(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-20
(45)【発行日】2022-06-28
(54)【発明の名称】酸化珪素系負極材及びその製造方法
(51)【国際特許分類】
H01M 4/48 20100101AFI20220621BHJP
H01M 4/38 20060101ALI20220621BHJP
H01M 4/36 20060101ALI20220621BHJP
C01B 33/00 20060101ALI20220621BHJP
C01B 33/02 20060101ALI20220621BHJP
C01B 33/113 20060101ALI20220621BHJP
【FI】
H01M4/48
H01M4/38 Z
H01M4/36 A
C01B33/00
C01B33/02 Z
C01B33/113 A
(21)【出願番号】P 2020212072
(22)【出願日】2020-12-22
(62)【分割の表示】P 2018546218の分割
【原出願日】2017-09-28
【審査請求日】2020-12-22
(31)【優先権主張番号】P 2016205040
(32)【優先日】2016-10-19
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】397064944
【氏名又は名称】株式会社大阪チタニウムテクノロジーズ
(74)【代理人】
【識別番号】100123467
【氏名又は名称】柳舘 隆彦
(72)【発明者】
【氏名】柏谷 悠介
【審査官】井原 純
(56)【参考文献】
【文献】特開2003-192327(JP,A)
【文献】特開2003-160328(JP,A)
【文献】特開平06-325765(JP,A)
【文献】特開2007-294423(JP,A)
【文献】特開2015-156328(JP,A)
【文献】特開2007-290919(JP,A)
【文献】米国特許出願公開第2014/0103253(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/48
H01M 4/38
H01M 4/36
C01B 33/00
C01B 33/02
C01B 33/113
(57)【特許請求の範囲】
【請求項1】
減圧下での原料加熱により発生させたSiOガス及びLiガスからSiOとLiの混合析出物を製造する、気相法による酸化珪素系負極材の製造方法において、
前記SiOガス及びLiガスのガス発生原料として、Si、O及びLiを含有
すると共に、前記Siの一部がSi単体として存在し、且つ
前記Liが珪酸リチウムとして存在する
Si・珪酸リチウム含有原料を用い、
これにより前記ガス発生原料からSiOガスとLiガスとを同時に発生させ、
それらのガスを同一面上で冷却し
析出させて回収する酸化珪素系負極材の製造方法。
【請求項2】
請求項1に記載の酸化珪素系負極材の製造方法において、
前記
ガス発生原料はSi単体と珪酸リチウムとの混合物、又はSi単体と珪酸リチウムとSi酸化物との混合物である酸化珪素系負極材の製造方法。
【請求項3】
請求項1又は2に記載の酸化珪素系負極材の製造方法において、
LiOHとLi
2CO
3の一方又は両方とSi単体とを含む1次原料を加熱焼成して2次原料となし、当該2次原料を前記
ガス発生原料として加熱する酸化珪素系負極材の製造方法。
【請求項4】
請求項1~3の何れかに記載の酸化珪素系負極材の製造方法において、
前記
ガス発生原料の平均組成がSiLi
xO
yで表され、0.05<x<0.7及び0.9<y<1.1を満足する酸化珪素系負極材の製造方法。
【請求項5】
請求項1~4の何れかに記載の酸化珪素系負極材の製造方法において、
前記同一平面上で冷却して回収された析出物を粉砕して負極材粉末とする酸化珪素系負極材の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、Liイオン二次電池の負極形成に使用される酸化珪素系負極材及びその製造方法に関し、より詳しくは、不可逆容量キャンセルのためにLiがドープされた酸化珪素系負極材及びその製造方法に関する。
