(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-28
(45)【発行日】2022-07-06
(54)【発明の名称】緩衝体、及び、緩衝体の取付構造
(51)【国際特許分類】
F16F 7/00 20060101AFI20220629BHJP
E04H 9/02 20060101ALI20220629BHJP
【FI】
F16F7/00 B
F16F7/00 Z
E04H9/02 351
(21)【出願番号】P 2018056877
(22)【出願日】2018-03-23
【審査請求日】2020-12-17
(73)【特許権者】
【識別番号】000005278
【氏名又は名称】株式会社ブリヂストン
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100186015
【氏名又は名称】小松 靖之
(74)【代理人】
【識別番号】100174023
【氏名又は名称】伊藤 怜愛
(72)【発明者】
【氏名】中村 昌弘
(72)【発明者】
【氏名】安井 基浩
【審査官】羽鳥 公一
(56)【参考文献】
【文献】特開2000-161409(JP,A)
【文献】特開2017-082433(JP,A)
【文献】特開2014-077229(JP,A)
【文献】実公昭52-003598(JP,Y1)
【文献】特開平02-113138(JP,A)
【文献】特開2007-118114(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E04H 9/00-9/16
F16F 7/00-7/14
F16F 15/00-15/36
(57)【特許請求の範囲】
【請求項1】
緩衝本体部を備えた緩衝体であって、
前記緩衝本体部は、
弾性材料からなる1つ又は複数の弾性材部と、
前記弾性材料よりも高い等価粘性減衰定数heqを有する高減衰材料、又は、塑性材料からなる、塑性材部と、
を有し、
各前記弾性材部と前記塑性材部とは、前記緩衝体の軸直方向に互いに隣接して配置されているとともに、互いに一体に構成されており、
前記緩衝本体部は、少なくとも1つの前記弾性材部の内部に、中空部を有して
おり、
前記中空部は、前記緩衝本体部を、前記緩衝本体部の軸線方向の少なくともいずれか一方側で貫通している、緩衝体。
【請求項2】
前記弾性材部と前記塑性材部とは、前記緩衝体の軸線方向における前記緩衝本体部の全長にわたって設けられている、請求項1に記載の緩衝体。
【請求項3】
前記緩衝体は、互いに対向配置された建物の側壁と擁壁との少なくとも一方に設けられる、請求項1又は2に記載の緩衝体。
【請求項4】
前記緩衝本体部を前記緩衝体の軸線方向の一方側から観たときに、前記弾性材部と前記塑性材部とは、少なくとも一方向に沿って交互に配列されている、請求項1~3のいずれか一項に記載の緩衝体。
【請求項5】
前記緩衝本体部を前記緩衝体の軸線方向の一方側から観たときに、前記弾性材部と前記塑性材部とのいずれか一方が、前記弾性材部と前記塑性材部との他方の周囲を覆っている、請求項1~3のいずれか一項に記載の緩衝体。
【請求項6】
前記緩衝本体部を前記緩衝体の軸線方向の一方側から観たときに、前記弾性材部と前記塑性材部とは、前記緩衝体の中心軸線の周りで回転対称となるように配置されている、請求項1~5のいずれか一項に記載の緩衝体。
【請求項7】
前記弾性材部よりも前記塑性材部が前記緩衝体の軸線方向に突き出ている、請求項1~6のいずれか一項に記載の緩衝体。
【請求項8】
前記塑性材部よりも前記弾性材部が前記緩衝体の軸線方向に突き出ている、請求項1~6のいずれか一項に記載の緩衝体。
【請求項9】
前記緩衝本体部は、それぞれ前記弾性材部として、第1の弾性材部及び第2の弾性材部を有しており、
前記緩衝本体部は、前記第1の弾性材部の内部に、前記中空部を有しており、
前記塑性材部は、環状をなしており、前記第1の弾性材部の外周側に全周にわたって配置されており、
前記第2の弾性材部は、環状をなしており、前記塑性材部の外周側に全周にわたって配置されている、請求項1~3のいずれか一項に記載の緩衝体。
【請求項10】
前記中空部は、前記緩衝本体部を軸線方向に貫通している、請求項1
~9のいずれか一項に記載の緩衝体。
【請求項11】
前記中空部は、前記緩衝体の軸線方向に延在する円柱形状又は四角柱形状をなしている、請求項1~10のいずれか一項に記載の緩衝体。
【請求項12】
請求項1~
11のいずれか一項に記載の緩衝体が、互いに対向配置された建物の側壁と擁壁との少なくとも一方に取り付けられている、緩衝体の取付構造。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、緩衝体、及び、緩衝体の取付構造に関する。
【背景技術】
【0002】
