(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-27
(45)【発行日】2022-07-05
(54)【発明の名称】多心コネクタ光ファイバ測定装置および方法
(51)【国際特許分類】
G01M 11/00 20060101AFI20220628BHJP
G02B 6/00 20060101ALI20220628BHJP
【FI】
G01M11/00 G
G02B6/00 A
(21)【出願番号】P 2019103854
(22)【出願日】2019-06-03
【審査請求日】2021-02-03
(73)【特許権者】
【識別番号】000006507
【氏名又は名称】横河電機株式会社
(73)【特許権者】
【識別番号】596157780
【氏名又は名称】横河計測株式会社
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100188307
【氏名又は名称】太田 昌宏
(74)【代理人】
【識別番号】100205833
【氏名又は名称】宮谷 昂佑
(72)【発明者】
【氏名】太田 克志
(72)【発明者】
【氏名】山本 智一
【審査官】伊藤 裕美
(56)【参考文献】
【文献】特開2019-012058(JP,A)
【文献】特開2009-300363(JP,A)
【文献】特開平11-287734(JP,A)
【文献】特開平02-300645(JP,A)
【文献】特開昭51-144253(JP,A)
【文献】特開平08-240481(JP,A)
【文献】米国特許第09518892(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 11/00 - 11/08
G02B 6/00 - 6/08
H04M 1/24
(57)【特許請求の範囲】
【請求項1】
多心コネクタ光ファイバパッチコードの極性タイプの識別と光パワーの測定とを行う多心コネクタ光ファイバ測定装置であって、
前記多心コネクタ光ファイバパッチコードからの光を分岐させるビームスプリッタと、
前記ビームスプリッタによって分岐した前記光のうち一方の光を受光し、受光した前記光に応じた第1の信号を出力する第1の光センサと、
前記ビームスプリッタによって分岐した前記光のうち他方の光を受光し、受光した前記光に応じた第2の信号を出力する第2の光センサと、
前記第1の光センサからの前記第1の信号に基づいて、前記光パワーを算出し、前記第2の光センサからの前記第2の信号に基づいて、前記極性タイプを識別する信号処理部と、
を備え
、
前記第2の光センサは、第1のチャネル識別用フォトダイオードと第2のチャネル識別用フォトダイオードとを含み、
前記第1のチャネル識別用フォトダイオードと、前記第2のチャネル識別用フォトダイオードとは、前記光の受光面において、互いに離れて位置する、多心コネクタ光ファイバ測定装置。
【請求項2】
前記第1のチャネル識別用フォトダイオードと、前記第2のチャネル識別用フォトダイオードとは、前記受光面において、前記光の中心軸に垂直な方向に沿って互いに逆方向にずれて位置する、請求項
1に記載の多心コネクタ光ファイバ測定装置。
【請求項3】
前記第2の光センサは、第3のチャネル識別用フォトダイオードと、第4のチャネル識別用フォトダイオードとをさらに含み、
前記第1のチャネル識別用フォトダイオードと、前記第2のチャネル識別用フォトダイオードとは、前記受光面において、前記光の中心軸に沿って互いに離れて位置し、
前記第3のチャネル識別用フォトダイオードと、前記第4のチャネル識別用フォトダイオードは、前記受光面において、前記中心軸に垂直な方向に沿って互いに離れて位置する、請求項
1に記載の多心コネクタ光ファイバ測定装置。
【請求項4】
前記ビームスプリッタは、無偏光ビームスプリッタである、請求項1から
3のいずれか一項に記載の多心コネクタ光ファイバ測定装置。
【請求項5】
前記多心コネクタ光ファイバパッチコードと前記ビームスプリッタとの間に、前記多心コネクタ光ファイバパッチコードからのすべての光を前記第1の光センサに集光させる集光レンズを備える、請求項1から
4のいずれか一項に記載の多心コネクタ光ファイバ測定装置。
【請求項6】
多心光コネクタを介して、前記多心コネクタ光ファイバパッチコードに接続される多心光コネクタ用レセプタクルであって、
前記多心光コネクタ用レセプタクルは、前記多心光コネクタに含まれる光ファイバのフェルール端面から出射される光を遮らない開口部を備える、請求項1から
5のいずれか一項に記載の多心コネクタ光ファイバ測定装置。
【請求項7】
前記開口部には、前記多心光コネクタが備える位置決めピンが収まる、請求項
6に記載の多心コネクタ光ファイバ測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、多心コネクタ光ファイバ測定装置および方法に関する。
【背景技術】
【0002】
従来、光信号によってデータ通信などを行う光通信システムが実用化されている。光通信システムでは、光信号を伝送するための媒体として光ファイバが用いられている。光通信システムを利用している設備としては、コンピュータおよびデータ通信装置を設置して運用しているデータセンターなどがある。データセンターなどの設備では、それぞれの装置同士を接続するために、大量の光ファイバが敷設されている。
【0003】
近年、データセンターなどの設備では、データの伝送量の増加への対応が求められている。このため、データセンターなどの設備では、複数の光ファイバをまとめて多心化した多心光ファイバの両端に多心光コネクタを取り付けた多心コネクタ光ファイバパッチコードを敷設することによって、データ伝送の高密度化を図っている。
【0004】
