(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-20
(45)【発行日】2022-06-28
(54)【発明の名称】炭素及びガラス繊維層を有する複合コイルばね
(51)【国際特許分類】
F16F 1/06 20060101AFI20220621BHJP
B29C 70/10 20060101ALI20220621BHJP
【FI】
F16F1/06 B
B29C70/10
(21)【出願番号】P 2021539343
(86)(22)【出願日】2019-07-01
(86)【国際出願番号】 US2019040068
(87)【国際公開番号】W WO2021002837
(87)【国際公開日】2021-01-07
【審査請求日】2021-07-05
(73)【特許権者】
【識別番号】000176833
【氏名又は名称】三菱製鋼株式会社
(74)【代理人】
【識別番号】100083806
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100101247
【氏名又は名称】高橋 俊一
(74)【代理人】
【識別番号】100095500
【氏名又は名称】伊藤 正和
(74)【代理人】
【識別番号】100098327
【氏名又は名称】高松 俊雄
(72)【発明者】
【氏名】ヨシオカ ジュン
【審査官】大谷 謙仁
(56)【参考文献】
【文献】特開平4-136530(JP,A)
【文献】特開2006-226327(JP,A)
【文献】米国特許出願公開第2015/0204404(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F16F 1/06
B29C 70/10
(57)【特許請求の範囲】
【請求項1】
複合コイルばねであって、
コイル軸に沿って延びるコイル本体を含み、前記コイル本体は、
ポリマーマトリックスと、
前記ポリマーマトリックス内に配置された、炭素繊維コアと、前記コイル軸に対して交互に斜めの繊維角になるように前記炭素繊維コアに巻かれた複数の繊維層とを含み、
前記複数の繊維層は、前記炭素繊維コアから始まり内側から外側に向けて、
前記コイル軸に対して交互に斜めの繊維角を有する少なくとも2つの連続した炭素繊維中間繊維層と、
直ちに続く前記コイル軸に対して交互に斜めの繊維角を有する少なくとも2つの連続したガラス繊維中間繊維層と、
直ちに続く炭素繊維最外繊維層と
を含む複合コイルばね。
【請求項2】
前記ポリマーマトリックスは、ポリマーと、前記ポリマー中に分散されたシリカナノ粒子とを含む請求項1に記載の複合コイルばね。
【請求項3】
前記ポリマーマトリックスは、重量比で10%から25%のシリカナノ粒子を含む請求項2に記載の複合コイルばね。
【請求項4】
前記ポリマーマトリックスは、重量比で15%から20%のシリカナノ粒子を含む請求項3に記載の複合コイルばね。
【請求項5】
前記複数の繊維層の各々は層厚を規定し、前記炭素繊維最外繊維層の層厚は前記炭素繊維中間繊維層の各々の厚さよりも大きい請求項1に記載の複合コイルばね。
【請求項6】
前記複数の繊維層の各々は層厚を規定し、前記炭素繊維最外繊維層の層厚は前記ガラス繊維中間繊維層の各々の層厚よりも大きい請求項1に記載の複合コイルばね。
【請求項7】
前記複数の繊維層の各繊維層は層厚を規定し、前記炭素繊維最外繊維層の層厚は前記炭素繊維中間繊維層の各々の層厚よりも大きく、前記ガラス繊維中間繊維層の各々の層厚よりも大きい請求項1に記載の複合コイルばね。
【請求項8】
前記炭素繊維中間繊維層の炭素繊維及び前記炭素繊維最外繊維層の炭素繊維はそれぞれの引張弾性率を規定し、前記炭素繊維最外繊維層の炭素繊維の引張弾性率は前記炭素繊維中間繊維層の炭素繊維の引張弾性率よりも大きい請求項1に記載の複合コイルばね。
【請求項9】
前記炭素繊維最外繊維層の炭素繊維の引張弾性率は、前記炭素繊維中間繊維層の炭素繊維の引張弾性率よりも少なくとも1.25倍大きい請求項8に記載の複合コイルばね。
