IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社SCREENホールディングスの特許一覧

<>
  • 特許-検査装置および検査方法 図1
  • 特許-検査装置および検査方法 図2
  • 特許-検査装置および検査方法 図3
  • 特許-検査装置および検査方法 図4
  • 特許-検査装置および検査方法 図5
  • 特許-検査装置および検査方法 図6
  • 特許-検査装置および検査方法 図7
  • 特許-検査装置および検査方法 図8
  • 特許-検査装置および検査方法 図9
  • 特許-検査装置および検査方法 図10
  • 特許-検査装置および検査方法 図11
  • 特許-検査装置および検査方法 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-27
(45)【発行日】2022-07-05
(54)【発明の名称】検査装置および検査方法
(51)【国際特許分類】
   G01N 21/84 20060101AFI20220628BHJP
   G01N 21/956 20060101ALI20220628BHJP
【FI】
G01N21/84 E
G01N21/956 B
【請求項の数】 4
(21)【出願番号】P 2017182464
(22)【出願日】2017-09-22
(65)【公開番号】P2019056669
(43)【公開日】2019-04-11
【審査請求日】2020-06-22
(73)【特許権者】
【識別番号】000207551
【氏名又は名称】株式会社SCREENホールディングス
(74)【代理人】
【識別番号】100110847
【弁理士】
【氏名又は名称】松阪 正弘
(74)【代理人】
【識別番号】100136526
【弁理士】
【氏名又は名称】田中 勉
(74)【代理人】
【識別番号】100136755
【弁理士】
【氏名又は名称】井田 正道
(72)【発明者】
【氏名】村岡 力夫
【審査官】平田 佳規
(56)【参考文献】
【文献】特開平03-189606(JP,A)
【文献】特開2014-222155(JP,A)
【文献】特開2015-059907(JP,A)
【文献】米国特許出願公開第2009/0323053(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/84 - 21/958
G01B 11/00 - 11/30
G03B 15/00 - 15/02
F21S 2/00
F21V 8/00
F21V 11/02 - 11/04
H04N 5/222- 5/257
H04N 7/18
(57)【特許請求の範囲】
【請求項1】
検査装置であって、
検査対象となる検査面を有する対象物を支持する支持部と、
前記検査面上の線状領域を照明する照明部と、
前記線状領域を撮像する撮像部と、
前記検査面に平行かつ前記線状領域が伸びる横方向に対して垂直な移動方向に、前記照明部および前記撮像部に対して前記支持部を相対的に移動する移動機構と、
を備え、
前記撮像部の撮像光軸は、前記横方向に対して垂直であり、
前記照明部が、
光源部と、
前記光源部から出射された光を、前記横方向に対して垂直な面であって前記撮像光軸を含む仮想面に平行な方向に指向性を有する線状光に変換しつつ前記線状領域へと導く照明光学系と、
前記光源部から前記線状領域に至る光路上に配置され、前記光源部からの光の一部を前記仮想面に対して一様に傾斜させつつ、前記線状領域のうち、前記線状領域と前記仮想面とが交差する位置を含む交差領域へと導く補助光学要素と、
を含み、
前記線状領域のうち前記交差領域に対して前記横方向に隣接する隣接領域において、前記光源部からの光が、前記仮想面に平行な方向に指向性を有し、
前記移動方向から見た場合、前記撮像部による前記交差領域に対する撮像方向が、前記検査面に垂直であり、前記隣接領域に対する撮像方向が、前記検査面の法線方向に対して傾斜することを特徴とする検査装置。
【請求項2】
請求項1に記載の検査装置であって、
前記交差領域と、前記交差領域から前記横方向に離れた領域との間において、前記仮想面に対して傾斜した照明光の量が漸次変化することを特徴とする検査装置。