従来、建物の側壁と擁壁との少なくとも一方に設けられ、1種類のゴムによって形成された緩衝体(衝撃吸収部材)が知られている(例えば、特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1の緩衝体において、仮に緩衝体を構成するゴムが、塑性の大きい(復元しにくい)ものである場合、1回目の衝撃の入力時にはエネルギーを吸収し得るが、その後、ほとんど復元しないため、2回目以降の衝撃の入力に対しては、エネルギーを吸収できなくなる。一方、仮に緩衝体を構成するゴムが、弾性の大きいものである場合、衝撃の入力後の復元時に押し返す力を発生させるため、エネルギーを十分に吸収できない。したがって、いずれの場合であっても、複数回の衝撃の入力に対してエネルギーを効果的に吸収することはできなかった。
【0005】
本発明は、複数回の衝撃の入力に対してエネルギーを効果的に吸収できる、緩衝体、及び、緩衝体の取付構造を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の緩衝体は、
緩衝本体部を備えた緩衝体であって、
前記緩衝本体部は、
弾性材料からなる弾性材部と、
前記弾性材料よりも高い等価粘性減衰定数heqを有する高減衰材料、又は、塑性材料からなる、塑性材部と、
を有し、
前記弾性材部と前記塑性材部とは、前記緩衝体の軸直方向に互いに隣接して配置されているとともに、互いに一体に構成されている。
本発明の緩衝体によれば、エネルギーを効果的に吸収でき、弾性体の復元力により元の形状に戻り、複数回の衝撃の入力に対して効果的である。
【0007】
本発明の緩衝体においては、
前記弾性材部と前記塑性材部とは、前記緩衝体の軸線方向における前記緩衝本体部の全長にわたって設けられていると、好適である。
これにより、エネルギーを効果的に吸収でき、弾性体の復元力により元の形状に戻り、複数回の衝撃の入力に対してより効果的である。
【0008】
本発明の緩衝体においては、
前記緩衝体は、互いに対向配置された建物の側壁と擁壁との少なくとも一方に設けられると、好適である。
これにより、地震発生時において建物が緩衝体を介して擁壁と衝突する際に、効果的に衝撃を緩和できる。
【0009】
本発明の緩衝体においては、
前記緩衝本体部を前記緩衝体の軸線方向の一方側から観たときに、前記弾性材部と前記塑性材部とは、少なくとも一方向に沿って交互に配列されていると、好適である。
これにより、エネルギーを効果的に吸収でき、弾性体の復元力により元の形状に戻り、複数回の衝撃の入力に対してより効果的である。
【0010】
本発明の緩衝体においては、
前記緩衝本体部を前記緩衝体の軸線方向の一方側から観たときに、前記弾性材部と前記塑性材部とのいずれか一方が、前記弾性材部と前記塑性材部との他方の周囲を覆っていると、好適である。
これにより、エネルギーを効果的に吸収でき、弾性体の復元力により元の形状に戻り、複数回の衝撃の入力に対してより効果的である。
【0011】
本発明の緩衝体においては、
前記緩衝本体部は、前記弾性材部と前記塑性材部との少なくともいずれか一方の内部に、中空部を有してもよい。
この場合、中空部が無い場合に比べて、緩衝本体部の剛性を調整できる。
【0012】
本発明の緩衝体においては、
前記緩衝本体部を前記緩衝体の軸線方向の一方側から観たときに、前記弾性材部と前記塑性材部とは、前記緩衝体の中心軸線の周りで回転対称となるように配置されていると、好適である。
これにより、エネルギーを効果的に吸収でき、弾性体の復元力により元の形状に戻り、複数回の衝撃の入力に対してより効果的である。
【0013】
本発明の緩衝体においては、
前記弾性材部よりも前記塑性材部が前記緩衝体の軸線方向に突き出ていると、好適である。
塑性材部が突き出ている事により、衝撃の入力時において、最初にエネルギーをある程度吸収でき、その後でエネルギー吸収と復元力を生じさせることができる。
【0014】
本発明の緩衝体においては、
前記塑性材部よりも前記弾性材部が前記緩衝体の軸線方向に突き出ていると、好適である。
弾性材部が突き出ている事により、衝撃の入力時において、最初に衝撃をある程度緩和でき、その後でエネルギー吸収と復元力を生じさせることができる。
【0015】
本発明の緩衝体の取付構造は、
上記の緩衝体が、互いに対向配置された建物の側壁と擁壁との少なくとも一方に取り付けられているものである。
本発明の緩衝体の取付構造によれば、エネルギーを効果的に吸収でき、弾性体の復元力により緩衝体が元の形状に戻り、複数回の衝撃の入力に対して効果的である。
【発明の効果】
【0016】
本発明によれば、エネルギーを効果的に吸収でき、弾性体の復元力により元の形状に戻り、複数回の衝撃の入力に対してより効果的である、緩衝体、及び、緩衝体の取付構造を提供することができる。
【図面の簡単な説明】
【0017】
【
図1】本発明の一実施形態に係る緩衝体が擁壁に取り付けられた様子を示す概略図である。
【
図3】
図2の緩衝体を、緩衝体の軸線方向に平行な
図2のA-A線に沿う断面により示す、軸線方向断面図である。
【
図4】
図1の例において、建物の側壁が緩衝体を介して擁壁に衝突したときの様子を示す概略図である。
【
図5】
