(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-24
(45)【発行日】2022-07-04
(54)【発明の名称】フィールド内の距離情報を収集するための光学システム
(51)【国際特許分類】
G01S 7/481 20060101AFI20220627BHJP
G01C 3/06 20060101ALI20220627BHJP
G01S 17/894 20200101ALI20220627BHJP
【FI】
G01S7/481 Z
G01C3/06 120Q
G01C3/06 140
G01S17/894
(21)【出願番号】P 2020208324
(22)【出願日】2020-12-16
(62)【分割の表示】P 2019531544の分割
【原出願日】2017-08-24
【審査請求日】2021-01-15
(32)【優先日】2016-08-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】519064609
【氏名又は名称】アウスター インコーポレイテッド
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100095898
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100107537
【氏名又は名称】磯貝 克臣
(72)【発明者】
【氏名】パカラ アンガス
(72)【発明者】
【氏名】フリクトル マーク
(72)【発明者】
【氏名】シュウ マーヴィン
(72)【発明者】
【氏名】ヤング エリック
【審査官】梶田 真也
(56)【参考文献】
【文献】特開2003-004850(JP,A)
【文献】特開2016-161438(JP,A)
【文献】米国特許出願公開第2014/0055661(US,A1)
【文献】米国特許出願公開第2015/0055117(US,A1)
【文献】米国特許第06374024(US,B1)
【文献】特開2013-201466(JP,A)
【文献】特開2012-142952(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48 - 7/51
G01S 17/00 - 17/95
G01C 3/00 - 3/32
(57)【特許請求の範囲】
【請求項1】
光学システムを用いて、距離値の距離行列によって表される画像を生成する方法であって、
前記光学システムは、複数のピクセルの複数のピクセル行を有するピクセルアレイを有しており、
前記ピクセルアレイは、走査サイクル中に走査するように構成されており、
当該方法は、
前記ピクセルアレイの走査の結果である異なる角度サンプリング位置に対応する複数のサンプリング周期の各々の間に、
複数の照明源から光を投影する工程と、
前記光学システムの外側のフィールドから反射される照明ビームを収集することで前記ピクセルアレイによる光データを生成する工程と、
前記ピクセルアレイ内の前記ピクセルの距離値を計算する工程と、
を備え、
当該方法は、
前記走査サイクルに対応するように、
前記異なる角度サンプリング位置での距離値を利用して、
距離値の距離行列を生成する工程
を備え、
前記距離行列を生成する工程は、前記距離
行列の各距離行毎に、前記距離行内の異なるサンプリング周期での異なるピクセル行に対応する距離値を用いる工程を有しており、
前記距離行列の前記距離行内の距離値の数は、前記ピクセルアレイのピクセルの数に対応しており、
前記距離行列内の距離行の数は、前記走査サイクル中のサンプリング周期の数に対応している
ことを特徴とする方法。
【請求項2】
前記
サンプリング周期毎
に、前記距離行列の各列は、同時に1つの距離値が出力される
ことを特徴とする請求項1に記載の方法。
【請求項3】
前記走査サイクルの前記複数のサンプリング周期は、第1サンプリング周期と第2サンプリング周期とを有しており、
前記ピクセルアレイは
、第1方向に延びる第1軸に沿って整列された第1ピクセル行と
前記第1軸に平行な第2軸に沿って整列された第2ピクセル行とを有しており、
第1角度サンプリング位置に対応する前記第1サンプリング周期において、第1距離値が前記ピクセルアレイの前記ピクセルのために計算され、
第2角度サンプリング位置に対応する前記第2サンプリング周期において、第2距離値が前記ピクセルアレイの前記ピクセルのために計算され、
前記距離行列を生成する工程は、前記距離行列の特定の距離行を、前記第2ピクセル行に対応する第1距離値と前記第1ピクセル行に対応する第2距離値とで出力する工程を含む
ことを特徴とする請求項1に記載の方法。
【請求項4】
複数のピクセル行の各々は、第1方向に延びる軸に沿って整列されており、
隣接する角度サンプリング位置間の角度オフセットと、隣接するピクセル行間の
第1方向角度オフセットとは、第1角度サンプリング位置での第1ピクセル行が第2角度サンプリング位置での第2ピクセル行と
前記第1方向とは垂直な第2方向に整列されるようになっている
ことを特徴とする請求項1に記載の方法。
【請求項5】
隣接するピクセル行間の
第1方向オフセットは、バルク受信光学系の焦点長さと、隣接する角度サンプリング位置間の角度ピッチと、に対応している
ことを特徴とする請求項1に記載の方法。
【請求項6】
前記距離行列内の1または複数の距離値を、補正行列内の1または複数の角度オフセット値で融合することによって、前記照明ビームを反射した表面の位置を計算する工程
を更に備えたことを特徴とする請求項1に記載の方法。
【請求項7】
前記補正行列は、前記距離行列内のエントリ毎に、ピッチ方向及びヨー方向のオフセット角度を画定する
ことを特徴とする請求項6に記載の方法。
【請求項8】
前記表面の位置を計算する工程は、前記光学システムのバルク受信光学系の公称軸からの横方向の距離オフセットを判定するために、距離値を角度オフセット値で乗算する工程を含む
ことを特徴とする請求項6に記載の方法。
【請求項9】
前記第2ピクセル行は、
前記第1ピクセル行から
第1方向ピッチだけ
前記第1方向にオフセットされて
おり、
前記第1ピクセル行及び前記第2ピクセル行のピクセルは、前記第1方向に垂直な第2方向に移動される時、1列に1ピクセルの単一の第1方向行上に整列され得る
ことを特徴とする請求項
3に記載の方法。
【請求項10】
第1ピクセル行の各ピクセルは、第1ピクセルピッチだけ、前記第1ピクセル行内の隣接するピクセルからオフセットされており、
第2ピクセル行は、前記第1ピクセルピッチだけ、
前記第1方向に垂直な第2方向に前記第1ピクセル行からオフセットされている
ことを特徴とする請求項9に記載の方法。
【請求項11】
距離値の距離行列によって表される画像を生成するための光学システムであって、
当該光学システムの前方のフィールド内に選択的に照明ビームを投影するように構成された複数の光学エミッタを有する照明源と、
焦点長さを有するバルク受信光学系と、
前記フィールド内の外部表面までの距離値を計算するための光データを生成するように構成されている、
複数のピクセルを有するピクセルアレイと、
複数の走査サイクル中、前記ピクセルアレイと前記バルク受信光学系と
を回転させるように構成されたアクチュエータと、
プロセッサ及び当該プロセッサに結合されたコンピュータ可読媒体と、
を備え、
前記ピクセルアレイ内の前記複数のピクセルは、少なくとも第1方向に延びる第1軸に沿って整列された第1ピクセル行と前記第1軸に平行な第2軸に沿って整列された第2ピクセル行とに配置されており、
前記第1ピクセル行及び前記第2ピクセル行は、当該第1ピクセル行及び当該第2ピクセル行間の
前記第1方向とは垂直な方向の距離と前記バルク受信光学系の前記焦点長さとに対応する
第1方向ピッチ角だけオフセットされており、
前記第1ピクセル行及び前記第2ピクセル行は、前記距離行列の単一の距離行のために
前記第1方向に整列される視野を有
しており、
各走査サイクル中、前記ピクセルアレイ及び前記バルク受信光学系は、360°回転され、
前記コンピュータ可読媒体は、そこに記憶された複数の命令を有しており、
前記複数の命令は、前記プロセッサによって実行される時、前記ピクセルアレイを回転させる前記アクチュエータの帰結である異なる角度サンプリング位置に対応する複数のサンプリング周期の各々の間に、当該光学システムに、
前記複数の光学エミッタから前記フィールド内に照明ビームを投影させ、
前記複数の光学エミッタによって放射された前記照明ビームから、前記フィールド内の表面から反射された後で、フォトンを収集させることで、前記ピクセルアレイで光データを生成させ、
前記ピクセルアレイ内の前記ピクセルの距離値を計算させ、
前記異なる角度サンプリング位置での前記距離値を利用して、前記距離行列を生成させ、
前記距離行列を生成する工程は、前記距離行列の複数の距離行の各々毎に、当該距離行内に異なるサンプリング周期での異なるピクセル行に対応する距離値を用いる工程を有しており、
当該距離行内の距離値の数は、前記ピクセルアレイ内のピクセルの数に対応しており、
