IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友電工デバイス・イノベーション株式会社の特許一覧

<>
  • 特許-半導体レーザ素子及びその製造方法 図1
  • 特許-半導体レーザ素子及びその製造方法 図2
  • 特許-半導体レーザ素子及びその製造方法 図3
  • 特許-半導体レーザ素子及びその製造方法 図4
  • 特許-半導体レーザ素子及びその製造方法 図5
  • 特許-半導体レーザ素子及びその製造方法 図6
  • 特許-半導体レーザ素子及びその製造方法 図7
  • 特許-半導体レーザ素子及びその製造方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-27
(45)【発行日】2022-07-05
(54)【発明の名称】半導体レーザ素子及びその製造方法
(51)【国際特許分類】
   H01S 5/12 20210101AFI20220628BHJP
   H01S 5/026 20060101ALI20220628BHJP
   G02F 1/025 20060101ALI20220628BHJP
   G02B 6/12 20060101ALI20220628BHJP
   G02B 6/124 20060101ALI20220628BHJP
   G02B 6/132 20060101ALI20220628BHJP
【FI】
H01S5/12
H01S5/026 616
G02F1/025
G02B6/12 363
G02B6/124
G02B6/12 301
G02B6/132
【請求項の数】 4
(21)【出願番号】P 2018195767
(22)【出願日】2018-10-17
(65)【公開番号】P2020064972
(43)【公開日】2020-04-23
【審査請求日】2021-04-21
(73)【特許権者】
【識別番号】000154325
【氏名又は名称】住友電工デバイス・イノベーション株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100136722
【弁理士】
【氏名又は名称】▲高▼木 邦夫
(74)【代理人】
【識別番号】100174399
【弁理士】
【氏名又は名称】寺澤 正太郎
(74)【代理人】
【識別番号】100186761
【弁理士】
【氏名又は名称】上村 勇太
(72)【発明者】
【氏名】山路 和宏
(72)【発明者】
【氏名】渡邊 孝幸
【審査官】淺見 一喜
(56)【参考文献】
【文献】特開平07-263655(JP,A)
【文献】特開平09-186391(JP,A)
【文献】特開2000-277869(JP,A)
【文献】米国特許出願公開第2002/0131466(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/00-5/50
G02F 1/025
G02B 6/12
G02B 6/124
G02B 6/132
(57)【特許請求の範囲】
【請求項1】
光導波方向に沿って順に配列されるレーザ部、接続部、及び光変調部を備える半導体レーザ素子の製造方法であって、
半導体基板上に第1半導体層を形成する工程と、
前記接続部における前記第1半導体層上に第1マスクパターンを形成する工程と、
前記第1マスクパターンを用いて、前記接続部における前記第1半導体層に、前記光導波方向に沿った凹凸を形成する工程と、
前記凹凸が形成された前記第1半導体層上に第2半導体層を形成する工程と、
前記レーザ部内に位置する前記第2半導体層上に活性層を形成する工程と、
前記接続部内及び前記光変調部内に位置する前記第2半導体層上に光導波路層を形成する工程と、を備え、
前記第1マスクパターンを形成する工程では、前記接続部内に位置すると共に隣り合う開口パターンとカバーパターンとの前記光導波方向に沿った合計長さに対する当該カバーパターンの前記光導波方向に沿った長さの割合が、前記光変調部側よりも前記レーザ部側の方が大きい前記第1マスクパターンを形成し、
前記凹凸を形成する工程では、前記接続部内に位置する隣り合う凹部と凸部との前記光導波方向に沿った合計長さに対する当該凸部の前記光導波方向に沿った長さの割合が、前記光導波方向に沿って連続的もしくは段階的に変化し、且つ前記光変調部側よりも前記レーザ部側の方が大きい前記凹凸を形成
前記光変調部の前記光導波路層の厚さが前記レーザ部の前記活性層の厚さよりも大きい、
半導体レーザ素子の製造方法。
【請求項2】
前記第1半導体層上に回折格子層を形成する工程と、前記回折格子層の前記接続部内及び前記光変調部内に位置する部分を除去して前記第1半導体層を露出する工程と、をさらに備え、
前記第1マスクパターンを形成する工程では、前記回折格子層上にも前記第1マスクパターンを形成し、
前記凹凸を前記第1半導体層に形成する工程では、前記第1マスクパターンを用いて回折格子を形成する、請求項1に記載の半導体レーザ素子の製造方法。
【請求項3】
前記光導波路層を形成する工程においては、前記第2半導体層の一部に重なる開口を有する第2マスクパターンを用いて、当該開口内に前記光導波路層を形成し、
前記開口において前記接続部内に位置する領域のパターン幅は、前記光導波方向において前記光変調部に近づくほど狭まる、請求項1または2に記載の半導体レーザ素子の製造方法。
【請求項4】
前記第2マスクパターンは、前記開口とは別の一対の開口を有し、
前記別の一対の開口は、前記第2半導体層に重なっており、
前記開口は、平面視にて前記光導波方向と交差する方向において前記別の一対の開口の間に位置する、請求項に記載の半導体レーザ素子の製造方法
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体レーザ素子及びその製造方法に関する。
【背景技術】
【0002】
例えば下記特許文献1には、半導体レーザ部と変調器部とが一体化された変調器集積半導体レーザが開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開平10-163568号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述したような変調器集積半導体レーザにおいては、一般に、内部ロス低減の観点から半導体レーザ部(レーザ部)の光導波路(活性層)は薄い方が望ましい。また、高い消光比及び低容量の観点から、変調器部(光変調部)の光導波路(光導波路層)は厚い方が望ましい。しかしながら、光導波路層の厚さを活性層よりも単に大きくしただけでは、半導体レーザ部と変調器部との端面接続部(Butt-Joint部)における大きな段差に起因して、光の反射が発生しやすくなる。このため、活性層と光導波路層とを異なる厚さに設定することによって、半導体レーザ部と変調器部との結合効率が低下してしまうおそれがある。