【背景技術】
【0002】
酸化珪素(SiOx)は電気容量が大きく、寿命特性に優れたLiイオン二次電池用負極材であることが知られている。この酸化珪素系負極材は、酸化珪素粉末、導電助剤及びバインダーを混合してスラリー化したものを、銅箔等からなる集電体上に塗工して薄膜状の負極とされる。ここにおける酸化珪素粉末は、例えば二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させた後、細かく破砕することにより得られる。このような析出法で製造される酸化珪素粉末は、アモルファスの部分を多く含み、充放電時の体積変化を小さくして、サイクル特性を向上させることが知られている。
【0003】
このような酸化珪素系負極材に特徴的な問題点として初期効率の低さがある。これは充放電に寄与しない不可逆容量となるLi化合物が初回充電時に生成されることにより、初回放電容量が顕著に減少する現象であり、これを解消する手法として、酸化珪素粉末にLiイオンを添加するLiドープが知られている。
【0004】
例えば、特許文献1では、酸化珪素粉末と金属Li粉末との混合物、又は酸化珪素粉末とLi化合物粉末との混合物を不活性ガス雰囲気中又は減圧下で加熱して焼成する固相法が提案されている。また、特許文献2では、SiOガスとLiガスとを別々に発生させた後、両ガスを混合し、冷却して回収する気相法が提案されている。いずれの方法でも、充放電に寄与しない不可逆容量となるLi化合物が事前に生成されることにより、初回充放電時に不可逆容量となるLi化合物が生成されるのが抑制されて、初期効率の向上が期待される。これが不可逆容量キャンセル処理である。
【0005】
しかしながら、Liドープによる不可逆容量キャンセル処理を受けた酸化珪素系負極材では、Liが不均一にドープされることに起因して電池性能の低下を招くことが問題視されている。
【0006】
すなわち、特許文献1に記載された固相法(焼成法)では、焼成の過程で酸化珪素粉末の粒子にその表面からLiイオンがドープされる、粉末粒子の表面反応によりLiドープが行われるため、粉末粒子内部におけるLi濃度分布が不均一になりやすく、特に粒子表面のLi濃度が高くなりやすい。更に、粉末組成のバラツキも、粉末粒子内部におけるLi濃度分布の不均一、特に粒子表面のLi濃度分布の不均一の原因となる。
【0007】
一方、特許文献2に記載された気相法(析出法)では、SiOガスとLiガスの均一混合や、温度及び分圧の制御が非常に困難であるため、混合ガスのLi濃度分布の不均一、ひいては析出体のLi濃度分布の不均一が避けられない。そして、析出体は粉砕して負極材粉末とされるため、析出体のLi濃度分布の不均一は、負極材粉末の粉末粒子間におけるLi濃度分布の不均一の原因となる。
【0008】
粉末粒子の内部にしろ粒子間にしろ、Li濃度分布の不均一が発生した場合、Li濃度が濃い部分においてLiSi合金などの反応性が高いLiリッチ相が形成される。Liリッチ相は、前述した電極作成の過程でバインダーや溶媒と反応するため、電池性能の劣化を引き起こす原因となる。
【先行技術文献】
【特許文献】
【0009】
【文献】特許第4702510号公報
【文献】特許第3852579号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明の目的は、Li濃度分布の不均一に起因する電池性能の低下を可及的に回避できる酸化珪素系負極材及びその製造方法を提供することにある。
【課題を解決するための手段】
【0011】
Liをドープされた酸化珪素系負極材の大きな問題が、酸化珪素粉末におけるLi濃度分布の不均一にあることは前述したとおりである。また、酸化珪素粉末におけるLi濃度分布の不均一にも、粉末粒子中におけるLi濃度分布の不均一と、粉末粒子間におけるLi濃度分布の不均一とがあることも、前述したとおりである。
【0012】