前記距離行列内の距離行の数は、前記走査サイクル中のサンプリング周期の数に対応している
ことを特徴とする光学システム。
【請求項12】
走査サイクルからの距離値を距離行列内に記憶するように構成された回路
を更に備え、
前記距離行列は、前記走査サイクルの円弧状のサンプリング位置の数に等しい
第1方向分解能を有するシーンを表している
ことを特徴とする請求項11に記載の光学システム。
【請求項13】
前記距離行列の距離行の距離値の数は、前記ピクセルアレイのピクセルの数に対応している
ことを特徴とする請求項12に記載の光学システム。
【請求項14】
前記距離行列の各距離行は、異なるサンプリング期間の異なるピクセル行に対応する距離値を含んでいる
ことを特徴とする請求項12に記載の光学システム。
【請求項15】
前記回路は、前記走査サイクル毎に同時に、1つの距離値を用いて、前記距離行列の各列を出力するように構成されている
ことを特徴とする請求項12に記載の光学システム。
【請求項16】
前記回路は、前記距離行列内の1または複数の距離値を、補正行列内の1または複数の角度オフセット値で融合することによって、照明ビームを反射した表面の位置を計算するように構成されている
ことを特徴とする請求項12に記載の光学システム。
【請求項17】
前記補正行列は、前記距離行列内のエントリ毎に、ピッチ方向及びヨー方向のオフセット角度を画定する
ことを特徴とする請求項16に記載の光学システム。
【請求項18】
前記バルク受信光学系の前記焦点長さは、温度で変化し、
1組の補正行列が、様々な温度に対応している
ことを特徴とする請求項16に記載の光学システム。
【請求項19】
前記複数のピクセル行の各ピクセル行は、前記バルク受信光学系の公称軸からの特有の
第1方向角度に対応している
ことを特徴とする請求項11に記載の光学システム。
【請求項20】
前記
第2ピクセル行は、
前記第1ピクセル行から第1方向ピッチだけ前記第1方向にオフセットされて
おり、
前記第1ピクセル行及び前記第2ピクセル行のピクセルは、前記第1方向に垂直な第2方向に移動される時、1列に1ピクセルの単一の第1方向行上に整列され得る
ことを特徴とする請求項11に記載の光学システム。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
本出願は、2016年8月24日出願の「フィールド内の距離情報を収集するための光学システム」という表題の米国仮出願第62/379,130の優先権を主張するものである。この仮出願の内容は、当該参照によって本明細書に組み込まれる(incorporated by reference)。
【0002】
[技術分野]
本開示は、全体として、光学センサの分野に関し、特には、光学センサの分野の中で距離情報を収集するための新規で有用な光学システムに関する。
【背景技術】
【0003】
光検出及び測距(LiDAR)システムは、農業、森林の計画及び管理、環境アセスメント、調査、地図作成、画像化、並びに、自動車の自動化、等の広範囲の用途において使用されている。カメラとは異なり、LiDARシステムは、夜間でも、如何なる天候下でも、作動され得る。 更に、LiDARシステムは、低い太陽の角度によっても影響されず、照射された物体からの戻り光に基づいて直接的に距離の輪郭(等高線)を提供することができる。
【0004】
しかしながら、より高い精度、より低いコスト、及び、より速い結果、を伴うように2D距離情報または3D距離情報を提供することは、依然として課題のままである。
【発明の概要】
【課題を解決するための手段】
【0005】
本開示の様々な実施例に従うシステム及び方法は、前述の問題に対する解決策を提供する。距離情報を収集するための光学システムの一例は、当該光学システムの外側のフィールドから反射される複数の照明源の照明ビームを収集するように構成された第1送信光学要素と、第1ピクセル行と第2ピクセル行とを少なくとも含むピクセルアレイと、前記第1送信光学要素と前記ピクセルアレイとの間に配置された入力チャネルの組と、を備え、前記第1ピクセル行の各ピクセルは、当該第1ピクセル行の隣接ピクセルから第1ピクセルピッチだけオフセットされており、前記第2ピクセル行は、前記第1ピクセル行から水平方向に前記第1ピクセルピッチだけオフセットされており、前記第2ピクセル行は、前記第1ピクセル行から垂直方向に第1垂直ピッチだけオフセットされており、前記入力チャネルの組は、第1の複数の入力チャネルと第2の複数の入力チャネルとを少なくとも含んでおり、前記第1の複数の入力チャネルの各々は、前記第1送信光学要素から前記第1ピクセル行の対応するピクセルへと収集される照明ビームの1つを通信するように構成されており、前記第2の複数の入力チャネルの各々は、前記第1送信光学要素から前記第2ピクセル行の対応するピクセルへと収集される照明ビームの1つを通信するように構成されている。
【0006】
本開示の一態様では、前記第1送信光学要素は、第1焦点距離を有し、前記フィールドと反対側の焦点面を画定している。前記入力チャネルの組は、前記焦点面と実質的に一致するように配置され、アパーチャの組を有するアパーチャ層と、レンズの組と、前記レンズの組に隣接すると共に前記アパーチャの組と反対側に配置された光学フィルタと、を有しており、前記アパーチャの組は、少なくとも第1の複数のアパーチャと第2の複数のアパーチャとを含んでおり、前記レンズの組は、少なくとも第1の複数のレンズと第2の複数のレンズとを含んでおり、前記第1の複数のレンズの各々は、前記第1の複数のアパーチャのうちの1つに対応しており、前記第2の複数のレンズの各々は、前記第2の複数のアパーチャのうちの1つに対応している。
本開示の別の一態様では、前記入力チャネルの組の各入力チャネルは、前記ピクセルアレイの対応する1つのピクセルと同軸であり、その結果、前記入力チャネルの組は、前記ピクセルアレイと実質的に同様の歪曲グリッドアレイ状に位置決めされている。
本開示の更に別の一態様では、前記入力チャネルの組の各入力チャネルは、前記レンズの組のうちの1つのレンズと、前記アパーチャの組のうちの1つの対応するアパーチャと、を有しており、当該レンズは当該対応するアパーチャと略整列されている。
本開示の更に別の一態様では、前記レンズの組の各々は、第2焦点距離を有し、前記第1送信光学要素と反対側の前記焦点面を前記第2焦点長さだけオフセットして、当該光学システムの作動波長と実質的に等しい波長を有する光線を平行にするように構成されている。
本開示の更に別の一態様では、当該光学システムは、第2送信光学要素を更に備え、前記複数の照明源は、前記第2送信光学要素の焦点面に沿って位置決めされており、前記第2送信光学要素によって投影される各照明ビームは、前記入力チャネルの組のうちの対応する入力チャネルの視野と実質的に同一のサイズ及び幾何形状を有している。
【0007】
本開示の更に別の一態様では、前記アパーチャ層は、選択的に、ガラスウェハを金属化し、前記アパーチャの組を金属化ガラスウェハにエッチングすることによって、別個に製造される。
【0008】
本開示の更に別の一態様では、前記ピクセルアレイは、半導体ウェハ上に集積される。前記第1送信光学要素と前記入力チャネルの組とは、フォトリソグラフィ技術またはウェハレベル結合技術のうちの少なくとも1つを用いて、前記半導体ウェハ上に製造される。
【0009】
本開示の更に別の一態様では、前記固定ピクセルピッチは、nを正の整数として、前記第1垂直ピッチのn倍である。
【0010】
本開示の更に別の一態様では、当該光学システムは、前記ピクセルアレイ、前記入力チャネルの組、及び、前記第1送信光学要素を、垂直軸回りに回転させるように構成されたアクチュエータを更に備える。前記アクチュエータは、回転式電気モータと光学式エンコーダとを含み、前記回転式電気モータは、前記光学式エンコーダの出力に基づいて、前記ピクセルアレイ、前記入力チャネルの組及び前記第1送信光学要素の回転速度を制御するように構成されており、前記光学式エンコーダは、閉ループフィードバック回路を介して前記ピクセルアレイに結合されている。
【0011】
距離情報を収集するための光学システムを製造する例示的な方法は、当該光学システムの外側のフィールドから反射される複数の照明源の照明ビームを収集するように構成された第1送信光学要素を提供する工程と、第1ピクセル行と第2ピクセル行とを少なくとも含むピクセルアレイを提供する工程と、前記第1送信光学要素と前記ピクセルアレイとの間に配置される入力チャネルの組を位置決めする工程と、を備え、前記第1ピクセル行の各ピクセルは、当該第1ピクセル行の隣接ピクセルから第1ピクセルピッチだけオフセットされており、前記第2ピクセル行は、前記第1ピクセル行から水平方向に前記第1ピクセルピッチだけオフセットされており、前記第2ピクセル行は、前記第1ピクセル行から垂直方向に第1垂直ピッチだけオフセットされており、前記入力チャネルの組は、第1の複数の入力チャネルと第2の複数の入力チャネルとを少なくとも含んでおり、前記第1の複数の入力チャネルの各々は、前記第1送信光学要素から前記第1ピクセル行の対応するピクセルへと収集される照明ビームの1つを通信するように構成されており、前記第2の複数の入力チャネルの各々は、前記第1送信光学要素から前記第2ピクセル行の対応するピクセルへと収集される照明ビームの1つを通信するように構成されていることを特徴とする。