ところで、多心コネクタ光ファイバパッチコードには、両端の多心光コネクタ間のそれぞれの光ファイバの結線によって極性が異なる複数のタイプが存在する。例えば、12心MPO(Multi-fiber Push On)コネクタでは、MPOコネクタ間の光ファイバの結線によって、Aタイプ、Bタイプ、およびCタイプの3種類の極性タイプが存在する。このため、データセンターなどの設備において多心コネクタ光ファイバパッチコードを敷設する際には、多心コネクタ光ファイバパッチコードの極性タイプを識別しながら敷設する必要がある。また、データセンターなどの設備において多心コネクタ光ファイバパッチコードを敷設する際には、接続した多心コネクタ光ファイバパッチコードの接続損失を測定するために、伝送された光の光パワーの測定も行われる。従来、例えば、特許文献1に開示の多心コネクタ光ファイバ測定装置を用いて、多心コネクタ光ファイバパッチコードの極性タイプの識別および光パワーの測定を行っていた。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、従来の多心コネクタ光ファイバ測定装置では、多心コネクタ光ファイバパッチコードの光パワーの測定精度が低下するという問題がある。
【0007】
そこで、本開示は、多心コネクタ光ファイバパッチコードの光パワーの測定精度の低下を抑制し、また極性タイプの識別をすることができる多心コネクタ光ファイバ測定装置および方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
幾つかの実施形態に係る多心コネクタ光ファイバ測定装置は、多心コネクタ光ファイバパッチコードの極性タイプの識別と光パワーの測定とを行う多心コネクタ光ファイバ測定装置であって、前記多心コネクタ光ファイバパッチコードからの光を分岐させるビームスプリッタと、前記ビームスプリッタによって分岐した前記光のうち一方の光を受光し、受光した前記光に応じた第1の信号を出力する第1の光センサと、前記ビームスプリッタによって分岐した前記光のうち他方の光を受光し、受光した前記光に応じた第2の信号を出力する第2の光センサと、前記第1の光センサからの前記第1の信号に基づいて、前記光パワーを算出し、前記第2の光センサからの前記第2の信号に基づいて、前記極性タイプを識別する信号処理部と、
を備える。
【0009】
このような構成を備えることによって、多心コネクタ光ファイバパッチコードの心数にかかわらず、多心コネクタ光ファイバパッチコードの極性タイプの識別を行うことができるとともに、光パワーの測定精度の低下を抑制することができる。
【0010】
一実施形態において、前記第2の光センサは、第1のチャネル識別用フォトダイオードと第2のチャネル識別用フォトダイオードとを含み、前記第1のチャネル識別用フォトダイオードと、前記第2のチャネル識別用フォトダイオードとは、前記光の受光面において、互いに離れて位置してもよい。
【0011】
このように、第2の光センサが、互いに離れて位置する第1のチャネル識別用フォトダイオードと第2のチャネル識別用フォトダイオードとを備えることにより、チャネルの識別を精度よく行うことができる。
【0012】
一実施形態において、前記第1のチャネル識別用フォトダイオードと、前記第2のチャネル識別用フォトダイオードとは、前記受光面において、前記光の中心軸に垂直な方向に沿って互いに逆方向にずれて位置してもよい。
【0013】
このように、第2の光センサが、互いに逆方向にずれて位置する第1のチャネル識別用フォトダイオードと第2のチャネル識別用フォトダイオードとを備えることにより、例えば12心×2列の24心のMPOコネクタであっても、チャネルの識別を精度よく行うことができる。
【0014】
一実施形態において、前記第2の光センサは、第3のチャネル識別用フォトダイオードと、第4のチャネル識別用フォトダイオードとをさらに含み、前記第1のチャネル識別用フォトダイオードと、前記第2のチャネル識別用フォトダイオードとは、前記受光面において、前記光の中心軸に沿って互いに離れて位置し、前記第3のチャネル識別用フォトダイオードと、前記第4のチャネル識別用フォトダイオードは、前記受光面において、前記中心軸に垂直な方向に沿って互いに離れて位置してもよい。
【0015】
このように、第2の光センサが、第3のチャネル識別用フォトダイオードと、第4のチャネル識別用フォトダイオードとをさらに備えることにより、例えば12心×2列の24心のMPOコネクタであっても、チャネルの識別をさらに精度良く行うことができる。
【0016】
一実施形態において、前記ビームスプリッタは、無偏光ビームスプリッタであってもよい。
【0017】
このように、無偏光ビームスプリッタを備えることにより、光パワーの絶対値を精度よく測定することができるとともに、チャネル間での光パワーの変動を抑制することができる。
【0018】
一実施形態において、前記一方の光は透過光であり、前記他方の光は反射光であってもよい。
【0019】
一実施形態において、前記多心コネクタ光ファイバ測定装置は、前記多心コネクタ光ファイバパッチコードと前記ビームスプリッタとの間に、前記多心コネクタ光ファイバパッチコードからのすべての光を前記第1の光センサに集光させる集光レンズを備えてもよい。
【0020】
このように、集光レンズを備えることにより、大口径のフォトダイオードを含む第1の光センサを用いなくても、光パワーを精度よく測定することができる。
【0021】
一実施形態において、前記多心コネクタ光ファイバ測定装置は、多心光コネクタを介して、前記多心コネクタ光ファイバパッチコードに接続される多心光コネクタ用レセプタクルであって、前記多心光コネクタ用レセプタクルは、前記多心光コネクタに含まれる光ファイバのフェルール端面から出射される光を遮らない開口部を備えてもよい。
【0022】
このように、前記多心光コネクタ用レセプタクルが前記開口部を備えることにより、多心光コネクタ用レセプタクルは、様々な形状の多心光コネクタに対応することができる。
【0023】
一実施形態において、前記開口部には、前記多心光コネクタが備える位置決めピンが収まってもよい。
【0024】
このように、前記多心光コネクタ用レセプタクルが前記開口部を備えることにより、多心光コネクタ用レセプタクルは、オスタイプまたはメスタイプのいずれの多心光コネクタにも対応することができる。
【0025】