【請求項10】
前記ポリマーマトリックスは、ポリマーと、前記ポリマー中に分散されたシリカナノ粒子とを含む請求項9に記載の複合コイルばね。
【請求項11】
前記ポリマーマトリックスは、重量比で10%から25%のシリカナノ粒子を含む請求項10に記載の複合コイルばね。
【請求項12】
前記少なくとも2層の連続した炭素繊維中間繊維層は、前記コイル軸に対して交互に斜めの繊維角を持つ少なくとも3層の連続した炭素繊維中間繊維層を含む請求項11に記載の複合コイルばね。
【請求項13】
前記複数の繊維層は、前記炭素繊維中間繊維層の5つから構成された請求項11に記載の複合コイルばね。
【請求項14】
前記複数の繊維層は、前記ガラス繊維中間繊維層の3つから構成された請求項13に記載の複合コイルばね。
【請求項15】
前記複数の繊維層の各々は層厚を規定し、前記炭素繊維最外繊維層の層厚は、前記炭素繊維中間繊維層の各々の厚さよりも大きく、前記ガラス繊維中間繊維層の各々の厚さよりも大きい請求項14に記載の複合コイルばね。
【請求項16】
前記炭素繊維コア及び前記複数の繊維層の繊維は、前記コイル本体の体積で38%から58%を含む請求項1に記載の複合コイルばね。
【請求項17】
前記炭素繊維中間繊維層の炭素繊維及び前記炭素繊維最外繊維層の炭素繊維はそれぞれの引張弾性率を規定し、前記炭素繊維最外繊維層の炭素繊維の引張弾性率は前記炭素繊維中間繊維層の炭素繊維の引張弾性率よりも小さい請求項1に記載の複合コイルばね。
【発明の詳細な説明】
【背景技術】
【0001】
コイルばねは、車両サスペンションシステムなどの様々な異なる用途で知られており、使用されている。典型的なコイルばねは、そのような用途に必要な機械的特性、耐久性、及び部品サイズを提供するために、鋼鉄から製造されている。複合コイルばねは、鋼製コイルばねよりも軽量化することができる。しかしながら、複合コイルばねは、鋼製コイルばねの機械的特性、耐久性、及びサイズの組み合わせ、並びに許容できるコストに匹敵することは困難である。
【発明の概要】
【0002】
本開示の一例による複合コイルばねは、コイル軸に沿って延びるコイル本体を含んでいる。コイル本体は、ポリマーマトリックスと、ポリマーマトリックス内に配置された、炭素繊維コアと、コイル軸に対して交互に斜めの繊維角で炭素繊維コアの周りに巻かれた複数の繊維層とを含んでいる。複数の繊維層は、炭素繊維コアから始まり内側から外側へ向けて、コイル軸に対して交互に斜めの繊維角の少なくとも2つの連続した炭素繊維中間繊維層と、直ちに続くコイル軸に対して交互に斜めの繊維角の少なくとも2つの連続したガラス繊維中間繊維層と、直ちに続く炭素繊維最外繊維層とを含んでいる。
【0003】
前述の実施形態のいずれかのさらなる実施形態では、ポリマーマトリックスは、ポリマーと、ポリマー中に分散されたシリカナノ粒子とを含んでいる。
【0004】
前述の実施形態のいずれかのさらなる実施形態では、ポリマーマトリックスは、重量比でシリカナノ粒子の10%から25%を含んでいる。
【0005】
前述の実施形態のいずれかのさらなる実施形態では、ポリマーマトリックスは、重量比でシリカナノ粒子の15%から20%を含んでいる。
【0006】
前述の実施形態のいずれかのさらなる実施形態では、複数の繊維層の各繊維層は、層厚を規定し、炭素繊維最外繊維層の層厚は、炭素繊維中間繊維層の各々の層厚よりも大きい。
【0007】
前述の実施形態のいずれかのさらなる実施形態では、複数の繊維層の各繊維層は層厚を規定し、炭素繊維最外繊維層の層厚は、ガラス繊維中間繊維層の各々の層厚よりも大きい。
【0008】
前述の実施形態のいずれかのさらなる実施形態では、複数の繊維層の各繊維層は、層厚を規定する。炭素繊維最外繊維層の層厚は、炭素繊維中間繊維層の各々の層厚よりも大きく、ガラス繊維中間繊維層の各々の層厚よりも大きい。
【0009】
