(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-23
(45)【発行日】2022-07-01
(54)【発明の名称】推進および電力用途のための内部燃焼エンジン、システム、装置、および方法
(51)【国際特許分類】
F02B 1/02 20060101AFI20220624BHJP
F02B 3/02 20060101ALI20220624BHJP
F02F 1/00 20060101ALI20220624BHJP
F02D 15/00 20060101ALI20220624BHJP
F02M 21/02 20060101ALI20220624BHJP
F02M 31/16 20060101ALI20220624BHJP
F02P 23/04 20060101ALI20220624BHJP
【FI】
F02B1/02
F02B3/02
F02F1/00 E
F02D15/00 Z
F02M21/02 K
F02M31/16 C
F02P23/04 A
(21)【出願番号】P 2020501437
(86)(22)【出願日】2018-03-24
(86)【国際出願番号】 US2018024219
(87)【国際公開番号】W WO2018176018
(87)【国際公開日】2018-09-27
【審査請求日】2021-03-23
(32)【優先日】2017-03-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】519341809
【氏名又は名称】グリフォン ディーゼル エンジンズ,エルエルシー
(74)【代理人】
【識別番号】110000659
【氏名又は名称】弁理士法人広江アソシエイツ特許事務所
(72)【発明者】
【氏名】シルヴァ,アントニオ
【審査官】櫻田 正紀
(56)【参考文献】
【文献】国際公開第2011/040139(WO,A1)
【文献】特開2005-133688(JP,A)
【文献】特開2014-152646(JP,A)
【文献】特開2005-147109(JP,A)
【文献】特開2006-002605(JP,A)
【文献】米国特許出願公開第2010/0071263(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F02B 1/02
F02B 3/02
F02F 1/00
F02D 15/00
F02M 21/02
F02M 31/16
F02P 23/04
(57)【特許請求の範囲】
【請求項1】
システムであって、
入力として
排気-超臨界燃料混合物および空気を受け取り、
前記
排気-超臨界燃料混合物および空気を10:1以上15:1未満の圧縮比に圧縮し
て圧縮燃料と空気を作り、
前記圧縮燃料と空気を燃焼させ、
前記圧縮燃料の燃焼で生成された動力および排気を出力する、
モノブロックとして鋳造されたマグネシウム合金エンジンブロックと、
より大きな分子の燃料を受け取り、
前記
大きな分子の燃料の少なくとも一部をより小さな分子の燃料に分解する
ように構成された、
燃料再調整システムと、
前記排気を2つ以上の排気流に分割する排気スプリッターと、
前記排気流の少なくとも1つを使用して前記より小さな分子の燃料を加熱する熱交換器と、
前記排気流の少なくとも1つからの排気を加熱された
前記より小さな分子の燃料と組み合わせて、排気-超臨界燃料混合物を生成するミキサーと、
前記排気-超臨界燃料混合物をエンジンブロックに噴射する1つ以上の超臨界燃料噴射器と、
前記エンジンブロック内の前記
圧縮燃料と空気に点火するマルチポイントレーザ点火システムと、
前記燃料再調整システム、熱交換器、ミキサー、排気スプリッター、
超臨界燃料噴射器、レーザ点火システムを制御する
ように構成された電子制御ユニットと、
を含む、システム。
【請求項2】
前記エンジンブロックがセラミックの内部コアを有する、
請求項1に記載のシステム。
【請求項3】
前記セラミック内部コアが、セリア安定化正方晶ジルコニア多結晶を含む、
請求項2に記載のシステム。
【請求項4】
前記電子制御ユニットが、
メモリと、
前記メモリに結合された1つ以上のプロセッサと、を含み、
前記プロセッサが、
前記より大きな分子の燃料の少なくとも一部を
前記より小さな分子の燃料に分解し、
前記より小さな分子の燃料を超臨界温度まで加熱し、
排気と加熱された前記より小さな分子の燃料を混合して、
前記排気-超臨界燃料混合物を生成し、
前記排気-超臨界燃料混合物を噴射し、
前記排気-超臨界燃料混合物を空気で圧縮し
て前記圧縮燃料と空気を作り、
レーザ光を使用して前記圧縮燃料
と空気に点火し
て、前記圧縮燃料と空気を燃焼させ、
前記圧縮燃料と空気の燃焼で生成された動力および排気を出力する
ように構成されている、
請求項1に記載のシステム。
【請求項5】
少なくとも1つの前記排気流からの前記排
気と、加熱された前記より小さな分子の燃料
と、を混合
することで、前記1つ以上の超臨界燃料噴射器による噴射の前に、二相混合物が生成される、
請求項1に記載のシステム。
【請求項6】
前記1つ以上の超臨界燃料噴射器の少なくとも1つがデラバルノズルを含む、
請求項1に記載のシステム。
【請求項7】
前記より大きな分子の燃料は、ディーゼル燃料、灯油、およびガソリンのうちの少なくとも1つである、
請求項1に記載のシステム。
【請求項8】
前記より小さな分子の燃料には、炭素鎖の長さが8以下の脂肪族炭化水素が含まれる、
請求項1に記載のシステム。
【請求項9】
方法であって、
入力として
排気-超臨界燃料混合物および空気を受け取り、
動力および排気を出力する、
モノブロックとして鋳造されたマグネシウム合金エンジンブロックを提供するステップ、
燃料再調整システムを介して、より大きな分子の燃料の少なくとも一部をより小さな分子の燃料に分解するステップ、
排気スプリッターを介して、前記排気を2つ以上の排気流に分割するステップ、
熱交換器を介して、前記排気流の少なくとも1つを使用して前記より小さな分子の燃料を加熱するステップ、
ミキサーを介して、前記排気流の少なくとも1つを前記加熱されたより小さな分子の燃料と混合して、排気-超臨界燃料混合物を生成するステップ、
超臨界燃料噴射器を介して、前記排気-超臨界燃料混合物をエンジンブロックに噴射するステップ、
前記エンジンブロック内で、前記排気-超臨界燃料混合物と前記空気を圧縮
し、圧縮燃料と空気を作るステップ、
光学点火システムを介して前記エンジンブロック内で前記圧縮燃料
と空気に点火
し、前記圧縮燃料
と空気を燃焼させて動力および排気を生成するステップ、および
電子制御ユニットを介して、
前記燃料再調整システム、前記排気スプリッター、前記熱交換器、前記ミキサー、前記超臨界燃料噴射器、および前記光学点火システムを制御するステップを含む、方法。
【請求項10】
前記エンジンブロックがセラミックの内部コアを有する、
請求項
9に記載の方法。
【請求項11】
前記セラミック内部コアが、セリア安定化正方晶ジルコニア多結晶を含む、
請求項
10に記載の方法。
【請求項12】
前記電子制御ユニットによって、
前記より大きな分子の燃料の少なくとも一部の
前記より小さな分子の燃料への分解、
前記より小さな分子の燃料の超臨界温度までの加熱、
排気と前記加熱されたより小さな分子の燃料の混合による
前記排気-超臨界燃料混合物の生成、
前記排気-超臨界燃料混合物の噴射、
前記排気-超臨界燃料混合物
を空気に
より圧縮
して、前記圧縮燃料と空気とを作ること、
前記圧縮燃料の光学点火、
前記圧縮燃料
と前記空気
の燃焼、および
前記圧縮燃料と前記空気の燃焼で生成された動力および排気の出力
を、
制御するステップをさらに含む、
請求項
9に記載の方法。
【請求項13】
少なくとも1つの前記排気流からの前記排
気と加熱された前記より小さな分子の燃料を混合する
ことで、噴射の前に、二相混合物が生成される、
請求項
9に記載の方法。
【請求項14】
前記電子制御ユニットが、前記熱交換器を出る前記燃料の温度を560~580℃に制御する、
請求項
9に記載の方法。
【請求項15】