幾つかの実施形態に係る方法は、多心コネクタ光ファイバパッチコードの極性タイプの識別と光パワーの測定とを行う多心コネクタ光ファイバ測定方法において、ビームスプリッタが、多心コネクタ光ファイバパッチコードからの光を分岐させるステップと、第1の光センサが、前記ビームスプリッタによって分岐した光のうち一方の光を受光し、受光した前記光に応じた第1の信号を出力するステップと、第2の光センサが、前記ビームスプリッタによって分岐した光のうち他方の光を受光し、受光した前記光に応じた第2の信号を出力するステップと、信号処理部が、前記第1の光センサからの前記第1の信号に基づいて、前記光パワーを算出し、前記第2の光センサからの前記第2の信号に基づいて、前記極性タイプを識別するステップと、を含む。
【0026】
このような構成を備えることによって、多心コネクタ光ファイバパッチコードの心数にかかわらず、多心コネクタ光ファイバパッチコードの極性タイプの識別を行うことができるとともに、光パワーの測定精度の低下を抑制することができる。
【発明の効果】
【0027】
本開示によれば、多心コネクタ光ファイバパッチコードの光パワーの測定精度の低下を抑制し、また極性タイプの識別をすることができる。
【図面の簡単な説明】
【0028】
【
図1】比較例に係る多心コネクタ光ファイバ測定装置の構成を示す機能ブロック図である。
【
図2】本実施形態に係る多心コネクタ光ファイバ測定装置の構成を示す機能ブロック図である。
【
図3A】
図2の光源部の構成を示す機能ブロック図である。
【
図3B】
図2の光源部の構成を示す機能ブロック図である。
【
図4】
図2の受光部の構成を示す機能ブロック図である。
【
図5A】オスタイプのMPOコネクタを説明する概略図である。
【
図5B】メスタイプのMPOコネクタを説明する概略図である。
【
図6】12心MPOコネクタを説明する概略図である。
【
図7A】本実施形態に係る第2の光センサに照射される空間光を説明する概略図である。
【
図7B】本実施形態に係る第2の光センサに照射される空間光を説明する概略図である。
【
図8A】Aタイプの12心MPOコネクタを用いた場合の光起電流の分布を説明する図である。
【
図8B】光源部に接続されるAタイプの12心MPOコネクタおよび受光部に接続されるAタイプの12心MPOコネクタをそれぞれ説明する図である。
【
図9A】Bタイプの12心MPOコネクタを用いた場合の光起電流の分布を説明する図である。
【
図9B】光源部に接続されるBタイプの12心MPOコネクタおよび受光部に接続されるBタイプの12心MPOコネクタをそれぞれ説明する図である。
【
図10A】Cタイプの12心MPOコネクタを用いた場合の光起電流の分布を説明する図である。
【
図10B】光源部に接続されるCタイプの12心MPOコネクタおよび受光部に接続されるCタイプの12心MPOコネクタをそれぞれ説明する図である。
【
図11】本実施形態に係る多心コネクタ光ファイバ測定装置における処理手順を説明するフローチャートである。
【
図12】24心MPOコネクタを説明する概略図である。
【
図13A】変形例に係る第2の光センサに照射される空間光を説明する概略図である。
【
図13B】変形例に係る第2の光センサに照射される空間光を説明する概略図である。
【発明を実施するための形態】
【0029】
以下、本開示を実施するための形態について、図面を参照しながら説明する。各図において、同一符号は、同一または同等の構成要素を示す。
【0030】
まず、比較のために、
図1を参照して、比較例に係る多心コネクタ光ファイバ測定装置の構成例を説明する。
【0031】
図1は、比較例に係る多心コネクタ光ファイバ測定装置2の構成を示す機能ブロック図である。多心コネクタ光ファイバ測定装置2は、光源部30と、測定部40とを備える。多心コネクタ光ファイバ測定装置2では、多心コネクタ光ファイバパッチコード50の一端に光源部30が接続され、多心コネクタ光ファイバパッチコード50の他端に測定部40が接続される。多心コネクタ光ファイバ測定装置2によって、多心コネクタ光ファイバパッチコードの極性タイプの識別と光パワーの測定とが行われる。
【0032】
光源部30は、光源と、光スイッチと、光ファイバファンアウトコードと、多心コネクタアダプタとを含む。光源部30は、多心コネクタアダプタを介して、多心コネクタ光ファイバパッチコード50の一端に接続される。光源が発光した光は、光スイッチ、光ファイバファンアウトコード、および多心コネクタアダプタを介して、多心コネクタ光ファイバパッチコード50に含まれる任意の1つの光ファイバ51のチャネルに入射する。その際、光スイッチは、光源が発光した光を入射させる光ファイバファンアウトコードを順次切り替え、任意の1つの光ファイバのチャネルに光を順次入射させる。
【0033】
測定部40は、受光部41と、信号処理部42と、表示部43とを含む。受光部41は、多心コネクタアダプタ411と、光ファイバファンアウトコード412と、光スイッチ413と、光センサ414とを含む。受光部41は、多心コネクタアダプタ411を介して、多心コネクタ光ファイバパッチコード50の他端に備えたMPOコネクタ53に接続される。受光部41は、多心コネクタ光ファイバパッチコード50に含まれる任意の1つの光ファイバ51のチャネルによって伝送された光を、多心コネクタアダプタ411を介して、対応する光ファイバファンアウトコード412に入射させる。受光部41は、光ファイバファンアウトコード412に入射した光を光スイッチ413に出射させる。光スイッチ413は、入射した光の光路を順次切り替えて、光センサ414に順次出射する。光センサ414は、受光した光に応じた信号を信号処理部42に順次出力する。信号処理部42は、光センサ414から順次出力された信号に基づいて、多心コネクタ光ファイバパッチコード50に含まれる任意の1つの光ファイバ51のチャネルによって伝送された光の光パワーを順次算出する。また、信号処理部42は、算出した各チャネルの光パワーを比較することによって、光源からの光が入射した任意の1つの光ファイバ51のチャネルを順次識別する。そして、信号処理部42は、全ての光ファイバ51のチャネルの光パワーの算出と識別とが完了すると、多心コネクタ光ファイバパッチコード50の極性タイプの識別を行う。表示部43は、信号処理部42が出力した多心コネクタ光ファイバパッチコード50の極性タイプとチャネル毎の光パワーとを表示する。