【0005】
本発明の一側面の目的は、レーザ部と光変調部との結合効率の低下を抑制しつつ、光変調部の光導波路層の厚さをレーザ部の活性層よりも大きく設定可能な半導体レーザ素子及びその製造方法を提供することである。
【課題を解決するための手段】
【0006】
本発明の一側面に係る半導体レーザ素子の製造方法は、光導波方向に沿って順に配列されるレーザ部、接続部、及び光変調部を備える半導体レーザ素子の製造方法であって、半導体基板上に第1半導体層を形成する工程と、接続部における第1半導体層上に第1マスクパターンを形成する工程と、第1マスクパターンを用いて、接続部における第1半導体層に、光導波方向に沿った凹凸を形成する工程と、凹凸が形成された第1半導体層上に第2半導体層を形成する工程と、第2半導体層上に光導波路層を形成する工程と、を備え、第1マスクパターンを形成する工程では、接続部内に位置すると共に隣り合う開口パターンとカバーパターンとの光導波方向に沿った合計長さに対する当該カバーパターンの光導波方向に沿った長さの割合が、光変調部側よりもレーザ部側の方が大きい第1マスクパターンを形成し、凹凸を形成する工程では、接続部内に位置する隣り合う凹部と凸部との光導波方向に沿った合計長さに対する当該凸部の光導波方向に沿った長さの割合が、光変調部側よりもレーザ部側の方が大きい凹凸を形成する。
【0007】
本発明の別の一側面に係る半導体レーザ素子は、半導体基板上に光導波方向に沿って順に配列されるレーザ部、接続部、及び光変調部を備える半導体レーザ素子であって、半導体基板上に設けられ、第1部分上に光導波方向に沿った凹凸を有する第1半導体層と、第1半導体層の凹凸上に設けられる第2半導体層と、レーザ部内に位置する第2半導体層上に設けられる活性層と、接続部内及び光変調部内に位置する第2半導体層上に設けられる光導波路層と、を備え、接続部内に位置する凹凸のデューティ比は、光変調部側よりもレーザ部側の方が大きく、光変調部内に位置する凹凸のデューティ比は、一定であって、接続部内に位置する凹凸のデューティ比の最小値以下であり、デューティ比は、隣り合う凹部と凸部との光導波方向に沿った合計長さに対する当該凸部の光導波方向に沿った長さの割合である。
【発明の効果】
【0008】
本発明の一側面によれば、レーザ部と光変調部との結合効率の低下を抑制しつつ、光変調部の光導波路層の厚さをレーザ部の活性層よりも大きく設定可能な半導体レーザ素子及びその製造方法を提供できる。
【図面の簡単な説明】
【0009】
図1図1(a)は、実施形態に係る半導体レーザ素子を示す概略平面図であり、図1(b)は、図1(a)のIb-Ib線に沿った断面図である。
図2図2(a)~(c)は、実施形態に係る半導体レーザ素子の製造方法を説明するための図である。
図3図3(a)~(c)は、実施形態に係る半導体レーザ素子の製造方法を説明するための図である。
図4図4(a)~(c)は、実施形態に係る半導体レーザ素子の製造方法を説明するための図である。
図5図5(a),(b)は、実施形態に係る半導体レーザ素子の製造方法を説明するための図である。
図6図6は、第6ステップ後の接続部及び光変調部の要部拡大断面図である。
図7図7は、マスクパターンの形状を示す概略平面図である。
図8図8は、変形例に係る凹凸パターンを説明するための概略断面図である。
【発明を実施するための形態】
【0010】
[本願発明の実施形態の説明]
最初に本発明の実施形態の内容を列記して説明する。
【0011】
本発明の一実施形態は、光導波方向に沿って順に配列されるレーザ部、接続部、及び光変調部を備える半導体レーザ素子の製造方法であって、半導体基板上に第1半導体層を形成する工程と、接続部における第1半導体層上に第1マスクパターンを形成する工程と、第1マスクパターンを用いて、接続部における第1半導体層に、光導波方向に沿った凹凸を形成する工程と、凹凸が形成された第1半導体層上に第2半導体層を形成する工程と、第2半導体層上に光導波路層を形成する工程と、を備え、第1マスクパターンを形成する工程では、接続部内に位置すると共に隣り合う開口パターンとカバーパターンとの光導波方向に沿った合計長さに対する当該カバーパターンの光導波方向に沿った長さの割合が、光変調部側よりもレーザ部側の方が大きい第1マスクパターンを形成し、凹凸を形成する工程では、接続部内に位置する隣り合う凹部と凸部との光導波方向に沿った合計長さに対する当該凸部の光導波方向に沿った長さの割合が、光変調部側よりもレーザ部側の方が大きい凹凸を形成する、半導体レーザ素子の製造方法である。
【0012】
この製造方法では、第1マスクパターンを用いて光導波方向に沿った凹凸を接続部における第1半導体層に形成する。形成された凹凸において、接続部内に位置する隣り合う凹部と凸部との光導波方向に沿った合計長さに対する当該凸部の光導波方向に沿った長さの割合が、光変調部側よりもレーザ部側の方が大きい。ここで、凹凸が形成された第1半導体層上における第2半導体層の成長においては、上記割合が小さい領域ほど凹部の容積が大きいので、第2半導体層の厚さが薄くなる。このため、接続部内に位置する第2半導体層の厚さは、光導波方向においてレーザ部側よりも光変調部側の方が薄くなる。これにより、活性層よりも厚い光導波路層を形成する場合であっても、活性層と光導波路層との端面接続部に大きな段差が形成されることを抑制できる。したがって上記製造方法によれば、レーザ部と光変調部との結合効率の低下を抑制しつつ、光変調部の光導波路層の厚さをレーザ部の活性層よりも大きく設定可能な半導体レーザ素子を製造できる。
【0013】
上記製造方法は、第1半導体層上に回折格子層を形成する工程と、回折格子層の接続部内及び光変調部内に位置する部分を除去して第1半導体層を露出する工程と、をさらに備え、第1マスクパターンを形成する工程では、回折格子層上にも第1マスクパターンを形成し、凹凸を第1半導体層に形成する工程では、第1マスクパターンを用いて回折格子を形成してもよい。この場合、凹凸を第1半導体層に形成する際に、例えばレーザ部内に回折格子を形成できる。このため、安定した単一モード発振を実現可能な半導体レーザ素子を製造できる。