命令を格納する非一時的なコンピュータ可読媒体であって、前記命令が1つ以上のプロセッサによって実行される
とき、
前記1つ以上のプロセッサが、
燃料再調整システム
を制御して、より大きな分子の燃料の少なくとも一部をより小さな分子の燃料に分解する
ようにし、
排気スプリッターと熱交換器を制御して、前記より小さな分子の燃料を超臨界温度まで加熱する
ようにし、
ミキサーを制御して、エンジンブロックからの排気と前記加熱されたより小さな分子の燃料を混合して、ミキサー内に排気-超臨界燃料混合物を生成させる
ようにし、
1つ以上の超臨界燃料噴射器を制御して、前記排気-超臨界燃料混合物
を前記エンジンブロック内に噴射させ、
前記エンジンブロック内で前記排気-超臨界燃料混合物を空気で圧縮
して、圧縮燃料と空気を作らせ、
光学点火システムを
制御して、前記エンジンブロック内の前記圧縮燃料
と空気に点火させ、
前記エンジンブロック内の圧縮燃料
と空気を燃焼させ、そして
前記エンジンブロックから
の動力および排気
の出力
を制御する、
1つ以上の命令を含む、非一時的なコンピュータ可読媒体。
【請求項16】
前記1つ以上のプロセッサのうち少なくとも1つが、電子制御ユニットの中に提供されている、
請求項15に記載の非一時的なコンピュータ可読媒体。
【請求項17】
前記排気と、加熱された前記より小さな分子の燃料と、を混合することで、噴射させる前に、二相混合物を生成させる、
請求項15に記載の非一時的なコンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2017年3月24日に出願された米国仮特許出願第62/476,465号の利益を主張しており、その全体は参照により本明細書に組み込まれる。
【0002】
発明の背景
本発明は、一般にエンジンに関し、より具体的には、陸上、空中、および海洋の推進および動力用途のハイブリッド圧縮光学点火エンジン、システム、装置、および方法に関する。
【背景技術】
【0003】
ディーゼルエンジン技術の利点は長い間確立されてきた。ディーゼルエンジンは、ガソリンエンジンよりも堅牢で信頼性が高く、既知のすべての種類の内燃機関(IC)の中で最も効率的な発電装置であり、寿命が長く、メンテナンスの必要が少なく、燃料コストが大幅に削減されている。ディーゼルエンジンは、通常、キロワット(kW)あたりでガソリンエンジンよりも約30~50%燃料消費が少なく、ディーゼル燃料とJet-A(航空)燃料の両方を燃焼できる。用途に応じて、大規模なメンテナンスまたはオーバーホールが必要になるまで、平均15,000~30,000時間動作する場合がある。
【0004】
多くの国では、ディーゼル燃料はガソリンより50%安く、Jet-A燃料より70%安い。歴史的に、2ストロークエンジンは、初期購入および定期メンテナンスの両方の点で安価であり、用途において柔軟性が高くなっている。2ストロークエンジンはバルブトレインを排除するため、重量対出力比が2ストロークエンジンの優れた利点である。
【0005】
ディーゼル燃料は、ガソリン、天然ガス、またはプロパンほど容易に発火しないため、保管がより安全である。大気圧で発火させることはことさら困難であり、偶発的に発火させるのはほとんど不可能である。その多くの利点により、ディーゼル燃料は、過去数十年間ヨーロッパ、中南米、アフリカ、およびアジアにおいて内燃機関の燃料として選択されてきた。ディーゼル燃料は、現在および将来の経済状況において、世界中で広く利用可能であり、最も費用効果が高くなっている。米国では、車、トラック、バスの25%がディーゼル燃料を使用している。ヨーロッパでは、登録乗用車の50%がディーゼル燃料を使用している。中国とインドでは、ディーゼルが道路輸送に使用される燃料の75%を占めている。さらに、ディーゼル燃料はガロンあたりのエネルギー密度がガソリンよりも最大で30%多いため、燃費(33%)とトルクが大幅に向上する。これは、水のような密集した環境での運用、または発電機、ヘリコプター、ティルトロータ、ボートなどの一定の高いサイクルでの運用においてニーズが高く、ハイブリッド(ディーゼル/バッテリー)発電装置の組み合わせでははるかに効率的である。ディーゼルエンジンの効率をさらに向上させることは、環境と経済に大きな恩恵をもたらす。
【発明の概要】
【発明が解決しようとする課題】
【0006】
ただし、明確な利点にもかかわらず、ディーゼルエンジン技術は、自動車、機関車、建設機械、船内船舶装置、発電など、特定の陸上用途にほぼ限定されている。騒音や公害などの様々な周知の問題により、ディーゼルエンジンは、既存のディーゼル市場よりもかなり大きいにもかかわらず、船外船舶装置、航空エンジン、またはオートバイ用途には一般的に不適切および/または望ましくないものとなっている。これらの市場では、軽量、正味燃料消費率(BSFC)、パッキング、低排出、低騒音が求められている。
【0007】
これらの用途にディーゼルエンジン技術を適用するためのたいていのアプローチは、自動車のエンジン設計を適用することを含んでいるが、このアプローチは一部の用途の失敗の根本であるかもしれない。正しいエンジンのパッキングと軽量化は、これらの用途で成功するために不可欠であり、自動車技術に基づいたエンジンでは容易に達成できない場合がある。DeltaHawk航空エンジンなどの特定用途向けエンジンや、中負荷および重負荷サイクル(「MHDC」)エンジン市場向けの圧縮天然ガス(CNG)または水素燃料電池ソリューションは、ある程度の軽減をもたらす可能性がある。ただし、船外船舶装置、ピストン航空、およびオートバイ産業のニーズに対応する改良されたエンジンに対する大きな需要が残っている。
【0008】
輸送および電力需要は増加し続けると予想されるため、より高い燃料効率および/またはより低い排出を提供するすべての燃料タイプの推進および動力用途のための改善されたエンジン、システム、装置、および方法に対する継続的なニーズがある。
【課題を解決するための手段】
【0009】
したがって、本発明のエンジン、システム、装置、ソフトウェア、および方法は、推進および動力用途の燃料効率および排出性能を向上させる。エンジンは、マグネシウム合金を使用してモノキャストされたエンジンブロックを含んでもよい。ブロックは、外部がマグネシウムで作られたセリア安定化正方晶ジルコニア多結晶(「CeTZP」)で作られたものなどのセラミック内部コア(inner core)と、10:1~15:1の圧縮比を提供するように設計された1つ以上のシリンダーを含むことができる。各シリンダーは、1つ以上のレーザ点火装置と、エンジン排気ガスの形態である、近超臨界状態(near supercritical state)または超臨界状態の二相燃料と二酸化炭素との混合物を噴射するように構成された1つ以上の燃料ターボ過給超臨界燃料噴射器(fuel turbocharged supercritical fuel ingector)とを含むことができる。燃料は、シリンダーに噴射される前に、ディーゼル、ガソリン、またはより小さな分子に分解される可能性のある他の適切な炭化水素であり得る。
【発明の効果】
【0010】
本明細書で当業者に開示、教示、および/または示唆され得るように、本発明は、より高い燃料効率および/またはより低い排出を提供するすべての燃料タイプの推進および動力用途のための改善されたエンジン、システム、装置、および方法に対するニーズに対処する。
【図面の簡単な説明】
【0011】
添付の図面は、本発明の様々な態様の例示的な図示の目的で含まれており、本発明を限定する目的では含まれていない。
【0012】
【
図1】システムの様々な例示的なブロック図を示す。
【0013】
【
図2】電子制御ユニットの様々な例示的なブロック図を示す。
【発明を実施するための形態】
【0014】
図面および詳細な説明において、同じまたは類似の参照番号は、同じまたは類似の要素を特定する場合がある。特定の図の実施形態に関して説明される実装、特徴などは、明示的に述べられない限り、または他の方法で不可能でない限り、他の図の他の実施形態に関して実装され得ることが理解されよう。
【0015】