距離情報を収集する例示的な方法は、光学システムを用いる工程を備え、当該光学システムは、当該光学システムの外側のフィールドから複数の照明源の反射される照明ビームを収集するように構成された第1送信光学要素と、第1ピクセル行と第2ピクセル行とを少なくとも含むピクセルアレイと、前記第1送信光学要素と前記ピクセルアレイとの間に配置された入力チャネルの組と、を備え、前記第1ピクセル行の各ピクセルは、当該第1ピクセル行の隣接ピクセルから第1ピクセルピッチだけオフセットされており、前記第2ピクセル行は、前記第1ピクセル行から水平方向に前記第1ピクセルピッチだけオフセットされており、前記第2ピクセル行は、前記第1ピクセル行から垂直方向に第1垂直ピッチだけオフセットされており、前記入力チャネルの組は、第1の複数の入力チャネルと第2の複数の入力チャネルとを少なくとも含んでおり、前記第1の複数の入力チャネルの各々は、前記第1送信光学要素から前記第1ピクセル行の対応するピクセルへと収集される照明ビームの1つを通信するように構成されており、前記第2の複数の入力チャネルの各々は、前記第1送信光学要素から前記第2ピクセル行の対応するピクセルへと収集される照明ビームの1つを通信するように構成されていることを特徴とする。
距離情報を収集する例示的な方法は、光学システムを提供する工程を備え、当該光学システムは、当該光学システムの外側のフィールドから複数の照明源の反射される照明ビームを収集するように構成された第1送信光学要素と、第1ピクセル行と第2ピクセル行とを少なくとも含むピクセルアレイと、前記第1送信光学要素と前記ピクセルアレイとの間に配置された入力チャネルの組と、を備え、前記第1ピクセル行の各ピクセルは、当該第1ピクセル行の隣接ピクセルから第1ピクセルピッチだけオフセットされており、前記第2ピクセル行は、前記第1ピクセル行から水平方向に前記第1ピクセルピッチだけオフセットされており、前記第2ピクセル行は、前記第1ピクセル行から垂直方向に第1垂直ピッチだけオフセットされており、前記入力チャネルの組は、第1の複数の入力チャネルと第2の複数の入力チャネルとを少なくとも含んでおり、前記第1の複数の入力チャネルの各々は、前記第1送信光学要素から前記第1ピクセル行の対応するピクセルへと収集される照明ビームの1つを通信するように構成されており、前記第2の複数の入力チャネルの各々は、前記第1送信光学要素から前記第2ピクセル行の対応するピクセルへと収集される照明ビームの1つを通信するように構成されていることを特徴とする。
【図面の簡単な説明】
【0012】
【
図2】
図2は、前記システムの一変形例の概略図である。
【
図3A】
図3Aは、前記システムの一変形例のグラフ図である。
【
図3B】
図3Bは、前記システムの一変形例のグラフ図である。
【
図4】
図4は、前記システムの一変形例の概略図である。
【
図5A】
図5Aは、前記システムの一変形例のグラフ表示である。
【
図5B】
図5Bは、前記システムの一変形例のグラフ表示である。
【
図5C】
図5Cは、前記システムの一変形例のグラフ表示である。
【
図5D】
図5Dは、前記システムの一変形例のグラフ表示である。
【発明を実施するための形態】
【0013】
以下の本発明の実施形態の説明は、本発明をこれらの実施形態に限定することを意図してはおらず、当業者が本発明を製造及び利用することを可能にすることを意図している。本明細書に説明される変形例、構成例、実施形態、例示的実施形態、及び実施例は、選択的であり、本明細書において説明される変形例、構成例、実施形態、例示的実施形態、及び実施例について排他的ではない(限定されない)。本明細書に説明される本発明は、これらの変形例、構成例、実施形態、例示的実施形態、及び実施例の任意のあらゆる置換を含み得る。
【0014】
1.システム
図1及び
図2に示すように、フィールド内の距離情報を収集するためのシステムが、バルク受信光学要素、ピクセルブロック、第1組の入力チャネル、及び、第2組の入力チャネルを含む。ピクセルブロックは、第1ピクセル行と第2ピクセル行とを含み、第1ピクセル行の各ピクセルは、当該第1ピクセル行の隣接するピクセルからあるピクセルピッチだけ垂直方向にオフセットされており、第2ピクセル行は、第1ピクセル行から前記ピクセルピッチだけ水平方向にオフセットされると共に第1ピクセル行からある垂直ピッチだけ垂直方向にオフセットされており、第2ピクセル行の各ピクセルは、当該第2ピクセル行の隣接するピクセルからある前記ピクセルピッチだけ垂直方向にオフセットされており、前記垂直ピッチは、前記ピクセルピッチの一部である。第1組の入力チャネルは、バルク受信光学要素とピクセルブロックとの間に配置されており、第1組の入力チャネルの各入力チャネルは、バルク受信光学要素から入射される光を第1ピクセル行の対応するピクセルに通信するように構成されている。第2組の入力チャネルは、第1組の入力チャネルから水平方向にオフセットされていて、バルク受信光学要素とピクセルブロックとの間に配置されており、第2組の入力チャネルの各入力チャネルは、バルク受信光学要素から入射される光を第2ピクセル行の対応するピクセルに通信するように構成されている。
【0015】
2.アプリケーション
本システムは、ある1行のピクセルに平行な軸回りに回転される時に当該システムによって占有される体積の3次元距離データを収集する画像センサとして、機能する。特に、動作中、当該システムは、一連のスキャンサイクルの各々にわたって3次元距離データを収集し、例えば照明源からの照明ビームの伝送間の記録時間や各ピクセルでの同一または類似の周波数または時間パターンでのフォトン(光子)の検出に基づいて、あるいは位相ベースの測定技術を実施することによって、それらを当該システムによって占有される体積の仮想3次元表現に再構成することができる。
本システムは、歪曲グリッドアレイレイアウト内に、2以上の行のピクセルを含む。隣接するピクセル行は、垂直方向及び水平方向にオフセットされていて、ピクセルの組は、1列あたり1ピクセルで、1つの垂直ピクセル行上に投影される。当該システムはまた、ピクセルごとに1つの入力チャネルを含み、当該入力チャネルは、共通のバルク受信光学要素からの光をそれらの対応するピクセルへと通過させる。当該システムはまた、ピクセルブロック、入力チャネル及びバルク受信光学要素を垂直軸回りに回転させるアクチュエータを含み得て、当該回転式アクチュエータの一回転(以後「走査サイクル」)の間に、各ピクセル(及び各対応する入力チャネル)は、他の各々のピクセルによって当該システム内で移行される固有の円形経路に対して平行かつ垂直方向にオフセットされた固有の円形経路を移行する。本システムは、1走査サイクル内の複数の円弧状サンプリング位置の各々において各ピクセルからデータを収集することができ、当該走査サイクル内の各円弧状のサンプリング時間に対して、複数行のピクセルから収集される当該データを単一の垂直行の距離-システムの回転軸に一致する(略)単一の垂直面内の外部表面に対する-に結合することができる。従って、当該システムは、単一行のピクセルのみを含む同様の走査システムによるデータ出力と実質的に同様のフォーマットで、データ(例えば距離値)を出力することができる。一方、当該システムは、垂直方向及び水平方向にオフセットされた複数のピクセル行を含むので、システム内の各ピクセルは、同一の有効(垂直)ピクセルピッチでの同数のピクセルを含む略同一の高さの同様の走査システムにおけるピクセルよりも高い高さを定義でき、従ってより多数の検出器を含み、より大きいダイナミックレンジを示す。
本システムは、走査サイクルごとに、範囲値の行列を出力することができる。当該行列の1列内の全ての範囲値は、ピクセルブロック内の1つの特定のピクセルの出力に対応し、当該行列の1列内の各範囲値は、1走査サイクル内のセンサブロックの特有の角度位置における対応するピクセルの出力に対応する。システム内の隣接するピクセル行は、水平方向及び垂直方向に互いにオフセットされているので、システムは、同時にではなくその都度(すなわち目標角度サンプリング位置ごとに)1つの範囲値で走査サイクルの行列の各列を代入(入力)する。隣接するピクセル行間の水平方向及び垂直方向のオフセットはまた、システム内の各ピクセルがシステムの所与の有効垂直ピッチに対してより大きな面積(従ってより多くの検出器を含む)にまたがることを可能にする。これにより、光学システムのサイズに対するダイナミックレンジの相対的に大きな比を生み出す。さらに、ピクセルブロック上の各ピクセルの面積は比較的広い面積に及ぶが、各ピクセルは、ピクセルが比較的高い空間選択性を保持するようにピクセルの視野を制限するアパーチャを含み、入力チャネルと対になっている。従って、本システムは、水平方向及び垂直方向にオフセットされたピクセル行と、対応する入力チャネルと、を含むことができ、大きなピクセル面積による高いダイナミックレンジと、各ピクセルの小さな視野による高い空間選択性と、コンパクトなシステム内の小さな有効ピクセル垂直ピッチによる高解像度と、を可能にすることができる。