【請求項3】
請求項2に記載の検査装置であって、
前記補助光学要素が、屈折により光の伝播方向を変更し、
前記補助光学要素の配置位置において、光束断面の幅に対する前記補助光学要素の存在割合が、前記横方向の位置に依存して漸次変化することにより、前記仮想面に対して傾斜した照明光の量が漸次変化することを特徴とする検査装置。
【請求項4】
検査方法であって、
a)検査対象となる検査面を有する対象物を、前記検査面に平行な移動方向に、照明部および撮像部に対して相対的に移動する工程と、
b)前記a)工程と並行して、前記照明部により、前記検査面上の前記移動方向に対して垂直な線状領域を照明する工程と、
c)前記a)工程と並行して、前記撮像部により、前記線状領域を繰り返し撮像することにより、前記検査面の画像を取得する工程と、
を備え、
前記撮像部の撮像光軸は、前記線状領域が伸びる横方向に対して垂直であり、
前記b)工程において、前記照明部が、光源部から出射された光を、前記横方向に対して垂直な面であって前記撮像光軸を含む仮想面に平行な方向に指向性を有する線状光に変換しつつ前記線状領域へと導き、前記光源部からの光の一部を前記仮想面に対して一様に傾斜させつつ、前記線状領域のうち、前記線状領域と前記仮想面とが交差する位置を含む交差領域へと導き、前記線状領域のうち前記交差領域に対して前記横方向に隣接する隣接領域において、前記光源部からの光が、前記仮想面に平行な方向に指向性を有し、
前記移動方向から見た場合、前記撮像部による前記交差領域に対する撮像方向が、前記検査面に垂直であり、前記隣接領域に対する撮像方向が、前記検査面の法線方向に対して傾斜することを特徴とする検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検査面の外観を検査する検査装置および検査方法に関する。
【背景技術】
【0002】
従来より、線状の照明光にて対象物の検査面上の線状領域を照明し、照明部および撮像部に対して対象物を移動しつつ線状領域の撮像を繰り返すことにより、検査面の画像を取得する検査装置が様々な分野で用いられている。このような検査装置を用いて画像を取得する場合、線状の照明光が伸びる横方向において、凸部や凹部の影が現れにくい。そのため、対象物の移動方向に伸びる畝状の凸部や溝状の凹部が欠陥として検出されない虞がある。
【0003】
そこで、特許文献1では、照明光として、傾斜方向が異なる複数の疑似平行光が用いられる。特許文献1ではさらに、複数の疑似平行光を切り替えて検査面に照射することも示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2015-105904号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、複数の疑似平行光を用いる場合、照明部の構造を従来のものから大幅に変更する必要がある。また、照明部の大型化および複雑化を伴う。複数の疑似平行光を交互に照射しつつ撮像を行う場合、検査対象の移動速度または画像の解像度は、疑似平行光の点滅速度に依存する。そのため、撮像の高速化および画像の高解像度化が困難となる。
【0006】
本発明は上記課題に鑑みなされたものであり、検査対象となる検査面の移動方向に伸びる凸状または凹状の欠陥を、照明部の構造を複雑化することなく検出可能とすることを目的としている。
【課題を解決するための手段】
【0007】
請求項1に記載の発明は、検査装置であって、検査対象となる検査面を有する対象物を支持する支持部と、前記検査面上の線状領域を照明する照明部と、前記線状領域を撮像する撮像部と、前記検査面に平行かつ前記線状領域が伸びる横方向に対して垂直な移動方向に、前記照明部および前記撮像部に対して前記支持部を相対的に移動する移動機構とを備え、前記撮像部の撮像光軸は、前記横方向に対して垂直であり、前記照明部が、光源部と、前記光源部から出射された光を、前記横方向に対して垂直な面であって前記撮像光軸を含む仮想面に平行な方向に指向性を有する線状光に変換しつつ前記線状領域へと導く照明光学系と、前記光源部から前記線状領域に至る光路上に配置され、前記光源部からの光の一部を前記仮想面に対して一様に傾斜させつつ、前記線状領域のうち、前記線状領域と前記仮想面とが交差する位置を含む交差領域へと導く補助光学要素とを含み、前記線状領域のうち前記交差領域に対して前記横方向に隣接する隣接領域において、前記光源部からの光が、前記仮想面に平行な方向に指向性を有し、前記移動方向から見た場合、前記撮像部による前記交差領域に対する撮像方向が、前記検査面に垂直であり、前記隣接領域に対する撮像方向が、前記検査面の法線方向に対して傾斜する。