前述の実施形態のいずれかのさらなる実施形態では、炭素繊維中間繊維層の炭素繊維及び炭素繊維最外繊維層の炭素繊維がそれぞれの引張弾性率を規定し、炭素繊維最外繊維層の炭素繊維の引張弾性率は炭素繊維中間繊維層の炭素繊維の引張弾性率よりも大きい。
【0010】
前述の実施形態のいずれかのさらなる実施形態では、炭素繊維最外繊維層の炭素繊維の引張弾性率は、炭素繊維中間繊維層の炭素繊維の引張弾性率よりも少なくとも1.25倍大きい。
【0011】
前述の実施形態のいずれかのさらなる実施形態では、ポリマーマトリックスは、ポリマーと、ポリマー中に分散されたシリカナノ粒子とを含んでいる。
【0012】
前述の実施形態のいずれかのさらなる実施形態では、ポリマーマトリックスは、重量比でシリカナノ粒子の10%から25%を含んでいる。
【0013】
前述の実施形態のいずれかのさらなる実施形態では、少なくとも2つの連続した炭素繊維中間繊維層は、コイル軸に対して交互に斜めの繊維角を有する少なくとも3つの連続した炭素繊維中間繊維層を含んでいる。
【0014】
前述の実施形態のいずれかのさらなる実施形態では、複数の繊維層は、5つの炭素繊維中間繊維層を含んでいる。
【0015】
前述のいずれかの実施形態のさらなる実施形態では、複数の繊維層は、3つのガラス繊維中間繊維層を含んでいる。
【0016】
前述の実施形態のいずれかのさらなる実施形態では、複数の繊維層の各繊維層は、層厚を規定する。炭素繊維最外繊維層の層厚は、炭素繊維中間繊維層の各々層厚よりも大きく、ガラス繊維中間繊維層の各々の層厚よりも大きい。
【0017】
前述の実施形態のいずれかのさらなる実施形態では、炭素繊維コア及び複数の繊維層の繊維は、体積でコイル本体の38%から58%を構成している。
【0018】
前述の実施形態のいずれかのさらなる実施形態では、炭素繊維中間繊維層の炭素繊維及び炭素繊維最外繊維層の炭素繊維はそれぞれの引張弾性率を規定し、炭素繊維最外繊維層の炭素繊維の引張弾性率は、炭素繊維中間繊維層の炭素繊維の引張弾性率よりも小さい。
【図面の簡単な説明】
【0019】
本開示の様々な特徴及び利益は、以下の詳細な説明から当業者に明らかになるであろう。詳細な説明に付随する図面は、以下のように簡単に説明することができる。
【0020】
【
図3】
図3は、繊維強化ポリマーマトリックス複合体の代表的な断面図である。
【
図5】
図5は、繊維強化ポリマーマトリックス複合体の別の代表例の断面図を示す。
【
図6A】
図6Aは、コイルばねを製造する巻線工程の図を示す。
【
図6B】
図6Bは、コイルばねを製造する巻線工程の図を示す。
【
図6C】
図6Cは、コイルばねを製造する巻線工程の図を示す。
【発明を実施するための形態】
【0021】
図1は、例えば車両のサスペンションシステムにおいて使用され得る例示的な複合コイルばね20を示している。しかしながら、複合コイルばね20は、そのような用途に限定されないことが理解されるであろう。複合コイルばね20は、らせん状であってもよいし、あるいは、それに代わって異なるコイル形状を有していてもよい。本開示において、「コイル」又はその変形例は、
図1の軸Aのような固定された直線軸の周りに連続的に曲線を描く本体を意味している。理解されるように、複合コイルばね20は、強度があり、耐久性があり、軽量であり、比較的安価に製造できる。
【0022】
複合コイルばね20は、端部26/28間のコイル軸24に沿って延びるコイル本体22を含んでいる。縮尺は示されていないが、コイルばね20は、車両サスペンションシステムでの使用に適合したサイズ及び形状を有していてもよい。一例として、コイルばね20は、一般に、100ミリメートル(mm)から1000mmの軸方向長さ、30mmから350mmの径、3回のコイル巻数から25回のコイル巻数、及び1ミリメートル当たり1ニュートン(N/mm)から500N/mmのばね定数を有していてもよい。
【0023】