【0034】
しかしながら、比較例に係る多心コネクタ光ファイバ測定装置では、以下の問題がある。すなわち、多心コネクタ光ファイバパッチコード50と光ファイバファンアウトコード412との接続損失が発生する。また、光スイッチ413を用いた光の光路の切替えによって光の損失が発生する。これにより、光パワーの測定精度が低下してしまう。さらに、MPOコネクタには、例えば12心MPOコネクタおよび24心MPOコネクタのように、外形形状が同じであっても、フェルール端面における光ファイバの位置が異なるコネクタがある。ところが、比較例に係る多心コネクタ光ファイバ測定装置では、このようなMPOコネクタ間で共用することができない。
【0035】
そこで、本開示では、多心コネクタ光ファイバパッチコードの心数にかかわらず、多心コネクタ光ファイバパッチコードの極性タイプの識別を可能とし、かつ光パワーの測定精度の低下を抑制することを可能とする多心コネクタ光ファイバ測定装置を説明する。
【0036】
以下、本開示の一実施形態に係る多心コネクタ光ファイバ測定装置および方法について説明する。
図2は、本実施形態に係る多心コネクタ光ファイバ測定装置1の構成を示す機能ブロック図である。多心コネクタ光ファイバ測定装置1は、光源部10と、測定部20とを備える。多心コネクタ光ファイバ測定装置1は、光源部10と測定部20との間に接続される多心コネクタ光ファイバパッチコード50の極性タイプの識別と光パワーの測定とを同時に行う。
【0037】
測定対象である多心コネクタ光ファイバパッチコード50は、複数の光ファイバ51をまとめて多心化し、その両端に多心光コネクタ52、53を取り付けた光ファイバケーブルである。以下では、多心光コネクタ52、53がMPOコネクタであるとして説明する。多心コネクタ光ファイバパッチコード50には、MPOコネクタ52とMPOコネクタ53との間のそれぞれの光ファイバ51の結線によって、極性が異なる複数のタイプ(例えば、Aタイプ、Bタイプ、Cタイプなど)がある。例えば、Aタイプの多心コネクタ光ファイバパッチコード50では、MPOコネクタ52とMPOコネクタ53とを同じ方向に並べて見た場合、MPOコネクタ52、53におけるそれぞれの光ファイバのチャネルの配置が同じ順番になる。また、Bタイプの多心コネクタ光ファイバパッチコード50では、MPOコネクタ52とMPOコネクタ53とを同じ方向に並べて見た場合、MPOコネクタ52、53におけるそれぞれの光ファイバのチャネルの配置が逆の順番になる。また、Cタイプの多心コネクタ光ファイバパッチコード50では、MPOコネクタ52とMPOコネクタ53とを同じ方向に並べて見た場合、MPOコネクタ52、53におけるそれぞれの光ファイバのチャネルの配置が隣接する2つのチャネル毎に逆の順番になる。
【0038】
光源部10は、多心コネクタ光ファイバパッチコード50に含まれるそれぞれの光ファイバ51のチャネルに光を順次入射させる。光源部10としては、例えば、光源の数によって以下の2つの構成が挙げられる。
【0039】
図3Aに示す例では、光源部10は、制御部11と、複数の光源12と、光ファイバファンアウトコード13と、コネクタアダプタ14とを含む。制御部11は、多心コネクタ光ファイバパッチコード50に含まれる光ファイバ51のチャネルに対応するいずれか1つの光源12に光を発光させる。また、制御部11は、光を発光させる光源12を順次切り替える。それぞれの光源12は、例えば、LEDまたはレーザーダイオードなどを含むことができる。光源12は、発光した光を対応する光ファイバファンアウトコード13に入射させる。光ファイバファンアウトコード13は、光源12から入射した光をコネクタアダプタ14に伝送する。コネクタアダプタ14は、多心コネクタ光ファイバパッチコード50の一端に取り付けられたMPOコネクタ52に接続(例えば、嵌合)する。これによって、光源12からの光は、多心コネクタ光ファイバパッチコード50に含まれる対応する光ファイバ51のチャネルに出射される。
【0040】
図3Bに示す例では、光源部10は、制御部11と、1つの光源12と、光ファイバファンアウトコード13と、コネクタアダプタ14と、光スイッチ15とを含む。光スイッチ15は、例えば、プリズムまたはマイクロミラーレンズを含み、光源12からの光の光路を変更することができる。制御部11は、光源12に光を発光させ、発光した光を光スイッチ15に入射させる。また、制御部11は、光源12からの光の光路を光スイッチ15によって変更させ、光路が変更した光を対応する光ファイバファンアウトコード13に出射させる。光ファイバファンアウトコード13は、光スイッチ15からの光をコネクタアダプタ14に伝送する。コネクタアダプタ14は、多心コネクタ光ファイバパッチコード50の一端に取り付けられた多心光コネクタ52に接続(例えば、嵌合)する。これによって、光源12からの光は、多心コネクタ光ファイバパッチコード50に含まれる対応する光ファイバ51のチャネルに出射される。
【0041】
このような構成によって、光源部10は、コネクタアダプタ14に接続されるMPOコネクタ52に含まれるいずれか1つの光ファイバに、光源12が発光した光を出射する。ただし、光源部10の構成は、これらに限定されず、任意である。
【0042】
図2を参照して、測定部20は、受光部21と、信号処理部22と、表示部23とを含む。また、
図4を参照して、受光部21は、多心光コネクタ用レセプタクル211と、集光レンズ212と、ビームスプリッタ213と、第1の光センサ214と、第2の光センサ215とを含む。
【0043】
多心光コネクタ用レセプタクル211は、例えばレセプタクル型のコネクタである。ここで、多心光コネクタ用レセプタクル211に接続するMPOコネクタ53は、様々な形状を有することができる。例えば、MPOコネクタに含まれる光ファイバのフェルール端面同士が正しい位置で対向するように、MPOコネクタ53は、対の形状を有する場合がある。具体的には、
図5Aに示すように、位置決めピンPを有するオスタイプのMPOコネクタ53と、