【0009】
請求項に記載の発明は、請求項に記載の検査装置であって、前記交差領域と、前記交差領域から前記横方向に離れた領域との間において、前記仮想面に対して傾斜した照明光の量が漸次変化する。
【0010】
請求項に記載の発明は、請求項に記載の検査装置であって、前記補助光学要素が、屈折により光の伝播方向を変更し、前記補助光学要素の配置位置において、光束断面の幅に対する前記補助光学要素の存在割合が、前記横方向の位置に依存して漸次変化することにより、前記仮想面に対して傾斜した照明光の量が漸次変化する。
【0012】
請求項に記載の発明は、検査方法であって、a)検査対象となる検査面を有する対象物を、前記検査面に平行な移動方向に、照明部および撮像部に対して相対的に移動する工程と、b)前記a)工程と並行して、前記照明部により、前記検査面上の前記移動方向に対して垂直な線状領域を照明する工程と、c)前記a)工程と並行して、前記撮像部により、前記線状領域を繰り返し撮像することにより、前記検査面の画像を取得する工程とを備え、前記撮像部の撮像光軸は、前記線状領域が伸びる横方向に対して垂直であり、前記b)工程において、前記照明部が、光源部から出射された光を、前記横方向に対して垂直な面であって前記撮像光軸を含む仮想面に平行な方向に指向性を有する線状光に変換しつつ前記線状領域へと導き、前記光源部からの光の一部を前記仮想面に対して一様に傾斜させつつ、前記線状領域のうち、前記線状領域と前記仮想面とが交差する位置を含む交差領域へと導き、前記線状領域のうち前記交差領域に対して前記横方向に隣接する隣接領域において、前記光源部からの光が、前記仮想面に平行な方向に指向性を有し、前記移動方向から見た場合、前記撮像部による前記交差領域に対する撮像方向が、前記検査面に垂直であり、前記隣接領域に対する撮像方向が、前記検査面の法線方向に対して傾斜する。
【発明の効果】
【0013】
本発明によれば、検査対象の移動方向に伸びる凸状または凹状の欠陥を、照明部の構造を複雑化することなく検出することができる。
【図面の簡単な説明】
【0014】
図1】検査装置の構成を示す図である。
図2】照明部、撮像部および基板の配置関係を示す平面図である。
図3】コンピュータの構成を示す図である。
図4】検査装置の機能構成を示すブロック図である。
図5】検査装置の動作の流れを示す図である。
図6】照明部の内部構造を示す図である。
図7】照明部の内部構造を示す図である。
図8】補助光学要素、および、線状領域における光量分布を示す図である。
図9】隣接領域での照明方向と撮像方向との関係を示す図である。
図10】補助光学要素が存在しない場合の交差領域での照明方向と撮像方向との関係を示す図である。
図11】補助光学要素が存在する場合の交差領域での照明方向と撮像方向との関係を示す図である。
図12】補助光学要素の他の例を示す図である。
【発明を実施するための形態】
【0015】
図1は、本発明の一の実施の形態に係る検査装置1の構成を示す図である。検査装置1は、光学式にて対象物の外観を検査する装置である。本実施の形態では、対象物は基板9であり、検査装置1は、基板9が有する金属薄膜に存在する凸部や凹部を欠陥として検出する。基板9は、例えば、プリント配線基板の製造に用いられる。
【0016】
基板9の上面は、検査対象となる検査面91である。検査装置1は、検査面91を撮像する装置本体2と、検査装置1の全体動作を制御するとともに、後述の各種機能を実現するコンピュータ5とを備える。装置本体2は、照明部21と、撮像部22と、基板9を支持する支持部23と、支持部23を移動する移動機構24とを有する。図2は、照明部21、撮像部22および基板9の配置関係を示す平面図である。図1の左右方向は図2の上下方向に対応する。