発明の詳細な説明
本発明のシステム、エンジン、装置、および方法は、ガソリン、ディーゼル、および推進および動力用途で使用される他の燃料タイプに対して、より高い燃料効率および/またはより低い排出をもたらす。
【0016】
図1に示されるような様々な実装において、システム10は、入力として燃料および空気(すなわち、酸化ガス)を受け取り、空気の存在下で燃料を燃焼し、機械的動力と燃焼生成物および残留入力物を含む排気流とを出力するように構成されるエンジンブロック12を含む。
【0017】
エンジンブロック12は、1つ以上の対応する、ターボ過給され得る超臨界燃料噴射器(SCFI)161-Mを介して燃料を受け取ることができる1つ以上の入口141-Nを有することができる(MおよびNは正の整数であり、同じ値であってもなくてもよい)。SCFI16は、超臨界または近超臨界状態のより小さなまたはより大きな分子の燃料であり得る燃料を提供し、エンジンブロック12からのある量の排気と混合され得る。燃料と混合される排気の量と温度は、固定または調整可能である。
【0018】
様々な実施形態において、燃料は、排気、二酸化炭素、一酸化炭素、窒素、窒素酸化物、水蒸気、不完全燃焼生成物などの様々な成分など、他のガスと個別にまたは様々な組み合わせで混合することができる。排気ガスおよび/またはガスは、1)燃料を適切な温度に加熱し、2)燃料を希釈してコーキングと不完全燃焼を減らすように一般的に機能する。
【0019】
燃料再調整システム(fuel reconditioning system,FRS,燃料再生システム)18は、燃料源20から受け取ったより大きな分子(LM)の燃料をより小さな分子の燃料に分解することにより生成されたより小さな分子(SM)燃料をSCFI16に提供する。より大きな分子の燃料には、ディーゼル、灯油、ガソリンなど、およびそれらの混合物が含まれ得る。一方、より小さな分子の燃料には、炭素鎖の長さが8以下の脂肪族炭化水素など、様々な短い鎖と小さい芳香族炭化水素が含まれる。より小さなものがより大きなものに相対的であり、そのためディーゼル燃料の分解に由来するより小さな分子はガソリンの分解に由来するより小さな分子よりも大きい場合があり、LMおよびSM燃料は1つ以上の異なる分子を含み得ることを当業者は理解するであろう。
【0020】
燃料加熱器22を設けて、FRS18を出るSM燃料を、またはFRS18のない実施形態では燃料源20からLM燃料を受け取り、燃料を超臨界温度または超臨界温度近くまで加熱することができる。燃料加熱器22は、
図1に示されるような電気加熱器および/または熱交換器であってもよい。燃料加熱器22は、当業者によって燃料を所望の温度に加熱するように適切に設計されてもよい。
【0021】
様々な実施形態において、燃料加熱器22は、エンジンブロック12からの排気を、入口温度TINで熱交換器に入り、TINマイナスデルタTの出口温度で熱交換器を出る加熱流体として使用する1つ以上の熱交換器を含み得る。
【0022】
様々な実施形態において、排気スプリッター24(exhaust splitter 24)は、スプリッター24への入力として提供されるエンジンブロック12からの排気流出力を2つ以上の出力排気流に分割するために設けることができる。出力排気流は、上記のように加熱流体を提供するために燃料加熱器22に設けられてもよい。排気スプリッター24は、1つの入口と2つ以上の出口を備えたパイプセクションであってもよいし、当業者が望むようなより複雑な設計であってもよい。様々な実施形態において、2つ以上の排気出力流のそれぞれへの排気出力の量は、調整可能または固定であり得る。
【0023】
ミキサー26を設けて、排気スプリッター24からの出力排気流の1つ以上を、燃料加熱器22から来る加熱されたSMまたはLM燃料と混合することもできる。
図1の実施形態では、ミキサー26はSCFI16の前にあるものとして示されているが、ミキサー26は、SCFI16と統合されるか、SCFI16の後に設けられてもよい。加えて、ミキサー26は、燃料加熱器22に供給される出力排気流とは別の出力排気流を受け取るものとして
図1に示されている。しかしながら、燃料加熱器22に供給される出口排気流も燃料流と混合することができる。ミキサー26は、2つ以上の入口と1つの出口を備えたパイプセクションであってもよいし、当業者が望むようなより複雑な設計であってもよい。
【0024】
さらに、
図1は、SCFI16、燃料加熱器22、およびミキサー26を別個のユニットとして示している。ただし、これらのユニットは1つ以上のユニットに統合および/または個別のユニットとして維持できるが、1つ以上のパッケージに一緒にパッケージ化できる。
【0025】
システム10は、エンジンブロック12の1つ以上のシリンダーに光、すなわちレーザビームを送達することにより燃料のレーザ点火を提供するように構成されるマルチポイントレーザ点火(MLI)システム28などの高エネルギー光学点火源を含むことができる。様々な実施形態では、MLIシステム28は、燃料を点火するためにレーザが使用されているシリンダーに近接して1つ以上のレーザが提供され得るように構成され得る。1つ以上のレーザによって放出された光は、1つ以上の点火ポートを介してシリンダーに送達されてもよい。
【0026】
様々な実施形態において、1つ以上のレーザはエンジンブロック12から離れて配置されてもよく、レーザによって提供される光エネルギーは光ファイバーによってエンジンブロック12に送達されてもよい。エンジンブロック12から離れた場所に光源を配置することにより、光源を、光源の平均寿命にとってより操作上有利な環境に配置することが可能になり得る。2つ以上のレーザを使用して各シリンダーに電力を供給し、複数の光源からの光電力を組み合わせてから分割し、複数の点火ポートに供給することができる。複数の光源からの光パワーを組み合わせて分割すると、MLIシステム28に冗長性とグレースフル障害モードが提供される。
【0027】
システム10は、SCFI16、FRS18、燃料加熱器22、排気スプリッター24、ミキサー26、およびMLIシステム28のうちの1つ以上を監視および/または制御し得る1つ以上の電子制御ユニット(「ECU」)30を含み得る。ECU30は、エンジンブロック12に近接してまたは離れて配置されてもよく、MLIシステム28に近接して配置されてもよい。
【0028】
図2は、1つ以上のプロセッサ80、メモリ82、ストレージ84、入力コンポーネント86、出力コンポーネント88、通信インターフェース90、ならびに1つ以上のバス92を介して当業者によって望まれるように相互接続されているその他のコンポーネントを含むことができる電子制御ユニット(ECU)30の例示的な実施形態を示す。様々な実施形態において、ECU30は、内部に複数の層を設計することにより、組み込みの「ホーム(get-home)」機能を含むことができるため、1つの層が燃え尽きたり破損したりした場合、残りの層のいずれかが装置を動作させ続けるので、非常に高いレベルの冗長性が提供される。
【0029】
プロセッサ80は、汎用プロセッサ、中央処理装置(CPU)、グラフィック処理装置(GPU)、加速処理装置(APU)、マイクロプロセッサ、および/またはフィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)などの、命令を解釈および/または実行する任意の処理コンポーネントを含み得る。プロセッサ80は、命令、データ、またはコンピュータアドレスの一時的なローカルストレージ用のキャッシュメモリユニットを含むことができ、シングルチップ、マルチチップ、および/または、ソフトウェアの実行に加えてハードウェアでロジックを実装および実行する1つ以上の集積回路および印刷回路基板を含む他の電気部品として実装され得る。
【0030】
プロセッサ80は、特定の必要性に応じて、本明細書で説明または図示される1つ以上のプロセスの1つ以上のステップを実行する一部として、別のユニットまたはコンピュータシステム、または通信ネットワークに接続できる。さらに、本明細書で説明または図示される1つ以上のプロセスの1つ以上のステップは、プロセッサ80でのみ実行されてもよい。