本発明者はLi濃度分布の不均一に起因する電池性能の低下を回避するためには、酸化珪素粉末における2種類のLi濃度分布の不均一、すなわち粉末粒子中におけるLi濃度分布の不均一と、粉末粒子間におけるLi濃度分布の不均一とを解消することが不可欠であると考え、Liがドープされた酸化珪素粉末の製法に着目した。特に、特許文献2に記載されたような気相法(析出法)に着目した。
【0013】
気相法(析出法)では、SiOガスとLiガスとから、SiOとLiの混合物が製造される。最も簡単な方法としては、SiOガス発生原料とLiガス発生原料とを単純に混合して加熱することが考えられる。しかしながら、この方法だと、SiOガスとLiガスが同時に発生することはない。蒸気圧が高いLiガスのみが優先して発生する。このためにSiOとLiが均一に混合した材料は得られない。
【0014】
別の気相法(析出法)として、Li2Si2O5などの珪酸リチウムに代表されるLiとSiの複合化合物を減圧下で加熱して、SiOガスとLiガスを同時に発生させることが考えられる。しかしながら、珪酸リチウムは、単体では減圧下での加熱によってもガスを発生しない。ところが、そのような珪酸リチウムであっても、Si、特にSi単体が共存する状況下では、減圧下での加熱によりSiOガスとLiガスが同時に発生し、その結果、発生ガスはSiOとLiが均一に混合したものとおり、これを冷却して析出させることにより、SiOとLiが均一に混合した材料が得られることが判明した。
【0015】
SiOとLiが均一に混合した材料を粉砕すれば、そのLi含有SiO粉末は、粉末粒子間におけるLi濃度分布の不均一も、個々の粉末粒子中におけるLi濃度分布の不均一も共に解消された負極材となる。Si単体の共存下で珪酸リチウムからSiOガスとLiガスが同時に発生するのは、珪酸リチウムがSi単体で還元されることが理由であると推定される。
【0016】
本発明の酸化珪素系負極材は、かかる知見を基礎して開発されたものであり、平均組成がSiLixOyで表される粉末であって、0.05<x<y<1.2及び平均粒径1μm以上を満たすと共に、
当該粉末粒子を無作為に10個抜き出し、それぞれの粒子において、最表面から深さ50nmの位置におけるLi濃度L1と、最表面から深さ400nmの位置におけるLi濃度L2を測定したときのL1/L2が、いずれの粒子でも0.8<L1/L2<1.2を満たし、かつL2の標準偏差が0.1以下であることを技術的な特徴点とする。
【0017】
本発明の酸化珪素系負極材において、各粒子の最表面から深さ50nmの位置におけるLi濃度L1は粒子表面のLi濃度を意味し、最表面から深さ400nmの位置におけるLi濃度L2は粒子内部のLi濃度を意味する。無作為に抽出された10個の粒子において、0.8<L1/L2<1.2を満たすことは、粒子の表面から内部までLi濃度が均一であること、すなわち粒子中におけるLi濃度分布の不均一が解消されていることを意味する。また、10個の粒子間でのL2の標準偏差が0.1以下であることは、10個の粒子間におけるLi濃度分布の不均一が解消されていることを意味する。したがって、Li濃度分布の不均一に起因する電池性能の低下が効果的に回避され得る。
【0018】
無作為に抽出された10個の粒子において、1個でも0.8<L1/L2<1.2を満たさない場合は、粒子中におけるLi濃度分布の不均一によりLiリッチ相が現れ、反応性が低くて電池性能の高い粉末が得られない懸念がある。L2の標準偏差が0.1を超える場合は、粒子間におけるLi濃度分布の不均一により粒子中にLiリッチ相が現れ、反応性が低くて電池性能の高い粉末が得られない懸念がある。
【0019】
Li濃度L1及びL2は、粉末粒子の断面TEM観察を行い、それぞれの決められた深さの位置において、例えば縦20nm、横400nmの範囲についてEELS測定を行うことで得られた、Siスペクトル強度に対するLiスペクトル強度の比により、相対的に求めることができる。
【0020】
