IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ダイナパワー カンパニー エルエルシーの特許一覧

特許7093761光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法
<>
  • 特許-光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法 図1
  • 特許-光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法 図2
  • 特許-光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法 図3
  • 特許-光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法 図4
  • 特許-光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法 図5
  • 特許-光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法 図6
  • 特許-光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法 図7
  • 特許-光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法 図8
  • 特許-光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-22
(45)【発行日】2022-06-30
(54)【発明の名称】光起電性エネルギのためのエネルギストレージシステム及び光起電性エネルギのストレージ方法
(51)【国際特許分類】
   H02J 3/38 20060101AFI20220623BHJP
   H02J 3/00 20060101ALI20220623BHJP
   H02J 3/32 20060101ALI20220623BHJP
   H02J 7/35 20060101ALI20220623BHJP
【FI】
H02J3/38 150
H02J3/00 180
H02J3/32
H02J7/35 K
【請求項の数】 6
(21)【出願番号】P 2019500383
(86)(22)【出願日】2018-05-14
(65)【公表番号】
(43)【公表日】2020-07-02
(86)【国際出願番号】 US2018032495
(87)【国際公開番号】W WO2018213157
(87)【国際公開日】2018-11-22
【審査請求日】2021-03-30
(31)【優先権主張番号】62/506,291
(32)【優先日】2017-05-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】517306721
【氏名又は名称】ダイナパワー カンパニー エルエルシー
(74)【代理人】
【識別番号】100104765
【弁理士】
【氏名又は名称】江上 達夫
(74)【代理人】
【識別番号】100107331
【弁理士】
【氏名又は名称】中村 聡延
(72)【発明者】
【氏名】ジョン シー. パロンビーニ
(72)【発明者】
【氏名】アパーバ ソマニ
【審査官】山本 香奈絵
(56)【参考文献】
【文献】特開2011-250673(JP,A)
【文献】国際公開第2015/133136(WO,A1)
【文献】国際公開第2013/121618(WO,A1)
【文献】国際公開第2014/017417(WO,A1)
【文献】国際公開第2014/124672(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 3/38
H02J 3/00
H02J 3/32
H02J 7/35
(57)【特許請求の範囲】
【請求項1】
電力源からの低電圧エネルギを捕捉する電力システムであって、
DCバスに結合された前記電力源と、
前記DCバス及びエネルギストレージデバイスに結合されたDC/DC電力コンバータと、
前記DCバス及びACバスに結合された電力インバータと、
制御システムと、
を備え、
前記制御システムは、
前記電力源により生成される電圧を監視し、
前記電力源が第1所定閾値より大きい電圧を生成しているか否かを判定し、
前記電力源が前記第1所定閾値より大きい電圧を生成していると判定された場合に、前記電力源が第2所定閾値より小さい電圧を生成しているか否かを判定し、
前記電力源が前記第1所定閾値と前記第2所定閾値との間の電圧を生成していると判定された場合に、MPPTモードで動作するように前記DC/DC電力コンバータを制御するとともに、前記電力源により生成されたエネルギを前記エネルギストレージデバイスにストレージし、更に、MPPTモードで動作しないように前記電力インバータ制御し
前記電力源が前記第2所定閾値以上の電圧を生成していると判定された場合に、MPPTモードで動作するように前記電力インバータを制御するとともに、前記電力源により生成されたエネルギを、前記ACバスを介して、電力グリッドに供給し、更に、MPPTモードで動作しないように前記DC/DC電力コンバータを制御する
ように構成された一以上のコントローラを有する
ことを特徴とする電力システム。
【請求項2】
前記第1所定閾値は、前記DC/DC電力コンバータにおける予測損失に等しいことを特徴とする請求項1に記載の電力システム。
【請求項3】
前記電力インバータは、前記電力インバータを動作させるために前記DCバスが到達しなければならない電圧の大きさである起動電圧を有し、
前記第2所定閾値は、前記電力インバータの前記起動電圧と等しい
ことを特徴とする請求項1に記載の電力システム。
【請求項4】
前記電力源により生成された電圧は継続的に監視され、