図4の状態において圧縮された緩衝体を、
図3と同様の断面により示す、軸線方向断面図である。
【
図6】
図5の緩衝体が復元する時の様子を、
図3と同様の断面により示す、軸線方向断面図である。
【
図7】
図7(a)~
図7(d)は、それぞれ、本発明の第1変形例~第4変形例に係る緩衝体を示す斜視図である。
【
図8】
図8(a)~
図8(c)は、それぞれ、本発明の第5変形例~第7変形例に係る緩衝体を示す斜視図である。
【
図9】本発明の第8変形例に係る緩衝体が擁壁に取り付けられた様子を示す斜視図である。
【
図10】
図9の緩衝体を、緩衝体の軸線方向に平行な
図9のB-B線に沿う断面により示す、軸線方向断面図である。
【
図11】建物の側壁が緩衝体を介して擁壁に衝突したときに、
図9の緩衝体が圧縮される様子を、
図10と同様の断面により示す、軸線方向断面図である。
【
図12】
図11の緩衝体が復元する時の様子を、
図10と同様の断面により示す、軸線方向断面図である。
【
図13】
図13(a)~
図13(b)は、それぞれ、本発明の第9変形例~第10変形例に係る緩衝体を示す斜視図である。
【
図14】本発明の第11変形例に係る緩衝体が擁壁に取り付けられた様子を示す斜視図である。
【
図15】
図14の緩衝体を、緩衝体の軸線方向に平行な
図14のC-C線に沿う断面により示す、軸線方向断面図である。
【
図16】建物の側壁が緩衝体を介して擁壁に衝突したときに、
図14の緩衝体が圧縮される様子を、
図15と同様の断面により示す、軸線方向断面図である。
【
図17】
図16の緩衝体が復元する時の様子を、
図15と同様の断面により示す、軸線方向断面図である。
【
図18】本発明の第12変形例に係る緩衝体が擁壁に取り付けられた様子を示す斜視図である。
【
図19】本発明の一実施形態に係る緩衝体が建物の側壁と擁壁とを連結するように取り付けられた様子を示す軸線方向断面図である。
【
図20】本発明の一実施形態に係る緩衝体が免震装置と直列に取り付けられた様子を示す軸線方向断面図である。
【発明を実施するための形態】
【0018】
本発明の緩衝体は、例えば、地震発生時に建物が受けうる衝撃や揺れのエネルギーを吸収するために好適に利用できる。本発明の緩衝体は、建物の外部(例えば、建物の側壁の外面や建物の底部の下面)、建物の内部、又は建物に対向配置された構造物(擁壁等)に設置されると好適なものであり、免震建物における建物の外部、建物の内部、又は建物に対向配置された構造物に設置されるとより好適なものであり、免震建物における建物の側壁やこれに対向配置された擁壁に設置されるとさらに好適なものである。
以下に、図面を参照しつつ、本発明に係る緩衝体、及び、緩衝体の取付構造の実施形態を例示説明する。
【0019】
図1~
図6は、本発明の一実施形態に係る緩衝体1を説明するための図面である。
図1~
図6の例では、本実施形態の緩衝体1が、免震建物SIBにおいて、建物Bの側壁BWと対向配置された擁壁RWに取り付けられている。
図1は、地震が発生していない通常時における、本例の免震建物SIBを示しており、
図2及び
図3は、
図1の緩衝体1を拡大して示している。
以下、まず本例の免震建物SIBについて説明し、その後、本例の緩衝体1の役割について説明する。
【0020】
図1に示すように、免震建物SIBは、基礎Fと、1つ又は複数(本例では複数)の免震装置SIDと、建物Bと、擁壁RWと、1つ又は複数(本例では複数)の本実施形態の緩衝体1とを、備えている。
基礎Fは、例えば、建物Bを支えるための略水平の構造体であり、建物Bが建てられる敷地に施工される。基礎Fは、例えば、配筋にコンクリートを流し込むことによって構築される。
基礎Fの上には免震装置SIDが設けられており、免震装置SIDの上には、建物Bが配置されている。
免震装置SIDは、建物Bが基礎Fに対して水平に移動するのを許容するように構成されており、これにより、地震発生時において、揺れを受け流し、揺れが建物Bに伝わるのを抑制するようにされている。本例の免震建物SIBは、免震装置SIDとして、ゴムシートと鋼板とを交互に積層させてなる積層体を備えた免震ゴム(「積層ゴム」とも呼ばれる)を有している。免震ゴムは、揺れを受け流す機能だけでなく、揺れ(主に水平方向の揺れ)のエネルギーを吸収する機能をも有するものである。ただし、免震建物SIBは、免震装置SIDとして、免震ゴムに加えて又は代えて、建物Bを支承する支承、ダンパー等、任意の種類の免震装置を有してよい。
基礎Fの外縁部には、擁壁RWが立設されている。擁壁RWは、建物Bの側壁BWに対して水平方向に間隔を空けて対向配置されている。
本実施形態の緩衝体1は、擁壁RWにおける、建物Bの側壁BWとの対向面に、取り付けられている。
【0021】
このように構成された本例の免震建物SIBにおいては、想定された規模の地震が発生した場合には、免震装置SIDの作用によって、建物Bが、擁壁RWに衝突することなく、基礎Fに対して水平に揺れ動くとともに、免震装置SIDの作用によって、徐々に揺れのエネルギーが吸収されていき、揺れが収まっていく。