【0016】
3.ピクセル
本システムは、複数のピクセルを含み、各ピクセルは、入射光を検出するように構成された1または複数の検出器を含むことができる。例えば、ピクセルは、入射フォトンの数、入射フォトン間の時間、入射フォトンの時間(例えば照明出力時間に対する)、または、他の関連データを出力することができ、システムは、これらのデータを、当該システムからこれらのピクセルの視野内の外面までの距離に変換することができる。これらの距離を、当該データが発生したピクセルの位置及び当該データが収集された時点でのこれらのピクセルの相対位置と融合することによって、システム(またはこれらのデータにアクセスする他の装置)は、当該システムによって占有される空間の3次元(仮想的または数学的)モデルを、例えば範囲値の矩形行列によって表される3D画像の形態などで、再構築できる。当該行列内の各範囲値が、3D空間内の極座標に対応する。
ピクセル内の各検出器は、サンプリング周期ごとに、単一のフォトンを検出するように構成され得る。従って、ピクセルは、当該ピクセルのダイナミックレンジを増大するために、複数の検出器を含むことができる。特に、各ピクセルに統合される検出器の数が増大するにつれて、ピクセルの(従ってシステムの)ダイナミックレンジは増大することができ、そしてピクセルに統合され得る検出器の数は、ピクセルの面積と共に線形に増大することができる。例えば、ピクセルは、
図4に示すように、6×6グリッドアレイ上で4個のコーナーの各々において1個の検出器を減らした32個の検出器のような、単一フォトンアバランシェダイオード検出器(「SPAD」)のアレイを含むことができる。直径10ミクロンの検出器では、ピクセルは約400ミクロン平方のフットプリント(設置面積)を画定することができる。もっとも、本システムは、他の任意の数の検出器を含む他の任意のタイプのピクセルを含むことができる。
【0017】
4.ピクセルパターン
本システムは、第1ピクセル行と第2ピクセル行とを含むピクセルブロックを備えている。第1ピクセル行の各ピクセルは、当該第1ピクセル行の隣接するピクセルからあるピクセルピッチだけ垂直方向にオフセットされており、第2ピクセル行は、第1ピクセル行から前記ピクセルピッチだけ水平方向にオフセットされると共に第1ピクセル行からある垂直ピッチだけ垂直方向にオフセットされており、第2ピクセル行の各ピクセルは、当該第2ピクセル行の隣接するピクセルからある前記ピクセルピッチだけ垂直方向にオフセットされており、前記垂直ピッチは、前記ピクセルピッチの一部である。全体として、ピクセルブロックは、歪曲グリッドアレイ状に複数列及び複数行のピクセルを含んでいる。
図1、
図2及び
図4に示すように、各行は、垂直方向に整列された複数のピクセルを含み、各列は、バルク受信光学要素の公称軸からの固有の垂直距離に対応して、単一のピクセルを含んでいる。特に、ピクセルブロックは、単一のピクセル行と比較して、横方向及び垂直方向にオフセットされた複数行のピクセルを含むことができ、各ピクセルをより高く及びより幅広にすることが可能であり、これによって、各ピクセルがより多数の検出器を含むことを可能にして、システムのダイナミックレンジを-ピクセル間のそのようなより大きい垂直ピッチに対応するためのより高いピクセルブロックを必要とすること無しで- 増大する。
一実施態様では、ピクセルブロック及びピクセルは、単一の集積回路に統合される。例えば、ピクセルブロック及びピクセルは、単一の特定用途向け集積回路(すなわち「ASIC」)内に画定され得る。この例では、各入力チャネルが、当該ピクセルにおけるより大きな空間選択性を達成するために、ASIC上の対応するピクセルの視野を制限するアパーチャを含むことができる。
【0018】
4.1 ピクセルパターン:32×2
一形態において、本システムは、例えば共通のバルク受信光学要素を共有する32×2個のピクセルアレイ及び対応する32×2個の入力チャネルアレイなどの、2行のピクセルを含む。この形態で、本システムは、同じ有効垂直ピクセルピッチで略同じ高さのピクセルブロック上に配置された同数のピクセルを含む1行システムのそれと同じバルク解像度を示すことができる。一方、2行システムは、1行システムよりも大きなダイナミックレンジを示し得る。特に、2行システムの第1行と第2行の両方のピクセルは、1行システムの第1垂直ピッチの2倍の第2垂直ピッチ(例えば、200ミクロン対100ミクロン)だけ垂直にオフセットされ得て、第2ピクセル行は、第2垂直ピッチの半分だけ、第1ピクセル行から垂直方向にオフセットされ得て、それによって、同数のピクセルが略同じ高さのピクセルブロック上に配置される場合、1行システムのピクセルの高さの2倍のピクセルのための2行システムのスペースを提供する。従って、正方形ピクセルの場合、2行システムの各ピクセルは、1行システムのピクセルのそれの約4倍の面積を画定することができ、これにより、1行システムのピクセルの約4倍の数の検出器を含むことができ、これにより、1行システムのピクセルのダイナミックレンジの約4倍を示すことができる。 例えば、高さが約640ミクロンで64個のピクセルを含むピクセルブロック(すなわち100ミクロンの垂直ピッチ)の場合、1行システムは64個の100ミクロン平方ピクセルを含むことができ、各ピクセルは、4個の50ミクロン幅の検出器を含む。一方、2行システムは、32個の200ミクロン平方ピクセルの第1列と32個の200ミクロン平方ピクセルの第2列とを含むことができ、各ピクセルは、8(16?)個の50ミクロン幅の検出器を含む。
もっとも、2行システムは2行のピクセルを含み、両方の行がシステムの水平方向中心(すなわち、ピクセルブロックのy軸)から水平方向にオフセットされているので、第1行のピクセルは、-水平面内で-第2行のピクセルの視野から角度オフセットされた視野を示し得る。従って、第1行のピクセルの視野は、システムからの距離が大きくなるにつれて、第2行のピクセルの視野からより大きな量だけ横方向にオフセットされ得る。同じバルク受信光学要素を共有する2行のピクセル間の水平方向のオフセットは、従って、-水平面内で-第1行のピクセルの視野と第2行のピクセルの視野との間の角度オフセットとして現れ得る(以下「水平歪み」)。
更に、そのような水平方向の歪みは、1つのピクセル行内の複数のピクセルに亘って均一ではない場合がある。特に、第1ピクセル行のピクセルの視野は、バルク光学要素の中心軸からのピクセルの距離の関数として、バルクレンズの中心(例えば、法線)軸から角度的にオフセットされ得て、第1ピクセル行の底部のピクセルが、水平面内で最大の負の角度オフセットを示し、第1ピクセル行の頂部のピクセルが、水平面内で同様の最大の正の角度オフセットを示す。もっとも、本システムは、後述されるように、補正マトリックス内の各行内のピクセルの視野の水平オフセット角度(例えば「ヨー」角度)のそのような変動を補償することができる。
【0019】
4.2 ピクセルパターン:16×4
図1及び
図2に示される別の一形態において、本システムは、例えば共通のバルク受信光学要素を共有する16×4個のピクセルアレイ及び対応する16×4個の入力チャネルアレイなどの、4行のピクセルを含む。この形態で、本システムは、同じ有効垂直ピクセルピッチで略同じ高さのピクセルブロック上に配置された同数のピクセルを含む1行システム及び2行システムのそれと同じバルク解像度を示すことができる。一方、4行システムは、1行システム及び2行システムよりも大きなダイナミックレンジを示し得る。特に、4行システムの各行のピクセルは、2行システムの第2垂直ピッチの2倍の第4垂直ピッチ(例えば、400ミクロン対200ミクロン)だけ垂直にオフセットされ得て、4行システムの各ピクセル行は、第4垂直ピッチの4分の1だけ、隣接するピクセル行から垂直方向にオフセットされ得て、それによって、同数のピクセルが略同じ高さのピクセルブロック上に配置される場合、2行システムのピクセルの高さの2倍のピクセルのための4行システムのスペースを提供する。従って、正方形ピクセルの場合、4行システムの各ピクセルは、2行システムのピクセルのそれの約4倍の面積を画定することができ、これにより、2行システムのピクセルの約4倍の数の検出器を含むことができ、これにより、2行システムのピクセルのダイナミックレンジの約4倍を示すことができる。前述の例において、高さが約640ミクロンで64個のピクセルを含むピクセルブロック(すなわち100ミクロンの垂直ピッチ)の場合、4行システムは4行のピクセルを含み得て、各行は、16個の400ミクロン平方ピクセルを含むことができ、各ピクセルは、32(64?)個の50ミクロン幅の検出器を含むことができる。
【0020】
もっとも、4行システムは4行のピクセルを含み、全ての行がシステムの中心から水平方向にオフセットされているので、最も左側の行のピクセルは、-水平面内で-最も右側の行のピクセルの視野から角度オフセットされた視野を示し得て、当該角度オフセットは、前述の2行システムの第1行及び第2行のピクセルの視野間の-水平面内での-角度オフセットよりも大きい(例えば2倍)。従って、4行システムは、例えば