【0014】
凹部と凸部との合計長さに対する凸部の長さの割合は、光導波方向に沿って連続的もしくは段階的に変化してもよい。この場合、接続部内に位置する第2半導体層の厚さは、光導波方向に沿ってレーザ部側から光変調部側に向かって連続的もしくは段階的に薄くなる。このため、接続部内に位置する光導波路層の厚さを、光導波方向に沿ってレーザ部側から光変調部側に向かって連続的もしくは段階的に厚くできる。したがって、接続部内に位置する光導波路層に段差が設けられない、もしくは、光導波路層における大きな段差の形成を抑制できるので、レーザ部と光変調部との結合効率の低下を好適に抑制できる。
【0015】
光導波路層を形成する工程においては、第2半導体層の一部に重なる開口を有する第2マスクパターンを用いて、当該開口内に光導波路層を形成し、開口において接続部内に位置する領域のパターン幅は、光導波方向において光変調部に近づくほど狭まってもよい。この場合、パターン幅が広いレーザ部周辺における光導波路層の成長レートが小さくなる。このため、活性層と光導波路層との端面接続部に大きな段差が形成されることを良好に抑制できるので、レーザ部と光変調部との結合効率の低下を好適に抑制できる。
【0016】
第2マスクパターンは、開口とは別の一対の開口を有し、別の一対の開口は、第2半導体層に重なっており、開口は、平面視にて光導波方向と交差する方向において別の一対の開口の間に位置してもよい。この場合、第2半導体層上には、上記開口内だけでなく、上記別の一対の開口内にも光導波路層を構成する半導体層が成長する。このため、上記開口内における光導波路層の成長レートがさらに小さくなる。このため、光導波路層の膜質をさらに向上できると共に、光導波路層の厚さを好適に制御できる。したがって、急激な屈折率の変化を発生させずに活性層と光導波路層とをつなぐことができる。
【0017】
本発明の別の一実施形態は、半導体基板上に光導波方向に沿って順に配列されるレーザ部、接続部、及び光変調部を備える半導体レーザ素子であって、半導体基板上に設けられ、第1部分上に光導波方向に沿った凹凸を有する第1半導体層と、第1半導体層の凹凸上に設けられる第2半導体層と、レーザ部内に位置する第2半導体層上に設けられる活性層と、接続部内及び光変調部内に位置する第2半導体層上に設けられる光導波路層と、を備え、接続部内に位置する凹凸のデューティ比は、光変調部側よりもレーザ部側の方が大きく、光変調部内に位置する凹凸のデューティ比は、一定であって、接続部内に位置する凹凸のデューティ比の最小値以下であり、デューティ比は、隣り合う凹部と凸部との光導波方向に沿った合計長さに対する当該凸部の光導波方向に沿った長さの割合である、半導体レーザ素子である。
【0018】
この半導体レーザ素子では、第1半導体層に設けられる凹凸において、接続部内に位置する隣り合う凹部と凸部との光導波方向に沿った合計長さに対する当該凸部の光導波方向に沿った長さの割合が、光変調部側よりもレーザ部側の方が大きい。ここで、凹凸が形成された第1半導体層上に成長する第2半導体層の厚さは、上記デューティ比が小さい領域ほど凹部の容積が大きいので、第2半導体層の厚さが薄くなる。このため、接続部内に位置する第2半導体層の厚さは、光導波方向においてレーザ部側よりも光変調部側の方が薄くなる。これにより、半導体レーザ素子は、活性層と光導波路層との端面接続部における大きな段差の形成を抑制しつつ、活性層よりも厚い光導波路層を備えることができる。したがって、レーザ部と光変調部との結合効率の低下を抑制しつつ、光変調部の光導波路層の厚さをレーザ部の活性層よりも大きく設定可能な半導体レーザ素子が得られる。
【0019】
接続部内に位置する凹凸のデューティ比は、光導波方向に沿って連続的もしくは段階的に変化してもよい。この場合、接続部内に位置する第2半導体層の厚さは、光導波方向に沿ってレーザ部側から光変調部側に向かって連続的もしくは段階的に薄くなる。このため、接続部内に位置する光導波路層の厚さを、光導波方向に沿ってレーザ部側から光変調部側に向かって連続的もしくは段階的に厚くできる。したがって、接続部内に位置する光導波路層に段差が設けられない、もしくは、光導波路層における大きな段差の形成を抑制できるので、レーザ部と光変調部との結合効率の低下を好適に抑制できる。
【0020】
活性層の頂面の高さと、光導波路層の頂面の高さとは、互いに同一であってもよい。この場合、互いの頂面側における活性層と光導波路層との段差が設けられないので、レーザ部と光変調部との結合効率の低下を好適に抑制できる。
【0021】
[本願発明の実施形態の詳細]
本発明の実施形態に係る半導体レーザ素子及びその製造方法の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0022】
図1(a)は、本実施形態に係る半導体レーザ素子を示す概略平面図であり、図1(b)は、図1(a)のIb-Ib線に沿った断面図である。図1(a),(b)に示される半導体レーザ素子1は、半導体基板11上に形成されたレーザ素子であり、レーザ部2、接続部3、及び光変調部4を備える。レーザ部2、接続部3、及び光変調部4は、半導体基板11上の主面11aにおける一方向に沿って順に配列されている。本実施形態では、レーザ部2、接続部3、及び光変調部4は、半導体基板11上にてモノリシックに形成されている。上記一方向は、半導体レーザ素子1が発振する光の伝播方向(光導波方向)であり、以下では方向X(光導波方向)とする。また以下では、水平方向において方向Xに直交する方向を方向Y(幅方向)とし、水平方向に直交する鉛直方向を方向Z(厚さ方向)とする。また、平面視における半導体レーザ素子1は、方向Zから見た半導体レーザ素子1に相当する。
【0023】
半導体基板11は、レーザ部2等に含まれる半導体層のシード基板であり、例えばInPを含むn型の半導体基板である。半導体基板11の裏面には、金属等の導電性材料を有する裏面電極が設けられてもよい。
【0024】
レーザ部2は、半導体レーザ素子1においてレーザを発振する部分であり、下部クラッド層21、活性層22、上部クラッド層23、コンタクト層24、及び電極25を有する。下部クラッド層21、活性層22、上部クラッド層23、コンタクト層24、及び電極25は、半導体基板11の主面11aから順に積層される。下部クラッド層21及び上部クラッド層23は、接続部3及び光変調部4にも含まれる。
【0025】