一方、日本では、近年、2011年には東日本大震災が発生し、2016年には熊本地震が発生するなど、一昔と比べると地震の規模が徐々に大きくなってきており、将来的には、想定を超える大規模の地震が発生することも懸念される。そのような想定を超える大規模な地震が発生した場合には、
図4に示すように、免震装置SIDのエネルギー吸収機能だけでは対応しきれずに、建物Bが、基礎Fに対して過度に水平移動し、擁壁RWに衝突することが懸念される。そこで、本例の緩衝体1は、免震装置SIDだけでは対応しきれない揺れに対応するために設けられている。緩衝体1は、擁壁RWにおける、建物Bの側壁BWとの対向面に設けられているので、建物Bは、直接ではなく、緩衝体1を介して、擁壁RWに衝突することとなる。建物Bが緩衝体1に衝突すると、緩衝体1は、建物Bが受ける衝撃を緩和するとともに、エネルギーを吸収して揺れを減衰する。
【0022】
つぎに、本実施形態の緩衝体1の構成について、
図2及び
図3を参照しながら詳しく説明する。
図2は、
図1の緩衝体1を示す斜視図である。
図3は、
図2の緩衝体1を、緩衝体1の軸線方向に平行な
図2のA-A線に沿う断面により示す、軸線方向断面図である。
図3の断面は、緩衝体1の中心軸線Oを通る断面である。
図1~
図3において、緩衝体1は、建物Bからの衝撃が1度も加わったことのない、初期の状態にある。
図2及び
図3に示すように、本実施形態の緩衝体1は、緩衝本体部10を備えている。緩衝本体部10は、建物Bが当たったときに入力される衝撃を緩和及び吸収するように構成されている。本例において、緩衝体1は、緩衝本体部10のみから構成されている。
なお、「緩衝体1の軸線方向」(以下、単に「軸線方向」ともいう。)とは、緩衝体1の中心軸線Oに平行な方向である。また、「緩衝体1の中心軸線O」とは、緩衝体1の取付面(緩衝体1の外面のうち、取付側の面。
図2の例では、緩衝本体部10における、擁壁RWに対向する面12S。)に対し垂直であり、かつ、緩衝体1の緩衝本体部10の取付側の面の外縁形状の重心を通る、直線である。
以下では、便宜のため、軸線方向の一方側を「軸線方向第1側O1」といい、軸線方向の他方側を「軸線方向第2側O2」という。本例において、緩衝本体部10から観たときの軸線方向第1側O1は、受衝側(建物Bと当たる側)であり、緩衝本体部10から観たときの軸線方向第2側O2は、取付側(擁壁RWへの取付側)である。本例において、緩衝体1は、緩衝本体部10の軸線方向第2側O2の面12Sが、接着等によって擁壁RWに固定されることによって、擁壁RWに取り付けられている。緩衝体1は、緩衝本体部10の軸線方向第1側O1の面11Sが、建物Bと軸線方向に対向配置されており、これにより、建物Bからの衝撃が軸線方向に入力されるようにされている。本例において、緩衝体1の軸線方向は、水平方向である。
【0023】
図2及び
図3に示すように、緩衝本体部10は、1つ又は複数(図の例では、2つ)の弾性材部110と、1つ又は複数(図の例では、1つ)の塑性材部120とを、有している。緩衝本体部10を構成する弾性材部110と塑性材部120とは、緩衝体1の軸直方向に互いに隣接して配置されている。本明細書において、「緩衝体1の軸直方向」(以下、単に「軸直方向」ともいう。)とは、緩衝体1の軸線方向に垂直な方向である。
図2は、断面図ではなく斜視図であるが、弾性材部110及び塑性材部120を視認しやすくするために、弾性材部110及び塑性材部120にそれぞれ固有のハッチングを施してある。なお、
図2以外の各斜視図にも、同様のハッチングを施してある。
より具体的に、
図2及び
図3の例において、緩衝本体部10は、緩衝体1の中心軸線O上に位置する弾性材部110である第1の弾性材部110aと、第1の弾性材部110aの外周側に全周にわたって配置された環状の塑性材部120と、塑性材部120の外周側に全周にわたって配置された環状の弾性材部110である第2の弾性材部110bと、から構成されている。緩衝本体部10の軸線方向の厚みは、緩衝本体部10の全体にわたって一様であり、緩衝本体部10の軸直方向の断面の形状及び寸法、並びに、軸直方向の断面における弾性材部110及び塑性材部120の配置パターンは、緩衝本体部10の軸線方向の全長にわたって一様である。緩衝本体部10を軸線方向のいずれか一方側から観たときの第1の弾性材部110a、塑性材部120、第2の弾性材部110bのそれぞれの外縁形状は、いずれも四角形状である。
ここで、緩衝体1において、「外周側」とは、緩衝体1の中心軸線Oから遠い側を指している。一方、緩衝体1において、「内周側」とは、緩衝体1の中心軸線Oに近い側を指している。
【0024】
弾性材部110は、弾性材料から構成されている。弾性材部110を構成する弾性材料としては、例えば、エラストマー系材料が挙げられ、より具体的には、例えば、ゴム(天然ゴム又は合成ゴム)、熱可塑性エラストマー等が挙げられる。
弾性材部110を構成する材料としては、天然ゴムが好適である。
【0025】