【0017】
照明部21は、図2中の左右方向である横方向に長い。照明部21は、検査面91上にて横方向に伸びる線状領域92を照明する。線状領域92は、ラインセンサを有する撮像部22が撮像する領域である。照明光が照射される領域は、線状領域92に一致してもよいが、通常、線状領域92よりも幅が広い線状の領域に照明光が照射される。照明部21から出射される照明光は、擬似的な平行光である。すなわち、図2に示すように、横方向に対して垂直であって撮像部22の撮像光軸221を含む仮想面81を想定した場合、照明光は、仮想面81に平行に照明部21から線状領域92に向かう成分が多い光である。
【0018】
撮像部22は、既述のように、撮像デバイスであるラインセンサと、撮像光学系とを有する。撮像部22は、撮像光学系を介して線状領域92を撮像する。撮像デバイスはラインセンサには限定されない。例えば、撮像部22が2次元センサを有し、その一部を利用して線状領域92が撮像されてもよい。撮像部22の撮像光軸221は、線状領域92が伸びる横方向に対して垂直である。撮像光軸221は検査面91の法線に対して傾斜する。
【0019】
図1に示すように、本実施の形態では、支持部23はステージである。支持部23は、基板9を支持することができるのであれば様々な構造が採用可能である。例えば、支持部23は、基板9の外縁を把持する構造でもよい。
【0020】
移動機構24は、ボールねじ、ガイドレール、モータ等により構成される。移動機構24が支持部23を移動することにより、検査面91を有する基板9は、検査面91に平行な移動方向に、照明部21および撮像部22に対して移動する。移動方向は、図1および図2中に符号82を付す矢印にて示すように、横方向に対して垂直である。基板9の移動により、照明領域および線状領域92は検査面91に対して移動する。これにより、撮像領域である線状領域92が検査面91上を走査する。なお、支持部23は照明部21および撮像部22に対して相対的に移動すればよく、照明部21および撮像部22が支持部23に対して移動してもよい。
【0021】
コンピュータ5は、照明部21、撮像部22および移動機構24を制御する。基板9の移動と平行して照明部21から検査面91に照明光が照射され、さらに、撮像部22が線状領域92を繰り返し撮像する。これにより、検査面91の画像が取得され、コンピュータ5に保存される。
【0022】
図3は、コンピュータ5の構成を示す図である。コンピュータ5は各種演算処理を行うCPU51、基本プログラムを記憶するROM52および各種情報を記憶するRAM53を含む一般的なコンピュータシステムの構成となっている。コンピュータ5は、情報記憶を行う固定ディスク54と、画像等の各種情報の表示を行うディスプレイ55と、操作者からの入力を受け付けるキーボード56aおよびマウス56b(以下、「入力部56」と総称する。)と、光ディスク、磁気ディスク、光磁気ディスク等のコンピュータ読み取り可能な記録媒体8から情報の読み取りを行う読取装置57と、検査装置1の他の構成との間で信号を送受信する通信部58とをさらに含む。
【0023】
コンピュータ5では、事前に読取装置57を介して記録媒体8からプログラム80が読み出されて固定ディスク54に記憶されている。CPU51は、プログラム80に従ってRAM53や固定ディスク54を利用しつつ演算処理を実行する。
【0024】
図4は、検査装置1の機能構成を示すブロック図である。図4では、コンピュータ5のCPU51、ROM52、RAM53、固定ディスク54、専用の制御回路等により実現される機能構成を、符号5を付す破線の矩形にて囲んでいる。コンピュータ5は、撮像制御部41と、シェーディング補正部42と、画像処理部43と、検査部44とを有する。図示を省略しているが、各機能構成の動作を制御する全体制御部もコンピュータ5により実現される。なお、これらの機能は専用の電気回路により構築されてもよく、部分的に専用の電気回路が利用されてもよい。
【0025】
