布される試薬を個別調整することによって広範なアッセイの基礎として使用できるので、使い捨てカートリッジの費用が最小限に抑えられる。
【0031】
血栓弾性記録法からの止血結果
【0032】
標準血栓弾性記録法(すなわち、明細書全体を通じてCORA/TEGまたはCORAとも呼ばれているTEG5000およびCORA)は、単一の全血試料から凝固時間(R、凝固の酵素段階)、凝血塊運動学的特徴(α)、凝血塊強度(MA)、およびフィブリノシス(LY)の測定を行う。これについては
図4を参照されたい。
【0033】
本明細書において説明する実施形態によれば、卒中サブタイプ判定のためのカートリッジ、例えばカートリッジ200は、少なくとも第1および第2の試験部および/またはアッセイ(本明細書においては、ひとまとめにアッセイと称する)を有する。第1のアッセイは、酵素反応(R値)、無抑制凝血塊強度(MATHROMBIN)、ADP血小板レセプター阻害(MAADP)後における残留凝血塊強度、TxA2血小板レセプター阻害(MAAA)後の残留凝血塊強度、および凝血塊溶解(LY)に起因して、患者の止血状態を評価するためのコラ・ヘルスケア・インコーポレイテッド(Cora Healthcare Inc.)社製のカートリッジを利用したポイント・オブ・ケア(PlateletMapping(登録商標))アッセイであるのが良い。ADPおよびTxA2血小板レセプター阻害の存在下における残留凝血塊強度ならびに生まれつきの(無抑制)最大凝血塊強度が測定されるので、被検者が抗血小板薬を飲んでいるまたは飲んでいない試料またはADPまたはTxA2レセプターの突発性阻害を示す試料から結果を得ることができる。PlateletMappingアッセイは、出血性条件と血栓性条件の両方を測定することができるので、出血性発作と虚血性発作を区別することが可能である。したがって、理解されるように、カートリッジ形態に適合可能でありかつ出血性条件と血栓性状態を区別することができる他の形式のアッセイを第1のアッセイとして使用することができる。
【0034】
第2のアッセイは、他の止血変更治療の作用効果を評価するよう構成されている。例えば、カートリッジの1本または複数のチャネルは、新規な経口抗凝固剤(NOAC)の作用効果を評価するよう構成されるのが良く、このNOACは、卒中サブタイプの判定に貢献することができる。
【0035】
血栓弾性記録法試験のこの組み合わせは、止血スナップショットを提供するとともに卒中サブタイプの徴候をもたらすうえでその能力において独特である。大抵の卒中患者は、非常時ケアを受け入れたときに無口であって意思の疎通が難しく、したがって、現在の薬物に関する情報を提供することができない。臨床医は、これらの患者が適当な診断および治療決定を行うよう止血変更薬剤を飲んでいるかどうかを知ることが重要である。例えば、患者は、1つには抗血栓薬剤または抗凝固薬剤かのいずれかによる過剰治療に起因して出血性発作を経験している場合があり、かかる薬剤は、適当なアッセイ、例えばそれぞれ上述のPlateletMappingおよびNOACアッセイによって検出可能である。
【0036】
本明細書において説明する実施形態としての1つまたは複数の器具は、長い凝固時間(R)、遅い凝血塊運動学的特徴(角度)、低い凝血塊強度(MA)および高い溶解速度(LY)により極めて容易に出血するリスクを識別することができる(
図4参照)。それと同時に、これら器具は、短い凝固時間、早い凝血塊運動学的特徴、高い凝血塊強度、および低い溶解速度により凝固するリスクを識別することができる。このリスクの程度は、パラメータが通常範囲からどれほど外れているかで決まる。
【0037】
各種プレディケートインジケータ(Predicate Indicators)
【0038】
2つの研究は、TEG MA(凝血塊強度)をどのようにして用いると凝固に起因した合併症を予測することができるかを明らかにした。データを四分値に分類すると、虚血性事象(心臓発作、卒中、肺塞栓症など)の徴候は、
図5に示されているようにMAの値が増大するにつれて高くなる。
【0039】
次に、これらの分類を用いると、医師は、患者が虚血性事象を起こすリスクの程度を評価することができる。このリスクは、MA値が増大するにつれて高くなり、したがって、MAが第1四分値にある患者は、虚血性事象を呈する蓋然性が低く、MAが第4四分値にある患者は、虚血性事象のリスクが最大であり、治療されるとともに注意深くモニタされるべきである。また、MAADP値を第1四分値に収めることが出血を予想することができるということが提案された。