図2は、コイル軸24に垂直なコイル本体22の代表的な断面図を示している。コイル本体22は、炭素繊維コア30と、炭素繊維コア30に巻き付けられた複数の繊維層32とを含んでいる。炭素繊維コア30及び繊維層32は、繊維強化ポリマーマトリックス複合体で形成されている。このような複合体の代表的な例が
図3に描かれており、ポリマーマトリックス34と、ポリマーマトリックス34内に配置された繊維36とを含んでいる。図示されていないが、各繊維36は、トウと呼ばれる単繊維の束で形成されている。単一の繊維のトウは、数千本の単繊維を含んでいてもよい。一例として、コイルばね20は、体積で、繊維36の38%から58%を含み、残りはポリマーマトリックス34である。
【0024】
その術語が示すように、炭素繊維コア30の繊維は炭素繊維である。以下にさらに詳細に説明するように、繊維層32の繊維は、ガラス繊維又は炭素繊維である。したがって、コア30及び繊維層32の繊維は、ポリマーマトリックス34内に埋め込まれ、すなわちポリマーマトリックス34内に配置されている。一例として、ポリマーマトリックス34は、エポキシなどの熱硬化性ポリマーで形成される。HEXIONから入手可能な例示的なエポキシは、ビスフェノールFのジグリシジルエーテルであって、エポキシドあたりの等価重量が165から173、密度が1.17グラム/立方センチメートル(g/cm3)であるエポン樹脂862であり、非MDA芳香族アミンであって、エポキシドあたりの当量が42から48、密度が1.02g/cm3である硬化剤Wを有している。硬化した状態では、このエポキシは2.8ギガパスカル(GPa)の弾性率と1.15g/cm3の密度を有している。
【0025】
図4の代表図に示すように、繊維層32の繊維36は、コイル軸Aに対して交互に斜めの繊維角で炭素繊維コア30に巻き付けられており、例えば、繊維角は、+45°と-45°との間で交互になっている。なお、+45°から-45°が好ましいが、繊維角は、交互に+/-20°から58°であってもよい。
【0026】
再び
図2を参照すると、繊維層32は、炭素繊維コア30から始まり内側から外側に向かい、コイル軸Aに対して交互に斜めの繊維角を有する少なくとも2つの連続した炭素繊維中間繊維層32aと、コイル軸Aに対して交互に斜めの繊維角を有する少なくとも2つの連続したガラス繊維中間繊維層32bと、その直後に続く炭素繊維最外繊維層32cとを含んでいる。例えば、少なくとも2つの連続した炭素繊維中間繊維層32aは、少なくとも3つの連続した炭素繊維中間繊維層を含んでいる。図示された例では、5つの連続した炭素繊維中間繊維層32a及び3つの連続したガラス繊維中間繊維層32bがある。本明細書で使用されるように、「層」は、層の全周にわたって均一な半径方向の厚さを有し、層のすべての繊維は、同じ繊維角で配向されている。
【0027】
コア30及び層32内の繊維36の種類、及び層の相対的な位置は、コイルばね20において特定の機能を果たしている。例えば、コア30及び連続した炭素繊維中間繊維層32aは、一般に、金属コイルと比較して重量を減少させ、コイルばねの「たわみ」を減少させるための曲げ剛性を提供している。この点で、コア30及び連続する炭素繊維中間繊維層32aには、中間引張弾性率の炭素繊維が使用されている。連続したガラス繊維中間繊維層32bは、所望のばね特性を得るために棒の直径を増加させるために機能している。これらの層32bはまた、比較的高い横ひずみを受ける。これらの点で、ガラス繊維は、層32bに使用される。最外層の繊維層32cは、ねじり剛性のために機能している。この点で、層32cには、中間又は高引張弾性率の炭素繊維が使用される。説明した炭素繊維とガラス繊維との組み合わせで作られた複合コイルばねは、炭素繊維のみの複合コイルばねに比べて比較的安価である。
【0028】