図3Aに示されるように、2行システムよりも大きい水平歪みを示し得る。
【0021】
4.3 ピクセルパターン:8×8
更に別の一形態において、本システムは、例えば共通のバルク受信光学要素を共有する8×8個のピクセルアレイ及び対応する8×8個の入力チャネルアレイなどの、8行のピクセルを含む。この形態で、本システムは、同じ有効垂直ピクセルピッチで略同じ高さのピクセルブロック上に配置された同数のピクセルを含む1行システム、2行システム及び4行システムのそれと同じバルク解像度を示すことができる。一方、8行システムは、1行システム、2行システム及び4行システムよりも大きなダイナミックレンジを示し得る。特に、8行システムの各行のピクセルは、4行システムの第4垂直ピッチの2倍の第8垂直ピッチ(例えば、800ミクロン対400ミクロン)だけ垂直にオフセットされ得て、8行システムの各ピクセル行は、第8垂直ピッチの8分の1だけ、隣接するピクセル行から垂直方向にオフセットされ得て、それによって、同数のピクセルが略同じ高さのピクセルブロック上に配置される場合、4行システムのピクセルの高さの2倍のピクセルのための8行システムのスペースを提供する。従って、正方形ピクセルの場合、8行システムの各ピクセルは、4行システムのピクセルのそれの約4倍の面積を画定することができ、これにより、4行システムのピクセルの約4倍の数の検出器を含むことができ、これにより、4行システムのピクセルのダイナミックレンジの約4倍を示すことができる。前述の例において、高さが約640ミクロンで64個のピクセルを含むピクセルブロック(すなわち100ミクロンの垂直ピッチ)の場合、8行システムは8行のピクセルを含み得て、各行は、8個の800ミクロン平方ピクセルを含むことができ、各ピクセルは、120(256?)個までの50ミクロン幅の検出器を含むことができる。
【0022】
もっとも、4行システムは4行のピクセルを含み、全ての行がシステムの中心から水平方向にオフセットされているので、最も左側の行のピクセルは、-水平面内で-最も右側の行のピクセルの視野から角度オフセットされた視野を示し得て、当該角度オフセットは、4行システムの最も左側の行及び最も右側の行のピクセルの視野間の-水平面内での-角度オフセットの2倍である。従って、8行システムは、前述の4行システムよりも大きい水平歪みを示し得る。
【0023】
もっとも、本システムは、他の任意の数の行または列に配置された他の任意の数のピクセルを含むことができ、少なくとも、閾値解像度、最小ダイナミックレンジ、ピクセルブロックの周縁でのピクセルの視野の最大水平光学歪み及び/または最大垂直光学歪み、または、ピクセルブロックの最大幅及び/または最大高さ、等を達成する。
【0024】
5 バルク受信光学要素及び入力チャネル
図1、
図3A及び
図3Bに示されるように、本システムは、また、バルク受信光学要素と、当該バルク受信光学要素とピクセルブロックとの間に配置された第1組の入力チャネルと、第1組の入力チャンネルから水平方向にオフセットされると共にバルク受信光学要素とピクセルブロックとの間に配置された第2組の入力チャネルと、を備えている。第1組の入力チャネルの各入力チャネルは、バルク受信光学要素から入射する光を第1ピクセル行の対応するピクセルに通信するように構成されている。第2組の入力チャネルの各入力チャネルは、バルク受信光学要素から入射する光を第2ピクセル行の対応するピクセルに通信するように構成されている。一般に、バルク受信光学要素は、システムの外部から光(すなわち電磁放射)を収集するように機能する。そして、各入力チャネルは、バルク受信光学要素からの光を集めて、当該光をフィルタリングし、比較的狭い波長帯域に亘る光をピクセルブロック内の対応するピクセルへと通過させる、というように機能する。
【0025】
一実施形態では、各入力チャネルは、対応するピクセルと同軸であり、それにより、第1組の入力チャネル及び第2組の入力チャネルは、前述のようにピクセルによって画定された歪曲グリッドアレイと実質的に同様の歪曲グリッドアレイ状に配置される。各入力チャネルは、焦点面に配置されたアパーチャ、動作周波数で(すなわち狭い動作帯域内で)垂直入射光を通過させるように構成されたフィルタ、当該アパーチャと当該フィルタとの間に配置され平行光を当該フィルタに出力するように構成された入力レンズ、及び、当該入力レンズと反対側で前記フィルタに隣接して前記フィルタを通過した光をピクセルブロック内の対応するピクセルにわたって拡散させる(及び/または前記フィルタを通過した光を対応するピクセルのアクティブ領域に再集束させる)ように構成された出力レンズ、を含み得る。全体として、バルク受信光学要素、アパーチャ、入力レンズ、光学フィルタ、及び、ピクセルは、光(例えば、周囲光及び照明源による光出力)を収集し、当該光をコリメートし、照明源(後述される)の中心出力波長を含む狭い波長帯域の外側の光を全て排除し、ピクセルに到達した光を検出する、というために協働する。従って、システムは、1サンプリング期間中に特定のピクセルによって記録された入射フォトンの数、入射フォトン間の時間、照明ビーム出力時間に対する入射フォトン時間、等を、対応する入力チャネル及びバルク受信光学要素によって定義される特定のピクセルの視野内の外部表面までの当該システムからの距離に変換することができる。
【0026】
当該実施形態では、入力チャネルの組は、バルク受信光学要素の後方に配置されて入力チャネルごとに1つの入力アパーチャを定義するアパーチャ層と、バルク受信光学要素の反対側でアパーチャ層に隣接して各入力チャネルの対応する入力アパーチャと実質的に軸方向に整列した入力レンズを画定するレンズ層と、アパーチャ層の反対側でレンズ層に隣接してレンズ層に広がる光学フィルタと、を含む単一の入力ブロック内に画定され得る。この実施態様では、バルク受信光学要素は、バルク焦点距離によって特徴付けられ、当該バルク焦点距離だけ焦点面からオフセットされており、システムの外側から焦点面に向かって入射光線を投射するように機能する。例えば、バルク受信光学要素は、1または複数の両凸レンズ(
図1及び
図4に示す)及び/または平凸レンズのような、複数のレンズを含むことができる。当該複数のレンズは、協働して、光学フィルタを通過した垂直光線の中心波長(すなわち「システムの公称動作波長」)またはその近傍で、特定のバルク焦点距離によって特徴付けられる収束レンズを形成する。(バルク受光レンズはまた、以下で参照されるように、焦点面に垂直な公称軸を画定することもできる。)
【0027】
アパーチャ層は、バルク受信光学要素の後方に配置されて焦点面と一致する比較的薄い不透明構造を含み、入力チャネルごとに1つのアパーチャを画定し、当該アパーチャ周りに停止領域を画定する。アパーチャ層の停止領域は、入射光線を拒絶(例えば遮断、吸収、反射)し、各アパーチャは、入射光線をその対応する入力レンズに向けて通過させる。例えば、アパーチャ層は、1組のアパーチャを画定することができ、この場合、各アパーチャは、システムの視野の幾何学的選択性を最大にするために、回折限界直径に近い直径である。
【0028】
この実施形態では、入力レンズは、第2焦点距離によって特徴付けられ、当該第2焦点距離だけ焦点面からオフセットされており、アパーチャを通過した光線をコリメートし(平行にし)、コリメートされた(平行にされた)光線を光学フィルタへと通過させる。 例えば、入力ブロックは、チャネルごとに1つの入力レンズを含むことができ、各入力レンズは、バルク受信光学要素の光線円錐と実質的に一致する光線円錐によって特徴付けられた収束レンズを含み、比較的短い第2焦点距離だけバルク受信光学要素の焦点面からオフセットされ得て、バルク受信光学要素のアパーチャを維持して対応するアパーチャを通過した光をコリメートする。光学フィルタは、ある波長スペクトルのコリメート光を入力レンズから受容して、比較的狭い帯域の波長の光(たとえば、動作波長±0.25ナノメートル)を対応するピクセルへと通過させ、当該狭い波長帯域の外側の光をブロックする(例えば、反射、吸収する)。例えば、光学フィルタは、狭い光学バンドパスフィルタを含むことができる。
【0029】
システムが照明源を含む一実施例では、後述されるように、照明源は、900nmの公称波長で光を(主に)出力することができ、光フィルタは、899.95nmと900.05nmとの間の(90°の角度で当該光学フィルタに入射する)光を通過させ、当該帯域の外側の実質的に全ての(90°の角度で当該光学フィルタに入射する)光をブロックする、というように構成された平面光学バンドパスフィルタを画定することができる。従って、1組のピクセルのうちの1つのピクセルが、光学フィルタを通過した光(すなわち「フォトン」)を受け取って、これらの入射フォトンを検出し、サンプリング期間中に検出されたフォトンの数または割合に対応する信号を出力することができる。
【0030】