前記制御システムは、MPPTモードでの動作と、MPPTモードではない動作との間で遷移させるために、前記DC/DC電力コンバータ及び前記電力インバータを継続敵意制御する
ことを特徴とする請求項1に記載の電力システム。
【請求項5】
前記電力源が、前記第2所定閾値より小さい電圧を生成しているか否かを判定する際に、前記制御システムは、更に、前記DCバスでの電圧を監視するように構成されていることを特徴とする請求項1に記載の電力システム。
【請求項6】
前記DCバスでの電圧を検知して、前記検知された電圧を前記電力システムに送信するセンサを更に備えることを特徴とする請求項5に記載の電力システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エネルギストレージにフォトボルタイク(PV)エネルギを捕捉するためのエネルギストレージシステム及び方法に関する。
【背景技術】
【0002】
電力変換システム及び関連する制御システムは、様々なエネルギ資源を連結するために用いられてよい。例えば、電力システムは、相互に連結された分散型エネルギ資源(例えば、発電機及びエネルギストレージユニット)及び負荷を含むことができる。電力システムは、ユーティリティグリッド又はマイクログリッドシステムに連結することもできる。電力システムは、これらのエネルギ資源間での電力を変換するために、電力変換を使用する(例えば、AC/DC、DC/DC、AC/AC、及び、DC/AC)。
【発明の概要】
【発明が解決しようとする課題】
【0003】
電力システムは、電力を供給し、電力を調整し、及び、一の電源から、負荷に電力を継続して供給する目的の他の電源に電力を転送するように設計されていてよい。可能な限り最大のエネルギ生成量が使用されるように、可能な限り最も効率の用方法で電力が供給されることが望ましい。しかしながら、トポロジー制限及び設計要求は、最終的に用いられるエネルギ生成の制限になる可能性がある。従来のPV設備は、PVアレイ電圧がインバータの起動電圧より低い場合、PVアレイにより生成された低電圧エネルギを捕捉することに失敗することにより、「クリップされた」エネルギを捕捉することに失敗することにより、及び、削減又はエネルギ価格を考慮してグリッドにエネルギを供給することに失敗することにより、PVアレイにより生成された電力を十分に利用できない。
【課題を解決するための手段】
【0004】
本発明の実施形態は、PVアレイにより生成された電力を使用するための装置及び方法を含む。
【0005】
一の態様では、電力源からの低電圧エネルギを捕捉する電力システムは、DCバスに結合された前記電力源と、前記DCバス及びエネルギストレージデバイスに結合されたDC/DC電力コンバータと、前記DCバス及びACバスに結合された電力インバータと、制御システムとを含む。前記制御システムは、前記電力源により生成された電圧を監視し、前記電力源が第1所定閾値より大きい電圧を生成しているか否かを判定し、前記電力源が前記第1所定閾値より大きい電圧を生成していると判定された場合に、前記電力源が第2所定閾値より小さい電圧を生成しているか否かを判定し、前記電力源が前記第1所定閾値と前記第2所定閾値との間の電圧を生成していると判定された場合に、MPPTモードで動作するように前記DC/DC電力コンバータを制御するとともに、前記電力源により生成されたエネルギを前記エネルギストレージデバイスに貯蔵し、更に、MPPTモードで動作しないように前記電力インバータを制御し、前記電力源が前記第2所定閾値以上の電圧を生成していると判定された場合に、MPPTモードで動作するように前記電力インバータを制御するとともに、前記電力源により生成されたエネルギを前記ACバスを介して電力グリッドに供給し、更に、MPPTモードで動作しないように前記DC/DC電力コンバータを制御するように構成された一以上のコントローラを含んでよい。
【0006】
前記第1所定閾値は、前記DC/DC電力コンバータにおける予測損失に等しくてよい。
【0007】
前記電力インバータは、前記電力インバータを動作させるために前記DCバスが到達しなければならない電圧の大きさである起動電圧を有し、前記第2所定閾値は、前記電力インバータの前記起動電圧に等しい。
【0008】
前記電力源により生成された電圧は、継続的に監視されてよく、前記制御システムは、MPPTモードでの動作と、MPPTモードでない動作との間で遷移するように、前記DC/DC電力コンバータ及び電力インバータを継続的に制御してよい。
【0009】
前記電力源が前記第2所定閾値より小さい電圧を生成していると判定された場合、前記制御システムは、更に、前記DCバスでの電圧を監視するように構成されていてよい。
【0010】
前記DCバスでの電圧を検出して、検出された電圧を前記電力システムに転送するセンサも含まれていてよい。
【0011】
他の態様では、電力源からのクリップエネルギを捕捉する電力システムは、DCバスに結合された前記電力源と、前記DCバス及びエネルギストレージデバイスに結合されたDC/DC電力コンバータと、前記DCバス及びACバスに結合された電力インバータと、制御システムとを含んでよい。前記制御システムは、前記電力インバータの出力電力を監視し、前記電力インバータの前記出力電力と所定閾値とを比較し、前記電力インバータの前記出力電力が前記所定閾値より大きい場合に、前記所定閾値を越える前記電力源の出力電力を前記エネルギストレージデバイスに貯蔵するように前記DC/DC電力コンバータを制御するように構成された一以上のコントローラを含んでよい。
【0012】
前記所定閾値は、前記電力インバータの最大定格電力であってよい。
【0013】
前記電力インバータの前記出力電力は継続的に監視されてよく、前記制御システムは、
前記電力源の出力電力を前記エネルギストレージデバイスに貯蔵することと、貯蔵しないこととの間で遷移するように、前記DC/DC電力コンバータ及び電力インバータを継続的に制御してよい。
【0014】