図5は、検査装置1の動作の流れを示す図である。基板9が支持部23に支持されると、撮像制御部41の制御により、照明部21から照明光の出射が開始され、支持部23の移動が開始される(ステップS11,S12)。既述のように、撮像部22は線状領域92の撮像を繰り返す。線状領域92が基板9の一方の端部から他方の端部に向かって移動することにより、検査面91の画像が取得される(ステップS13)。その後、支持部23の移動が停止され、照明部21からの照明光の出射も停止される(ステップS14,S15)。なお、照明光の出射、支持部23の移動および撮像が並行して行われるのであれば、照明光の出射、支持部23の移動および撮像のタイミングは適宜変更されてよい。
【0026】
検査面91の画像が取得されると、シェーディング補正部42は画像にシェーディング補正を行う(ステップS16)。シェーディング補正では、照明光の強度のばらつきやラインセンサの感度のばらつきが補正される。補正に使用する係数は、欠陥の無い検査面を撮像して得られた画像から予め求められる。なお、後述するように、本実施の形態では、横方向における照明光の光量変化が大きいが、この光量変化もシェーディング補正により取り除かれる。以下の説明において、横方向の異なる位置での光量の相違や横方向における光量の変動は、正確には、「横方向の単位長さ当たりの光量」の相違や変動を意味する。
【0027】
画像処理部43は、補正後の画像に対して様々な画像処理を行う(ステップS17)。正確には、画像のデータに対して演算処理が行われる。補正としては、例えば、明度補正、コントラスト補正、2値化等が行われる。検査部44は、補正後の画像に基づいて、欠陥の有無を判定する(ステップS18)。
【0028】
図6および図7は、照明部21の内部構造を示す図である。図6および図7では、光の進行方向が下方向となるように照明部21を示している。実際には、光の進行方向は、図1に示すように検査面91に対して傾斜する。図6は横方向から見た照明部21を示し、図7は横方向および照明光の進行方向に対して垂直な方向から見た照明部21を示す。図7の左右方向は横方向である。
【0029】
照明部21は、光源部31と、照明光学系32と、補助光学要素33とを含む。光源部31からの光は、照明光学系32および補助光学要素33を介して検査面91へと導かれる。図6では、光の発散や収束のおよその様子を破線にて示している。
【0030】
光源部31は、複数のLED素子311を有する。複数のLED素子311は、等間隔にて横方向に配列される。実際には、多数のLED素子311が配列される。光源部31の光源は、LEDには限定されない。
【0031】
照明光学系32は、拡散板321と、フレネルレンズ322と、ハニカム構造体323と、フレネルレンズ324とを、光源部31から線状領域92に向かって順に有する。2つのフレネルレンズ322,324は、横方向に長いリニアフレネルレンズである。拡散板321としては様々なものが利用可能であるが、本実施の形態では、LSD(Light Shaping Diffusers)が用いられる。2つのフレネルレンズ322,324は、図6の左右方向、すなわち、光源部31から線状領域92に向かう方向および横方向に対して垂直な方向に関して正のパワーを有する。図6では、フレネルレンズを長方形で示している。ハニカム構造体323は、光の進行方向に対して垂直な断面が多数の六角形となる蜂の巣状の構造を有する。各六角形の空間は、フレネルレンズ322からフレネルレンズ324に向かって直線状に伸びる。ハニカム構造体323は、上下に多数の六角形の開口を有する。
【0032】
光源部31からの光は、拡散板321にて拡散される。これにより、横方向における光量の変動が低減される。拡散板321からの光の図6の左右方向への広がりは、フレネルレンズ322により抑制される。光はさらにハニカム構造体323内へと導かれる。ハニカム構造体323は散乱光を遮り、ハニカム構造体323からは、ハニカム構造体323の貫通孔が伸びる方向に略平行な光が導き出される。これにより、仮想面81(図2参照)に平行かつ横方向に対して垂直な略平行光が得られる。図7では、仮想面81の位置を二点鎖線にて示している。フレネルレンズ324は、図6の左右方向に関して光を収束させる。これにより、光束断面が線状であって線状領域92を照明する線状光が得られる。