塑性材部120を構成する材料は、概していえば、弾性材部110を構成する材料よりも、エネルギー吸収性能、ひいては、減衰性能が高いものである。より具体的に、塑性材部120は、弾性材部110を構成する弾性材料よりも高い等価粘性減衰定数heqを有する材料(以下、「高減衰材料」ともいう。)、又は、塑性材料から構成されている。ここで、「等価粘性減衰定数heq」とは、具体的には、20℃の温度環境における等価粘性減衰定数heq(0.33Hz/100%)を指している。等価粘性減衰定数heq(0.33Hz/100%)の測定方法については、後述する。等価粘性減衰定数heqは、値が大きい程、減衰性能に優れることを示す。
塑性材部120を構成し得る高減衰材料としては、例えば、エラストマー系材料(例えば、高減衰エラストマー系材料)が挙げられ、より具体的には、例えば、ゴム(特に、高減衰ゴム等の合成ゴム)、熱可塑性エラストマー等が挙げられる。塑性材部120を構成し得る「塑性材料」とは、荷重の入力に応じて塑性変形可能な材料を指している。塑性材部120を構成し得る塑性材料としては、例えば、金属(鉄等)、樹脂(天然樹脂又は合成樹脂)等が挙げられる。
塑性材部120を構成する材料としては、エラストマー系材料が好適であり、高減衰エラストマー系材料がより好適であり、高減衰ゴムがさらに好適である。
【0026】
ただし、塑性材部120を構成する材料は、上述のとおり、弾性材部110を構成する弾性材料よりも高い等価粘性減衰定数heqを有する材料(高減衰材料)、又は、塑性材料であればよく、例えば、弾性材部110を高減衰エラストマー系材料により構成し、塑性材部120を塑性材料(金属等)により構成してもよい。
また、塑性材部120を構成する材料は、弾性材部110を構成する材料と、弾性率が同じでもよい。
【0027】
弾性材部110を構成する材料は、等価粘性減衰定数heqが、0.02~0.06であるのが好適であり、0.02~0.04であるのがより好適である。
塑性材部120を構成する高減衰材料は、等価粘性減衰定数heqが、0.05~0.4であるのが好適であり、0.1~0.3であるのがより好適である。
塑性材部120を構成する高減衰材料は、弾性材部110を構成する材料よりも、等価粘性減衰定数heqが、0.07以上高いと好適であり、0.1以上高いとより好適である。
【0028】
緩衝本体部10を構成する弾性材部110と塑性材部120とは、互いに一体に構成されている。
より具体的に、
図2及び
図3の例では、緩衝本体部10を構成する各弾性材部110の側面と塑性材部120の側面とが、互いに接触する部分で、互いに固着されている。ここで、「弾性材部110の側面」、「塑性材部120の側面」とは、それぞれ、弾性材部110の表面、塑性材部120の表面のうち、軸線方向両側の端面を除く表面を指す。
弾性材部110と塑性材部120とを一体に構成する手法としては、例えば、弾性材部110及び塑性材部120どうしを接着(接着剤による接着、加硫接着等)、融着等により互いに固着する手法が挙げられる。
特には、弾性材部110と塑性材部120との両方をゴムで構成し、両者を、加硫接着、又は、接着剤による接着(加硫接着も含む)により固着するのが、好適である。
【0029】
つぎに、建物Bの側壁BWが緩衝体1を介して擁壁RWに衝突したときの緩衝体1の動作を、主に
図4~
図6を参照しつつ説明する。
図4は、
図1の例において、建物Bの側壁BWが緩衝体1を介して擁壁RWに衝突したときの様子を示す軸線方向断面図である。
図5は、
図4の状態において圧縮された緩衝体1を、
図3と同様の断面により示す、軸線方向断面図である。
図6は、
図5の緩衝体が復元する時の様子を、
図3と同様の断面により示す、軸線方向断面図である。
図5及び
図6では、初期状態にある緩衝体1(
図3)の形状を破線で示している。なお、
図5及び
図6は、緩衝本体部10の挙動を概略的に示しているにすぎず、実際の緩衝本体部10の挙動は
図5及び
図6に示すものとは異なり得る。
本例の免震建物SIBにおいて、想定を超える大規模の地震が発生し、建物Bが緩衝体1を介して擁壁RWに衝突する(
図4)と、緩衝体1の緩衝本体部10は、軸線方向に圧縮される(
図5)。このとき、弾性材部110は、反力を生じつつ圧縮されることにより、建物Bを柔らかく受け止め、建物Bが受ける衝撃を緩和する。また、このとき、塑性材部120は、圧縮されながら、自身の持つ高い減衰性能によって、衝撃のエネルギーを吸収する。これにより、建物Bの揺れが減衰される。
その後、建物Bが緩衝体1から離れていくと、弾性材部110は、自身の持つ弾性によって、軸線方向に徐々に復元する。それに伴い、弾性材部110と一体に構成された塑性材部120は、弾性材部110によって、軸線方向に徐々に引き伸ばされることによって元の形状に復元していく(
図6)。このようにして、緩衝本体部10の全体が軸線方向に徐々に復元していき、完全に又はほぼ完全に、元の形状に戻る。