ガラス繊維の例は、オーウェンスコーニング(Owens Coming)から、指定Advantex(登録商標)ガラス2400TEX(トウ当たり4000単繊維)という名称で入手可能であり、これは、82GPaの引張弾性率、2.66g/cm3の密度、及び17マイクロメートルの公称繊維径を有している。中間引張弾性率の炭素繊維の例としては、三菱ケミカル炭素繊維・複合材料からTRH50という名称で提供されており、1トウあたり18000単繊維、引張弾性率255GPa、密度1.82g/cm3、公称繊維径6マイクロメートルを有している。高引張弾性率の炭素繊維の例としては、三菱ケミカル炭素繊維・複合材料からMS40という名称で入手可能であり、1トウあたり12000単繊維、引張弾性率340GPa、密度1.77g/cm3、公称繊維径6マイクロメートルを有している。これらの炭素繊維のさらなる特性は、以下の表1に示されている。理解されるように、炭素繊維の特性は、等級及び供給者によって異なることがある。
【0029】
表1:中間及び高引張弾性率炭素繊維の特性
【表1-1】
【0030】
【0031】
一般に、炭素繊維は、引張弾性率に応じて、標準弾性率、中間弾性率、高弾性率、及び超高弾性率を含む4つの指定で入手できる。標準弾性率の炭素繊維は、約33百万ポンド/平方インチ(Msi)で格付けされ、中間弾性率の炭素繊維は、33Msiを超えて42Msiまでで格付けされる。高弾性率の炭素繊維は、少なくとも42Msiが格付けを有し、超高弾性率の炭素繊維は、65Msiから約135Msiまでが格付けされる。一般的に、弾性率は、炭素繊維が製造される方法に由来する。ほとんどの炭素繊維は、炭素を含む出発材料から作られており、それは、長いプラスチックのひもの中に配置され、その後、炭素原子だけを残して不純物が燃焼されるように熱分解される。熱分解プロセスに変更を加えることで、より高い弾性率を持つ高純度の糸が得られる。高弾性率及び超高弾性率の炭素繊維は、ピッチ繊維としても知られており、標準弾性率又は中間弾性率の炭素繊維とは異なる原料として開始され、異なる製造プロセスを使用している。一般に、炭素繊維の純度が高くなると、コストが上昇し、弾性率が上昇し、破断伸度が低下し、強度が低下する。
【0032】
コイルばね20の一つのさらなる例では、コア30、層32b、及び最外層の繊維層32cを含む炭素繊維のすべてが、中間引張弾性率の炭素繊維である。さらなる例を、以下の表2に示す。
【0033】
【0034】
一変形例では、コア30及び層32bの炭素繊維は中間引張弾性率の炭素繊維であり、最外繊維層32cの炭素繊維は高引張弾性率の炭素繊維であり、したがって、最外繊維層32cの炭素繊維の引張弾性率は層32bの炭素繊維の引張弾性率よりも大きい。さらなる例を、以下の表3に示す。一つのさらなる例では、最外繊維層32cの炭素繊維の引張弾性率は、上述した中間及び高引張弾性率の炭素繊維の引張弾性率の範囲にあり、層32bの炭素繊維の引張弾性率よりも少なくとも1.25倍から約1.9倍まで大きい。一つの代替例では、最外繊維層32cの炭素繊維の引張弾性率は、上述した中間及び高引張弾性率の炭素繊維の引張弾性率の範囲にあり、層32bの炭素繊維の引張弾性率よりも1.05倍から約1.25倍まで小さい。
【0035】
【0036】
上記の実施例によって示されるように、各層32(例えば、表中では「第1層」、「第2層」などと称される)は、層厚を規定している。本明細書の上記のいずれの例においても、最外繊維層32cの層厚は、繊維層32aの各々の層厚よりも大きくてもよく(例えば、表中の第1層から第5層)、最外繊維層32cの層厚は、繊維層32bの各々の層厚よりも大きくてもよく(例えば、表中の第6層から第8層)、最外繊維層32cの層厚は、繊維層32bの各々の層厚よりも大きくてもよい。
【0037】