【0031】
システム10は、ハードウェアおよび/またはソフトウェアを使用するプロセスを実装して、ハードワイヤードロジックまたは集積回路などの回路で実施される機能を提供し、ソフトウェアの代わりにまたは一緒に動作して、本明細書で説明または図示される1つ以上のプロセスまたは1つ以上のプロセスの1つ以上のステップを実行することができる。特定の実施形態を実装するソフトウェアは、必要に応じて、任意の適切なプログラミング言語(例えば、手続き型、オブジェクト指向など)またはプログラミング言語の組み合わせで記述されてもよい。
【0032】
メモリ82は、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、および/またはプロセッサ80で使用するための情報および/または命令を格納するフラッシュ、磁気、および光学メモリなどの別の種類の動的または静的ストレージを含むことができる。メモリ82は、一時的または永続的にロードすることができる1つ以上のメモリカードを含むことができる。メモリ82およびストレージ84は、ECU識別モジュールを含み得る。
【0033】
ストレージコンポーネント84は、ECU30の動作および使用に関する情報、命令、および/またはソフトウェアを格納してもよい。ストレージ84は、オペレーティングシステム、実行可能ファイル、データ、アプリケーションなどを格納するために使用することができ、仮想または固定である、高速アクセスの一次ストレージと、低速アクセスの二次ストレージとを含むことができる。
【0034】
ストレージコンポーネント84は、特定の実施形態を実施するソフトウェアを記憶するか別の方法で具現化する、1つ以上の一時的および/または非一時的コンピュータ可読媒体を含むことができる。コンピュータ可読媒体は、必要に応じて、ソフトウェアを運ぶ、通信する、収容する、保持する、維持する、伝播させる、保持する、保存する、送信する、輸送する、または別の方法で実施できる有形の媒体でよい。コンピュータ可読媒体は、必要に応じて、生物学的、化学的、電子的、電磁的、赤外線、磁気的、光学的、量子、または他の適切な媒体、または2つ以上のそのような媒体の組み合わせであり得る。コンピュータ可読媒体は、1つ以上のナノメートルスケールのコンポーネントを含むか、別の方法でナノメートルスケールの設計または製造を具体化することができる。コンピュータ可読媒体の例には、これらに限定されないが、固定ドライブおよびリムーバブルドライブ、特定用途向け集積回路(ASIC)、CD、DVD、フィールドプログラマブルゲートアレイ(FPGA)、フロッピーディスク、光学および光磁気ディスク、ハードディスク、ホログラフィックストレージ装置、磁気テープ、キャッシュ、プログラマブルロジック装置(PLD)、ランダムアクセスメモリ(RAM)装置、読み取り専用メモリ(ROM)装置、半導体メモリ装置、ソリッドステートドライブ、カートリッジ、およびその他の適切なコンピュータ可読媒体が含まれる。
【0035】
入力コンポーネント86および出力コンポーネント88は、様々なタイプの入出力(I/O)装置を含むことができる。I/O装置は、エンジンの動作に関連する様々なセンサー入力および制御ライン、システムのセットアップとトラブルシューティング用のグラフィカルユーザインターフェース(GUI)、全地球測位システム(GPS)などによる位置情報、加速度計、ジャイロスコープ、アクチュエータデータ、および1つ以上の通信インターフェース90を介して受信される他の入力を含むことができる。出力コンポーネント88は、ディスプレイ、スピーカ、ライト、およびユーザおよび/または他のシステムに情報を提供するために使用される他の装置も含むことができる。
【0036】
通信インターフェース90は、有線および/または無線接続を介して他のシステムおよび装置との通信を可能にする1つ以上のトランシーバ、受信機、送信機、変調器、復調器を含むことができる。通信インターフェース90は、とりわけ、本明細書に記載され、当技術分野で既知の、イーサネット(登録商標)、光、同軸、ユニバーサルシリアルバス(USB)、赤外線、ブルートゥース(登録商標)、Wi-Fi、WiMaxなどを含む無線周波数(RF)などのパーソナルおよびローカルエリアネットワークインターフェース、ワイドエリアネットワーク、3G、4G、5G、AMPS、CDMA、TDMA、GSM(モバイル通信用グローバルシステム)、iDEN、GPRS、EDGE(GSM Evolution用の拡張データレート)、UMTS(ユニバーサルモバイル通信システム)、WCDMAおよびそれらの変形などのセルラーベースの通信プロトコルを含むことができる。
【0037】
バス92は、
図2に示したものに加えて、多種多様な他のサブシステムを接続することができ、システム10内のコンポーネント間の通信を可能にする様々な他のコンポーネントを含むことができる。バス92は、必要に応じて、共通機能を果たす1つ以上のデジタル信号線、および様々なバスアーキテクチャを使用するメモリ、周辺機器、またはローカルバスを含む様々な構造を包含してもよい。限定ではなく一例として、そのようなアーキテクチャには、業界標準アーキテクチャ(ISA)バス、拡張ISA(EISA)バス、マイクロチャネルアーキテクチャ(MCA)バス、ビデオエレクトロニクス標準協会ローカルバス(VLB)、Peripheral Component Interconnect(PCI)バス、PCI-Express(PCI-X)バス、およびAccelerated Graphics Port(AGP)バスが含まれる。
【0038】
システム10は、メモリ82にある1つ以上のコンピュータ可読記憶媒体、および/またはハードウェアで実装および実行されるストレージ84およびロジックに組み込まれたソフトウェアをプロセッサ80が実行する結果として機能を提供し得る。ソフトウェアおよびロジックの実行結果は、メモリ82および/またはストレージ84に格納され、出力コンポーネント88に提供され、通信インターフェース90を介して他の装置に送信され得る。実行中、プロセッサ80は、入力コンポーネント86および/または通信インターフェース90から受信した様々な入力を使用し得る。入力は、バス92を介してプロセッサ80に直接提供されてもよく、および/またはプロセッサ80に提供される前に格納されてもよい。ソフトウェアの実行は、プロセスまたはステップの実行を伴う場合があり、メモリ82に格納されたデータ構造を定義し、ソフトウェアの指示に従ってデータ構造を変更する場合がある。
【0039】
様々な実施形態において、システム10は、システム10の一部が複数のシステム構成で使用されるように設計され得るスケーラブルエンジンアーキテクチャ(SEA)概念を採用してもよい。SEAは在庫コストを削減し、製造、組み立て、スペアパーツの交換コストを大幅に削減する。共通の部品は、より手頃な価格で、再構成可能な自動化された組立ラインでの使用により適している場合がある。また、SEAはトレーニングの負担を軽減し、担当者が広く適用可能なスキルを伸ばせるようにする。SEAの利点によって、高品質で低コストの部品および完成品となる可能性がある。
【0040】
様々な実施形態では、コンパクトエンジンアーキテクチャ(CEA)により、実質的な修正なしに4つの主要な用途に適した方法でエンジンをパッケージングすることができる。また、特定の用途に追加の機能やシステムを追加することもできる
【0041】
様々な実施形態では、エンジンブロック12は、モノブロックとして鋳造されたマグネシウム合金などの軽量金属ブロックを含む。マグネシウム合金は、アルミニウムよりも33%軽量であり、陰極溶液技術を使用して合金化した場合、許容される腐食および高温クリープ耐性を有する場合がある。例えば、水素原子の結合を防ぐためにエンジンブロック鋳造用の炉でインゴットを溶かす際にマグネシウム合金に陰極溶液を添加することにより製造されたステンレスマグネシウム合金は、総合金重量パーセントの0.5%から2.5%のパーセントの陰極溶液を添加すると腐食を低減するようである。さらに、鋳造システムを溶解炉から鋳造金型まで完全に密閉して、空気暴露を減らして腐食をさらに減らすことができる。これらのMg合金の他の特性、たとえば引張強度、耐熱性、ボルト保持、鋳物の良好な流動特性、衝撃吸収性、減衰能力、電磁干渉(EMI)シールドなどは、エンジンブロックの使用に適しているようである。