一の態様では、電力源からのエネルギを選択的にディスパッチする電力システムは、DCバスに結合された前記電力源と、前記DCバス及びエネルギストレージデバイスに結合されたDC/DC電力コンバータと、前記DCバス及びACバスに結合された電力インバータと、制御システムとを含んでよい。前記制御システムは、前記電力システムの外部のパラメータを監視し、前記電力源により生成された電力を、前記監視されたパラメータに応じて、前記エネルギストレージデバイスに貯蔵するように前記DC/DC電力コンバータを選択的に制御するように構成された一以上のコントローラを含んでよい。
【0015】
前記電力システムの外部のパラメータは、前記ACバスを介して、電力グリッドに供給されるエネルギのPVエネルギ価格信号と、前記電力グリッドに供給されるエネルギ量を停止又は削減する削減信号とを含んでよい。
【0016】
前記DC/DC電力コンバータは、PVエネルギ価格信号における価格が所定閾値より小さい場合、前記電力源により生成された電力を前記エネルギストレージデバイスに貯蔵してよい。
【0017】
前記DC/DC電力コンバータは、PVエネルギ価格信号における係るが前記所定閾値以上である場合、前記エネルギストレージデバイスに貯蔵されたエネルギを、前記電力インバータを介して、前記電力グリッドに供給してよい。
【0018】
前記電力システムの外部のパラメータは継続的に監視されてよく、前記制御システムは、前記電力源の出力電力を前記エネルギストレージデバイスに貯蔵することと、貯蔵しないこととの間で遷移するように、前記DC/DC電力コンバータ及び前記電力インバータを継続的に制御してよい。
【0019】
一の態様では、勾配率制御する電力システムは、DCバスに結合された電力源と、前記DCバス及びエネルギストレージデバイスに結合されたDC/DC電力コンバータと、前記DCバス及びACバスに結合された電力インバータと、制御システムとを含んでよい。前記制御システムは、前記電力インバータの出力電力と前記電力インバータの前記出力電力の変化率とを監視し、前記電力インバータの前記出力電力の前記変化率を予め規定された勾配率と比較し、前記電力インバータの前記出力電力の前記変化率が、前記予め規定された勾配率から所定量より大きく異なる場合に、前記エネルギストレージデバイスを充電又は放電するように前記DC/DC電力コンバータを制御するように構成された一以上のコントローラを含んでよい。
【0020】
前記電力インバータの前記出力電力と、前記電力インバータの前記出力電力の変化率とは継続的に監視されてよく、前記制御システムは、前記電力インバータの前記出力電力の前記変化率が、前記予め規定された勾配率から所定量より大きく異ならなくなるまで、前記エネルギストレージデバイスを充電又は放電するように、前記DC/DC電力コンバータを継続的に制御してよい。
【0021】
前記DC/DC電力コンバータは、前記電力インバータの前記出力電力の前記変化率が、前記予め規定された勾配率を前記所定量より大きく超えている場合、電力を前記エネルギストレージデバイスに供給してよい。
【0022】
前記DC/DC電力コンバータは、前記電力インバータの前記出力電力の前記変化率が、前記予め規定された勾配率を前記所定量より下回っている場合、前記エネルギストレージデバイスから、前記電力インバータを介して、電力グリッドに電力を放電してよい。
【図面の簡単な説明】
【0023】
図1図1は、本発明の実施形態による光起電性エネルギのためのエネルギストレージシステムを使用する電力システムである。
図2図2は、光起電性(PV)インバータ動作の過程で、ソーラレイからのソーラレイDC電圧及び電流を示している。
図3図3は、インバータのクリッピング中に潜在的に失われるエネルギの補足を示している。
図4図4は、本発明の実施形態による例示的なDC/DCコンバータの概略図である。
図5図5は、本発明の実施形態によるDC/DCコンバータのための制御構成である。
図6図6は、本発明の実施形態によるエネルギストレージシステムにより実行される低電圧エネルギ捕捉方法を示すフローチャートである。
図7図7は、本発明の実施形態によるエネルギストレージシステムにより実行されるインバータクリッピング捕捉方法を示すフローチャートである。
図8図8は、本発明の実施形態によるエネルギストレージシステムにより実行されるディスパッチ可能なPV電力を提供する方法を示すフローチャートである。
図9図9は、本発明の実施形態によるエネルギストレージシステムにより実行される勾配率制御方法を示すフローチャートである。
【発明を実施するための形態】
【0024】
本明細書の一部を形成し、具体的な実施例を図示する添付図面を参照する。しかしながら、本明細書に記載の原理は、多数の異なる形態で実施されてよい。図中の構成要素は必ずしも縮尺どおりではなく、代わりに本発明の原理を説明することに重点がおかれている。さらに、図面において、異なる視点を通じて対応する部品を指定するために、同様の参照番号が付されてよい。
【0025】
本発明の以下の説明において、特定の用語は、参照のみを目的として用いられ、限定を意図するものではない。例えば、様々な要素を記述するために本明細書において、第1、第2等の用語が用いられるかもしれないが、これらの要素は、これらの用語により限定されるものではない。これらの用語は、一の要素を他から区別するためだけに用いられる。本発明の説明及び添付の特許請求の範囲で使用されるように、単数形「a」、「an」及び「the」は、文脈がそうでないことを明確に示さない限り、複数形も含むことを意図している。本明細書で使用される「及び/又は」という用語は、関連する列挙された用語の1つ又は複数のありとあらゆる可能な組み合わせを指し、包含することも理解されるであろう。用語「comprises」及び/又は「comprising」は、本明細書で用いられる場合、述べられた特徴、整数、ステップ、操作、要素、及び/又は構成要素の存在を明記すると理解されるだろうが、一つ以上の他の機能、整数、ステップ操作、要素、コンポーネント、及び/又はそのグループの存在又は追加を排除しない。