図5を参照すると、前記のいずれかのさらなる実施例の繊維強化ポリマー複合体は、ポリマーマトリックス134を含んでいてもよい。本開示において、類似の参照数字は、適切な場合には類似の要素を指し、100又はその倍数を付加した参照数字は、対応する要素の同じ特徴及び利益を組み込むことが理解される改変された要素を指している。この場合、ポリマーマトリックス134は、ポリマー134a(例えば、上述したようなエポキシ)と、ポリマー134a中に分散されたシリカナノ粒子134bとを含んでいる。例えば、ポリマーマトリックス134は、重量比でシリカナノ粒子134bの10%から25%、より好ましくは、シリカナノ粒子134bの15%から20%を含んでいる。ナノ粒子は、100ナノメートルを超えない平均最大サイズを有する粒子を指してもよい。しかし、最も典型的には、シリカナノ粒子のサイズは、5ナノメートルから50ナノメートル、例えば約20ナノメートルである。
【0038】
シリカナノ粒子の一例は、NANOPOX F400の名称でエボニックから入手可能であり、これは、最終的なポリマーマトリックス134中に所望の量のシリカナノ粒子を得るために、別のエポキシ樹脂と混合することができるコロイダルシリカを有するエポキシ樹脂の濃縮物である。F400はDGEBAベースの樹脂を使用し、エポキシ当量295、密度1.4g/cm3、重量比でシリカナノ粒子の40%を有する。
【0039】
シリカナノ粒子134bは、ポリマーマトリックス134の引張弾性率を増加させる機能を有している。一例として、弾性率を約200%増加させてもよい。ポリマーマトリックス134のこの弾性率の増加は、繊維36を横切る方向の複合薄板の弾性率の増加を引き起こし、その結果、コイルばね20のばね定数の増加をもたらす。
【0040】
例示的な特性及び対照的な鋼製コイルばねとの比較を、以下の表4に示す。表4において、設計Aは鋼製コイルばねであり、設計Dは上記表2に従うコイルばねであり、設計E及びFは上記表3に従うコイルばねである。設計Eのポリマーマトリックスはシリカナノ粒子を含まず、設計Fのポリマーマトリックスはシリカナノ粒子を重量比で約17%含む。これらの設計は、有限要素解析ソフトウェア(ANSYS-バージョン19.2、Static Structural and Composites PrepPost)を使用して、固定された設計基準に従って解析した。有限要素分析(FEA)を統合した複合コイルばねの設計プロセスは、実際の複合コイルばねと良好な相関関係を示した。複合材用のFEAの入力として使用した繊維体積率と繊維とエポキシ樹脂の機械的特性、及び計算された薄板の機械的特性に基づいて、よく知られた混合則を利用して複合材の薄板の機械的特性を計算した。設計D、E、及びFの繊維体積はすべて50%から51%の間にある。比較を容易にするために、複合コイルばねの総巻数は同数(5.5回巻き)で設計されている。
【0041】
表4から明らかなように、設計Fのばね定数はシリカナノ粒子のために設計Eよりも大きくなっている。さらに、設計D、E、Fの各設計は、鋼の設計Aと比較して大幅に軽量化されている。また、設計D、E、Fのそれぞれのサイズは、内径と棒径で表4に示されている設計Aの鋼製コイルばねに類似している。分析は、炭素繊維コア30、連続した炭素繊維中間繊維層32a、連続したガラス繊維中間繊維層32b、及び炭素繊維最外繊維層32cの特定の構成が、サイズ及び性能の点で鋼製コイルばねの代替品として利用可能であることを示しているが、同時に、重量を約3分の2ずつ実質的に減少させることも示している。さらに、コイルばね20はまた、驚くべき耐疲労性能を示している。初期の結果は、ナノシリカを17%添加した表2に従ったコイルばねが、典型的には30万から50万サイクルで同じ試験に失敗する鋼製ばねと比較して、100万サイクルを超える疲労サイクルに首尾よく耐えられることを示している。
【0042】
【0043】
図6A、
図6B、及び