【0040】
冠動脈ステントが埋め込まれた患者ならびに高い凝血塊強度を有する患者は、クロピドグレルおよびアスピリン治療方式が型どおりに処方される。これらの患者を扱う医師の問題は、相当な数のこれらの治療中の患者が依然として虚血性事象の再発を呈し、僅かではあるがかなりの数の患者が出血性の合併症を有することである。出血性合併症は、これらの患者の死亡率の予測因子であることが判明しているが、出血を予想する信頼性のある試験が存在していない。
【0041】
最近の論文は、最初にクロピドグレル患者の治療範囲を記録し、虚血性のリスクと出血性のリスクの両方についてTEG5000を用いてカットポイントを識別している。これについては
図6を参照されたい。なお、
図6は、各患者についてMATHROMBIN(治療なしの凝血塊強度)の第4四分値を対応のMAADP値(治療時の凝血塊強度)とともに示している。左側の部分は、虚血性事象が繰り返し生じた患者を表示し、右側の部分は、虚血性の事象のない患者を表示している。点線は、虚血性および出血性リスクのカットポイントを示し、考えられる治療範囲を描いている。
【0042】
この極めて重要な発見は、クロピドグレルまたは他の新たなADP阻害薬の個別化された投薬を可能にし、患者が適切に応答していない場合に服用量を増大させまたは薬剤を変えて凝血塊生成を阻止するとともに、過剰反応者または薬剤を必要としない患者の治療を減少させまたは中断して出血を阻止する、ガイダンスを医師に提供することができる。他の器具を用いて非応答者を識別することができる幾つかの発見が存在しているが、下限および上限のある治療範囲が確立されていないので、他の器具は、特に出血回避領域において服用量を案内することができなかった。
【0043】
同様であるが異なっていてかつ選択的な試料変換および評価により、発作人口におけるこれらの測定および他の測定の値を用いると、「出血性」対「虚血性」分類に至るよう、またはサブタイプを明確に識別することができない場合には「不確定」の分類に至るよう、卒中指標でどの変数およびどの値が用いられるかを判定することができる。
【0044】
卒中指標(Stroke Index)
【0045】
卒中指標の値は、卒中タイプの診断に至るまでの時間を早めることによって治療までの時間を短縮する真っ先に参照すべき値であり、かくして、臨床上の成果を向上させて卒中の人間への影響および経済的な影響を軽減することができる。
【0046】
上述の研究を含む多くの臨床上の研究は、虚血性および出血性のリスクを表すものとして種々の値を記録している。これらの値ならびに健常な個人から得られた通常の基準範囲を用いると、1組のしきいカットオフ値を虚血性または出血性発作の診断結果として確立することができる。
【0047】
カットオフ値から外れている患者の値は、「不確定」と呼ばれている。例示目的でのみ挙げると、4分未満の凝固時間(R)値および68mmを超える凝血塊強度(MA)が虚血性状態を指示するために用いられる。同様に、8分を超えるRおよび54mm未満のMAは、出血性状態を指示するために用いられる。さらに、残留凝血塊強度(MAADP,MAAA)を用いると、血栓薬を用いている患者の卒中サブタイプを一段と洗練しまたは確認することができる。例えば、50mm未満の残留凝血塊強度を示すMAADP値は、出血性サブタイプを指示している。これらのカットオフに適合していない値は、「不確定」とみなされる。かくして、R=3分、MA=72mmを持った状態で救急治療部に来る患者は、虚血性発作があるものと診断され、R=10分、MA=51mmの患者は、出血性発作があるものと診断される。他方、卒中タイプは、R=6分、MA=60mmの患者にとっては「不確定」である。何らかの禁忌を除外して、虚血性発作があると診断された患者は、抗線維素溶解薬で即座に治療され、出血性患者が、凝血塊促進剤を受け取り、「不確定」患者は、発作が疑われる場合には標準の病院プロトコルに従う。NOACアッセイはまた、出血性発作の患者の治療決定を助けることができる。例えば、アッセイが特定のNOACに対して過剰の応答性を示す場合、治療は、特定の解毒薬を薬剤に投与する可能性がある。
【0048】
逸話回想エビデンスは、上述の範囲を用いることが、発作が虚血性であれ出血性であれいずれにせよ、その時点で85%正確であり、卒中の15%だけが「不確定」であると分類されることを示した。
【0049】