そして、再び建物Bの側壁BWが緩衝体1を介して擁壁RWに衝突するときには、緩衝体1は、既に完全に又はほぼ完全に元の形状に戻っているので、1回目の衝突時と同様に、軸線方向に圧縮されながら、建物Bが受ける衝撃を緩和するとともに、塑性材部120の減衰作用によって衝撃のエネルギーを吸収し、その後、弾性材部110の復元作用によって緩衝本体部10の全体が完全に又はほぼ完全に元の形状に戻る。
このようにして、本実施形態の緩衝体1は、複数回の衝撃の入力のそれぞれに対して、建物Bが受ける衝撃を緩和するとともに、エネルギーを効果的に吸収することができ、ひいては、建物Bの揺れを早期に減衰させることができる。
【0030】
仮に、緩衝体1の緩衝本体部10が、弾性材部110を有しておらず、塑性材部120のみから構成される場合、緩衝体1は、1回目の衝撃の入力時には、緩衝本体部10が圧縮される際に塑性材部120の減衰作用によって大きなエネルギーを吸収することができる。しかし、その後、塑性材部120はほとんど又は全く復元しないため、2回目以降の衝撃の入力時には、緩衝本体部10はそれ以上ほとんど圧縮できない状態となっており、効果的なエネルギー吸収ができなくなる。荷重-変位曲線で言えば、曲線により囲まれる領域の面積(エネルギー吸収量を表す)が、1回目の圧縮時は大きいが、2回目以降は回を増すごとに格段に小さくなる。地震発生時には、建物Bが複数回にわたって擁壁RWに衝突し得るところ、この場合、緩衝体1は、たった1回しか有用なエネルギー吸収ができないので、2回目以降の衝突に対しては、エネルギーを吸収できず、建物Bの揺れをほとんど減衰することができない。
一方、仮に、緩衝体1の緩衝本体部10が、塑性材部120を有しておらず、弾性材部110のみから構成される場合、緩衝体1は、衝撃が入力される度に、いったん圧縮した後にすぐに復元できるものの、復元時に、入力された力とほぼ同等の力で建物Bを押し返してしまうため、エネルギーをほとんど吸収できない。荷重-変位曲線で言えば、各圧縮時における曲線どうしがほぼ重なるとともに、各圧縮時における曲線により囲まれる領域の面積(エネルギー吸収量を表す)が小さくなる。すなわち、この場合、緩衝体1は、衝撃が入力される度に、建物Bを押し返すだけで、建物Bの揺れをほとんど減衰することができない。
このように、仮に緩衝体1の緩衝本体部10が塑性材部120又は弾性材部110の一方のみから構成される場合は、複数回の衝撃の入力のそれぞれに対してエネルギーを効果的に吸収することができない。
これに対し、本実施形態の緩衝体1は、エネルギー吸収性能の高い塑性材部120と復元性能の高い弾性材部110とを併せ持つことにより、塑性材部120の復元しにくいという欠点と、弾性材部110のエネルギーを吸収しにくいという欠点とを、同時に解消することができる。すなわち、本実施形態の緩衝体1は、1回目の衝撃の入力時には、圧縮の際に塑性材部120によって効果的にエネルギーを吸収し、その後、弾性材部110の復元性能を利用して塑性材部120を元の形状に戻し、それにより、2回目以降の衝撃の入力に対しても塑性材部120のエネルギー吸収性能を発揮させられるようにしている。これにより、本実施形態の緩衝体1は、仮に緩衝本体部10が塑性材部120のみから構成される場合に比べて、1回目の衝撃入力時のエネルギー吸収能力は劣り得るものの、2回目以降も1回目とほぼ同等のエネルギー吸収能力を発揮できるので、複数回の衝撃の入力に対して、安定的にエネルギー吸収能力を発揮できるとともに、複数回分をトータルで観たときに、より大きなエネルギーを吸収できるのである。
【0031】
また、本実施形態の緩衝体1の緩衝本体部10は、弾性材部110を有するため、仮に塑性材部120のみから構成される場合に比べて、建物Bが当たったときに、建物Bをより柔らかくかつしっかりと受け止めることができ、より高い衝撃緩和性能を発揮できる。
【0032】
また、本実施形態の緩衝体1は、既存の建物B又はそれに対向配置された構造物(擁壁等)に簡単に設置することができるので、既存の建物Bを、簡単に、より大規模の地震に対応させることが可能である。
例えば、免震建物SIBにおいて、仮に、緩衝体1を用いずに、免震装置SIDのみで、より大規模の地震に対応させようとすると、免震装置SIDの大型化(例えば、免震装置SIDが免震ゴムの場合、ゴム厚の増大や平面積の増大)が必要になると考えられる。しかし、既存の免震建物SIBにおいて、本実施形態の緩衝体1を後付けすれば、免震装置SIDの大型化を要せずに、より大規模の地震に対応させることが可能になる。
【0033】
衝撃入力時に緩衝本体部10に生じる反力と変形量とのバランスや、衝撃入力後に緩衝本体部10が復元に要する時間等は、建物ごとに最適なものが異なり得るところ、これらは、例えば、緩衝本体部10の製造時に、緩衝本体部10を構成する弾性材部110と塑性材部120との体積比率、配置パターン、材料、物性等を調整することによって、適宜調整することが可能である。
【0034】