図6Cは、本明細書に記載されたコイルばね20を製造するための例示的な工程を示している。これらの図の各々は、製造プロセス中のコイルばね20を図示している。このプロセスは、一般に、そのような巻取りを実行するように適合された装置を利用する繊維巻取りプロセスである。装置は、同じ速度で同期的に回転するヘッドストックスピンドルとテールストックスピンドルと、スピンドルの中心線に平行に移動するキャリッジとを含んでもよい。ヘッドストックスピンドル及びテールストックスピンドルは、40a/40bで模式的に図示され、キャリッジは40cで図示されている。繊維36は、繊維ロービングから提供される。繊維36は、ポリマーマトリックス34/134の未硬化ポリマーに予め含浸されていてもよいし、あるいは、その代わりに、以下の工程の間に未硬化ポリマーのリザーバを通して引き出されていてもよい。
【0044】
巻き取り工程は、一般に、コア30を提供するための一つの段階と、層32を提供するための別の段階とを含む二つの段階を有している。最初に、コア30を横たえるために、ヘッドストック及びテールストックスピンドル40a/40bは静止している。キャリッジ40cは、コア30を形成する繊維36を横たえるために、ヘッドストックとテールストックスピンドル40a/40bとの間を走行する。これらの繊維は、このようにして一般的に一方向性であるが、繊維は多少のねじれを有していてもよい。キャリッジ40cがヘッドストック又はテールストックスピンドル40a/40bの上を走行するとき、繊維36はヘッドストック又はテールストックスピンドル40a/40bと係合する。ヘッドストックとテールストックスピンドル40a/40bとの間を往復して通る数は、コア30に提供される繊維ロービングの数を決定する。
【0045】
次に、層32は、コア30の繊維36の周りに巻き付けられる。これを行うために、ヘッドストック及びテールストックスピンドル40a/40bが一体的に回転される。繊維ロービングがヘッドストック及びテールストックスピンドル40a/40bに係合しているので、コア30はスピンドル40a/40bと共に回転する。コア30の回転は、キャリッジがコア30に沿って移動する際にキャリッジ40cから繊維ロービングを「巻き取る」ようにして、それによって層32の繊維36を(最終的にはコイル軸Aとなる)棒中心線軸との関係で所望の繊維角に配置する。キャリッジ40cがヘッドストック又はテールストックスピンドル40a/40b上を走行するとき、繊維のロービングはヘッドストック又はテールストックスピンドル40a/40bと係合する。キャリッジ40cは、スピンドル40a/40bを前後に通過して、所望の繊維層32の配列を生成する。キャリッジ40c及びスピンドル40a/40bの動きは、コンピュータ化されたコントローラを用いて制御されてもよい。
【0046】
ラッピング工程の終了時に、得られた棒は装置から取り外され、金型キャビティ内に配置される。金型キャビティは、コイルばねの網目状又は網目に近い形状を有している。金型及び棒は、加熱チャンバ内に配置され、加熱されて、ポリマーマトリックス34/134のポリマーを硬化させる。一例として、金型は、適当な溶媒への溶解などの加熱プロセスの後に除去されるロストコア型の金型であってもよい。硬化時には、コイルばねは、金型のキャビティの形状を実質的に保っている。ロストコア型金型の除去後、コイルばねは、最終的に設計された形状、及びコイルばねに望まれる物理的及び機械的特性を想定している。コイルばねの形状は、例えば、残留応力のために金型の除去後に多少変化してもよい。
【0047】
図示された例では特徴の組み合わせが示されているが、この開示の様々な実施形態の利益を実現するためには、それらのすべてを組み合わせる必要はない。言い換えれば、この開示の一実施形態にしたがって設計されたシステムは、必ずしも、図のいずれか一つに示された特徴のすべて、又は図に模式的に示された部分のすべてを含むとは限らない。さらに、一つの例示的な実施形態の選択された特徴は、他の例示的な実施形態の選択された特徴と組み合わせてもよい。
【0048】
先行する記述は、本質的に限定的ではなく例示的なものである。開示された実施例に対する変形及び修正は、必ずしも本開示から逸脱しないことが当業者には明らかになるであろう。この開示に与えられる法的保護の範囲は、以下の特許請求の範囲を検討することによってのみ決定することができる。