【0042】
エンジンブロックは、外部がマグネシウムで作られたセリア安定化正方晶ジルコニア多結晶(CeTZP)などの適切なセラミック材料で作られた内部コアで製造することもできる。セラミックコアは、1.9w/m.kというCeTZPセラミックの優れた低熱伝導率によって燃焼室からの熱損失をさらに減らすことができ、これにより、エンジンは同じ馬力を50%少ない排気量と燃料消費で提供できるようになる。また、セラミックの熱伝導率が低いため、エンジンをより低い冷却要件で動作させることができる。さらに、セラミックは、鋳鉄(600℃未満)、鋼(500℃未満)、およびアルミニウム合金(300℃未満)と比較して、高い動作温度(おそらく800℃より高温)を可能にし、これにより従来のエンジン素材に比べて燃焼効率が向上し、より完全な燃焼を実現できる。最後に、CeTZPおよびその他のセラミックは、水熱分解を受けにくい可能性がある。
【0043】
CeTZPインナーコアを使用してモノブロックを製造するもう1つの利点は、エンジンの寸法が全体で40%を超えて削減されることである。全体の寸法の削減により、材料費と重量がさらに削減される。100%CeTZPセラミック製エンジンは、非常に良好に機能する小さなテストロータリーエンジン構成でテストされている。さらに、CeTZPセラミックは、これまで内燃エンジンの設計にセラミックを使用する大きな障害であった、内燃エンジンに関連する化学物質に関連する環境劣化に対して非常に耐性がある傾向にある。
【0044】
エンジンの内部コンポーネントは、軽量鋼、チタン(Ti)、および/またはアルミニウム(Al)などの軽量の金属で作られている場合もある。たとえば、クランクシャフト、ピン、およびダボは、通常の鋼(7.8g/cm3)よりも17%軽量であるだけでなく、より優れた延性、わずかに高い引張強度、脆化することなくRC70に熱処理される能力を備えた特殊な軽量鋼(6.8g/cm3)からも作ることができる。
【0045】
様々な実施形態において、Tiは、シャフト、ピン、コンロッドおよび他の同様の部品の重量またはサイズを減らすためのものであり得る。さらに、Tiの熱処理はRc70以上で、およびそのコアに対して、脆化することなく行うことができ、グレードによっては引張強度が1,750MPaに増加し、これらの用途への適合性が向上する可能性がある。
【0046】
1.2GPaの引張強度とチタンよりも優れたヤング率を備えたA-1500などの超強力アルミニウム合金は、コンロッド、クランクシャフト、およびその他の部品の製造に使用して、エンジンの鋼の含有量と重量をさらに減らすこともできる。軽量化により、往復力を減らすことで、よりバランスの良いディーゼルエンジンが可能になる。
【0047】
様々な実施形態において、エンジンは、最も厳しい全体寸法を必要とする海洋および航空用途の両方に適合するようにパッケージングされ、同じエンジンを複数の用途で使用できるようにすることができる。エンジンは、1つ、いくつか、またはすべての方向、たとえば直立、横向き、または逆さまで動作するように構成できる。ブロックには組み込み穴があり、組み立て中にカスタムまたは用途固有のハードウェアを取り付けることができる。
【0048】
可動およびコーティングされたエンジン部品は、標準的な窒素冷凍または優れた結果をもたらす新しい磁気冷凍プロセスのいずれかを採用して極低温処理することができ、これにより、金属結晶が非常にコンパクトな構造に固められ、硬度が上がり気孔率が低下して摩耗および疲労特性が改善される。長期的な保護を強化するために、エンジンブロックの外側を純アルミニウムでコーティングすることができる。内部コーティングには、ダイヤモンド様コーティング(DLC)または四面体アモルファスカーボン(Ta-C)コーティングを使用して、低摩擦と高硬度を実現する。交換可能なDLCコーティングシリンダーライナーを使用してエンジンブロックの耐用年数を延ばし、総基本オーバーホール(TBO)を何度か行うことができる。ピストンリングの表面はTa-Cダイヤモンドでコーティングされており、交換まで非常に硬く、非常に長時間持続する。
【0049】
ディーゼルエンジンの重量集中度のかなりの割合は、エンジンブロックとシリンダーヘッドにある。エンジンブロック12を従来の分離されたシリンダーヘッドとブロックの代わりにモノブロックとして鋳造すると、現在のディーゼルエンジンやさらに4ストロークガソリンエンジンと比較して、エンジンブロックと内部部品の合計重量を減らすことができる。本発明のエンジンは、様々な用途のために0.40ポンド/HP未満の重量比で設計されてもよい。これは、海洋用途ではメインエンジンのみを、航空用途ではすぐに取り付け可能なエンジンを指し、ギアハウジングまたはトランスミッションは除く。ギアハウジングとトランスミッションは、重量をさらに減らすために、同じマグネシウムと他の合金で作ってもよい。
【0050】
内部コンポーネントの場合、軽量部品が低圧縮設計で使用されている場合、平均重量削減は約33%になる場合がある。往復部品については、ピストンとコンロッドの重量は25%削減される可能性があり、これにより、ディーゼルエンジンの機械的摩擦と寄生エネルギー損失が、平均的なガソリンエンジンよりも小さくなる可能性がある。重量が減ることによっても、エンジンのバランスがよくなる。
【0051】
様々な実施形態において、エンジンは、同等の出力を得るために従来のエンジンよりも少ないシリンダーを使用してもよく、多くの共通部品で設計されてもよい。たとえば、ガソリン船外機およびピストン航空機エンジンのメーカーは、25HPから200HPのエンジンには3および4つのシリンダー、225HP以上のエンジンには6から8つのシリンダーを使用している。様々な実施形態において、本発明は、100HPまでのエンジンには2つのシリンダー、75HPから400HPまでには3つのシリンダー、および350HPから800HPまでには6つのシリンダーをサポートし得る。これにより、生産コストと小売コストが大幅に削減され、非常に多くの共通部品と軽量化が実現する。
【0052】
本発明のエンジンは、燃焼タイミングの優れた最適化を可能にするために低圧縮で運転され得る。低圧縮エンジンでは、上死点(TDC)で圧縮温度と圧力が低下する。この低い温度により、燃料がTDCの近くに噴射されると点火に時間がかかるが、空気と燃料のより良い混合が可能になる。これにより、より高い燃焼膨張比が得られる高効率のディーゼルエンジンが実現する。より高い膨張比は、ドライブトレインへのトルクの伝達を延長する。逆に、現在の高圧縮ディーゼルエンジンは、ドライブトレインに短い、非常に強い力しか伝達しないため、破壊的となる可能性がある。低圧縮により、ピストンの膨張全体にわたって高トルクを伝達でき、効率が向上する。低圧縮では、エンジンはよりフラットなトルクラインを示す。これは、エンジンがRPM(毎分回転数)エンジン範囲のローエンドからハイエンドまでの高トルクを有することを意味する。
【0053】
低圧縮は、ディーゼル汚染と黒煙の主な原因であるNOxとすすの形成も大幅に減らす。低圧縮エンジンでは、燃焼の均一性と効率を改善するために、局所的な高温領域と酸素不足を減らすことができる。様々な実施形態の目標仕様は、サンディア国立研究所による独立した試験に基づいて、0.001g/km未満のfsDPM(微粒子)および0.001g/kmのfsNOxであり得る。
【0054】
ディーゼルおよびその他の燃料のコールドスタート点火は、高温セラミック点火装置(セラミックグロープラグ)およびマルチホールピエゾ噴射器を使用して、またはMLIシステム28を使用して実行できる。
【0055】