粉末の平均組成であるSiLixOyについては、xが小さすぎるとLi添加効果が十分に得られない。xがy以上である場合はLiSi合金が生成し、粉末の反応性が大きくなる。yが大きすぎる場合は粉末の充放電容量が低下する。これらのために0.05<x<y<1.2とした。それぞれの元素比は、ICP発光分光法、及び赤外線吸収法により測定することができる。
【0021】
粉末粒子の平均粒径については、粒子内部のLi濃度L2を、最表面から深さ400nmの位置におけるLi濃度と規定しているので、平均粒径が1μm未満であると、粒子内部のLi濃度の測定を不正確にする粒子、すなわち直径が(400nm×2)未満の粒子、より正確には短径が(400nm×2)未満の粒子が増加することにより、L2が粒子内部のLi濃度を代表できなくなる懸念が生じ、L1/L2の信頼度が低下するので、1μm以上とした。平均粒径の上限については特に規定しないが、平均粒径が大きい場合は電極塗工が困難になる上、充放電の膨張収縮による割れ、性能劣化が起こりやすくなるので、20μm以下が望ましい。ここにおける平均粒径は、レーザー回折式粒度分布測定による測定値、すなわち体積基準でのD50である。
【0022】
本発明の酸化珪素系負極材の製造方法は、減圧下での原料加熱により発生させたSiOガス及びLiガスからSiOとLiの混合析出物を製造する、気相法による酸化珪素系負極材の製造方法において、前記SiOガス及びLiガスのガス発生原料として、Si、O及びLiを含有する原料を用いることにより、当該原料からSiOガスとLiガスとを同時に発生させ、それらのガスを同一面上で冷却し析出させて回収するものである。
【0023】
本発明の酸化珪素系負極材の製造方法においては、原料からSiOガスとLiガスとが同時に発生すると共に、同時に発生したSiOガスとLiガスとが同一面上で冷却されて回収されることにより、SiOとLiとが均一に混合した析出物が得られる。これを粉砕して粉末とすれば、粉末粒子間におけるLi濃度分布の不均一はもとより、個々の粒子におけるLi濃度分布の不均一も解消された粉末が得られる。
【0024】
Si、O及びLiを含有する原料は、具体的にはSiの一部がSi単体として存在し、Liが珪酸リチウムとして存在するSi・珪酸リチウム含有原料である。この原料を使用すると、Si単体が共存する状況下で珪酸リチウムが加熱されることにより、当該珪酸リチウムからSiOガスとLiガスとが同時に発生する。
【0025】
Si・珪酸リチウム含有原料は、典型的にはSi単体と珪酸リチウムとの混合物、又はSi単体と珪酸リチウムとSi酸化物との混合物である。Si酸化物はO量の調整等のために含有され、SiO、SiO2等のSiOX (0<x≦2)である。珪酸リチウムは一般式で表せばxLi2O・ySiO2であり、具体的には例えばLi2Si2O5(x=1,y=2)、Li2SiO3 (x=1,y=1)、Li4SiO4(x=2,y=1)、Li6Si2O7(x=3,y=2)等である。
【0026】
Si、O及びLiを含有する原料においては、珪酸リチウムを用いる代わりに、加熱することで珪酸リチウムを生じる材料を用いることもできる。具体的には、LiOHとLi2CO3の一方又は両方とSi単体とを含む材料であり、これを1次原料として加熱焼成する。Si単体が共存する状況下でLiOH又はLi2CO3が加熱焼成されることにより、珪酸リチウムが生成されると共に、余計な元素がガス成分として取り除かれて、Si単体と珪酸リチウムとを含むSi・珪酸リチウム含有原料が得られ、これを2次原料として加熱すれば、SiOガスとLiガスとが同時に発生する。他に、Li2OとSi単体、およびSi酸化物(SiOx;0<x≦2)を含む材料や、Li2CO3の代わりに有機系リチウム化合物等を利用した材料なども1次材料として使用することができるが、原料のコストや取り扱いの容易さなどの点から、LiOHとLi2CO3の一方又は両方とSi単体とを含む材料が特に望ましい。1次原料も、2次原料、すなわち前記Si・珪酸リチウム含有原料と同様、O量の調整等のためにSi酸化物(SiOx;0<x≦2)を含むことができる。