下部クラッド層21は、活性層22の内部と、後述する光導波路層31の内部とに光を閉じ込める層である。下部クラッド層21は、化合物半導体層であり、例えばn型を示すと共にInPを含む。レーザ部2内に位置する下部クラッド層21(すなわち、下部クラッド層21にてレーザ部2内に位置する部分21a)の厚さは、例えば700nm以上1200nm以下である。下部クラッド層21の部分21aの厚さは、一定である。なお本実施形態では、「一定」、「同一」などは多少の誤差を含んでもよい。多少の誤差は、例えば±5%である。
【0026】
下部クラッド層21の部分21aには、特定波長の光を活性層22に分布的にフィードバックする回折格子26が設けられる。このような回折格子26がレーザ部2に形成されることによって、安定した単一モード発振を実現できる。このため半導体レーザ素子1は、分布帰還型(DFB:Distributed Feedback)の半導体レーザとして機能する。回折格子26は、下部クラッド層21とは異なる屈折率を有する材料を含んでいる。例えば、下部クラッド層21がInP半導体層である場合、回折格子26を構成する材料は、InGaAsP等である。
【0027】
活性層22は、電流注入により利得を得られる光導波路層であり、半導体レーザ素子1におけるコアである。活性層22は、例えばInGaAsP等を含む量子井戸構造を有する化合物半導体層である。量子井戸構造としては、例えばInGaAsPからなる井戸層と、当該井戸層とは異なる組成のInGaAsPからなる障壁層とが交互に積層された構造が適用される。活性層22の厚さは、例えば180nm以上220nm以下である。
【0028】
上部クラッド層23は、下部クラッド層21と共に、活性層22の内部と、後述する光導波路層31の内部とに光を閉じ込める層である。上部クラッド層23は、化合物半導体層であり、例えばp型を示すと共にInPを含む。上部クラッド層23の厚さは、一定であり、例えば1500nm以上2000nm以下である。
【0029】
コンタクト層24は、電極25とオーミック接続する化合物半導体層であり、例えばp型のInGaAsP層である。電極25は、レーザを発振させるための直流電流が供給される導電層であり、コンタクト層24上に設けられる。
【0030】
接続部3は、方向Xにおいてレーザ部2と光変調部4とを接続する部分であり、下部クラッド層21、光導波路層31、及び上部クラッド層23を有する。下部クラッド層21、光導波路層31、及び上部クラッド層23は、半導体基板11の主面11aから順に積層される。光導波路層31は、光変調部4にも含まれる。
【0031】
接続部3内に位置する下部クラッド層21(すなわち、下部クラッド層21において接続部3内に位置する部分21b)の厚さは、方向Xにおいてレーザ部2側よりも光変調部4側の方が薄い。部分21bの厚さは、例えば600nm以上1100nm以下である。本実施形態では、下部クラッド層21の部分21bのうち、レーザ部2側の端部の厚さが最も厚く、光変調部4側の端部の厚さが最も薄い。また、部分21bは、方向Xにおいてレーザ部2側から光変調部4側へ連続的に薄くなっている。すなわち、部分21bの厚さは、方向Xに沿ってレーザ部2側から光変調部4側にかけて一定の割合にて減少している。
【0032】
光導波路層31は、活性層22と同様に半導体レーザ素子1におけるコアであり、方向Xに沿って延在する化合物半導体層である。光導波路層31は、例えばInGaAsP等を含む量子井戸構造を有する。方向Xにおいて、光導波路層31と活性層22とは、互いに光結合している。具体的には、光導波路層31におけるレーザ部2側の端面は、活性層22の接続部3側の端面と接合している。このため半導体レーザ素子1には、活性層22と光導波路層31との端面接続部が設けられる。接続部3内に位置する光導波路層31(すなわち、光導波路層31にて接続部3内に位置する部分31a)の厚さは、方向Xにおいてレーザ部2側よりも光変調部4側の方が厚い。部分31aの厚さは、例えば180nm以上300nm以下である。本実施形態では、光導波路層31の部分31aのうち、レーザ部2側の端部の厚さが最も薄く、光変調部4側の端部の厚さが最も厚い。また、部分31aは、方向Xにおいてレーザ部2側から光変調部4側へ連続的に薄くなっている。加えて、部分31aの頂面F2の高さと、活性層22の頂面F1の高さとは、互いに同一になっている。このため、接続部3内に位置する上部クラッド層23の厚さは、レーザ部2内に位置する上部クラッド層23の厚さと同一である。
【0033】
光変調部4は、発振されたレーザの変調を実施する部分であり、下部クラッド層21、光導波路層31、上部クラッド層23、コンタクト層41、及び電極42を有する。下部クラッド層21、光導波路層31、上部クラッド層23、コンタクト層41、及び電極42は、半導体基板11の主面11aから順に積層される。
【0034】
光変調部4内に位置する下部クラッド層21(すなわち、下部クラッド層21にて光変調部4内に位置する部分21c)の厚さは、接続部3の部分21bの厚さ以下である。本実施形態では、下部クラッド層21の部分21cの厚さは、下部クラッド層21の部分21bのうち光変調部4側の端部の厚さに相当する。また、部分21cの厚さは一定である。
【0035】
光変調部4内に位置する光導波路層31(すなわち、光導波路層31にて光変調部4内に位置する部分31b)は、レーザ部2にて発振する光を吸収可能であり、光吸収層とも呼称できる。光導波路層31の部分31bの厚さは、接続部3の部分31aの厚さ以上である。本実施形態では、部分31bの厚さは、接続部3の部分31aのうち光変調部4側の端部の厚さに相当する。また、部分31bの頂面F3の高さは、部分31aと同様に活性層22の頂面F1の高さと同一になっている。このため、光変調部4内に位置する上部クラッド層23の厚さは、レーザ部2及び接続部3内に位置する上部クラッド層23の厚さと同一である。
【0036】
コンタクト層41は、電極42とオーミック接続する化合物半導体層であり、例えばp型のInGaAsP層である。コンタクト層41は、コンタクト層24に対して離間している。コンタクト層24,41の間には絶縁膜が設けられてもよい。この場合、コンタクト層24,41を良好に絶縁できる。
【0037】
電極42は、レーザを変調させるための信号が供給される導電層であり、コンタクト層41上に設けられる。電極42は、例えば配線部42aを介してパッド43に接続されている。配線部42aは、電極42の一部から方向Yに沿って延在する部分である。パッド43は、例えば信号が供給されるワイヤがボンディングされる導電層である。