この実施形態では、バルク受信光学要素、アパーチャ層、レンズ層、光学フィルタ、及び、出力レンズが製造され得て、次いで、ピクセルブロックと位置合わせされてその上に取り付けられ得る。一例では、光学フィルタは、溶融シリカ基板をコーティングすることによって製造される。次に、光活性光学ポリマーが、光学フィルタの上に堆積され、当該光活性光学ポリマーの上に、レンズフォームのアレイを画定するレンズモールドが載置され、光学フィルタに亘って光活性光学ポリマーをレンズのパターンで硬化させるためにUV光源が活性化される。スタンドオフが、フォトリソグラフィ技術を介して、光学フィルタに亘って同様に成形または形成される。アパーチャ層は、ガラスウェハを選択的に金属化し、当該金属層にアパーチャをエッチングすることによって、別個に製造される。次に、当該ガラスウェハが、これらのスタンドオフに接着または他の方法で取り付けられる。この例では、当該アセンブリが続いて反転され、レンズ層の反対側の光学フィルタに亘って、第2組のスタンドオフが同様に製造される。ピクセルブロック(例えば、個別の画像センサ)は、第2組のスタンドオフと位置合わせされて接着される。バルク受信光学要素も、同様にアパーチャ層上に取り付けられて、システムが完成する。
【0031】
あるいは、ピクセルブロックは、半導体ウェハ上に(例えば、特定用途向け集積回路の形態で)製造され得て、バルク受信光学要素、アパーチャ層、レンズ層、及び光学フィルタは、フォトリソグラフィ技術及びウェハレベル接合技術を介して、-ピクセルブロック上で-半導体ウェハ上に直接製造され得る。もっとも、バルク受信光学要素、アパーチャ層、レンズ層、光学フィルタ、及びピクセルブロックは、他の任意の態様及び他の任意の方法ないし技術に従って、製造及び組み立てされ得る。
【0032】
6. 出力回路
図1に示されるように、本システムは、バルク送信光学要素及び照明源を含む出力回路を含み得る。一実施態様では、バルク送信光学要素は、材料、幾何形状(例えば、焦点長さ)、光学特性、及び/または、熱絶縁性等において、バルク受信光学要素と実質的に同一であり、バルク受信光学要素から横方向及び/または垂直方向に隣接してオフセットされている。
【0033】
一実施例では、照明源は、バルク送信光学要素の後方に配置されたモノリシックVCSEL光学エミッタアレイを含む。この実施例では、照明源は、アパーチャピッチ距離と実質的に同一のエミッタピッチ距離によって特徴付けられる光学エミッタ行を画定するレーザダイオードアレイを含み得る。この実施例では、各光学エミッタは、アパーチャ層内の対応するアパーチャの直径と実質的に同一の(または僅かに大きい)初期直径の照明ビームを出力することができ、照明源は、バルク送信光学要素の焦点面に沿って配置され得る。この結果、バルク送信光学要素からシステムの前方の視野に投射(投影)される各照明ビームは、
図4に示すように、システムから任意の距離で、対応する入力チャネルの視野-従って対応するピクセルの視野-と実質的に同じサイズ及び幾何学的形状である。従って、照明源及びバルク送信光学要素は、入力チャネルの視野を超えて投射される光が比較的少ないかまたは全くない状態で、実質的に照明ビームを入力チャネルの視野に投射するように協働することができる。
【0034】
この実施例では、本システムは、-システムからのある距離の範囲にわたるサイズ及び幾何形状において-入力チャネルの視野(例えば、アパーチャによって画定される視野)と実質的に一致する照明パターンに従って、照明ビームをシステムの前方の領域に選択的に投射することができる。従って、照明源は、対応するピクセルの視野内にあるシステムの前方の領域内の表面のみを実質的に照明でき、ピクセルが見えない領域内の照明面の分、照明源を介してシステムによって出力される最小の電力だけが無駄にされる。さらに、照明源の中心出力波長は、フィルタを通過する中心波長と一致され得る。従って、システムは、ノイズ(例えば、周囲光など照明源から発せられないでセンサブロック上のピクセルに渡されるフォトン)に対して比較的高い比率の信号(例えば、照明源から発してセンサブロック上のピクセルに渡されるフォトン)を達成することができる。
【0035】
7. データ獲得
動作中、本システムは、単一のサンプリング期間中に、1組のピクセルから光データを収集し、これらの光データを距離値に変換することができる。一実施態様では、サンプリング期間中に、システムは、各ピクセル及び入力チャネルの視野内に光を投影するために、出力回路の照明源を起動して、照明源が起動された時間を記録する(「照明タイムスタンプ」)。そして、各ピクセル内の各検出器を読み取り、例えば、前回(最後)のサンプリング期間以降の入射フォトンを記録した各ピクセル内の幾つかの検出器、及び、これらのフォトンの入射時間をメモリ内に記憶して、各ピクセル内のすべての検出器をクリアする。サンプリング期間中、システムはまた、ピクセルごとに、照明タイムスタンプと前回のサンプリング期間以降の入射フォトンのピーク周波数の時間との間の差に基づいて、ピクセルの視野内の表面までの距離を計算することができる。例えば、ピクセルごとに、サンプリング期間の終了時に、システムは、現在のサンプリング期間と前回のサンプリング期間との間でピクセルにおける照明タイムスタンプ及びピーク入射フォトンレートの時間を、当該ピクセルの視野内の外部表面までの当該システムからの距離に変換する、飛行時間技術を実施することができる。もっとも、本システムは、サンプリング期間中に各ピクセル及び入力チャネルの視野を照らして、1組のピクセルから収集されたデータを距離値または関連値に処理するための、任意の他の技術方法を実施することができる。
【0036】
本システムは、更に、動作中にピクセルブロック、入力ブロック及びバルク受信光学要素を回転させるように構成されたアクチュエータを含み得る。例えば、回転式アクチュエータは、光学式エンコーダを有する回転式電気モータを含むことができる。ピクセルブロック、入力ブロック及びバルク受信光学要素は、回転式電気モータの出力軸上に一体的に取り付けられ得る。本システムは、光学式エンコーダの出力に基づいて、回転式電気モータの回転速度を60Hz(または360rpm)に維持するための閉ループフィードバック制御を実施することができる。
【0037】
以下に説明されるように、本システムは、ピクセルブロックの1回の回転ごとに、幾つかの円弧状サンプリング位置の各々において、1つのサンプリング期間を実行することができる。例えば、本システムは、ピクセルブロックの360°の回転(すなわち、走査サイクル)ごとに、2048個の円弧状サンプリング位置を実行し得て、2048行の距離値を含む単一の公称行列を出力することができる。1走査サイクル中に生成される単一の公称行列は、システムからセンサ周囲の360°の外部表面までの距離(バルク受信光学要素と各ピクセル行の幾つかのピクセルとによって定義される視野角において)を表す。
【0038】
8. 公称行列
システムは複数のピクセル行を含むので、単一のサンプリング期間中に1組のピクセルによって出力されるデータは、複数行の距離値に対応し、各行は、ピクセルブロックに対する固有のヨー角に対応する。同様に、システム内の各ピクセルは、固有の垂直位置に配置されているため(すなわち、ピクセルのアレイが重なり合っていない単一行のピクセルに突き出しているため)、単一のサンプリング期間中に1組のピクセルによって出力されるデータは、複数列の距離値に対応し、各列は、単一の距離値を含み、ピクセルブロックに対する固有のピッチ角に対応する。特に、本システムは、単一のサンプリング期間中に1組のピクセルから収集されるデータを、距離値の複数の不完全な行に組み立てることができ、各不完全な行の距離値は、1つの固有のヨー角に対応する。
【0039】
一方、本システムは、
図5A及び
図5Bに示されるように、第1サンプリング期間中に第2ピクセル行から収集されるデータから生成される距離値を、第2サンプリング期間中に第1ピクセル行によって収集されるデータから生成される距離値と、組み合わせることができる。本システムは、
図5C及び5Dに示すように、当該システムによって実施される各円弧状サンプリング位置ごとに、重ならないピッチ角に対する距離値の1つの完全な行を含む行列(または他のデータコンテナ)を生成するために、システムの1回転(すなわち、1走査サイクル)の間、各円弧状サンプリング位置で、当該プロセスを繰り返すことができる。
【0040】
一実施例では、本システムは、
図2及び
図4に示すように、隣接するピクセル行間の垂直オフセットがYで、各ピクセル行内で4Yのピクセルピッチ、を有する16×4ピクセル配列を含む。この実施例では、本システムは、隣接する円弧状サンプリング位置間が0.176°の角度オフセットであるように、1回転あたり2048個のサンプリング期間を実施する。0°の第1円弧状サンプリング位置で、システムは、前述のように第1サンプリングルーチンを実行する。次に、システムは、