【0026】
本発明の実施形態は、典型的に劣化する太陽光発電(solar PV)設備からの付加的エネルギを捕捉するためのシステム及び方法を含む。本発明の実施形態は、PVアレイの低電圧エネルギを捕捉するための、PV発電機を伴うインターフェイスストレージを含む。本発明の他の実施形態は、インバータクリッピングからのエネルギ損失を捕捉するための、PV発電機を伴うインターフェイスストレージを含む。本発明の他の実施形態は、ディスパッチ可能なPV電力を提供する、PV発電機を伴うインターフェイスストレージを含む。本は爪生の他の実施形態は、勾配率制御を提供するための、PV発電機を伴うインターフェイスストレージを含む。
【0027】
図1を参照して、PVプラスストレージ発電システム100は、PVアレイ2、PVインバータ31、エネルギストレージ11、DC/DCコンバータ3、コントローラ110、DCバス130、及び、ユーティリティグリッド、ローカル負荷及び/又はマイクログリッドに結合されてよいACバス120を含む。
【0028】
実施形態において、PVプラスストレージ発電システム100の制御システム110は、コンバータ3及びインバータ31の動作を調整するコントローラ110を含んでよい。他の実施形態では、PVプラスストレージ発電システム100の制御システム110は、DC/DCコンバータ3及びPVインバータ31各々の分離した複数のコントローラを含んでよい。DC/DCコンバータ3及びPVインバータ31各々の分離した複数のコントローラがある場合では、制御システム110は、DC/DCコンバータ3及びPVインバータ31の複数のコントローラを調整するマスタコントローラを含んでよい。
【0029】
PVインバータ31は、インバータのAC側でACバス120に結合されている。ACバス120は、ユーティリティグリッド、マイクログリッド、ローカル負荷及び/又は他のACコネクションに結合可能である。望ましくは、インバータ31のDC側は、DC/DCコンバータ3及びPVアレイ2の両方に結合されている。簡潔のために、アレイは、単一のコネクションとして図示されているが、本発明の実施形態では、パネルは、インバータの前の再結合ボックスにおいて結合されるストリングを伴うストリングで結合可能であると、理解されるべきである。更に、実施形態では、PVインバータ31は、使用されるケースマルチコンバータ3における一以上の最大電力点追跡(Maximum Power Point Tracking:MPPT)入力が可能であってよい。
【0030】
望ましくは、DC/DCコンバータ3は、PVインバータ31のDC入力、更には、エネルギストレージ11に結合されている。エネルギストレージは、例えば、バッテリ、バッテリバンク等を包含してよい。
【0031】
実施形態では、PVインバータ31は、例えば、集中型又はストリング型であってよい。
【0032】
望ましくは、バッテリ11、DC/DCコンバータ3、制御システム110及びPVインバータ31は、ケーブルの長さを短くしてコストを最小化するために互いに近接して配置され、アレイの北側等、ソーラパネルの影を最小限に抑える位置にある。しかしながら、本発明はそのように限定されないと理解すべきである。更に、ストレージ11、DC/DCコンバータ3、及びコントローラ110を含む本発明の実施形態は、新しい構造で設置するか、既存の太陽光発電設備に後付けすることができる。
【0033】
本発明の実施形態では、制御システム110は、銅又はファイバを介したModbus TCPなどの通信手段を介して又は無線によりDC/DCコンバータ3、エネルギストレージ11及びPVインバータ31に接続することができる。システムの動作とパフォーマンスを監視するために、所有者、オペレータ又はサードパーティのデータ収集サービスによって、電力システムの資産のいずれかに追加の通信接続を行うことができる。これらのリモート接続は、例えば、セルラー、衛星、有線接続等を介して行うことができる。
【0034】
図4及び図5は、図1に示す双方向DC/DCコンバータ3として使用できる、例示的な双方向DC/DCコンバータのトポロジー及び制御構造を示す。DC/DCコンバータ3は、図4及び5に示すものに限定されず、コンバータが双方向の電力フローが可能な限り、別のDC/DCコンバータトポロジーであってよいと理解すべきである。図4及び5のDC/DCコンバータは、その全体が参照により組み込まれる、米国特許出願第15/895,565号に詳細に記載されている。
【0035】
図4を参照すると、本発明の実施形態によるDC/DCコンバータ400は、互いに連結された第1変換ステージ410と第2変換ステージ420を含んでよい。第1及び第2変換ステージ410、420は、双方向DC/DCコンバータを形成する(即ち、電力の流れは双方向である)。第1変換ステージ410の電圧の大きさは、第2変換ステージの電圧の大きさよりも高くても低くても又はほぼ等しくてもよい。従って、DC/DCコンバータ400のいずれかの側は、バックコンバータ又はブーストコンバータとして使用可能である。
【0036】
実施形態では、バッテリに対応する入出力電圧の大きさが、PVアレイの電圧に対応する入出力電圧の大きさよりも高い場合、第1変換ステージ410は、バッテリに対応する入出力電圧を、PVアレイに対応する入出力電圧の所望の大きさに変換するように動作する。PVアレイに対応する入出力電圧の大きさが、バッテリに対応する入出力電圧の大きさよりも高い場合、第2変換ステージ420は、PVアレイに対応する入出力電圧を、バッテリに対応する入出力電圧の所望の大きさに変換するように動作する。
【0037】