【0038】
方向Xにおける半導体レーザ素子1の両端面には、絶縁膜が形成されてもよい。具体的には、半導体レーザ素子1におけるレーザ部2側の端面には反射防止膜が形成され、半導体レーザ素子1における光変調部4側の端面には高反射膜が形成されてもよい。このような半導体レーザ素子1においては、電極25に直流電流が供給されることによって活性層22にてレーザ発振が生じる。活性層22にて発振及び増幅されたレーザ光は、光変調部4における光導波路層31にて変調される。変調されたレーザ光は、光変調部4から外部へと出力される。
【0039】
次に、図2図5を用いながら本実施形態に係る半導体レーザ素子の製造方法を説明する。図2(a)~(c)、図3(a)~(c)、図4(a)~(c)、及び図5(a),(b)は、本実施形態に係る半導体レーザ素子1の製造方法を説明するための図である。図2(c)、図3(a)~(c)、図4(a)~(c)、及び図5(a),(b)には、説明のため、最終的にレーザ部2になる領域と、最終的に接続部3になる領域と、最終的に光変調部4になる領域とがそれぞれ示されている。
【0040】
まず、図2(a)に示されるように、半導体基板11の主面11a上に第1半導体層51を形成する(第1ステップ)。第1ステップでは、例えば有機金属気相成長法によって、主面11a上に第1半導体層51をエピタキシャル成長する。第1半導体層51は、例えばn型のInP層である。第1半導体層51の厚さは、例えば500nm以上1000nm以下である。
【0041】
次に、図2(b)に示されるように、第1半導体層51上に回折格子層52を形成する(第2ステップ)。第2ステップでは、例えば有機金属気相成長法によって、第1半導体層51上に回折格子層52をエピタキシャル成長する。回折格子層52は、例えばInGaAsP層である。回折格子層52の厚さは、例えば50nm以上100nm以下である。
【0042】
次に、図2(c)に示されるように、回折格子層52の一部を除去する(第3ステップ)。第3ステップでは、回折格子層52にて接続部3内及び光変調部4内に位置する部分を除去して第1半導体層51を露出する。具体的には、まず、回折格子層52にてレーザ部2内に位置する部分上にマスク53を形成する。次に、マスク53を用いて回折格子層52の一部を除去する。これにより、接続部3内及び光変調部4内に位置する第1半導体層51の第1部分51aは、回折格子層52から露出する。回折格子層52の一部は、回折格子層52にてマスク53から露出する部分に相当し、例えばドライエッチングによって除去される。回折格子層52の一部を覆うマスク53は、例えば膜形状を呈するフォトレジストである。
【0043】
次に、図3(a)に示されるように、第1半導体層51の第1部分51a上にマスクパターン54を形成すると共に、残存する回折格子層52上にマスクパターン55を形成する(第4ステップ)。第4ステップでは、フォトリソグラフィ等によって、マスクパターン54とマスクパターン55とを形成する。マスクパターン54とマスクパターン55とのそれぞれは、例えばパターニングされたフォトレジストである。本実施形態では、少なくとも接続部3における第1半導体層51上にマスクパターン54を形成する。なお、マスクパターン54、55は同時に形成される。このため、マスクパターン54,55は、例えば同一の第1マスクパターンとも解釈され得る。
【0044】
マスクパターン54は、第1半導体層51の第1部分51aを覆うカバーパターン54aと、複数の開口パターン54bとを有する。複数の開口パターン54bは、方向Xに沿って周期的に設けられる。このため第1部分51a上には、方向Xにおいてカバーパターン54aと開口パターン54bとが交互に位置する。複数の開口パターン54bのうち、少なくとの一部の方向Xに沿った長さは、他と異なる。具体的には、接続部3内に位置する開口パターン54bの方向Xに沿った長さは、レーザ部2側よりも光変調部4側の方が長い。本実施形態では、接続部3内に位置する開口パターン54bの方向Xに沿った長さは、方向Xにおいて光変調部4側ほど長く、例えば40nm以上110nm以下である。一方、光変調部4内に位置する各開口パターン54bの方向Xに沿った長さは、同一であり、例えば90nm以上110nm以下である。また、マスクパターン54にて光変調部4内に位置する部分において、隣り合う開口パターン54bに挟まれるカバーパターン54aの方向Xに沿った長さと、開口パターン54bの方向Xに沿った長さとは、互いに同一である。
【0045】
マスクパターン55は、回折格子層52を覆うカバーパターン55aと、複数の開口パターン55bとを有する。複数の開口パターン55bは、方向Xに沿って周期的に設けられる。このため回折格子層52上には、方向Xにおいてカバーパターン55aと開口パターン55bとが交互に位置する。各開口パターン55bの方向Xに沿った長さは、同一であり、例えば99nm以上101nm以下である。また、隣り合う開口パターン55bに挟まれるカバーパターン55aの方向Xに沿った長さと、開口パターン55bの方向Xに沿った長さとは、互いに同一である。
【0046】
次に、図3(b)に示されるように、マスクパターン54を用いて方向Xに沿った凹凸パターン61を第1部分51aに形成すると共に、マスクパターン55を用いて回折格子26を形成する(第5ステップ)。第5ステップでは、第1部分51aにてマスクパターン54から露出する箇所と、回折格子層52にてマスクパターン55から露出する箇所とをエッチングする。これにより、方向Xに沿った周期的構造を備える凹凸パターン61及び回折格子26を形成する。本実施形態では、凹凸パターン61は、少なくとも接続部3における第1半導体層51に形成される。
【0047】
凹凸パターン61は、第1部分51aの表面において方向Xに沿って交互に形成される凹部と凸部との集合体である。以下では、凹凸パターン61において接続部3内に位置する凹部を凹部62とし、接続部3内に位置する凸部を凸部63とし、隣り合う凹部62と凸部63との一組を凹凸64とする。また、光変調部4内に位置する凹部を凹部65とし、光変調部4内に位置する凸部を凸部66とし、隣り合う凹部65と凸部66との一組を凹凸67とする。方向Xに沿った凹部62,65及び凸部63,66のそれぞれの長さは、例えば40nm以上160nm以下である。凹部62,65のそれぞれの深さ(もしくは、凸部63,66のそれぞれの突出量)は、互いに同一であり、例えば250nm以上300nm以下である。