これらのカットオフ値は、もっぱら基本的な血栓弾性記録法データに基づき、虚血性および出血性発作の場合、卒中サブタイプ判定を行うのに十分であると言える。「不確定」範囲を減少させることは、追加のバイオマーカー、例えば他の血栓弾性記録法データ(既存の抗凝固薬および抗血栓薬のそれぞれの存在/これらに対する応答について試験するNOACおよびPlateletMapping)、ランキンおよびNIHSS発作スコア、血圧、種々の実験室結果、患者の履歴(例えば、先の既往の発作またはTIA)などを組み込むことによって達成できる。これらの全ての要因を互いに組み合わせると、卒中指標として単一の値を生じさせて卒中タイプを決定することができる。
【0050】
急性虚血性発作の場合、TPA血栓治療が実績があるが時間に依存したインターベンションである。その治療上の利点は、時間の経過につれて低下し、4.5時間の最後の既知のウェルタイム(well time )後には著しい利益はない。迅速な治療の重要性のゆえに、現行のガイドラインは、禁忌のない患者に関して病院到達の60分以内にIV TPAの開始を推奨している。
【0051】
説明した実施形態にしたがって構成された装置を用いると、迅速にかつ低コストで卒中サブタイプの判定、すなわち、虚血性または出血性発作に確信して至ることが可能であり、それにより、治療をより短時間でより多くの患者に提供し、それにより臨床上の成果を向上させることができる。
【0052】
遠隔または十分にサービスを受けられない市場への利用性の拡大
【0053】
振動によって影響を受けない器具、例えばCORA(登録商標)器具により、非常時ケア提供者、例えば第1の応答者は、病院を利用した発作専門家との常時接触状態にある間、救急車内での試験によって急性虚血性発作の早期診断を容易に行うことができる。車上の発作を標的とした止血試験および救急車内での卒中指標の利用性は、特に、近くに発作センターのない区域において著しい影響を有する。主要な大都市センターの外部では、医療施設への搬送が1時間以上を要することがあり、途中での遠隔医療/EMS技術者を案内する、遠隔発作および発作専門家の助けを借りた、急性虚血性発作判定および治療の可能性が現実のものとなりうる。
【0054】
将来の可能性
【0055】
止血データを大きな発作ドメインに組み込むための基礎が敷かれる。例えば次の通りである。
1.卒中指標を一次予防で用いると、個々の患者ベースで修正可能なリスクマーカを管理することができる。
2.EMS職員を訓練して最初の応答時にかつ/あるいは搬送中、血栓弾性記録的アッセイを実行することができ、その結果、情報を行き先病院のEDスタッフおよび他の発作チームメンバーに中継することができる。ついには、EMSスタッフにTPAまたは凝血塊促進薬をある特定の患者に投与させることさえも可能な場合があり、これは、特に大型大都市医療センターの外部にありかつ田舎の十分にサービスを受けられない場所でそうであるように長距離搬送において重要である。
3.病院またはポイント・オブ・ケアセッティングでは、TPAがいったん投与されると、血液試料を用いて、達成された溶解度を判定することができ、必要ならば追加の量を投与する。溶解は、現行の実務の場合のように体重では判定されず、したがって、体重に基づいた溶解薬を投与することは、最適ではない。各患者の止血状態は、投薬を良好に案内することができ、したがって、患者は、過剰治療されることはなくまたは治療不足になることがない。TPAの過剰投薬は、事実、出血性コンバージョンの決定因子のうちの1つとなりうる。
4.再発発作の二次的予防のための長期間治療を決定する際、血栓弾性記録試験の結果を用いることは、薬剤および服用量の適正な選択を案内することができ、それにより過剰治療または治療不足のリスクを減少させる。これは、新たなかつより有力な薬剤が利用可能になっているので特に重要である。
【0056】
本発明の教示にしたがって構成されたある特定の装置および方法を本明細書において説明したが、本願発明の保護範囲は、これには限定されない。一般的に言って、最初に卒中サブタイプの早期判定をもたらす装置および方法が提供されている。特に、試験用カートリッジが卒中サブタイプ判定を提供する治療影響に加えて、出血性および血栓性の状態を識別するための全血止血試験を可能にするよう構成されている。卒中サブタイプ判定を卒中指標の使用により促進するとともに向上させることができる。
【0057】
本特許出願は、添付の特許請求の範囲に記載した本発明の範囲に文言上または均等論の下で公正に含まれる本発明の教示の全ての実施例に及んでいる。