実施形態では、DC/DCコンバータ400は、直列Hブリッジのカスケード接続を含む。第1変換ステージ410は、直列に接続された第1ハーフブリッジ412及び第2ハーフブリッジ414を含む。第1ハーフブリッジ412及び第2ハーフブリッジ414各々は、一対のスイッチQ1、Q2及びQ3、Q4を備えてよい。第2変換ステージ420は、直列に接続された第3ハーフブリッジ422及び第4ハーフブリッジ424を含む。第3ハーフブリッジ422及び第4ハーフブリッジ424各々は、それぞれ一対のスイッチQ5、Q6及びQ7、Q8を備えてよい。
【0038】
実施形態では、第1変換ステージ410及び第2変換ステージ420は、インダクタL1及びL2を使用して連結される。他の実施形態では、図5に示すように、第1及び第2インダクタL1及びL2が、絶縁変圧器T1に置き換えられてよい。
【0039】
第1及び第2変換ステージ410及び420がインダクタL1及びL2によって連結される実施形態では、DC/DCコンバータ400は、任意の中心点接合部をさらに含んでよい。中心点接合部450は、例えば、入出力が、エネルギストレージ(例えば、バッテリ/複数のバッテリ)に接続され、バッテリ端子のノイズが中立中心点によって低減されるというシナリオにおいて、有利であり得る。しかしながら、リップル性能(つまり、バッテリとPVポートのリップル電流と電圧)がある程度損なわれるという点で、中心点接合部450には設計上のトレードオフがある。
【0040】
実施形態では、ハーフブリッジ412、414、422、424各々は、フィルタリング及び半導体電圧オーバーシュート低減のために、DCバスキャパシタC1-C4に密接に結合されてよい。例えば、キャパシタC1は、Q1及びQ2によって形成されるハーフブリッジのためのフィルタキャパシタであってよい。これらのキャパシタC1-C4各々は、個別のキャパシタであっても、適切な定格に到達するために直列及び並列に組み合わされた複数のディスクリートキャパシタであってもよい。
【0041】
実施形態では、スイッチQ1-Q8は、バックボディダイオードを備えた半導体スイッチである。Q1-Q8に使用されてよい半導体スイッチの例には、IGBT、MOSFET等が含まれるが、これらに限定されない。
【0042】
図5は、本発明の実施形態によるDC/DCコンバータの制御構造を示す。
【0043】
図5を参照すると、制御構造600は、外部制御ループ610及び内部制御ループ620を含む。外部制御ループ610は、インターフェースインダクタ電流(例えば、Im1)の一つを制御し、内部制御ループ620は、電池/PV電流の大きさ又はバッテリ/PV電圧の大きさを制御する。
【0044】
図5に示す実施形態では、コントローラパラメータ(例えば、2つのPIパラメータ)は、ハードウェアパラメータに適合するように調整されてよい。チューニングは、いくつかの要因に依存する。即ち、例えば(1)要求応答速度――システムの制御帯域幅――例えば、1ミリ秒又は100ミリ秒で定格電流に達することが、コンバータにとって望ましいか否か、及び(2)システムのハードウェアパラメータ――例えばインダクタンス、キャパシタンス、スイッチング周波数値等。
【0045】
外側制御ループ610は、入力として、バッテリ電流又はPV電圧のコマンド、及び、バッテリ電流又はPV電圧のフィードバックを受信する。バッテリ電流又はPV電圧のコマンド、及び、バッテリ電流又はPV電圧のフィードバックは、バッテリ電流の望ましい大きさ又はPV電圧の望ましい大きさであってよい。バッテリ電流又はPV電圧のフィードバックは、バッテリ電流の実際の大きさ又はPV電圧の実際の大きさである。例えば、所望の大きさと実際の大きさとの差をとることにより、所望の大きさが実際の大きさと比較される。この差は、インダクタの1つを介して、インターフェースインダクタ電流の1つを制御するためのコントローラ612に入力される。次に、コントローラ612は、インターフェースインダクタ電流の電流コマンドIm_cmdを内部制御ループ620に出力する。ここで、電流コマンドIm_cmdは、インターフェースインダクタ電流の実際の大きさと比較されるインターフェースインダクタ電流の所望の大きさとされてよい。
【0046】
図5に示す実施形態では、コントローラ612及び622は、比例-積分(PI)コントローラである。しかしながら、これらのコントローラはPIコントローラに限定されず、実際には、コントローラは、例えば比例-積分-微分(PID)コントローラ及び比例(P)コントローラを含む任意の閉ループコントローラであってもよい、と理解すべきである。
【0047】
内部制御ループ620は、入力として、インダクタ電流コマンドIm_cmd及びインダクタ電流Im1の実際の大きさを受信する。例えば、インダクタ電流コマンドIm_cmdとインダクタ電流Im1との差を取ることにより、インダクタ電流コマンドIm_cmdがインダクタ電流Im1と比較される。次に、スイッチQ1-Q8に入力されるスイッチング信号のデューティ値を計算するために、この差はコントローラ622に入力される。コントローラ622は、スイッチング信号のデューティ値をDC/DCコンバータに出力する。デューティ値は、スイッチへの信号のデューティサイクルに影響し、DC/DCコンバータ400のステップアップ/ステップダウンの大きさに影響する。デューティ比は、DC/DCコンバータ400の両側の電圧の比に依存する。
【0048】
制御構造600は、デジタル信号プロセッサ(Digital Signal Processor:DSP)、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA)等のコントローラ上で具現化されてよい。しかしながら、コントローラはこれらに限定されず、あらゆるタイプのプロセッサを採り得ると理解すべきである。加えて、制御構造600は、単一のコントローラ又は複数のコントローラ(例えば、外側及び内側ループで異なるコントローラ)で具現化されてよい。
【0049】
上述のように、DC/DCコンバータ3は、この特定の構成に限定されず、双方向電力フローが可能な任意のDC/DCコンバータであってもよい。