図5Bに示すように、位置決めピンPが挿入される位置決め穴Hを有するメスタイプのMPOコネクタ53とが挙げられる。多心光コネクタ用レセプタクル211は、いずれのタイプのMPOコネクタ53にも接続することが可能な形状を有する。具体的には、多心光コネクタ用レセプタクル211は、MPOコネクタ53のフェルール端面から出射される光を遮らない大きさおよび形状の開口部Oを有することができる。さらに、開口部Oは、オスタイプのMPOコネクタ53が有する2本の位置決めピンPが収まることが可能な大きさおよび形状を有することができる。これによって、多心光コネクタ用レセプタクル211のフェルール突き当て部分にMPOコネクタ53のフェルール端面を突き当てた状態は、MPOコネクタ53のタイプにかかわらず、同様の状態となる。なお、多心光コネクタ用レセプタクル211は、MPOコネクタ53が逆向きで接続されるのを防止するためのキー溝を適宜有してもよい。
【0044】
集光レンズ212は、多心コネクタ光ファイバパッチコード50とビームスプリッタ213との間、好ましくは多心光コネクタ用レセプタクル211とビームスプリッタ213との間に位置することができる。集光レンズ212は、多心光コネクタ用レセプタクル211からのすべての光を第1の光センサ214に集光させる。これにより、例えば第1の光センサ214のフォトダイオードを大口径化しなくとも、光パワーを精度よく測定することができる。なお、大口径のフォトダイオードを用いる場合には、集光レンズ212はなくてもよい。
【0045】
ビームスプリッタ213は、集光レンズ212と第1の光センサ214との間に位置する。ビームスプリッタ213は、多心光コネクタ用レセプタクル211からの光を所定の分岐比で分岐させ、分岐した光のうち一方の光を第1の光センサ214に受光させ、他方の光を第2の光センサ215に受光させる。本実施形態では、第1の光センサ214が受光する光は透過光であり、第2の光センサ215が受光する光は反射光である。ビームスプリッタ213としては、無偏光ビームスプリッタを用いることが好ましい。これにより、光パワーの絶対値を精度よく測定することができるとともに、チャネル間での光パワーの変動を抑制することができる。ただし、多心光コネクタ用レセプタクル211からの光が無偏光状態である場合には、これに限定されない。また、ビームスプリッタ213は、隣接するチャネル間の出力変動が小さくなるように、低偏波依存性のビームスプリッタであることが好ましい。なお、ビームスプリッタ213の分岐比は、例えば50:50とすることができるが、これに限定されない。
【0046】
第1の光センサ214は、ビームスプリッタ213からの光を受光し、受光した光に応じた第1の信号を信号処理部22に出力する。当該第1の信号は、例えば光起電流などの電気信号を含むことができる。第1の光センサ214は、ビームスプリッタ213からの光をすべて受光することが可能な受光領域を有するフォトダイオードを含むことができる。フォトダイオードの材質は、光の波長に応じて適宜選択することができ、例えば、シリコン(Si)、インジウムガリウムヒ素(InGaAs)、ゲルマニウム(Ge)などが挙げられる。なお、第1の光センサ214の位置は、ビームスプリッタ213からの光の焦点が受光領域に存在しない限り、任意である。
【0047】
第2の光センサ215は、ビームスプリッタ213からの光を受光し、受光した光に応じた第2の信号を信号処理部22に出力する。当該第2の信号は、例えば光起電流などの電気信号を含むことができる。具体的には、第2の光センサ215は、第1のチャネル識別用フォトダイオード215aと第2のチャネル識別用フォトダイオード215bとを含むことができる。第1のチャネル識別用フォトダイオード215aと、第2のチャネル識別用フォトダイオード215bとは、例えば、受光した光の中心軸に沿って、所定の距離だけ互いに離れて位置する。「光の中心軸」は、例えば、光学シミュレーションによって予め求めることができる。具体的には、
図7Aも参照して、チャネル1からの空間光L1において、エネルギー密度値がピーク値に対して1/e
2となった領域を示す円(図中、破線で示す。)の中心と、チャネル12からの空間光L12において、エネルギー密度値がピーク値に対して1/e
2となった領域を示す円(図中、破線で示す。)の中心とを結ぶ直線を「光の中心軸」とすることができる。「所定の距離」は、光ファイバのチャネルの間隔(ピッチ)および開口数によって異なるが、例えば数ミリから十数ミリまでといった範囲内の距離である。第1のチャネル識別用フォトダイオード215aおよび第2のチャネル識別用フォトダイオード215bの材質は、光の波長に応じて適宜選択することができ、シリコン(Si)、インジウムガリウムヒ素(InGaAs)、ゲルマニウム(Ge)などが挙げられる。また、第1のチャネル識別用フォトダイオード215aおよび第2のチャネル識別用フォトダイオード215bは、TO-can型ではなく、表面実装型のフォトダイオードであることが好ましい。なお、第2の光センサ215の位置は、ビームスプリッタ213からの光の焦点が受光領域に存在しない限り、任意である。
【0048】
信号処理部22は、第1の光センサ214から出力された第1の信号に基づいて、光ファイバの特定のチャネルから出射された光の光パワーを得る。例えば、信号処理部22は、第1の光センサ214から出力された光起電流などの電気信号を電圧信号に変換して増幅させる。その後、信号処理部22は、増幅した電圧信号をアナログ-デジタル変換によりデジタル信号に変換することにより、光パワーを得ることができる。なお、信号処理部22は、MPOコネクタ52の光ファイバのそれぞれのチャネルに光が入射する毎に、光が入射した光ファイバのチャネル番号と、第1の光センサ214が受光した光パワーとを紐付けて、これらを一時的に記憶することができる。
【0049】
信号処理部22は、第2の光センサ215から出力された第2の信号に基づいて、多心コネクタ光ファイバパッチコード50の極性タイプを識別する。以下、
図4に示す第2の光センサ215と、
図6に示す12心MPOコネクタ53とを用いる場合を例に、多心コネクタ光ファイバパッチコード50の極性タイプの識別方法の一例を説明する。