【0027】
ここにおける珪酸リチウム生成反応は、SiOガスとLiガスとを同時に発生させる反応の直前に行うことができる。すなわち、同一反応容器内で1次原料を加熱焼成して2次原料とした後、引き続いてその2次原料を加熱することができる。また、1次原料を事前に加熱焼成して2次原料とすることもできる。1次原料の加熱焼成を減圧下で行うことにより、不純物元素がより分離されやすくなる。1次原料を事前に加熱焼成する場合は、酸化を防ぐために、その加熱焼成を不活性ガス雰囲気中や減圧下で行うことが望ましい。
【0028】
Si、O及びLiを含有する原料の平均組成については、SiLixOyで表することができ、0.05<x<y<1.2が望ましく、特にxについては0.05<x<0.7が、yについては0.9<y<1.1が望ましく、この範囲内で原料中のLi、Si、Oが狙いの元素比となるように調整する。
【0029】
xが小さすぎるとLi添加効果が十分に得られない。一方、xが大きい場合はLiガス発生量が多くなり、反応性の高いLiリッチ相が形成されるおそれがある。yの値が過小、又は過大であると、原料の残留物が増えるおそれがある他、Liとの組成比が変化することでLiガスが多量に発生し、Liリッチ相を生じるおそれがある。
【0030】
同一平面上で冷却して回収した材料(析出物)は所定の粒度に調整、粉砕することにより負極材用粉末とされる。粉砕方法は特に限定されないが、金属不純物が混入しないように配慮するのがよく、具体的には粉体接触部にはセラミック等の非金属材料を用いるのが望ましい。
【0031】
負極材用粉末は、粉末粒子の表面の一部又は全部に導電性炭素皮膜が被覆されていてもよい。導電性炭素皮膜の被覆により表面抵抗が下がり、電池特性が向上する。ここにおける導電性炭素皮膜は、例えば炭化水素ガスを用いた熱CVD反応により得られるが、その方法は特には限定されない。
【発明の効果】
【0032】
本発明の酸化珪素系負極材は、負極材用粉末粒子中におけるLi濃度分布の不均一と、粉末粒子間におけるLi濃度分布の不均一の両方を解消することにより、Li濃度分布の不均一に起因する電池性能の低下を効果的に回避して、電池性能の向上に大きな効果を発揮することができる。
【0033】
また、本発明の酸化珪素系負極材の製造方法は、粉末粒子中におけるLi濃度分布の不均一と、粉末粒子間におけるLi濃度分布の不均一の両方が解消された負極材用粉末を製造することができるので、Li濃度分布の不均一に起因する電池性能の低下を効果的に回避して、電池性能の向上に大きな効果を発揮することができる。
【図面の簡単な説明】
【0034】
【
図1】本発明の酸化珪素系負極材に係る粉末の断面TEM観察による粒子像である。
【発明を実施するための形態】
【0035】
以下に本発明の実施形態を説明する。本発明の酸化珪素系負極材は、典型的には次のような方法により製造される。
【0036】
まず、Si、O及びLiを含有する原料として、Si粉末と珪酸リチウム粉末としての例えばLi2Si2O5粉末とを混合する。必要に応じて、O量調整のためにSiO2粉末を混合する。各粉末の混合比は、混合粉末の平均組成SiLixOyが0.05<x<y<1.2を満足する範囲内で、且つLi、Si、Oの元素比(Li:Si:O)が狙い値(例えば1:0.4:1)となるように調整される。
【0037】
次いで、前記原料としての混合粉末を反応容器に仕込み、減圧下で加熱することにより、混合原料中の特に珪酸リチウムからガスを発生させる。ここにおけるガス発生反応は、SiOガスとLiガスとが同時に発生するものとなる。化学式で説明すると、一般式では式(1)と推定され、珪酸リチウムがLi2Si2O5の場合は式(2)と推定される。珪酸リチウムが一般式ではxLi2O・ySiO2と表されることは前述したとおりである。
【0038】
【0039】
式(1)及び式(2)から分かるように、Si単体が共存している状況下での加熱により、珪酸リチウムからSiOガスとLiガスとが同時に発生する。ここにおける反応はSiによる還元反応と考えられる。