なお、弾性材部110の復元性能を利用して塑性材部120を軸線方向に復元させられるようにするためには、弾性材部110と塑性材部120とが、軸直方向に互いに隣接して配置されているとともに、少なくとも軸直方向に互いに対向する部分で、互いに一体に構成されていることが必要である。
仮に、塑性材部120に対して軸直方向に隣接して弾性材部110が配置されておらず、弾性材部110と塑性材部120とが、軸線方向のみで互いに隣接して配置されている場合は、弾性材部110が軸線方向に復元する際に、その復元性能によって塑性材部120を軸線方向に引き伸ばすことができない。また、仮に塑性材部120に対して軸直方向に隣接して弾性材部110が配置されていても、弾性材部110と塑性材部120とが単に接触しているだけで互いに一体に構成されてはいない場合は、やはり、弾性材部110が軸線方向に復元する際に、その復元性能によって塑性材部120を軸線方向に引き伸ばすことができない。
なお、緩衝本体部10は、
図2の例のように、その全体において、弾性材部110と塑性材部120とが、軸直方向に互いに隣接して配置されているとともに、互いに一体に構成されていると好適である。
【0035】
なお、本例では、緩衝体1は、擁壁RWに設けられているが、本例に限らず、緩衝体1は、建物Bの側壁BW(より具体的には、建物Bの側壁BWの外面のうち、擁壁RWと対向する部分)に、取り付けられてもよい。あるいは、建物Bの側壁BWと擁壁RWとの両方に、それぞれ別々の緩衝体1が設けられてもよい。これらの場合でも、大地震の発生時に、建物Bは、直接ではなく、緩衝体1を介して、擁壁RWに衝突することとなるので、緩衝体1は、本例と同様に、複数回の衝撃の入力のそれぞれに対して、建物Bが受ける衝撃を緩和するとともに、エネルギーを効果的に吸収することができる。
【0036】
上述のように、緩衝体1を、免震建物SIBにおける、互いに対向配置された建物Bの側壁BWと擁壁RWとの少なくとも一方に設ける場合、初期状態の緩衝体1の軸線方向の厚さT(
図3)は、100~500mmであると好適である。一般的に、免震建物SIBにおいては、地震発生時の建物Bの揺れを想定して、建物Bと擁壁RWとの間の隙間(クリアランス)の長さC(
図3)が、約500~1000mm程度に設定されることが多いところ、緩衝体1の軸線方向の厚さTを上記の範囲内にすれば、緩衝体1をその隙間に設置可能であるとともに、免震装置SIDの機能を損なうおそれもない。
同様の観点から、初期状態の緩衝体1の軸線方向の厚さTは、緩衝体1の軸線方向に沿って測ったときの建物Bと擁壁RWとの間の隙間(クリアランス)の長さCの10~60%であると好適であり、20~50%であるとより好適である。
【0037】
緩衝本体部10における弾性材部110と塑性材部120との配置パターンは、
図2のものに限られず、様々なものが可能である。
例えば、
図2の例において、弾性材部110と塑性材部120とが逆であってもよい。すなわち、図示は省略するが、緩衝本体部10は、緩衝体1の中心軸線O上に位置する第1の塑性材部120と、第1の塑性材部120の外周側に全周にわたって配置された環状の弾性材部110と、弾性材部110の外周側に全周にわたって配置された環状の第2の塑性材部120と、から構成されてもよい。
【0038】
また、緩衝本体部10における弾性材部110と塑性材部120との配置パターンは、
図7(a)~
図7(d)に示す第1変形例~第4変形例、
図8(a)~
図8(c)に示す第5変形例~第7変形例のものでもよい。以下、これらを順番に説明する。
【0039】
図7(a)の第1変形例において、緩衝本体部10は、緩衝体1の中心軸線O上に位置する塑性材部120と、塑性材部120の外周側に全周にわたって配置された環状の弾性材部110と、から構成されている。緩衝本体部10の軸線方向の厚みは、緩衝本体部10の全体にわたって一様であり、緩衝本体部10の軸直方向の断面の形状及び寸法、並びに、軸直方向の断面における弾性材部110及び塑性材部120の配置パターンは、緩衝本体部10の軸線方向の全長にわたって一様である。緩衝本体部10を軸線方向のいずれか一方側から観たときの塑性材部120、弾性材部110のそれぞれの外縁形状は、いずれも円形状である。
また、
図7(a)の例において、弾性材部110と塑性材部120とが逆であってもよい。
【0040】
図7(b)の第2変形例において、緩衝本体部10は、緩衝体1の中心軸線O上に位置する弾性材部110と、弾性材部110の外周側に全周にわたって配置された環状の塑性材部120と、から構成されている。緩衝本体部10の軸線方向の厚みは、緩衝本体部10の全体にわたって一様であり、緩衝本体部10の軸直方向の断面の形状及び寸法、並びに、軸直方向の断面における弾性材部110及び塑性材部120の配置パターンは、緩衝本体部10の軸線方向の全長にわたって一様である。緩衝本体部10を軸線方向のいずれか一方側から観たときの弾性材部110、塑性材部120のそれぞれの外縁形状は、いずれも四角形状である。
また、
図7(b)の例において、弾性材部110と塑性材部120とが逆であってもよい。
【0041】