【0050】
図6では、多心光コネクタ用レセプタクル211を省略し、12心MPOコネクタ53を示すとともに、多心光コネクタ用レセプタクル211が備えるキー溝に嵌合されるキー突起Kも併せて示す。また、
図7A、Bでは、チャネル1からの空間光L1、チャネル6からの空間光L6、およびチャネル12からの空間光L12が、それぞれ第1のチャネル識別用フォトダイオード215aと第2のチャネル識別用フォトダイオード215bとに照射される状態を示す。ここで、第1のチャネル識別用フォトダイオード215aの受光領域(図中、斜線で示す。)と、第2のチャネル識別用フォトダイオード215bの受光領域(図中、斜線で示す。)とは、空間光(例えば、L1、L6、L12など)のビーム径よりも小さい。これにより、第1のチャネル識別用フォトダイオード215aと第2のチャネル識別用フォトダイオード215bとは、各チャネルからの空間光の一部を受光することができるため、各チャネル間で受光量の違いに応じて光起電流が異なる。なお、上述した空間光はガウス分布で広がるが、
図7A、Bでは、光のエネルギー密度値がピーク値に対して1/e
2となる領域を円で示す。また、
図7Aは、マルチモードの光ファイバ(例えば、開口数(NA)=0.2)からの空間光を示し、
図7Bは、シングルモードの光ファイバ(例えば、開口数(NA)=0.1)からの空間光を示す。また、
図8A、
図9A、
図10Aでは、第1のチャネル識別用フォトダイオード215aおよび第2のチャネル識別用フォトダイオード215b内の光の中心軸上の位置(mm)をX軸に示す。なお、光ファイバのチャネルの間隔(ピッチ)が0.25mm(=250μm)であるので、光の中心軸上の位置の範囲は-1.375mm~+1.375mmとなるが、これに限定されない。また、第1のチャネル識別用フォトダイオード215aにより受光した光に応じた光起電流I1(au)をY軸(左側)に示し、第2のチャネル識別用フォトダイオード215bにより受光した光に応じた光起電流I2(au)をY軸(右側)に示す。また、
図8B、
図9B、
図10Bでは、光源部10に接続される12心MPOコネクタ52と、受光部21に接続される12心MPOコネクタ53とをチャネル番号とともに示す。
【0051】
図8A、Bに示すとおり、AタイプのMPOコネクタ52、53は、チャネル番号が増加するに伴い、光起電流I1が単調減少し、光起電流I2が単調増加する特性を示す。また、
図9A、Bに示すとおり、BタイプのMPOコネクタ52、53は、チャネル番号が増加するに伴い、光起電流I1が単調増加し、光起電流I2が単調減少する特性を示す。また、
図10A、Bに示すとおり、CタイプのMPOコネクタ52、53は、チャネル番号が増加するに伴い、光起電流I1が[減少、増加、減少、増加、・・・]をこの順で繰り返し、光起電流I2が[増加、減少、増加、減少・・・]をこの順で繰り返す特性を示す。
【0052】
信号処理部22は、MPOコネクタ52に含まれる光ファイバの各チャネルに光が入射する度に、光が入射した光ファイバのチャネル番号と、上述した光起電流I1および光起電流I2とを紐付けて、これらを一時的に記憶するという操作を繰り返す。12心MPOコネクタの場合、信号処理部22は、当該操作を12回繰り返す。次に、信号処理部22は、光ファイバのすべてのチャネルに対して当該操作を行った後に、光起電流I1および光起電流I2をそれぞれ大きさ順(昇順または降順)に並び替える。最後に、信号処理部22は、大きさ順に並び替えた光起電流I1および光起電流I2と、例えば、
図8A、
図9A、および
図10Aに示すMPOコネクタのタイプ毎の特性とを比較することによって、多心コネクタ光ファイバパッチコード50の極性タイプを識別する。
【0053】
信号処理部22は、上述した方法によって得られたチャネル毎の光パワーと、多心コネクタ光ファイバパッチコード50の極性タイプとを表示部23に出力する。
【0054】
なお、信号処理部22は、例えば、CPU(Central Processing Unit)などの処理装置を含むことができる。また、信号処理部22は、当該処理装置を動作させるために必要なプログラムおよびデータを記憶することができるROM(Read Only Memory)、フラッシュメモリ(Flash Memory)、またはデータを一時的に記憶することができるDRAM(Dynamic Random Access Memory)などの種々のメモリを含むことができる。これにより、信号処理部22は、当該プログラムを実行することができる。
【0055】
表示部23は、測定部20における様々な情報を表す画像を表示する表示装置である。表示部23は、例えば、液晶ディスプレイなどの表示デバイスを含むことができる。表示部23は、信号処理部22によって算出されたチャネル毎の光パワーと、信号処理部22によって識別された多心コネクタ光ファイバパッチコード50の極性タイプとを表示する。このようにして、多心コネクタ光ファイバ測定装置1は、その使用者に対して、多心コネクタ光ファイバパッチコード50の極性タイプとチャネル毎の光パワーとを提示することができる。多心コネクタ光ファイバ測定装置1の使用者としては、例えば、データセンターなどの設備において多心コネクタ光ファイバパッチコード50を敷設する作業者が挙げられる。なお、表示部23は、測定部20の外部にある外部表示装置であってもよい。
【0056】
以上、換言すると、多心コネクタ光ファイバパッチコード50からの光は、ビームスプリッタ213に入射する。ビームスプリッタ213に入射した光のうち透過光は、第1の光センサ214に入射する。一方、ビームスプリッタ213に入射した光のうち反射光は、第2の光センサ215に入射する。そして、信号処理部22は、第1の光センサ214からの第1の信号に基づいて、光パワーを算出し、第2の光センサ215からの第2の信号に基づいて、極性タイプを識別する。なお、第1の光センサ214は、ビームスプリッタ213によって分岐した光のうち反射光を受光し、第2の光センサ215は、ビームスプリッタ213によって分岐した光のうち透過光を受光してもよい。
【0057】