【0040】
そして、反応容器内で原料からガスを発生させると同時に、発生したガスを反応容器内の上部に配置された蒸着台の表面で冷却し析出させる。反応終了後、蒸着台の表面から析出物を回収する。回収した析出物はLi含有酸化珪素材料であり、これを粉砕して所定粒度の負極材用粉末とする。
【0041】
反応容器内で原料からSiOガスとLiガスを同時に発生させたので、両者の混合ガスは濃度分布が均一であり、これを蒸着台の同一面上で冷却して得た析出物も濃度分布が均一となる。したがって、これを粉砕して得た粉末においては、粉末粒子間におけるLi濃度分布も個々の粉末粒子中におけるLi濃度分布も均一となり、これを負極材用粉末に用いた場合はLiリッチ相の発生が抑制されていることにより、反応性が低くなり、電池性能が向上する。
【0042】
別の実施形態として、Si粉末とLiOH粉末とを混合する。必要に応じて、O量調整のためにSiO2粉末を混合する。この混合粉末を1次原料として、反応容器内に仕込み、Ar雰囲気中で加熱して焼成する。Si単体が共存する状況下でLiOHを加熱したときの反応は、化学式で示すと、式(3)の前段部のように推定される。
【0043】
【0044】
式(3)の前段部から分かるように、Si単体が共存する状況下でLiOHを加熱して焼成することにより、珪酸リチウム(Li4SiO4)が生成すると同時に、余計な元素であるHがガス成分として取り除かれる。その結果、焼成物は珪酸リチウム(Li4SiO4)と、残ったSi単体との混合物となる。これは、先の実施形態で用いたSi、O及びLiを含有する原料に対応する。
【0045】
そして、この焼成物を2次原料として、減圧下で加熱を続ける。そうすると、式(3)の後段部に示すように、2次原料中では、Si単体が共存する状況下で珪酸リチウム(Li4SiO4)が加熱されることにより、当該珪酸リチウム(Li4SiO4)からSiガスとLiガスが同時に発生する。ここにおける発生ガスを同一面上で冷却して回収することにより、Li濃度分布が均一な負極材用粉末が得られることも先の実施形態の場合と同様である。2次原料の加熱を続ける代わりに、その2次原料を新たに加熱し直してもよい。
【0046】
かくして、Si単体及びLiOHを含む1次原料を加熱焼成することにより、Si単体及び珪酸リチウムを含む原料(Si・珪酸リチウム含有原料)が得られ、これを2次原料として加熱することによりSiOガスとLiガスを同時に発生させることができる。
【0047】
LiOHの代わりにLi2CO3を用いることもできる。すなわち、Si粉末とLi2CO3粉末とを混合する。必要に応じて、O量調整のためにSiO2粉末を混合する。この混合粉末を1次原料として、反応容器内に仕込み、Ar雰囲気中で加熱して焼成する。Si単体が共存する状況下でLi2CO3を加熱したときの反応は、化学式で示すと、式(4)の前段部のように推定される。
【0048】
式(4)の前段部から分かるように、Si単体が共存する状況下でLi2CO3を加熱して焼成することにより、珪酸リチウム(Li4SiO4)が生成すると同時に、余計な元素であるCがガス成分として取り除かれる。その結果、焼成物は珪酸リチウム(Li4SiO4)と、残ったSi単体との混合物となる。これは、先の実施形態で用いたSi、O及びLiを含有する原料に対応する。
【0049】
そして、この焼成物を2次原料として、減圧下で加熱を続けると、式(4)の後段部に示すように、2次原料中では、Si単体が共存する状況下で珪酸リチウム(Li4SiO4)が加熱されることにより、当該珪酸リチウム(Li4SiO4)からSiガスとLiガスが同時に発生する。ここにおける発生ガスを同一面上で冷却して回収することにより、Li濃度分布が均一な負極材用粉末が得られることは、先の実施形態の場合と同様である。2次原料の加熱を続ける代わりに、その2次原料を新たに加熱し直してもよい。
【0050】