超臨界燃料噴射器16は、燃料の霧化および液滴の蒸発(燃焼速度の遅いプロセス)を大幅に低下させる可能性があり、これにより燃焼効率が向上する可能性がある。様々な実施形態において、SCFI16は、2,000バールを含む範囲で動作することができ、これは、約3,000バール以上で動作する高圧システムに比べてSCFIのコストおよび性能を改善することができる。SCFIは、デラバルノズルに似たチョークを含み、二相燃料のガス含有量の速度を加速して、燃料中のガス含有量が噴射中に超音速を達成できるようにすることができる。ノズルは、異なるタイプの燃料に対応するように変更できることが理解されよう。
【0056】
ディーゼルは重く、粘性があり、ガソリンよりも揮発性が低いため、燃焼中にすべての燃料が燃焼するわけではなく、その結果、粒子状のすすが多くなる。ディーゼルの高い燃焼温度も、NOx排出量の増加につながる。燃料をエンジンブロック12の燃焼室に導入する前に、ディーゼルを超臨界状態に上げる、および/またはディーゼルをより小さな分子に分解することにより、粘度の問題が小さくなる。さらに、超臨界流体の高分子拡散は、燃料と空気が空気とはるかに速く混ざり合うことを意味し、燃料をより速く、きれいに、そして完全に燃焼させることができる。SCFIの重要な利点は、燃料の表面張力を大幅に低下させることであり、燃焼の改善と排出物のクリーン化にプラスの利点をもたらす。
【0057】
様々な実施形態では、排気ガス(EG)を使用して、熱交換器(HE)内の燃料を加熱することができる。一般に、燃料温度を560~580℃の範囲に維持することが望ましい。EGの流量は、燃料温度を制御するためにHEの燃料レールに配置された温度センサーを使用して、ECU30により制御される電気作動バルブを介して調整され得る。加熱された燃料はHEを出てSCFIに送られる。
【0058】
SCFIを使用したエンジン排出は、高圧縮18:1エンジンでは80%、本発明の低圧縮エンジンでは90%を超えて削減することができ、10~30%の燃料削減につながる。SCFIテストは、サンディア国立研究所と米国国立標準技術研究所(NIST)によって実施された。
【0059】
SCFIが大きな利点を提供する一方で、ディーゼルなどのより大きな分子の燃料の場合、EGを燃料と混合して燃料噴射器内の燃料のコーキングを低減、好ましくは排除することが望ましい場合がある。混合は、燃料を所望の最終噴射圧力に加圧する前または後に行うことができる。加圧前に燃料を超臨界状態にするプロセスが行われる場合、燃料ポンプは、状態の変化に対応するために二相燃料での動作を可能にするため、二相燃料ポンプを必要とする場合がある。
【0060】
本発明のMLIシステム28は、各シリンダーの個々の正確なクランクシャフト角度(またはピストン位置)での燃料混合物のより正確な点火を可能にし得る。先行技術の圧縮点火エンジンは、シリンダー間および異なるディーゼル燃料組成で変動する可能性が高い、設計および動作の変動を引き起こす既成および摩耗要因により精度が制限されている。
【0061】
本発明は、エンジンブロック12へのレーザ入力のファウリングを伴い、それにより、燃料を点火するMLIシステムの信頼性に影響を与える、従来技術のエンジンにおけるMLIシステムの使用に存在する問題に対処する。本発明において、SCFI、低圧縮、および他の特徴は、シリンダーへのレーザ入力ポートを塞ぐ可能性のあるすすおよび他の不完全燃焼生成物を減らすのに役立つ。さらに、MLIシステム28で使用されるレーザは、損傷閾値が3GW/cm2を超えるレンズコーティングを含んでもよく、これによりレーザはある程度の自己洗浄を提供できる。
【0062】
MLIシステム28は、本明細書で説明する他のシステムと同様に、エンジンの電子制御ユニット(ECU)によって制御され、運転中に最適化され得る燃料の正確な点火を可能にし得る。エンジンのタイミング情報は、レーザを発射するための正確なクランクシャフト角度位置を可能にするために、クランクシャフトに取り付けられたセンサーから提供され得る。これは、各噴射後に変化する可能性がある圧縮と温度に燃料の点火が依存する現在のディーゼルエンジン技術とはまったく対照的である。ECU30はまた、電子過給機および電気駆動ポンプなどの様々な他のシステムを制御し得る。
【0063】
MLIシステム28は、低圧縮燃料点火に非常に適していてもよく、極低温でディーゼルおよび他の燃料を点火するのに非常に効果的であり得る。さらに、レーザ点火は、伝導と対流のみではなく、光速で動く点火エネルギーを提供するレーザから放出される光またはレーザビームにより、燃焼タイミングを大幅に増加させる可能性がある。燃焼速度を上げると、燃焼効率が上がり、それによって不完全燃焼に起因する汚染物質を減らすことができる。点火レーザビームも燃料にエネルギーを追加する。また、MLIシステムは、従来の燃料の点火とは異なり、内部から分子を分解し、燃焼をより効率的かつ全体的にする。
【0064】
MLIシステム28は、コールドスタートおよび他の能力を改善するために、噴射前、主噴射および噴射後などの様々なパターンで使用されてもよい。各噴射器は、ECU30によって個別に制御でき、ECU30は、バランスやその他の要因を改善するために必要に応じて各シリンダーを調整するために使用できる。MLIシステム28は、異なる実施形態で使用されてもよい。例えば、MLIシステム28は、光ファイバーケーブルおよびレーザプラグを備えた単一のコントローラボックスを使用して、点火順序に従って各個々のシリンダーにレーザビームを供給することができる。別のシステムでは、内蔵型ユニットの各シリンダーに個別のレーザを使用し、エンジンECUによって制御して各シリンダーにおいて各ユニットを点火する。また、各レーザプラグのレンズは、受信メインビームを分割して各シリンダーに3~4本のレーザビームを供給し、複数の火炎前面を生成し、燃焼をさらに加速するので、効率が向上し、排気ガスがよりきれいになる。レーザプラグのレンズは、サファイアまたは他の専用材料で作成できる。
【0065】
MLIシステム28により、本発明のエンジンは、極めて希薄な燃料混合物(85:1未満)で動作し、広範囲の温度で燃料を点火し、失火を低減することができる。25mJなどの高パルスエネルギーと短いパルス長(3ns未満)を使用した独立したテストにより、最大80mmの焦点距離で光学分解を開始し、成層燃料モードと均一燃料モードの両方で信頼性の高い点火が可能になった。
【0066】
燃料再調整システム18は、燃料をより小さな分子に分解または「クラッキング」することにより燃料の分子サイズを小さくするために使用することができ、これは通常、他の要因は同じであるなかで、燃料の燃焼効率を高める。FRS18は、特定の周波数および波長で動作する高電圧電流装置として具体化されてもよい。また、複数の周波数および波長を使用して、各「クラッキング」から生じる分解分子の様々なサイズによりよく適合させることができる。各「クラッキング」で、分子の各破片はますます小さくなる。燃焼速度を上げるために、各破片をできる限り小さくすることが望ましく、その結果、より高い燃焼エネルギーが放出される。FRSプロセスは、燃料が超臨界状態になる前および燃料が加圧された後に適用され、燃料分子の状態を適切に考慮し、噴射前に燃料があるプロセスから別のプロセスに移動するとき、「クラッキング」またはSCFIプロセスが使用されたら他の形状をとらないようにする。
【0067】
Tier3定格のディーゼルエンジンを使用したFRSテストでは、燃料の揮発性、密度と圧力の上昇、沸点の低下など、様々なシステムの利点が得られることが示されている。最終的な結果として、SM燃料はより完全かつ迅速に燃焼し、燃焼燃料単位あたりの馬力が増加する低温では燃料消費量が減少し、よりスムーズなパフォーマンスのために動力がより均等に分配される。
【0068】
様々な実施形態において、エンジンは過給されても、クランクケース吸引されてもよい。たとえば、75HP以上の出力定格のエンジンに1つ以上の過給機を装備することが望ましい場合がある。過給機は、特にアイドル状態から加速するとき(つまり、「アウト・オブ・ザ・ホール」スロットル応答)に最高性能のスロットル応答を得るために、ECU30によって電気駆動および制御され、遅れを低減する。過給エンジンは、1リットルあたり100HP以上出してもよく、1リットルあたり200HP以上の可能性もある。クランクケース吸気エンジンの性能は、ECUを介して空気と燃料の管理を電子的に制御することで制御できる。電力は、バッテリーまたは水冷式排気駆動発電機(6~7KW)または放射発電機によって提供される。