【0050】
低電圧エネルギ
図2は、PVインバータ31の動作中のPVアレイ2からのソーラレイDC電圧及び電流を示している。図2は、特定の閾値(即ち、「起動」電圧)より低い低電圧エネルギを貯蔵するために、PVプラスストレージ発電システム100がDC/DCコンバータ3を実装する本発明の実施形態の説明を助けるために提供される。
【0051】
従来のPVインバータトポロジーでは、PVインバータは、電力の生成を開始するために、ソーラ場(例えば、ソーラレイ2)によって生成される最小DC電圧を待たなければならない。これは「起動」電圧と呼ばれることがある。図1及び図2を参照して示される実施形態において、DC/DCコンバータの追加により、PVアレイ電圧がインバータの起動電圧より低く、インバータが動作しない(即ち、PVアレイ2、DC/DCコンバータ3及びインバータ31のDC側が接続されている)場合に、システムは、PVアレイからのエネルギを抽出することができる。
【0052】
図2は、典型的なPVインバータ動作を示しており、傾向を示す黒い線(即ち、上側の傾向を示す線)はソーラレイのDC電圧であり、傾向を示す灰色の線(即ち、下側の傾向を示す線)はソーラレイからの電流である。トポロジーの制限により、一般的なPVインバータは、PVアレイが起動電圧に達するまで、ソーラレイからのエネルギをグリッドエネルギに変換しようとはしない。図2に示されるように、アレイ電圧が起動電圧、この場合は約700VDCに達するまで、インバータはアレイから電力を生成できないことに留意したほうがよい。従って、太陽光がソーラレイ2のソーラパネルに入射する点から、ソーラレイが起動電圧に達する点まで、パネルから利用可能なエネルギがある。従来の設備では、起動電圧の閾値未満で利用可能なエネルギ/電力を捕捉することはできない。
【0053】
実施形態では、低電圧捕捉のために、DC/DCコンバータ3は最大電力点追跡モードで動作し、PV生成エネルギをエネルギストレージ11に貯蔵する。捕捉されたエネルギは様々な方法で使用可能である。例えば、低電圧で捕捉されたエネルギは、後でインバータ31を介してグリッド120に放電されてよく、又は後でローカル負荷に電力を供給するために使用されてもよい。
【0054】
制御システム110は、システム100が低電圧エネルギを捕捉するように、DC/DCコンバータ3及びPVインバータ31の動作を制御する。例えば、図6に示すように、実施形態では、起動時に、制御システムは:
210:PVアレイにより生成された電力を監視する。
【0055】
220:PVアレイ2が、第1所定閾値より大きい電圧を生成しているか否かを判定する。実施形態によれば、第1所定閾値は、DC/DCコンバータ3における予測損失と等しくなるように設定されている。制御システム110は、DCバス130上で検出された電圧及び付加的な日射センサを用いることにより、PV2アレイが、十分利用可能な電力を有しているか否かを判定する。これは、PVアレイ2で利用可能な電力が、動作中のDC/DCコンバータ3で失われる電力よりも大きいことを保証するために行われます。DC/DCコンバータ3が、低電圧動作中にPVアレイ2で利用可能な電力よりも多くの電力を失うと、エネルギストレージ11は最終的に放電してしまうかもしれない。
【0056】
230:制御システム110が、PVアレイ2が第1所定閾値より大きい電圧を生成していると判定した場合、制御システム110は、その後、PVアレイ2が、第2所定閾値より小さい電圧を生成しているか否かを判定する。実施形態において、電圧についての第2所定閾値は、PVインバータ31の起動電圧と等しくなるように設定されている。DCバス130電圧が起動電圧より小さいか否かを判定するために、DCバス130上の電圧を監視することにより、制御システム110は、PVアレイ2が第2所定閾値より小さい電圧を生成しているか否かを判定する。このような監視は、DCバス130上野電圧の大きさを検出するセンサの使用を通じて行われてよい。
【0057】
240:制御システム110が、PVアレイ2が第1所定閾値より大きな利用可能電力を有し、且つ、第2所定閾値より小さい電圧を生成していると判定した場合、制御システム110は、DC/DCコンバータ3をMPPTモードで動作するように制御するとともに、PV生成エネルギをエネルギストレージ11に貯蔵し、更に、制御システム110は、PVインバータ31をMPPTモードで動作しないように制御する。
【0058】
制御システム110が、MPPTモードで動作するようにDC/DCコンバータ3を制御している間、制御システム110は、PVアレイ電圧が第2所定閾値(例えば、起動電圧)に達したか否かを判定するために、PVアレイ電圧を継続的に監視する。
【0059】
250:PVアレイ電圧が第2所定閾値に達したと判定された場合、制御システム110は、PVアレイにより生成されたエネルギがグリッド120に提供されるように、MPPTモードで動作するようにPVインバータ31を制御する。コントローラ110が、インバータ31をMPPTモードにした場合、制御システム110は、DC/DCコンバータ3のMPPTモードを停止する。
【0060】
いったんPVアレイ電圧が第2所定閾値に達する又は超えると、制御システム110は、PVアレイ電圧が第2所定閾値未満に低下したか否かを判定するために、PVアレイ電圧の監視を継続する。これは、雲、ほこり、その他の物体が、PVアレイ2に入射する太陽光を妨げるときや、太陽が沈むときに起こり得る。PVアレイ電圧が第2所定閾値未満に低下した場合、制御システム110は、エネルギをエネルギストレージ11に貯蔵するために、MPPTモードで動作するようにDC/DCコンバータ3を再度制御し、PVインバータ31のMPPTモードを停止する。
【0061】