【0048】
以下では、隣り合う凹部と凸部との一組を凹凸とし、凹部の方向Xに沿った長さaと凸部の方向Xに沿った長さbとの合計に対する凸部の長さbの割合(b/(a+b))を、凹凸のデューティ比と定義する。このため、凹部の方向Xに沿った長さが長いほど、凹凸のデューティ比は小さくなる。上述したように、マスクパターン54にて接続部3内に位置する開口パターン54bの方向Xに沿った長さは、レーザ部2側よりも光変調部4側の方が長い。このため、凹凸パターン61において接続部3内に位置する凹凸64のデューティ比は、光変調部4側よりもレーザ部2側の方が大きい。同様に、接続部3内に位置すると共に隣り合うカバーパターン54aと開口パターン54bとの方向Xに沿った合計長さに対するカバーパターン54aの方向Xに沿った長さの割合は、光変調部4側よりもレーザ部2側の方が大きい。本実施形態では、凹凸64のデューティ比は、方向Xに沿って連続的に変化する。凹凸64のデューティ比は、0.5以上1以下である。
【0049】
また上述したように、マスクパターン54にて光変調部4内に位置する部分において、隣り合う開口パターン54bに挟まれるカバーパターン54aの方向Xに沿った長さと、開口パターン54bの方向Xに沿った長さとは、同一である。このため、凹凸パターン61において光変調部4内に位置する凹凸67のデューティ比は、一定であり、0.5である。すなわち、凹凸67のデューティ比は、凹凸64のデューティ比の最小値以下である。なお、凹凸64のデューティ比が1である場合、当該凹凸64には凹部62が存在しない。このため、本実施形態における凹凸パターン61の一部には、凹凸が形成されなくてもよい。
【0050】
第5ステップでは、第1半導体層51においてレーザ部2内に位置する部分の一部もエッチングされる。これにより、レーザ部2内においては、回折格子26を構成するInGaAsP層が除去された凹部71と、当該InGaAsP層を含む凸部72とが設けられる。上述したように、マスクパターン55にて隣り合う開口パターン55bに挟まれるカバーパターン55aの方向Xに沿った長さと、開口パターン55bの方向Xに沿った長さとは、同一である。このため、凹部71の方向Xに沿った長さと、凸部72の方向Xに沿った長さともまた同一になる。したがって、隣り合う凹部71と凸部72とによって構成される凹凸73のデューティ比は、0.5である。凹凸73の方向Xに沿った長さは、例えば198nm以上202nm以下である。
【0051】
次に、図3(c)に示されるように、第1部分51aが形成された第1半導体層51上に第2半導体層56を形成する(第6ステップ)。第6ステップでは、まず、マスクパターン55及びマスクパターン54を除去する。続いて、例えば有機金属気相成長法によって、例えばn型のInP層である第2半導体層56を、回折格子26上及び第1部分51a上にエピタキシャル成長する。第2半導体層56の厚さは、例えば100nm以上200nm以下である。第6ステップ後、第1半導体層51と第2半導体層56とが一体化することによって、回折格子26が埋め込まれた下部クラッド層21が形成される。また、凹凸パターン61が第2半導体層56によって埋められて消失する。
【0052】
図6は、第6ステップ後の接続部3及び光変調部4の要部拡大断面図である。図6においては、説明のため凹凸パターン61、凹部62,65、凸部63,66及び凹凸64,67を実線にて示している。図6に示されるように、接続部3内に成長する第2半導体層56の厚さは、方向Xにおいて光変調部4側に近づくほど薄くなる。また、光変調部4内に成長する第2半導体層56の厚さは、一定であり、且つ、接続部3内に位置する第2半導体層56の厚さの最小値以下である。接続部3内に位置する各凹凸64上に設けられる第2半導体層56の体積は、全て同一であってもよい。例えば、接続部3内において異なる凹凸64上に設けられる第2半導体層56の体積V1,V2は、互いに同一であってもよい。また、当該体積V1と、光変調部4内に位置する凹凸67上に設けられる第2半導体層56の体積V3とは、同一であってもよい。
【0053】
次に、図4(a)に示されるように、第2半導体層56上に活性層22を形成する(第7ステップ)。第7ステップでは、例えば有機金属気相成長法によって、量子井戸構造を有する活性層22をエピタキシャル成長する。第7ステップの時点では、活性層22は、レーザ部2内だけではなく、接続部3内及び光変調部4内にも設けられる。
【0054】
次に、図4(b)に示されるように、活性層22にて接続部3内及び光変調部4内に位置する部分を除去する(第8ステップ)。第8ステップでは、まず、活性層22上にマスクパターン58(第2マスクパターン)を形成する。続いて、マスクパターン58を用いることによって、活性層22にて接続部3内及び光変調部4内に位置する部分を除去する。これにより、レーザ部2内には活性層22が残存する。また、接続部3内及び光変調部4内には、下部クラッド層21に含まれる第2半導体層56の第2部分56aが露出する。
【0055】
ここで図7を参照しながらマスクパターン58の形状について詳細に説明する。図7は、マスクパターン58の形状を示す概略平面図である。図7に示されるように、マスクパターン58は、レーザ部2内に位置する活性層22上に設けられるマスク部81と、接続部3内及び光変調部4内に位置する活性層22上に設けられるマスク部82とを有する。マスク部81は、活性層22の全体を覆っている。マスク部81の方向Yに沿った長さL1は、例えば100μm以上150μm以下である。
【0056】
マスク部82は、接続部3内及び光変調部4内に位置する活性層22の一部を覆っており、方向Yに沿って順に配列される開口83~85を有する。開口84とは別の一対の開口である開口83,85は、開口84内に形成される光導波路層31の成長レートを調整するために設けられ、第2半導体層56に重なる。開口83は方向Yにおける一端側に位置し、開口85は方向Yにおける他端側に位置している。一方、開口84は、光導波路層31が形成される部分であり、第2半導体層56の一部に重なる。開口84は、方向Yにおける開口83,85の間に位置している。開口84において接続部3内に位置する領域84aは、平面視にて台形状を呈している。領域84aの方向Yに沿った幅(パターン幅)は、方向Xにおいて光変調部4に近づくほど狭まっている。領域84aの方向Yに沿った最大幅W1は、例えば50μm以上70μm以下である。また、領域84aの方向Xに沿った長さL2は、例えば40μm以上80μm以下である。一方、開口84において光変調部4内に位置する領域84bは、平面視にて矩形状を呈している。領域84bの方向Yに沿った幅W2は、例えば15μm以上25μm以下である。領域84bの幅W2は、領域84aにおける光変調部4側の端部の幅と同一である。マスク部82において開口84を挟む各部分の方向Yに沿った最大幅W3は、例えば20μm以上30μm以下である。なお、図4(b)は、図7において開口84を通る方向Xに沿った直線に沿った断面図に相当する。