【0033】
以上のように、照明光学系32は、光源部31から出射された光を、仮想面81に平行な方向に指向性を有する線状光に変換しつつ線状領域92へと導く。ここでの指向性とは、線状領域92上のある位置に入射する光の量が、特定の方向で最も多く、当該方向から離れるに従って減少する状態を指す。当該方向は、この位置に入射する光の進行方向とみなすことができる。より具体的には、照明光学系32は、光源部31から出射された光を、仮想面81に平行かつ横方向に対して垂直な方向に進行する光に変換する。以下、仮想面81に平行かつ照明光学系32から線状領域92に向かう方向を「照明光軸方向」と呼ぶ。照明光学系32は横方向に長いため、光源部31から照明光軸方向に伸びる照明光軸は、面状である。図6では、照明光軸に符号211を付している。
【0034】
補助光学要素33は、照明光学系32と検査面91との間に配置される。補助光学要素33は、ハニカム構造体323とフレネルレンズ324との間に配置されてもよい。照明光学系32の構造によっては補助光学要素33は光源部31から線状領域92に至る光路上の他の位置に配置されてもよい。図7に示すように補助光学要素33は、多数のプリズムを有するプリズム板である。補助光学要素33は、屈折により光の伝播方向を変更するため、補助光学要素33に入射する光は、図7中の矢印84にて示すように、図7の左側へと向かうように一様に傾斜して線状領域92へと導かれる。すなわち、補助光学要素33を透過した光の進行方向のベクトルは、横方向の成分を有する。
【0035】
図8の上段は、照明光軸211に沿って見た補助光学要素33を示す。補助光学要素33の外形は平行四辺形である。図8では、破線にて照明光の断面85を示している。補助光学要素33が配置される位置では、照明光はある程度の幅を有する。中央の二点鎖線は、横方向における仮想面81の位置を示す。補助光学要素33は、2辺が横方向を向く平行四辺形である。そのため、補助光学要素33が存在する位置では、左から右に向かうに従って、補助光学要素33に入射する(横方向の単位長さ当たりの)光の量が漸次増大した後、漸次減少する。したがって、図7中に符号84を付して示す傾斜光の量も、左から右に向かうに従って漸次増大した後、漸次減少する。図8の中段の折れ線86は、傾斜光の量の増減を示している。中段の横軸は上段に対応する横方向の位置を示し、縦軸は光量を示す。
【0036】
補助光学要素33は、傾斜光の光量の最大位置が、仮想面81の位置とおよそ一致するように、仮想面81から横方向にずれて配置される。これにより、線状領域92のうち、図8の中段に符号861を付す範囲の領域には、仮想面81に対して傾斜した多くの光が入射する。線状領域92のうち符号862を付す範囲の領域には、照明光軸211および仮想面81に平行な光が多く入射する。なお、照明光は、完全な平行光ではないため、仮想面81に平行な光は、正確には、仮想面81におよそ平行な疑似平行光である。
【0037】
線状領域92のうち符号861を付す範囲の領域は、線状領域92と仮想面81とが交差する位置を含むため、以下、「交差領域861」と呼ぶ。線状領域92のうち符号862を付す範囲の領域は、以下、「隣接領域862」という。
【0038】
交差領域861と隣接領域862との境界は、厳密に決められる必要はない。傾斜光がある程度入射する領域が交差領域861として適宜定められる。交差領域861の横方向の長さは、後述するように、仮想面81の近傍にて縦方向、すなわち、検査面91の移動方向に伸びる欠陥を検出することができる範囲で適宜設定される。したがって、交差領域861は短くてもよい。少なくとも線状領域92と仮想面81とが交差する位置には仮想面81に対して傾斜した照明光が入射する。
【0039】
照明光は、補助光学要素33から線状領域92に向かうに従って、仮想面81に平行かつ照明光軸方向に対して垂直な方向に収束することから、補助光学要素33を平行四辺形とすることにより、交差領域861と隣接領域862との間において、仮想面81に対して傾斜した照明光の量が漸次変化することになる。