図5Aに示すように、距離行列内の[(1,1),(5,1),(9,1),...(57,1),(61,1))]位置に、第1サンプリング期間中において第1ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列内の[(2,2),(6,2),(10,2),...(58,2),(62,2))]位置に、第2ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列内の[(3,3),(7,3),(11,3),...(59,3),(63,3))]位置に、第3ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列内の[(4,4),(8,4),(12,4),...(60,4),(64,4))]位置に、第4ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入する。
【0041】
同じ走査サイクルの間に、回転式クチュエータは、ピクセルブロックを、次の0.176°の円弧状サンプリング位置まで回転させ、システムは、第2サンプリングルーチンを実行する。第2サンプリング期間中において、システムは、
図5Bに示すように、距離行列内の[(1,2),(5,2),(9,2),...(57,2),(61,2))]位置に、第1サンプリング期間中において第1ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列内の[(2,3),(6,3),(10,3),...(58,3),(62,3))]位置に、第2ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列内の[(3,4),(7,4),(11,4),...(59,4),(63,4))]位置に、第3ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列内の[(4,5),(8,5),(12,5),...(60,5),(64,5))]位置に、第4ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入する。本システムは、例えば
図5C及び5Dに示すように、走査サイクルの各円弧状サンプリング位置ごとに、2048行を含む2048×64の行列を形成するために、当該プロセスを繰り返すことができる。各行は、回転式アクチュエータに対する固有のヨー角に対応して64個の距離値を含み、ある行内の各距離値は、
図3Bに示すように、ピクセルブロックに対する固有のピッチ角に対応する。
【0042】
従って、本システムは、走査サイクルごとに、ピクセルの1回の360°回転内での各円弧状サンプリング位置に対応する距離値の行を含む、1つの公称行列を構成することができる。特に、本システムは、当該システムの360°回転軸回りのピクセルブロックから表面までの距離を表す-1走査サイクルあたり-1つの公称行列を生成することができる。例えば、回転式アクチュエータは、360rpmの速度でシステムを回転させることができ、当該システムは、16.7ミリ秒あたり(すなわち60Hzの速度で)1つの公称行列を生成することができる。
【0043】
更に、各サンプリング位置でピクセル行の垂直方向の整列を達成するために、2つの隣接するピクセル行(及び2つの対応する入力チャネル行)は、バルク受信光学要素の焦点長さと隣接する円弧状サンプリング位置間の角度ピッチに対応する水平ピッチ距離だけ、水平方向にオフセットされ得る。一実施例では、ピクセルブロックは、16×4のピクセルアレイを含み、バルク受信光学要素は、10ミリメートルの焦点長さによって特徴付けられ、各入力チャネルは、その対応するピクセルと同軸であり、システムは、1走査サイクルあたり(1回転あたり)、2048個のサンプリング期間を実施する。この実施例では、隣接する円弧状サンプリング位置間の角度オフセットは、0.176°であり、隣接するピクセル行間-及び対応するアパーチャの隣接行間-の水平方向オフセットは、400ミクロンであり、この結果、0.176°の第2円弧状サンプリング位置における第2ピクセル行は、0°の第1円弧状サンプリング位置の第1ピクセル行と垂直方向に整列される。1回の走査サイクルの間に、本システムは、2048個の円弧状サンプリング位置の各々において、全てのピクセルをサンプリングすることができ、1回の360°の回転で2048行の光データを収集することができる。
【0044】
9. 歪み補正
本システムは、共通のバルク受信光学要素を共有する横方向にオフセットされた複数のピクセル行を含むので、
図3Aに示すように、2つの隣接するピクセル行のピクセルの視野は、ピクセルブロックに対して同じヨー角を共有しない。従って、1走査サイクル中の一連のサンプリング期間にわたって収集されるデータから構築される公称行列内の行は、ピクセルブロックに対する複数の異なる真のヨー角を表す1組の距離値を含むことができる。例えば、ピクセルの16×4の歪曲グリッドアレイを含む前述のシステムでは、特定の動作温度が与えられる場合、第1行のピクセルは、バルク受信光学要素の公称軸からヨー方向に-0.3°オフセットされた視野を示すことができ、第2行のピクセルは、バルク受信光学要素の公称軸からヨー方向に-0.1°オフセットされた視野を示すことができ、第3行のピクセルは、バルク受信光学要素の公称軸からヨー方向に+0.1°オフセットされた視野を示すことができ、第4行のピクセルは、バルク受信光学要素の公称軸からヨー方向に+0.3°オフセットされた視野を示すことができる。この実施例では、前記特定の動作温度において、公称行列内の(1,1)距離値は、バルク受信光学要素の公称軸からヨー方向に-0.3°だけ角度的にオフセットされた視野内の表面までの距離を表すことができ、公称行列内の(2,1)距離値は、バルク受信光学要素の公称軸からヨー方向に-0.1°だけ角度的にオフセットされた視野内の表面までの距離を表すことができ、公称行列内の(63,1)距離値は、バルク受信光学要素の公称軸からヨー方向に+0.1°だけ角度的にオフセットされた視野内の表面までの距離を表すことができ、公称行列内の(64,1)距離値は、バルク受信光学要素の公称軸からヨー方向に+0.3°だけ角度的にオフセットされた視野内の表面までの距離を表すことができる。
【0045】
同様に、システム内のある1行内の複数のピクセルは、垂直方向にオフセットされているが、共通のバルク受信光学要素を共有しているので、
図3Bに示すように、1ピクセル行内の2つの隣接するピクセルの視野は、ピクセルブロックに対して同じピッチ角を共有しない。従って、1走査サイクル中に収集されるデータから構築される公称行列内の行は、ピクセルブロックに対する複数の異なる真のヨーピッチ角を表す1組の距離値を含むことができる。例えば、ピクセルの16×4の歪曲グリッドアレイを含む前述のシステムでは、第1行の第1ピクセルは、バルク受信光学要素の公称軸からピッチで+0.25°オフセットされた視野を示すことができ、第1行の第2ピクセルは、バルク受信光学要素の公称軸からピッチで+0.22°オフセットされた視野を示すことができ、...、第1行の第16ピクセルは、バルク受信光学要素の公称軸からピッチで-0.25°オフセットされた視野を示すことができ、第2行の第1ピクセルは、バルク受信光学要素の公称軸からピッチで+0.243°オフセットされた視野を示すことができ、第2行の第2ピクセルは、バルク受信光学要素の公称軸からピッチで+0.235°オフセットされた視野を示すことができ、...、第2行の第16ピクセルは、バルク受信光学要素の公称軸からピッチで-0.258°オフセットされた視野を示すことができる、等。この実施例では、公称行列内の(1,1)距離値は、バルク受信光学要素の公称軸からピッチ方向に+0.25°だけ角度的にオフセットされた視野内の表面までの距離を表すことができ、公称行列内の(1,1)距離値は、バルク受信光学要素の公称軸からピッチ方向に+0.243°だけ角度的にオフセットされた視野内の表面までの距離を表すことができ、公称行列内の(3,1)距離値は、バルク受信光学要素の公称軸からピッチ方向に+0.235°だけ角度的にオフセットされた視野内の表面までの距離を表すことができ、公称行列内の(4,1)距離値は、バルク受信光学要素の公称軸からピッチ方向に+0.228°だけ角度的にオフセットされた視野内の表面までの距離を表すことができ、公称行列内の(5,1)距離値は、バルク受信光学要素の公称軸からピッチ方向に+0.22°だけ角度的にオフセットされた視野内の表面までの距離を表すことができる、等。
【0046】
従って、本システムは、ピッチ軸及びヨー軸の両方においてバルク受信光学要素の公称軸からオフセットされた視野内の表面までの距離を表す距離値-1走査サイクル中に1組のピクセルによって収集されるデータに対応する-を含む公称行列を生成することができる。特に、本システムは、センサブロックに対して0°の単一の「理想的な」ヨー角を表す距離値の行を含む1つの公称行列を生成することができる(例えば、単一のピクセル行の視野と同様に)。しかし、システム内のピクセル行間の実際の水平方向のオフセットは、この理想的なヨー角と、公称行列内の当該距離値の行に表されるピクセルの視野の実際のヨー角と、の間の差を生み出し得る。この差は、水平軸に沿った距離データの歪みとして現れ得る。同様に、ある1ピクセル行内の複数のピクセルは、ピクセルのグリッドアレイの中心からの距離が増大するにつれて、バルク受信光学要素の公称軸からオフセットされるピッチ角が増大する視野を示し得る。それは、公称行列の最初及び最後の列での最低の解像度として、及び、公称行列の中央列での最大の解像度として、現れ得る。