【0069】
エンジンシステム10の様々な実施形態では、セラミック内部コアの有無にかかわらずモノブロックとして鋳造されたマグネシウム合金エンジンブロック12が提供され、燃料および空気を1つ以上の燃焼室/シリンダーへの入力として受け取り、ここで燃料が燃焼され、電力と排気が出力される。燃料再調整システム18は、より大きな分子の燃料の少なくとも一部をより小さな分子の燃料に分解する。エンジンブロック12からの排気は、より小さな分子の燃料を加熱するために熱交換器22に提供される。加熱されたより小さな分子の燃料と排気を混合して排気-超臨界燃料混合物を生成するミキサー26が設けられ、この混合物は超臨界燃料噴射器16を介してエンジンブロック12に噴射される。超臨界燃料混合物は、エンジンブロック内で圧縮され、マルチポイントレーザ点火システムなどの光学点火システムを介して点火され、燃料を空気で燃焼させ、エンジンブロックから排気する。電子制御ユニット30は、エンジンの動作全体、他のステップの少なくとも1つを制御する。
【0070】
例えば、様々な実施形態において、電子制御ユニット30は、より大きな分子の燃料の少なくとも一部のより小さな分子の燃料への分解、より小さな分子の燃料の超臨界温度までの加熱、排気と加熱されたより小さな分子の燃料の混合による排気-超臨界燃料混合物の生成、排気-超臨界燃料混合物のエンジンブロックのシリンダーへの噴射、および燃料の圧縮、点火、燃料の燃焼、エンジンからの燃焼生成物の排出のタイミングを、通常はセンサーフィードバックから監視し、制御するメモリおよび1つ以上のプロセッサを含む。
【0071】
上記のように、操作の順序が提供されたが、特定の用途および燃料に応じて、様々なステップを再配置し、複数のステップに分割し、潜在的に削除できることは当業者には明らかであろう。例えば、本発明のガソリン改造エンジンおよび方法は、1つ以上の点火プラグをレーザまたは他の光学点火システムと交換することを伴う場合がある。排気-超臨界燃料混合物をエンジンに噴射するために、1つ以上の超臨界燃料噴射器をエンジンの燃料吸入口に追加してもよい。燃料再調整システムを超臨界燃料噴射器と燃料源との間に設置して、より大きな分子の燃料をより小さな分子の燃料に分解することができる。ミキサーと熱交換器、および関連する配管を設けて、より小さな分子の燃料とエンジンからの排気を組み合わせて、排気-超臨界燃料混合物を超臨界燃料噴射器に提供することができる。
【0072】
本発明に従って改造されるエンジンおよび意図される用途に応じて、必要に応じてプロセスおよび要素の様々なステップが排除され、別のステップが追加されてもよい。たとえば、一部の実装ではSCFIを使用したり、排気と燃料を混合する前に別の熱交換器を使用したりする必要はない。より小さな分子の燃料が燃料供給である場合、FRS18を使用する必要はないかもしれない。当業者は、新たに構築されたエンジンおよび改造用途のために、本発明の範囲内にある他の変形形態を想定および実践することができるだろう。
【0073】
航空用途の場合、高度圧力に継続的に適応することにより、過給機は、離陸、上昇、および高所でのエンジン性能において、450~1,200HPの範囲で特に有用である。高い高度で性能が低下する多くのタービンとは異なり、過給機は、海面から28,000フィートまでの高度の海面で可能な最大動力を継続的に供給できる。
【0074】
様々な実施形態において、エンジンは、ガス冷却または例えば、空気、水の液体冷却であり得る。多くの実施形態では、淡水は適切な冷却剤であり得る。航空機での使用の場合、水冷は熱変動の低減につながり、特に非常に寒い環境に着陸した後のエンジンブロックの亀裂を減らす。海洋での使用では、閉ループ冷却により、海洋船外機の大きな問題であるエンジン内部に塩水が入らないため、塩水の問題が解消される。
【0075】
様々な実施形態において、本発明のエンジンは、オーバーホールが必要になる前の高RPM用途では10,000時間の動作寿命を達成し、低RPM用途では15,000時間の動作寿命を達成し得る。従来技術のエンジンは、現在の船舶、ピストン航空、およびガソリン発電機用途の4ストロークガソリンエンジンで、平均で1,500時間の動作寿命しか達成できない。
【0076】
様々な実施形態は、より低いRPM、例えばI-3ブロックで5,500RPM、V6以上のブロックで3,000RPMを達成し、現在のガソリンエンジンよりも平坦なトルク曲線を提供しながら、エンジンの摩耗量を減らすことができる。これは、海洋環境での動力生成、航空機用途、またはドローン用に最適である。特に、小型化が続くがエネルギー要求が増加しているUAVの合成開口レーダやエネルギーベースのシステムに電力を供給するために、高電流の電子搭載発電機を利用できる。
【0077】
さらに、本発明は、様々なハイブリッド電気技術ならびに、リチウムおよびマグネシウムベースの電池を含む電池と互換性がある。システム10の様々な実施形態は、既存の12Vまたは24Vシステム用の48-V電気アーキテクチャおよび/または電圧調整器を含むことができる。
【0078】
寄生電力損失を減らし、性能を改善するために、他の様々な技術と設計選択を使用することができる。これらの技術には、たとえば、電気駆動の水ポンプとオイルポンプと過給機、排気駆動発電機、1つの圧縮リングと1つのオイルリングの使用、オイルスロッシングを減らすための改良されたピストンリング、シリコン強化された多孔質アルミニウムなどの高度なコーティング、オフセットクランクシャフト、オイル加熱器、高出力高密度オルタネータおよび放射ジェネレータが含まれる。
【0079】
本発明のディーゼルエンジンは、海洋用途の推進力と電力の両方をサポートすることができる。現在、多くのレクリエーションボートにはエンジン用のガソリンタンクと車載発電機用のディーゼルタンクが1つずつあるため、本発明により製造業者は1つの燃料タンクをなくすことができ、および/または搭載燃料量を増やすことができる。
【0080】
様々な海洋用途では、前向きまたは後向きのプロペラで動作する機能、フライホイール搭載の電動スタータ、塩水による腐食を防ぐ閉ループ冷却、トリムとチルトを備えた内蔵電動ステアリング、水中排気、舵柄、外部パネルカバー用の炭素繊維またはグラフェンパネルなどの追加機能が必要になる場合がある。船外用途向けに電気エンジンを搭載して、燃料をほとんど使用せずにステルストローリングと港湾操作を拡張できる。電気モータは、重量と余分な部品の両方を減らすためにトランスミッションハウジングに直接組み立てることができ、スタータとしても機能する。
【0081】
デジタルスロットルコントロールは、55HP以上およびオプションで55HP以下のすべての船外エンジンに含めることができる。デジタルジョイスティックは、いくつかの運転モードで利用でき、事前にロードされる。一部の実施形態では、直角コンピュータ制御トランスミッションを備えた水平クランクシャフトレイアウトを採用することができる。従来の船外推進システムの一般的に問題のある領域を排除するために、変速機では、低ドライブの代わりにギアシフトが行われる場合がある。
【0082】
さらに、トーピードの下部ギアケースに独自のツインピニオンギア設計を採用して、船外設計の従来の最も弱い点に対処することができる。現在の船外機は、1つのピニオンシャフトのみを使用してトルク負荷を分散し、船外機では特に浮揚後の水への再突入時に非常に激しくなる高負荷を支持する。2ギア設計により、負荷は半分になる。エンジンを水中での大きな打撃から保護するために、下部ドライブの折りたたみ可能なフェールセーフ設計がある。
【0083】