【0040】
図8の下段の折れ線87は、線状領域92での照明光の光量分布を示す。補助光学要素33は、照明光学系32から線状領域92に真っ直ぐ入射する光を遮るため、折れ線87にて示すように、線状領域92における光量分布は複雑に変化する。しかし、既述のように、図4のシェーディング補正部42は光量分布の影響を補正するため、画像を取得する上では問題とはならない。また、補助光学要素33は、交差領域861と隣接領域862との間で傾斜光の量を漸次変化させるため、線状領域92において照明光の光量が不連続に変化することが防止される。交差領域861と隣接領域862との境界は厳密に定められるものではないため、一般的に表現すれば、少なくとも、交差領域861と、交差領域861から横方向に離れた領域との間において、仮想面81に対して傾斜した照明光の量を漸次変化させることにより、線状領域92において照明光の光量が不連続に変化することが防止される。
【0041】
図9は、隣接領域862における照明方向と撮像方向との関係を示す図であり、基板9の移動方向に沿って見た様子を示している。検査面91上には、基板9の移動方向に伸びる溝状の欠陥93が存在するものとする。照明光は、符号931にて示すように、移動方向から見た場合、検査面91に垂直に入射する。撮像方向は、符号932にて示すように、移動方向から見た場合、検査面91の法線方向に対して傾斜する。この場合、符号933にて示す領域が、画像中に暗い領域として現れ、欠陥を検出することができる。すなわち、移動方向から見た場合に照明方向と撮像方向とが異なるため、移動方向に伸びる凸状または凹状の欠陥を検出することができる。欠陥は、例えば、金属薄膜の皺である。
【0042】
一方、仮に、補助光学要素33が存在しないとした場合、仮想面81近傍の交差領域861では、図10に示すように、移動方向から見た場合、照明方向931と撮像方向932とが平行になる。その結果、欠陥93は画像中に明暗として現れにくく、欠陥として検出されない虞がある。
【0043】
これに対し、補助光学要素33が存在する場合、図11に示すように、照明方向931が撮像方向932に対して傾斜するため、符号934にて示す領域が、画像中の暗い領域として現れ、欠陥93を検出することができる。すなわち、移動方向から見た場合に照明方向931と撮像方向932とが異なるため、移動方向に伸びる凸状または凹状の欠陥を検出することができる。
【0044】
なお、横方向から見た場合、照明光軸方向と撮像光軸221とは平行ではないため、横方向に伸びる凸状または凹状の欠陥は補助光学要素33の有無とは関係なく画像中に現れ、検出可能である。
【0045】
以上のように、検査装置1では、補助光学要素33が、光源部31からの光の一部を仮想面81に対して傾斜させつつ交差領域861へと導く。これにより、照明部21の構造を複雑化することなく簡単な設計変更のみで、仮想面81に近い領域にて検査面91の移動方向に伸びる凸状または凹状の欠陥を検出することができる。その結果、簡単な構造の1つの照明光学系32にて撮像範囲全体の欠陥検出が実現される。また、従来技術のように照明光の方向を切り替える場合と比べて、撮像速度の低下や画像の解像度の低下が防止される。
【0046】
なお、隣接領域862での照明光の進行方向は、照明光軸方向には限定されないが、照明部21の構造の簡素化および隣接領域862での欠陥検出の精度低下防止の観点から、隣接領域862では照明光は仮想面81に平行な指向性を有することが好ましい。少なくとも、線状領域92のうち交差領域861から横方向に離れた領域においては、照明光は仮想面81に平行な指向性を有することが好ましい。
【0047】
図8では、補助光学要素33の外形は平行四辺形であるが、補助光学要素33の配置位置において、光束断面の幅に対する補助光学要素33の存在割合が、横方向の位置に依存して漸次変化するのであれば、補助光学要素33の外形は他の形状でもよい。例えば、屈折により光の伝播方向を変更する補助光学要素33の外形は、対角線が仮想面81に対して垂直な菱形や平行四辺形でもよい。外形は曲線を含んでもよい。このような補助光学要素33であっても、仮想面81に対して傾斜した照明光の量を横方向において漸次変化させることができる。