【0047】
従って、本システムは、公称行列を、当該公称行列のエントリごとに、ピッチ方向及びヨー方向のオフセット角度を画定する補正行列と対にすることができる。特に、1走査サイクルにおいて出力される公称行列に含まれる距離値を補正行列に含まれる対応する角度値と融合(マージ)することによって、本システム(または他の装置)は、当該走査サイクル中に検出された表面の位置を改善された精度で計算することができる。例えば、バルク受信光学要素の公称軸からヨー方向に-0.3°オフセットされた視野を示す第1ピクセル行のピクセルのために、補正行列は、公称行列の100メートルの(1,1)距離値の5センチメートル左補正を規定することができる(例えば、100メートル×sin(-0.03°)=5.2センチメートル)。
【0048】
更に、システム内の各ピクセルの視野のピッチ方向及びヨー方向のオフセット角度は、バルク受信光学要素の焦点長さと共に変化し(すなわち、その関数であり)、バルク受信光学要素の焦点長さは、システムの温度と共に変化し得る。従って、本システムは、1または複数のポリマーレンズを含むバルク受信光学要素の場合などでは、公称行列を、システムの温度に基づく補正行列と対にすることができる。一実施態様では、システムは、1組のプリセット補正行列を記憶し、各補正行列は、特定の温度に対応して、当該特定の温度でのシステム内の各ピクセルの視野に対するピッチ方向及びヨー方向のオフセット角度を含む。当該実施形態では、本システムは、バルク受信光学要素に熱的に結合された温度センサも含むことができ、動作中に当該温度センサをサンプリングすることができ(例えば、1走査サイクルあたり1回)、走査サイクル中に収集されるデータから生成される公称行列を、同じ走査サイクル中に記録されたバルク受信光学要素の温度に最も近い温度に対応する補正行列-1組の補正行列から選択される-と対にすることができる。例えば、119°Fから121°Fまでの温度範囲内で動作するシステムの場合、当該システムは、21個のプリセット補正行列を含むことができ、各補正行列は、119°Fから121°Fまでの21個の0.1°F刻みの1つに対応する。例えば、各補正行列は、選択された動作温度での当該システム内のピクセルの視野を特徴付けることによって、実験的に生成され得る。
【0049】
あるいは、本システムは、バルク受信光学要素(またはシステム内の他の要素)の温度に基づいて補正行列を生成するために、パラメータモデルまたは他のパラメータ関数を実装することができる。もっとも、本システムは、走査サイクル中に収集されるデータから生成される公称行列を、当該公称行列内に含まれるデータの水平方向及び垂直方向の歪みを表す補正行列と対にするための、他の任意の方法または技術を実装することができる。
【0050】
10. 増大される解像度
一変形例では、システムは、走査サイクル中に生成される公称行列の解像度(分解能)を高めるために、1回転当たりの角度サンプリング実行位置の数を増やす。一実装形態では、システムは、ピクセルの歪曲グリッドアレイを含み、隣接するピクセル行(及び対応する入力チャネル行)は、1回転においてX回の半径方向ステップに対応する距離だけ横方向にオフセットされる(例えばステップ間0.176°で2048ステップ)が、1回転あたり2Xに等しい円弧状サンプリング位置を実行する(例えば、走査サイクルごとにステップ間0.088°で4096個の円弧状サンプリング位置)。
【0051】
システムが16×4ピクセル配列を含む前述の実施例では、当該システムは、0°の第1円弧状サンプリング位置で、第1サンプリングルーチンを実行し、次いで、距離行列の第1行内の[(1,1),(5,1),(9,1),...(57,1),(61,1))]位置に、第1サンプリング期間中において第1ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列の第3行内の[(2,3),(6,3),(10,3),...(58,3),(62,3))]位置に、第1サンプリング期間中において第2ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列の第5行内の[(3,5),(7,5),(11,5),...(59,5),(63,5))]位置に、第1サンプリング期間中において第3ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列の第7行内の[(4,7),(8,7),(12,7),...(60,7),(64,7))]位置に、第1サンプリング期間中において第4ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入する。
【0052】
当該実施例では、回転式アクチュエータがピクセルブロックを回転させ、回転ブロックが次の0.088°の円弧状サンプリング位置に到達したら、システムが第2サンプリングルーチンを実行する。この時、システムは、距離行列の第2行内の[(1,2),(5,2),(9,2),...(57,2),(61,2))]位置に、第1サンプリング期間中において第1ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列の第4行内の[(2,4),(6,4),(10,4),...(58,4),(62,4))]位置に、第1サンプリング期間中において第2ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列の第6行内の[(3,6),(7,6),(11,6),...(59,6),(63,6))]位置に、第1サンプリング期間中において第3ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入し、距離行列の第8行内の[(4,8),(8,8),(12,8),...(60,8),(64,8))]位置に、第1サンプリング期間中において第4ピクセル行の第1、第2、第3、第4、...第15及び第16ピクセルからそれぞれ受容されるデータから計算される距離値を代入する。
【0053】
システムは、0.176°の第3円弧状サンプリング位置に到達すると、当該プロセスを1回繰り返し、次に、0.264°の第4円弧状サンプリング位置に到達すると、当該プロセスを1回繰り返し、ピクセルブロックの1回転中の後続の各円弧状サンプリング位置に対して、当該プロセスを1回繰り返して、4096行を含む4096×64の行列を形成する。各行は、回転式アクチュエータに対する固有のヨー角に対応して64個の距離値を含み、ある行内の各距離値は、ピクセルブロックに対する固有のピッチ角に対応する。
【0054】
もっとも、システムは、ピクセルブロックの完全な1回転の間(例えば、完全な1走査サイクルの間)、他の任意の数の円弧状サンプリング位置でサンプリング期間を実行することができる。また、システムは、1走査サイクル中に1組のピクセルから収集されるデータを、当該システムから近くの外部表面までの距離の公称行列に変換するための、任意の他の方法または技術を実装することができる。
【0055】
本明細書で説明されたシステム及び方法は、少なくとも部分的に、コンピュータ可読命令を格納するコンピュータ可読媒体を受け入れるように構成された機械として具現化及び/又は実施することができる。命令は、アプリケーション、アプレット、ホスト、サーバ、ネットワーク、ウェブサイト、通信サービス、通信インタフェース、ユーザコンピュータまたはモバイル機器のハードウエア/ファームウエア/ソフトウエア要素、リストバンド、スマートフォン、あるいは、これらの任意の適切な組合せ、に統合されたコンピュータ実行可能な構成要素によって実行することができる。実施形態の他のシステム及び方法は、少なくとも部分的に、コンピュータ可読命令を格納するコンピュータ可読媒体を受け入れるように構成された機械として具現化及び/又は実施することができる。命令は、前述したタイプの装置及びネットワークに統合されたコンピュータ実行可能な構成要素によって実行することができる。コンピュータ可読命令は、RAM、ROM、フラッシュメモリ、EEPROM、光学装置(CDまたはDVD)、ハードドライブ、フロッピードライブ、または、任意の好適な装置、などの任意の好適なコンピュータ可読媒体上に格納することができる。コンピュータ実行可能な構成要素は、プロセッサであり得るが、任意の好適な専用ハードウエア装置が(代替的または付加的に)命令を実行することができる。
【0056】
当業者が前述の詳細な説明、図面及び特許請求の範囲から認識するように、以下の特許請求の範囲において定められる本発明の範囲から逸脱することなく、本発明の実施形態に対して修正及び変更が加えられ得る。