いったんPVアレイ電圧が第2所定閾値未満に低下すると、制御システム110は、PVアレイ電圧の大きさが再度第2所定閾値――制御システムが、PVアレイ2により生成されたエネルギをグリッド120に提供するために、MPPTモードで動作するようにPVインバータ31を再度制御し、DC/DCコンバータ3のMPPTモードを停止するだろう点――に達したか否かを判定するために、PVアレイ電圧の監視を継続する。
【0062】
上述した方法は、DC/DCコンバータ3がエネルギストレージ11に接続されている場合について記載しているが、本発明は、この具体的な場合に限定されないと理解すべきである。例えば、他の実施形態でぇあ、同様の制御方法が、制御システム110により、PVアレイ2に結合された一端と、PVインバータ31に結合された他端とを有するDC/DCコンバータ3に適用される。この場合、DC/DCコンバータ3は、貯蔵されたエネルギは使用しないが、DC/DCコンバータ3は、低電圧アレイPV出力状況において、PVインバータ31の起動電圧を上回るために、電圧をブーストする。それ故、制御システムが、PVで夏が第2閾値より小さいと判定した場合、制御システムは、PVインバータ31の起動電圧より大きい電圧にブーストするように、DC/DCコンバータ3を制御する。
【0063】
インバータクリッピング捕捉
図3は、インバータクリッピング時に潜在的に失われるエネルギの補足を示している。
【0064】
インバータ負荷比(Inverter loading ratio:ILR)は、
設置されたDCPV電力とACインバータ(例えば、インバータ31)定格との比として定義される。ILRが1の場合、日中の――雲量やその他の変動がない理想的な放射照度を想定している――ソーラシステムの出力をグラフ化するときに連続放物線が生成される。ILRが高いほど、システムは出力電力定格にすばやく到達する。例えばILRが1の場合、大きなILRに比べて、インバータの最大出力電力定格までのゆっくり上昇する。対照的に、高いILRは、急勾配を生成し、インバータの最大出力電力定格に達するまでの時間を短縮する。
【0065】
太陽光発電設備からのエネルギ生産を最大化するために、1を超えるILR――1.2から1.3のILR値が一般的であり、2を超えるILRも珍しくない――が展開される。しかしながら、より高いILR値を使用する場合、電力出力はより早くインバータ定格に到達するけれども、インバータのクリッピングが発生する。図3に示す例では、PVパネルの約1.3MW且つ1MWPVインバータ(ILR=1.3)がある。この構成は、PV出力電力を1MWに制限し、濃い灰色の網掛け部分のエネルギを収集する。しかしながら、この構成では、明るい灰色の領域として示されている1MWを超える利用可能なエネルギの全てを捕捉することはできない。図1に示される実施形態では、変換器及び制御システムは、その後ディスパッチされることが可能な「クリッピングされた」エネルギをエネルギストレージ11に貯蔵する。
【0066】
制御システム110は、システム100がクリッピングされたエネルギを捕捉するように、DC/DCコンバータ3及びPVインバータ31の動作を制御する。例えば、図7に示すように、実施形態では、制御システムは:
310:PVインバータ31の出力電力を監視する。実施形態では、制御システム110は、ACバス120上の電圧を監視してよい。このような監視は、電圧の大きさを検出するセンサの使用及びPVインバータ31による電流出力を通じて行われてよい。このようなセンサは、例えば、PVインバータ31の出力に又はPVインバータのケース内に配置されてよい。実施形態では、センサは、PVインバータに組み込まれていてよい。
【0067】
320:PVアレイ電力が所定閾値に到達したか否かを判定する。実施形態では、制御システム110は、その内部にPVインバータ31定格を格納し、PVインバータ31定格を所定閾値として設定する。例えば、1MWソーラインバータ及び1.5MWのソーラパネルがある場合、制御システムは、ソーラインバータ31の出力電力の大きさを監視し、いったんソーラインバータが、1MWの電力制限になると、制御システム110は、利用可能な余剰電力をエネルギストレージ11に貯蔵するようにDC/DCコンバータ3を制御する。
【0068】
330:出力電力が所定閾値を越えた後、制御システム110は、出力電力が所定閾値未満に低下するか否か――貯蔵すべき余剰電力がもはやないこと――を判定するために、PVインバータ31の出力電力を継続的に監視する。
【0069】
ディスパッチ可能なPV
実施形態では、制御システム110は、PVアレイ2により生成されたエネルギを、エネルギストレージ11に貯蔵して、該エネルギが後でディスパッチされることを可能にする。エネルギは、ソーラ設備が削減されないとき、又は、オフテイク(例えば、電力会社、大規模産業工場、街等)がエネルギに対してプレミアムを支払うだろうとき、に利用可能である。
【0070】
例えば、実施形態では、図8に示すように、制御システム110は:
710:PVエネルギをグリッドに送る代わりに、PVエネルギを用いてエネルギストレージ11を充電することが利益であるか否かを判定するために、グリッドパラメータ及びエネルギ価格付けを監視する。例えば、制御システム110は、ユーティリティ又は他のエンティティからグリッドへのソーラ発電の送信を削減する又は停止する信号を受信してよい。
【0071】
720:ソーラ発電エネルギをグリッドへ供給すべきでないと判定し、制御システム110は、PVアレイ2からの電力をエネルギストレージ11に貯蔵するように、DC/DCコンバータ3を制御する。制御システム110は、その後、例えば、所定時間が経過したことにより、又は、エンティティ(例えばユーティリティ)から信号を受信したことにより削減が終了したと、或いは、エネルギ価格が上昇したことが、電力をグリッドに供給することの収益性を高めた、と判定してよい。
【0072】
730:いったん削減が終了する、又は、エネルギ価格が上昇すると、制御システム110は、ローカル負荷、ユーティリティ、大規模産業工場、街等を含んでよいグリッド120に電力を供給するように、PVインバータ31を制御してよい。