【0048】
図12は、補助光学要素の他の例を示す図であり、図7に対応する。図7と同様の構成要素には同符号を付している。図12に示す補助光学要素33aは、横方向に多数のプリズムが配列されるが、横方向に向かってプリズムの屈折面の傾斜角が漸次変化する。各屈折面は照明光の幅(図12の奥行き方向)全体に亘って存在する。これにより、矢印84にて示すように横方向に向かって、仮想面81に対する照明光の傾斜角が漸次増大した後、漸次減少する。既述のように、補助光学要素33aに入射する照明光は完全な平行光ではないため、ある位置における照明光の方向とは、入射方向と当該入射方向からの光の量の関係において、光の量が極大となる方向を指すものとする。
【0049】
補助光学要素33aにより、交差領域861では仮想面81に対して傾斜した照明光の量が多くなり、隣接領域862では傾斜しない照明光の量が多くなる。交差領域861と隣接領域862との境界は厳密に決められる必要はないため、一般的に表現すれば、補助光学要素33aの配置により、交差領域861と、交差領域861から横方向に離れた領域との間において、仮想面81に対して傾斜した照明光の傾斜角が漸次変化し、交差領域861に傾斜した照明光を照射することが実現される。
【0050】
図12に示す補助光学要素33aによっても、照明部21の構造を複雑化することなく、仮想面81に近い領域にて検査面91の移動方向に伸びる凸状または凹状の欠陥を検出することができる。補助光学要素33aにより生じる線状光の横方向における光量変動は、シェーディング補正部42により補正される。
【0051】
検査装置1の構成および動作は様々に変更が可能である。
【0052】
検査の対象物はプリント配線基板の製造に用いられる基板には限定されない。凸状または凹状の欠陥の検査が必要な様々な基板の検査に検査装置1は利用することができる。また、対象物は板状には限定されず、シート状でもよく、平らな検査面を有する立体的な物体でもよい。検査面は、金属薄膜を有するものには限定されない。凸状または凹状の欠陥が生じる面であれば、様々な検査面が検査対象となる。ただし、検査面が金属光沢を有する場合は、移動方向から見て照明方向と撮像方向とが平行となる状態で欠陥が画像に現れにくくなるため、検査装置1は、金属光沢を有する面に対する検査に特に適している。
【0053】
照明部21の構造は様々に変更可能である。好ましくは、補助光学要素33は、照明光が線状に収束していない位置に配置される。
【0054】
補助光学要素33は、光の向きを変えることができるのであれば、どのようなものが用いられてもよい。例えば、補助光学要素33は大きな1つの屈折面のみを有する1つのプリズムでもよい。また、屈折面の傾斜が連続的に変化するレンズ状の光学要素でもよい。これにより、図12の場合と同様に、照明光の傾斜を横方向に対して漸次変化させることができる。
【0055】
補助光学要素33はミラーでもよい。例えば、照明光のうち照明に利用しない部分をミラーにて反射することにより、交差領域861に傾斜した光を導いてもよい。ハニカム構造体323を部分的に仮想面81に対して傾斜させることにより、交差領域861に傾斜した光を導いてもよい。さらには、様々な導光部材を用いて交差領域861に傾斜した光を導いてもよい。
【0056】
検査面が横方向に広い場合、照明部21と撮像部22との複数の組合せが、横方向に配列されてもよい。
【0057】
上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
【符号の説明】
【0058】
1 検査装置
9 基板(対象物)
21 照明部
22 撮像部
23 支持部
24 移動機構
31 光源部
32 照明光学系
33,33a 補助光学要素
81 仮想面
91 検査面
92 線状領域
221 撮像光軸
861 交差領域
862 隣接領域
S11~S15 ステップ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12