かくして、Si単体及びLi2CO3を含む1次原料を加熱焼成することによっても、Si単体及び珪酸リチウムを含む原料(Si・珪酸リチウム含有原料)が得られ、これを2次原料として加熱することによりSiOガスとLiガスを同時に発生させることができる。LiOH又はLi2CO3を用いる代わりに、LiOH及びLi2CO3を用いることもできる。
【0051】
なお、実施形態における化学反応を化学式(1)~(4)で示したが、これは現象を単純化したモデルケースでの推定反応であり、実際の反応ではO量調整のためにSiO2等が加わることなどもあって、更に複雑な反応となることが予想される。
【実施例】
【0052】
(実施例1)
Si粉末とSiO2粉末とLi2Si2O5粉末とを21:15:2のモル比で混合した。混合粉末の元素比はSi:Li:O=1:0.1:1である。この粉末を原料として反応容器に仕込み、減圧下で1400℃に加熱した。発生したガスを反応容器内の上部に配置された蒸着台で冷却し回収した。そして、回収された材料(析出物)をジルコニア容器及びボールを用いたボールミルにより粉砕して粉末とした。粉末の平均粒径をレーザー回折式粒度分布測定により調べたところ5.2μmであった。
【0053】
得られた粉末から無作為に10個の粒子を抽出し、各粒子に対して断面TEM観察を行い、粒子の最表面から深さ50nmの位置において、縦20nm×横400nmの範囲に対してEELS測定を行うことによりSiスペクトル強度とLiスペクトル強度とを求め、Siスペクトル強度に対するLiスペクトル強度の比を粒子表面のLi濃度L1とした。粒子の最表面から深さ400nmの位置においても、同様の手法によりSiスペクトル強度に対するLiスペクトル強度の比を求めて、これを粒子内部のLi濃度L2とした。そして、10個の粒子についてL1/L2を求めると共に、L2の標準偏差を求めた。
【0054】
すなわち、粒子の測定については、FB-2000A(日立)を用いた不活性雰囲気下におけるFIB加工により粒子断面を切り出し、原子分解能分析電子顕微鏡JEM-ARM200F(JEOL)によりTEM観察を実施し、GATAN GIF QuantumエネルギーフィルタによりEELS測定を実施した。TEMの測定は、加速電圧200 kV、ビーム径0.2nmφ、エネルギー分解能0.5eV FWHMの条件で実施した。
【0055】
また、得られた粉末のLi量(Li/Si)及びO量(O/Si)をICP発光分析法、及び赤外線吸収法により測定した。
【0056】
(実施例2)
Si粉末とLi
2Si
2O
5粉末とを3:1のモル比で混合した。混合粉末の元素比はSi:Li:O=1:0.4:1である。その他は実施例1と同様にして平均粒径が5.4μmの粉末を作製した。そして、作製された粉末のL1/L2及びL2の標準偏差、並びにLi量及びO量を求めた。当該粉末のL1及びL2を測定するに当たって用いた粉末粒子の断面TEM観察像を
図1に示す。
【0057】
(実施例3)
Si粉末とLi2SiO3粉末とを2:1のモル比で混合した。混合粉末の元素比はSi:Li:O=1:0.67:1である。その他は実施例1と同様にして平均粒径が5.1μmの粉末を作製した。そして、作製された粉末のL1/L2及びL2の標準偏差、並びにLi量及びO量を求めた。
【0058】
(実施例4)
Si粉末とSiO2粉末とLiOH粉末とを4:1:3のモル比で混合した。この粉末を1次原料として反応容器に仕込み、大気圧のAr雰囲気中で1400℃に加熱して焼成した。焼成材の一部を回収して分析したところ元素比がSi:Li:O=1:0.6:1であり、H成分が残留していないことを確認できた。
【0059】
次いで、その焼成材を2次原料として、引き続き前記反応容器内において減圧下で1400℃に加熱し、発生したガスを反応容器内の上部に配置された蒸着台で冷却し回収した。そして、回収された材料(析出物)を実施例1と同様にして粉末化した後、その粉末のL1/L2及びL2の標準偏差、並びにLi量及びO量を求めた。得られた粉末の平均粒径は5.6μmであった。
【0060】
(比較例1)