次に、多心コネクタ光ファイバ測定装置1において、多心コネクタ光ファイバパッチコード50の極性タイプの識別とチャネル毎の光パワーの測定とを行う全体の動作について説明する。
図11は、本実施形態に係る多心コネクタ光ファイバ測定装置1における光源部10および測定部20の処理手順を示したフローチャートである。以下、多心コネクタ光ファイバパッチコード50の心数が12である場合を例に説明する。
【0058】
多心コネクタ光ファイバパッチコード50の極性タイプの識別と光パワーの測定とは、光源部10と測定部20との間に多心コネクタ光ファイバパッチコード50が接続されている状態で開始する。
【0059】
最初に、
図11を参照して、光源部10の動作について説明する。ここでは、
図3Aに示すように、光源部10が複数の光源12を備える場合を例に説明する。
【0060】
まず、ステップS100において、光源部10に含まれる制御部11は、測定の開始を表す測定開始信号を測定部20に送信する。なお、制御部11が測定部20に測定開始信号を送信する方法および形式は、特に限定されない。例えば、制御部11は、測定の開始を表すレベル信号を用いて、測定開始信号を測定部に送信してもよい。
【0061】
続いて、ステップS110において、制御部11は、光を入射させる光ファイバのチャネル番号nの情報を測定部20に送信する。なお、制御部11が測定部20にチャネル番号nの情報を送信する方法および形式は、特に限定されない。例えば、制御部11は、チャネル番号nを表すパルス信号またはデータ信号を用いて、測定部20にチャネル番号nの情報を送信してもよい。
【0062】
続いて、ステップS120において、制御部11は、光を入射させる光ファイバのチャネル番号に対応する光源12に光を発光させる。これにより、チャネル番号nに対応する光源12が発光した光が、対応する光ファイバファンアウトコード13に入射される。光ファイバファンアウトコード13に入射した光は、コネクタアダプタ14に接続されたMPOコネクタ52に配置された多心コネクタ光ファイバパッチコード50に含まれる複数の光ファイバ51の特定のチャネルに出射される。そして、特定のチャネルに出射された光は、測定部20に接続されたMPOコネクタ53に伝送される。
【0063】
続いて、ステップS130において、制御部11は、光を入射させる光ファイバのチャネル番号nをインクリメントする。
【0064】
続いて、ステップS140において、制御部11は、ステップS130において更新したチャネル番号nが、多心コネクタ光ファイバパッチコード50の心数以下であるか否かを判断する。ここでは、多心コネクタ光ファイバパッチコード50の心数が12であるため、制御部11は、現在のチャネル番号nが12以下であるか否かを判断する。
【0065】
ステップS140において、チャネル番号nが多心コネクタ光ファイバパッチコード50の心数以下である場合(ステップS140:YES)、ステップS110の処理に戻る。一方、ステップS140において、チャネル番号nが多心コネクタ光ファイバパッチコード50の心数以下でない場合(ステップS140:NO)、制御部11は、光の入射を終了させる。
【0066】
上述した処理によって、光源部10は、コネクタアダプタ14に接続されたMPOコネクタ52に含まれる光ファイバのそれぞれのチャネルに、光源12からの光を順次入射させる。これにより、予め定めた順番(
図11では、チャネル1、チャネル2、・・・、チャネル12の順番)にて、光源12からの光が、MPOコネクタ52に含まれる光ファイバの各チャネルに順次入射する。
【0067】
なお、
図3Bに示すように、光源部10が1つの光源12を備える場合、制御部11は、ステップS120において、チャネル番号nに対応する光源12によって光を発光させる代わりに、光スイッチ15によって、光源12が発光する光の光路を変更させる。これにより、光源部10は、1つの光源12を備える場合も、複数の光源12を備える場合と同様に動作することができる。
【0068】
次に、
図11を参照して、測定部20の動作について説明する。
【0069】
測定部20は、光源部10がステップS100の処理において送信した測定開始信号を受信すると、まず、ステップS200において、信号処理部22は、ステップS110の処理によって光源部10が送信したチャネル番号nの情報を取得する。
【0070】
続いて、ステップS210において、信号処理部22は、第1の光センサ214から出力された第1の信号に基づいて、光ファイバ51の特定のチャネルから出射された光の光パワーPWを算出する。また、信号処理部22は、第2の光センサ215から出力された第2の信号に基づいて、光起電流I1と光起電流I2とを算出する。
【0071】
続いて、ステップS220において、信号処理部22は、ステップS210において算出した光起電流I1、光起電流I2、および光パワーPWと、ステップS200において受信したチャネル番号nとを紐付けて、これらを一時的に記憶する。
【0072】
続いて、ステップS230において、信号処理部22は、ステップS200において受信したチャネル番号nが、多心コネクタ光ファイバパッチコード50の心数以下であるか否かを判断する。ここでは、信号処理部22は、多心コネクタ光ファイバパッチコード50の心数が12であるので、ステップS200において受信したチャネル番号nが12以下であるか否かを判断する。
【0073】
ステップS230において、ステップS200において受信したチャネル番号nが上記心数以下である場合(ステップS230:YES)、ステップS200の処理に戻る。一方、ステップS230において、ステップS200において受信したチャネル番号nが上記心数以下でない場合(ステップS230:NO)、ステップS240に進む。
【0074】
ステップS240に進んだ場合、ステップS240において、信号処理部22は、既述の方法により、多心コネクタ光ファイバパッチコード50の極性タイプを識別する。
【0075】
続いて、ステップS250において、信号処理部22は、ステップS240において識別した多心コネクタ光ファイバパッチコード50の極性タイプと、チャネル毎の光パワーPWとを、表示部23に出力する。その後、信号処理部22は、本フローチャートを終了させる。