【0057】
次に、図4(c)に示されるように、第2半導体層56において活性層22から露出する第2部分56a上に光導波路層31を形成する(第9ステップ)。第9ステップでは、マスクパターン58を用い、例えば有機金属気相成長法によって、開口84内に光導波路層31をエピタキシャル成長する。続いて光導波路層31の形成後、マスクパターン58を除去する。上述したように、マスクパターン58に形成される開口84の領域84aの方向Yに沿った幅は、方向Xにおいて光変調部4に近づくほど狭まっている。このため、接続部3内に位置する光導波路層31の成長レートは、レーザ部2に近いほど小さい。これにより、活性層22の頂面F1と、接続部3内に位置する光導波路層31の頂面F2とが揃えられる。
【0058】
次に、図5(a)に示されるように、活性層22上及び光導波路層31上に上部クラッド層23を形成する(第10ステップ)。第10ステップでは、例えば有機金属気相成長法によって、活性層22上及び光導波路層31上に上部クラッド層23をエピタキシャル成長する。
【0059】
次に、図5(b)に示されるように、上部クラッド層23上に、コンタクト層24,41と、電極25,42とを形成する(第11ステップ)。第11ステップでは、電極25,42の形成時にパッド43(図1(a)を参照)を形成してもよい。以上の工程を経て、本実施形態に係る半導体レーザ素子1が製造される。
【0060】
以上に説明した本実施形態に係る半導体レーザ素子1の製造方法では、マスクパターン54を用いて方向Xに沿った凹凸パターン61を第1半導体層51の第1部分51aに形成する。第1部分51aに形成される凹凸パターン61において、凹凸64のデューティ比は、光変調部4側よりもレーザ部2側の方が大きく、凹凸67のデューティ比は、一定であって、凹凸64のデューティ比の最小値以下である。ここで、第1部分51a上における第2半導体層56の成長においては、凹凸のデューティ比が小さい領域ほど凹部の容積が大きいので、第2半導体層56の厚さが薄くなる。このため、接続部3内に位置する第2半導体層56の厚さは、方向Xにおいてレーザ部2側よりも光変調部4側の方が薄くなる。加えて、光変調部4内に位置する第2半導体層56の厚さは、接続部3内に位置する第2半導体層56の厚さ以下になる。これにより、活性層22よりも厚い光導波路層31を形成する場合であっても、活性層22と光導波路層31との端面接続部に大きな段差が形成されることを抑制できる。したがって本実施形態に係る半導体レーザ素子1の製造方法によれば、レーザ部2と光変調部4との結合効率の低下を抑制しつつ、光変調部4の光導波路層31の厚さをレーザ部2の活性層22よりも大きく設定可能な半導体レーザ素子1を製造できる。
【0061】
加えて、上記実施形態に係る半導体レーザ素子1においては、接続部3内に位置する第2半導体層56の厚さは、方向Xにおいてレーザ部2側よりも光変調部4側の方が薄くなる。さらには、光変調部4内に位置する第2半導体層56の厚さは、接続部3内に位置する第2半導体層56の厚さ以下になる。これにより、半導体レーザ素子1は、活性層22と光導波路層31との端面接続部における大きな段差の形成を抑制しつつ、活性層22よりも厚い光導波路層31を備えることができる。したがって、半導体レーザ素子1は、上述した作用効果を奏することができる。
【0062】
なお、活性層22と光導波路層31との端面接続部における大きな段差は、例えば、活性層22における光導波路層31側の端面の厚さと、光導波路層31における活性層22側の端面の厚さとの差が40nm以上であることによって形成される。
【0063】
本実施形態に係る半導体レーザ素子1の製造方法は、第1半導体層51上に回折格子層52を形成する工程と、回折格子層52にて接続部3内及び光変調部4内に位置する部分を除去することによって、第1半導体層51の第1部分51aを露出する工程と、を備え、上記第4ステップにおいて、回折格子層52上にマスクパターン55を形成し、上記第5ステップにおいて、マスクパターン55を用いて回折格子26を形成する。この場合、第1部分51aに凹凸パターン61を形成する際にレーザ部2内に回折格子26を形成できる。このため、安定した単一モード発振を実現可能な半導体レーザ素子1を製造できる。
【0064】
本実施形態では、接続部3内に位置する凹凸64のデューティ比は、方向Xに沿って連続的に変化する。このため、接続部3内に位置する第2半導体層56の厚さは、方向Xに沿ってレーザ部2側から光変調部4側に向かって連続的に薄くなる。このため、接続部3内に位置する光導波路層31の厚さを、方向Xに沿ってレーザ部2側から光変調部4側に向かって連続的に厚くできる。したがって、接続部3内に位置する光導波路層31に段差が設けられないので、レーザ部2と光変調部4との結合効率の低下を好適に抑制できる。
【0065】
本実施形態では、上記第9ステップにおいては、第2半導体層56の第2部分56aに重なる開口84を有するマスクパターン58を用いて、開口84内に光導波路層31を形成し、開口84において接続部3内に位置する領域84aのパターン幅は、方向Xにおいて光変調部4に近づくほど狭まっている。この場合、開口幅が広いレーザ部2周辺における光導波路層31の成長レートが小さくなる。このため、活性層22と光導波路層31との端面接続部に大きな段差が形成されることを良好に抑制できるので、レーザ部2と光変調部4との結合効率の低下を好適に抑制できる。
【0066】
本実施形態では、マスクパターン58は、開口84とは別の開口83,85を有し、開口83,85は、第2半導体層56の第2部分56aに重なっており、開口84は、平面視にて方向Xと交差する方向において開口83,85の間に位置している。この場合、第2部分56a上には、開口84内だけでなく、開口83,85内にも光導波路層31を構成する半導体層が成長する。このため、開口84内における光導波路層31の成長レートが小さくなる。このため、光導波路層31の膜質を向上できると共に、光導波路層31の厚さを制御できる。したがって、急激な屈折率の変化を発生させずに活性層22と光導波路層31とをつなぐことができる。