Si粉末とSiO2粉末とを1:1のモル比で混合した。混合粉末中の元素比はSi:Li:O=1:0:1である。その他は実施例1と同様にして平均粒径が5.1μmの粉末を作製した。作製された粉末はLiを含まないので、O量のみを測定した。
【0061】
(比較例2)
比較例1で作製された粉末、すなわちSiO粉末に対し、LiがSi及びOに対して0.4モルとなるように水素化リチウム(LiH)の粉末を添加した後、その粉末をAr雰囲気中において850℃に加熱して焼成することにより、平均粒径が5.2μmの粉末を得た。得られた粉末のL1/L2及びL2の標準偏差、並びにLi量及びO量を求めた。
【0062】
(比較例3)
反応容器を二つ用意し、一方の容器には、Si粉末とSiO2粉末とを1:1のモル比で混合したものを仕込んだ。混合粉末の元素比はSi:Li:O=1:0:1である。また、他方の容器には、金属Liを不活性ガス雰囲気で仕込んだ。そして、一方の容器で発生するSiOガスと、他方の容器で発生するLiガスが1:0.4の分圧となるように、二つの容器における原料の重量比及び加熱温度を調整すると共に、両容器で発生するガスを混合して共通の蒸着台にて冷却し回収した。
【0063】
そして、回収された材料(析出物)を実施例1と同様にして粉末化した後、その粉末のL1/L2及びL2の標準偏差、並びにLi量及びO量を求めた。得られた粉末の平均粒径は5.2μmであった。
【0064】
(電池評価)
実施例1~4及び比較例1~3において作製された粉末試料に対して次の手順で電池評価を実施した。
【0065】
粉末試料と非水系(有機系)バインダーであるPIバインダーと、導電助材であるKBとを80:15:5の重量比で混合し、有機系のNMPを溶媒として混練してスラリーとした。作製したスラリーを銅箔上に塗工し、350℃で30min真空熱処理することで負極とした。この負極と対極(Li箔)と電解液(EC:DEC=1:1)と電解質(LiPF61mol/L)とセパレータ(ポリエチレン製多孔質フィルム30μm厚)とを組み合わせてコインセル電池を作製した。
【0066】
作製されたコインセル電池に充放電試験を実施した。充電は、電池の両極間の電圧が0.005vに達するまでは0.1Cの定電流で行い、電圧が0.005Vに達した後は電流が0.01Cになるまで定電位充電で行った。放電は、電池の両極間の電圧が1.5Vに達するまで0.1Cの定電流で行った。
【0067】
この充放電試験により、初期充電容量及び初期放電容量を測定して、初期効率を求めた。結果を粉末試料の主要な仕様(Li量、O量、L1/L2及びL2の標準偏差)と共に表1に示す。
【0068】
【0069】
比較例1では、SiO粉末に対してLiドープを行っていない。これに比べると、実施例1~4のいずれにおいても初期効率が向上しており、Liドープによる性能改善効果が確認できた。ちなみに、粒子表面のLi濃度に対する粒子内部のLi濃度の比であるL1/L2は、いずれの例でも0.8<L1/L2<1.2の範囲内に収まっており、L2の標準偏差も0.1以下に収まっている。
【0070】
一方、比較例2では、特許文献1に示された固相法(焼成法)によりLiドープを行った。この方法に特有の傾向として、粒子表面にLiが濃く偏在し、粒子表面のLi濃度に対する粒子内部のLi濃度の比であるL1/L2が1.2を超える方に大きくばらついたため、バインダーの性能が劣化し、比較例1に比べても初期効率が低下した。
【0071】
他方、比較例3では、特許文献2に示された気相法(析出法)によりLiドープを行った。SiOガスとLiガスとの混合ガスを用いたため、粒子表面と粒子内部のLi濃度差は小さいものの、粒子間のLi濃度のばらつきが大きく、初期効率が比較例2よりも更に低い結果となった。これは、Liが濃い粒子が発生し、これがバインダーと反応したためと考えられる。
【0072】
ちなみに、粉末中のLi量(x=Li/Si)及びO量(y=O/Si)は、Liドープを行っていない比較例1以外は全て、本発明範囲である0.05<x<y<1.2を満たす。このことからしても、L1/L2及びL2の標準偏差が、負極材粉末の有効な性能指標であることが分かる。