【0076】
なお、測定部20に、光源部10が光を発光させるタイミングを所定の時間間隔、例えば0.3秒程度で切り替えるという情報を予め持たせておくことも可能である。この場合、光源部10は、測定開始信号のみを測定部20に送信する。つまり、
図11に示すフローチャートにおいて、ステップS110~S140の処理を省略することができる。
【0077】
本実施形態によれば、多心コネクタ光ファイバパッチコードの心数にかかわらず、多心コネクタ光ファイバパッチコードの極性タイプの識別を行うことができる。また、多心コネクタ光ファイバ測定装置1は、多心コネクタ光ファイバパッチコード50と第1の光センサ214および第2の光センサ215との間に、従来のような光ファイバファンアウトコード412および光スイッチ413といった光を損失させる構成要素を備えない。換言すると、第1の光センサ214および第2の光センサ215が光ファイバからの空間光を直接受光する。このため、本実施形態によれば、光パワーの測定精度の低下を抑制することができる。また、本実施形態によれば、複数の受光領域を有する単一のフォトダイオード(いわゆる「分割型フォトダイオード」)を含む光センサを用いてチャネルの識別と光パワーの測定とを行う場合と異なり、光パワーを測定するための光センサの受光領域の境界において光の感度が低下するおそれもない。さらに、本実施形態によれば、多心コネクタ光ファイバパッチコードの心数分の光源部および光センサなどを用いる必要がないので、コストを低減することができる。
【0078】
以上、本開示を諸図面および実施形態に基づき説明したが、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。したがって、これらの変形または修正は本開示の範囲に含まれることに留意されたい。例えば、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数のステップ等を1つに組み合わせたり、あるいは分割したりすることが可能である。
【0079】
以下、測定対象が12心×2列の24心の多心コネクタ光ファイバパッチコードである場合の変形例について説明する。
【0080】
図12は、12心×2列の24心MPOコネクタを示す。なお、チャネルの間隔(ピッチ)は、例えば0.25mmとすることができる。
図13Aは、24心MPOコネクタのチャネル1からの空間光L1、チャネル12からの空間光L12、チャネル13からの空間光L13、およびチャネル24からの空間光L24が、それぞれ第1のチャネル識別用フォトダイオード215aと第2のチャネル識別用フォトダイオード215bとに照射されている状態を示す。つまり、変形例では、第1のチャネル識別用フォトダイオード215aと第2のチャネル識別用フォトダイオード215bとは、光の受光面において、当該光の中心軸に垂直な方向に沿って互いに逆方向に所定の距離だけずれて位置する。これにより、チャネル1からの空間光L1と、チャネル13からの空間光L13とでは、光起電流の大きさに差が生じる。このため、チャネル1とチャネル13とを精度良く識別することができる。同様の理由から、チャネル2とチャネル14、・・・、チャネル12とチャネル24とをそれぞれ精度良く識別することができる。「光の中心軸」は、例えば、光学シミュレーションによって予め求めることができる。例えば、チャネル1からの空間光L1において、エネルギー密度値がピーク値に対して1/e
2となった領域を示す円(図中、破線で示す。)の中心と、チャネル13からの空間光L13において、エネルギー密度値がピーク値に対して1/e
2となった領域を示す円(図中、破線で示す。)の中心とを端点とする線分の垂直二等分線を「光の中心軸」とすることができる。「所定の距離」は、光ファイバのチャネルの間隔(ピッチ)によって異なるが、例えば数ミリから数十ミリまでといった範囲内の距離である。
【0081】
また、
図13Bに示す変形例では、第2の光センサ215は、第1のチャネル識別用フォトダイオード215aと、第2のチャネル識別用フォトダイオード215bと、第3のチャネル識別用フォトダイオード215cと、第4のチャネル識別用フォトダイオード215dとを備える。第1のチャネル識別用フォトダイオード215aと、第2のチャネル識別用フォトダイオード215bとは、受光面において、光の中心軸(例えば、X軸)に沿って所定の距離だけ離れて位置する。これにより、チャネル1~12またはチャネル13~23が識別される。さらに、第3のチャネル識別用フォトダイオード215cと、第4のチャネル識別用フォトダイオード215dは、当該中心軸とは垂直な方向(例えばY軸)に沿って離れて位置する。これにより、チャネル1とチャネル13、チャネル2とチャネル14、・・・、チャネル12とチャネル24がより精度良く識別される。
【0082】
なお、多心コネクタ光ファイバパッチコードの心数は、12心または24心に限定されず、例えば12心×4列の48心、16心、または16心×2列の32心であっても、同様にして、極性タイプの識別と光パワーの測定を行うことができる。
【産業上の利用可能性】
【0083】
本開示によれば、多心コネクタ光ファイバパッチコードの光パワーの測定精度の低下を抑制し、また極性タイプの識別をすることができる。
【符号の説明】
【0084】
1 多心コネクタ光ファイバ測定装置
10 光源部
11 制御部
12 光源
13 光ファイバファンアウトコード
14 コネクタアダプタ
15 光スイッチ
20 測定部
21 受光部
211 多心光コネクタ用レセプタクル
212 集光レンズ
213 ビームスプリッタ
214 第1の光センサ
215 第2の光センサ
215a 第1のチャネル識別用フォトダイオード
215b 第2のチャネル識別用フォトダイオード
215c 第3のチャネル識別用フォトダイオード
215d 第4のチャネル識別用フォトダイオード
22 信号処理部
23 表示部
50 多心コネクタ光ファイバパッチコード
51 光ファイバ
52 MPOコネクタ(多心光コネクタ)
53 MPOコネクタ(多心光コネクタ)