【0067】
本実施形態では、活性層22の頂面F1の高さと、光導波路層31の頂面F2,F3の高さとは、互いに同一である。この場合、互いの頂面側における活性層22と光導波路層31との段差が設けられないので、レーザ部2と光変調部4との結合効率の低下を好適に抑制できる。
【0068】
次に、図8を参照しながら上記実施形態の変形例について説明する。図8は、変形例に係る凹凸パターンを説明するための概略断面図である。図8においては、説明のため凹凸パターン61、凹部62,65,71、凸部63、66,72及び凹凸64,73を実線にて示している。図8に示されるように、変形例における接続部3A内に位置する第2半導体層56の厚さは、方向Xに沿って段階的に変化している。したがって接続部3A内においては、光導波路層31の厚さも方向Xに沿って段階的に変化している。接続部3Aには、方向Xに沿ってレーザ部2側から順に並ぶ遷移領域R1~R3が画成される。遷移領域R1~R3の方向Xに沿った長さのそれぞれは、例えば10μm以上20μm以下である。
【0069】
遷移領域R1に含まれる全ての凹凸のデューティ比は1であり、遷移領域R1には凹部が形成されていない。このため、遷移領域R1内に位置する第2半導体層56の厚さは一定である。また、遷移領域R2に含まれる全ての凹凸のデューティ比は例えば0.8である。このため、遷移領域R2内に位置する第2半導体層56の厚さは一定であり、且つ、遷移領域R1内に位置する第2半導体層56の厚さよりも薄い。加えて、遷移領域R3に含まれる全ての凹凸のデューティ比は例えば0.65である。このため、遷移領域R3内に位置する第2半導体層56の厚さは一定であり、且つ、遷移領域R2内に位置する第2半導体層56の厚さよりも薄い。なお、遷移領域R3内に位置する第2半導体層56の厚さは、光変調部4内に位置する第2半導体層56の厚さよりも厚い。
【0070】
変形例においては、回折格子26上に位置する第2半導体層56の厚さT1は例えば130nmであり、レーザ部2内に位置する活性層22の厚さT2は例えば200nmである。また、レーザ部2の凹部71及び凸部72の方向Xに沿った長さL11,L12のそれぞれは、例えば50nmである。遷移領域R1内に位置する第2半導体層56の厚さT3は例えば180nmであり、遷移領域R1内に位置する光導波路層31の厚さT4は例えば220nmである。遷移領域R2内において、第2半導体層56の厚さT5は例えば160nmであり、光導波路層31の厚さT6は例えば240nmであり、凹部62の方向Xに沿った長さL13は例えば40nmであり、凸部63の方向Xに沿った長さL14は例えば160nmである。遷移領域R3内において、第2半導体層56の厚さT7は例えば140nmであり、光導波路層31の厚さT8は例えば260nmであり、凹部62の方向Xに沿った長さL15は例えば70nmであり、凸部63の方向Xに沿った長さL16は例えば130nmである。光変調部4の凹部65及び凸部66の方向Xに沿った長さL17,L18のそれぞれは、例えば100nmである。また、凸部66上に位置する第2半導体層56の厚さT9は例えば130nmであり、光変調部4内に位置する光導波路層31の厚さT10は例えば280nmである。
【0071】
このような変形例においても、上記実施形態と同様の作用効果が奏される。加えて、接続部3A内に位置する凹凸64を容易に形成できるので、半導体レーザ素子1の歩留まりを向上できる。
【0072】
なお変形例においては、接続部3A内において異なる凹凸64上に設けられる第2半導体層56の体積V11~V13は、互いに同一である。また、体積V11~V13は、光変調部4内に位置する凹凸67上に設けられる第2半導体層56の体積V21とも同一である。加えて、体積V11~V13は、レーザ部2内に位置する凹凸73上に位置する第2半導体層56の体積V31とも同一である。
【0073】
本発明による半導体レーザ素子及びその製造方法は、上述した実施形態及び変形例に限られるものではなく、他に様々な変形が可能である。例えば、上記第1~第11ステップのうち、いずれかが省略されてもよい。例えば、半導体レーザ素子に回折格子が含まれない場合、上記第2及び第3ステップが省略されてもよい。加えて、第4ステップの一部も省略されてもよい。
【0074】
上記実施形態において、第1半導体層の第1部分に形成された凹凸パターンの境界は消失しているが、これに限られない。例えば、上記凹凸パターンの境界は、断面SEM画像等によって検出可能である。また、下部クラッド層では、第1半導体層と第2半導体層との境界が検出可能である。この場合、当該凹凸パターンのデューティ比は、第2半導体層に覆われる前と同一である。例えば、接続部内に位置する凹凸のデューティ比は、光変調部側よりもレーザ部側の方が大きく、光変調部内に位置する凹凸のデューティ比は、一定であって、接続部内に位置する凹凸のデューティ比の最小値以下である。
【0075】
上記第1変形例において、第2半導体層上に形成されるマスクパターンの開口は、平面視にて台形状を呈さなくてもよい。例えば、当該開口の方向Yに沿った幅は、方向Xに沿って段階的に変化してもよい。この場合、開口の方向Yに沿った幅は、方向Xに沿って光変調部に近づくほど狭くなる。また、上記第1変形例では、光導波路層を形成するための開口のみが設けられてもよい。
【符号の説明】
【0076】
1…半導体レーザ素子、2…レーザ部、3,3A…接続部、4…光変調部、11…半導体基板、21…下部クラッド層、22…活性層、23…上部クラッド層、24,41…コンタクト層、25,42…電極、26…回折格子、31…光導波路層、51…第1半導体層、51a…第1部分、52…回折格子層、53…マスク、54,55…マスクパターン(第1マスクパターン)、54a…カバーパターン、54b…開口パターン、56…第2半導体層、56a…第2部分、58…マスクパターン(第2マスクパターン)、61…凹凸パターン、62,65,71…凹部、63,66,72…凸部、64,67,73…凹凸、83~85…開口、84a,84b…領域,F1~F3…頂面、R1~R3…遷移領域。
図1
図2
図3
図4
図5
図6
図7
図8