ソフトウェアとジャイロスコープは、自動トリムタブと接続して、エンジンチルトの連続的な自動電気制御をエンジンに提供する。この自動プロセスは、ボートのエンジンチルトと両方の独立したトリムタブの調整を、たとえば1秒あたり数千回など、あらゆる速度のあらゆる海の状態で、開始時から動作中継続的に制御する。船上の重量が適切に配分されない場合、各トリムタブを個別に自動制御することで、ボートを水平に保つことができる。このソフトウェアは、GPSユニットおよび自動操縦ナビゲーションシステムとも接続できる。
【0084】
航空用途には、エンジンのブローアウトリスクを減らし排気ガス温度(EGT)を下げるための、燃料混合の手動制御なしの単一スロットルレバー制御など、様々な機能が含まれる場合がある。デュアルチャンネルFADECシステムと圧力調整可能な過給機を使用できる。ディーゼル燃料とJet-A燃料の点火温度は同じ(~400°F)であるため、軽~中重量のUAVの機内給油が可能であり、飛距離や飛行耐久性などの各航空機の運航能力とともに飛行時間が大幅に向上する。加えて、本発明のエンジンはサイクルに制限されず、エンジンTBOだけが短距離から中距離の飛行をより費用効果的にする。ディーゼル燃料の泡ろ過は、加熱を伴う燃料循環と同様に使用することができる。エンジン排気の赤外線(IR)シグネチャサプレッサーは、軍事用途に含まれる場合がある。
【0085】
MHDC陸上車両用途では、本発明のエンジンは、全輪駆動モード下で総出力2,000HP~3,000HPを車輪に直接供給し、120,000ポンドを超える重量ならびにそれ以上の荷重のトラックを移動させることができる。不利な条件下でのすぐれたトラクションと安全性のために、自動的に調整された一定の出力と個別制御を可能にするよう独立モータを車軸の両側に配置することができる。
【0086】
下降動作用のアクティブグラジエントコントロール(AGC)は、各車輪が連続再生エネルギーを提供し、ハイブリッドの実施形態のバッテリーの再充電を支援する。AGCは、あらゆるタイプの地形、特に現在のトラックが非常に低い燃料経済性に大きく苦しむ高勾配地形(すなわち、上り坂)で一定の速度を提供できる。
【0087】
発電機用途の場合、ECU30は、アイドリングまたはフルスロットルの2つのレベルのみで動作する現在の発電機とは対照的に、電気出力要求に従ってエンジンスロットルを調整する独自のスロットル制御を提供するように構成できる。
【0088】
2ストロークディーゼルエンジンは1回転あたり4つのパワーパルスを実行し、低圧縮で動作するため、本発明のエンジンはより長い連続正トルクをピストンに供給することができ、したがってシャフトにより多くの力を加えることができる。さらに、直列および密な「V」および「W」構成により、エンジンを任意の位置に取り付けて、航空用途に動力を供給することができる。単一のピストンは、同じHPの2ストロークガソリンエンジンと同じくらい軽量である。
【0089】
前述の開示は、本発明の例、図および説明を提供するが、網羅的であること、または開示された正確な形態に実施を限定することを意図していない。上記の開示に照らして修正および変形が可能であり、または実装の実施から取得することができる。本発明のこれらおよび他の変形および修正が可能であり、また企図されており、前述の明細書および添付の特許請求の範囲がそのような修正および変形を包含することが意図されている。
【0090】
本明細書で使用される場合、コンポーネントという用語は、ハードウェア、ファームウェア、および/またはハードウェアとソフトウェアの組み合わせとして広く解釈されることを意図している。本明細書で説明されるシステムおよび/または方法は、異なる形態のハードウェア、ファームウェア、またはハードウェアとソフトウェアの組み合わせで実装できることは明らかであろう。これらのシステムや方法を実装するために使用される実際の特殊な制御ハードウェアまたはソフトウェアコードは、実装を限定するものではない。したがって、本明細書では、特定のソフトウェアコードまたは特定のハードウェアを参照せずに、システムおよび/または方法の様々な動作および挙動を説明することがある。本明細書の説明に基づいてシステムおよび/または方法を実装するようにソフトウェアおよびハードウェアを設計できることを、当業者は理解するであろう。
【0091】
ハードウェアプロセッサモジュールは、たとえば、汎用プロセッサからフィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)にまで及ぶ。(ハードウェアで実行される)ソフトウェアモジュールは、C、C++、Java(登録商標)、Javascript、Rust、Go、Scala、Ruby、VisualBasic(登録商標)、FORTRAN、Haskell、Erlang、および/またはその他のオブジェクト指向、手続き型、またはその他のプログラミング言語および開発ツールなど、様々なソフトウェア言語(コンピュータコードなど)で表現できる。コンピュータコードには、マイクロコードまたはマイクロ命令、コンパイラーによって生成されるようなマシン命令、Webサービスを生成するために使用されるコード、およびインタープリターを使用してコンピュータによって実行され、制御信号、暗号化コード、および圧縮コードを使用する高レベルの命令を含むファイルが含まれる場合がある。
【0092】
一部の実装は、閾値に関連して本明細書で説明される。本明細書で使用されるように、閾値を満たすことは、閾値より大きい、閾値より多い、閾値より高い、閾値以上、閾値より小さい、閾値より低い、閾値以下、閾値と同等などの値を指すことができる。
【0093】
特定のユーザインターフェースが本明細書で説明され、および/または図に示される。ユーザインターフェースには、グラフィカルユーザインターフェース、非グラフィカルユーザインターフェース、テキストベースのユーザインターフェースなどが含まれる。ユーザインターフェースは、表示用の情報を提供する。一部の実装形態では、ユーザは、表示用のユーザインターフェースを提供する装置の入力コンポーネントを介して入力を提供するなどして、情報と対話できる。一部の実装形態では、ユーザインターフェースは、装置および/またはユーザによって構成可能であってもよい(例えば、ユーザは、ユーザインターフェースのサイズ、ユーザインターフェースを介して提供される情報、ユーザインターフェースを介して提供される情報の位置などを変更してもよい)。追加または代替として、ユーザインターフェースは、標準構成、ユーザインターフェースが表示される装置の種類に基づく特定の構成、および/またはユーザインターフェースが表示される装置に関連する機能および/または仕様に基づく構成のセットに事前に構成することができる。
【0094】
特徴の特定の組み合わせが特許請求の範囲に記載され、かつ/または明細書に開示されているが、これらの組み合わせは、可能な実装の開示を限定することを意図していない。実際、これらの特徴の多くは、特許請求の範囲に具体的に記載されていないおよび/または明細書に開示されていない方法で組み合わせることができる。下記の各従属クレームは、1つのクレームのみに直接依存する場合があるが、可能な実装の開示には、クレームセット内の他のすべてのクレームと組み合わせた各従属クレームが含まれる。
【0095】
本明細書で使用する要素、行為、または指示は、明示的に説明されていない限り、重要または必須と解釈されるべきではない。また、本明細書で使用するとき、冠詞「a」および「an」は、1つ以上のアイテムを含むことを意図しており、「1つ以上」と交換可能に使用することができる。さらに、本明細書で使用する「セット」という用語は、1つ以上のアイテムを含むことを意図しており、「1つ以上」と交換可能に使用することができる。1つのアイテムのみを対象とする場合、「1つ」いう用語または同様の語が使用される。また、本明細書で使用する「有する」などの用語は、無制限の用語であることを意図している。さらに、「に基づいて」という表現は、特に明記しない限り、「少なくとも部分的に基づいて」を意味することを意図している。
【0096】
本出願における概要、要約、または特許請求の範囲の有無は、本明細書に開示された発明の範囲を限定するものと決して見なされるべきではない。