【0073】
本実施形態は、ソーラ設備のソーラレイ2が削減された(削減が1日であっても)場合、全損失に代えて、可能な限りエネルギがエネルギストレージに貯蔵されるという利点がある。太陽光がないためにソーラ設備がオフラインであるより遅い点(例えば夜間)で、設備は、エネルギストレージ11をグリッドに放電することができる。
【0074】
勾配率制御
PV電力生産物は日照に依存しており、それ故、PV電力生産物は、雲の通過や他の陰り事象で揺らぐことがある。これらの陰り事象が起こると、下降勾配が生じる。太陽光が戻ると、上昇勾配が生じる。急な上昇勾配又は下降勾配があると、電力システム、又は、電力システムに接続された他のシステムにダメージが生じる可能性がある(例えば、高い勾配率は、システム障害の原因となる過不足事象を引き起こす可能性がある)。例えば、ソーラファームがフルパワーのときに、かなりの雲で覆われた場合、ソーラファームからの出力電力は、最大電力又は最大電力近くから非常に低い値になり、グリッド及び負荷は、電力の非常に速い変化率を処理するための十分な設備がない。実施形態では、制御システム110及びDC/DCコンバータ3は、予め規定された勾配率(時間に対する電力の変化率)を維持するために、上昇勾配事象時に部分的に充電し、下降勾配事象時に部分的に放電することにより、シェーディングにより引き起こされる上昇勾配及び下降勾配事象の両方を軽減する。
【0075】
システム100が、予め規定された勾配率を維持するための勾配制御で動作するように、制御システム110は、DC/DCコンバータ3及びPVインバータ31を制御する。例えば、実施形態では、図9に示すように、制御システム110は、以下のように構成されている。即ち、
510:勾配制御が初期化された場合、制御システム110は、PVインバータ21のグリッドへの出力電力を監視する。このような監視は、PVインバータ31により出力される電圧の大きさを検出するセンサの使用を通じて行われてよい。
【0076】
520:制御システム110は、電力の変化率が、予め規定された勾配率から設定量だけ異なるか否かを判定する。
【0077】
530:率が設定量だけ異なると判定された場合、制御システム110は、上昇又は下降がゆるやかになるように、エネルギストレージ11を放電又は充電するようにDC/DCコンバータ3を制御する(例えば、失われたソーラ生産物を補完して、出力電力の勾配率を遅くする)。
【0078】
本発明の実施形態では、DC/DCコンバータ3は、PVアレイ2の低電圧エネルギの捕捉を容易にし、インバータクリッピング、ディスパッチ可能なPV及び勾配率制御に損失エネルギの捕捉を促進する。実施形態において、DC/DCコンバータ3は、エネルギストレージ11とPVアレイ2との間で使用される。PVアレイ2は、商用ACグリッドに接続されたインバータを有してよい。従って、コンバータの電力フローは双方向である必要がある(PVから充電されるバッテリ、PVインバータを介してグリッドに放電するバッテリ)。バッテリ(エネルギストレージ)電圧は、両方向の電力の流れで、PV電圧よりも高いか低いか、又ははほぼ等しい可能性がある。そのため、コンバータのどちらの側も降圧または昇圧として使用できる。
【0079】
実施形態では、DC/DCコンバータ3は、異なる化学物質の複数のバッテリを単一のインバータに並列に接続するためにも使用されてよく、また、既存のバッテリ設備の容量をアップグレードするために新たなバッテリが追加されたときに、バッテリの電力共有を促進するためにも使用されてよい。
【0080】
このシステムは、ユーティリティ接合部がないマイクログリッドにおいても使用することができる。
【0081】
このシステムは、ACインバータを必要としないDC負荷にサービスを提供するためにも使用することができる。
【0082】
本発明の実施形態は、所有者の投資収益率(ROI)を改善する太陽光発電設備から追加のエネルギを捕捉することを可能にする。加えて、本発明の実施形態は、時刻(Time of Day:TOD)レートに基づいて、ピークに対処するとともに、エネルギをディスパッチするために、太陽光発電エネルギ生産物のディスパッチをタイムシフトすることを可能にする。
【0083】
本発明の実施形態により、ユーザは、いったんストレージ及びコンバータが追加されたら、インバータクリッピング又は低電圧アレイ時間中に失われるエネルギを決定し、修正ROIを計算するための、履歴データ又は何らかのシミュレーションソフトウェア(例えばPVSyst)に基づいて、PVシステムの生産を評価することもできる。
【0084】
上述の特定の例示的な実施形態では、DC/DCコンバータ400は、エネルギストレージとPVアレイ/インバータとの間に結合されるものとして説明されているが、本発明はこの用途に限定されないと理解すべきである。当業者には、本発明の実施形態が、第1及び第2の入力/出力側で電圧が重複するDC/DC変換が必要な用途等の追加の用途に適していることが容易に理解されよう。その他の例には、可変周波数ドライブ(VFD)アプリケーションでのバックアップ電源が含まれる。DC/DCコンバータは、VFDのDCバスと接続可能である。グリッド電圧が存在する場合、DCバス電圧がグリッドによって確立され、VFDがモータに給電する。グリッドがなくなると(例えば停電等)、DC/DCコンバータはバッテリをVFDに放電することでDCバスを維持し、VFDを中断なく実行できる。
【0085】
本開示の範囲から逸脱することなく、開示された電力システムに様々な修正及び変更を行うことができることは、当業者には明らかであろう。本開示の他の実施形態は、本開示の明細書及び実施の考慮から当業者には明らかであろう。本明細書及び実施例は例示としてのみ考慮されることが意図されており、本開示の真の範囲は以下の特許請求の範囲及びそれらの均等物によって示される。
図1
図2
図3
図4
図5
図6
図7
図8
図9