図7(c)の第3変形例、
図7(d)の第4変形例においては、緩衝本体部10は、緩衝本体部10を軸線方向のいずれか一方側から観たときに、互いから離間して配置された複数の弾性材部110と、緩衝本体部10を軸線方向のいずれか一方側から観たときに、これら複数の弾性材部110の周囲を覆う1つの塑性材部120と、から構成されている。緩衝本体部10の軸線方向の厚みは、緩衝本体部10の全体にわたって一様であり、緩衝本体部10の軸直方向の断面の形状及び寸法、並びに、軸直方向の断面における弾性材部110及び塑性材部120の配置パターンは、緩衝本体部10の軸線方向の全長にわたって一様である。緩衝本体部10を軸線方向のいずれか一方側から観たとき、各弾性材部110の外縁形状は円形であり、塑性材部120の外縁形状は四角形状である。
図7(c)の例において、緩衝本体部10は、弾性材部110を4つ有しており、これら4つの弾性材部110は、緩衝本体部10を軸線方向のいずれか一方側から観たときに、緩衝体1の中心軸線Oからの距離が互いに同じであり、また、それぞれ、緩衝体1の中心軸線Oと塑性材部120の外縁形状のなす四角形状の頂点とを繋ぐ対角線上に位置している。
図7(d)の例において、緩衝本体部10は、弾性材部110を5つ有しており、これら5つの弾性材部110は、緩衝体1の中心軸線O上に位置する1つの第1の弾性材部110aと、第1の弾性材部110aよりも外周側に位置する4つの第2の弾性材部110bと、からなる。そして、これら4つの第2の弾性材部110bは、緩衝本体部10を軸線方向のいずれか一方側から観たときに、緩衝体1の中心軸線Oからの距離が互いに同じであり、また、それぞれ、緩衝体1の中心軸線Oと塑性材部120の外縁形状のなす四角形状の頂点とを繋ぐ対角線上に位置している。
また、
図7(c)、
図7(d)の各例において、弾性材部110と塑性材部120とが逆であってもよい。
【0042】
図8(a)の第5変形例、
図8(b)の第6変形例は、それぞれ、概して、弾性材部110(全部又は一部)と、塑性材部120(全部又は一部)とが、市松模様状に、互いに直交する2つの軸直方向P1、P2(以下、それぞれ「第1軸直方向P1」、「第2軸直方向P2」という。)のそれぞれにおいて交互に配置されている。
図8(a)の第5変形例において、緩衝本体部10は、緩衝体1の中心軸線O上に位置する弾性材部110である第1の弾性材部110aと、第1の弾性材部110aの外周側に全周にわたって配置された環状の塑性材部120と、第1の弾性材部110aよりも外周側に配置された4つの弾性材部110である第2の弾性材部110bと、から構成されている。緩衝本体部10の軸線方向の厚みは、緩衝本体部10の全体にわたって一様であり、緩衝本体部10の軸直方向の断面の形状及び寸法、並びに、軸直方向の断面における弾性材部110及び塑性材部120の配置パターンは、緩衝本体部10の軸線方向の全長にわたって一様である。緩衝本体部10を軸線方向のいずれか一方側から観たとき、第1の弾性材部110a、第2の弾性材部110bのそれぞれの外縁形状は、いずれも四角形状であり、塑性材部120の外縁形状は、十字形状である。緩衝本体部10を軸線方向のいずれか一方側から観たとき、4つの第2の弾性材部110bは、それぞれ、塑性材部120の外縁によって区画される十字形状の4つの突起部分120pどうしの間に配置されている。緩衝本体部10を軸線方向のいずれか一方側から観たとき、塑性材部120と4つの第2の弾性材部110bとにより、緩衝本体部10の外縁が区画されており、緩衝本体部10の外縁形状は四角形状である。塑性材部120の4つの突起部分120pは、緩衝本体部10を軸線方向のいずれか一方側から観たときの外縁形状が、略四角形状である。緩衝本体部10を軸線方向のいずれか一方側から観たとき、5つの弾性材部110(具体的には、第1の弾性材部110a及び4つの第2の弾性材部110b)と、塑性材部120の4つの突起部分120pとは、市松模様状に、互いに直交する2つの軸直方向P1、P2のそれぞれにおいて交互に配置されており、塑性材部120の4つの突起部分120pどうしが、内周側(緩衝体1の中心軸線O側)において、互いに一体に連結されている。
また、
図8(a)の例において、弾性材部110と塑性材部120とが逆であってもよい。
あるいは、
図8(a)の例において、緩衝本体部10を軸線方向のいずれか一方側から観たときに、塑性材部120の4つの突起部分120pどうしが、内周側において互いに連結されずに、第2の弾性材部110bによって互いから分断されて、それぞれ別々の塑性材部120を構成してもよい。その場合、緩衝本体部10を軸線方向のいずれか一方側から観たとき、5つの弾性材部110(具体的には、第1の弾性材部110a及び4つの第2の弾性材部110b)と、第1の弾性材部110aに外周側に隣接する4つの塑性材部120とが、市松模様状に、互いに直交する第1軸直方向P1、第2軸直方向P2のそれぞれにおいて交互に配置されることとなる。また、この場合も、弾性材部110と塑性材部120とが逆であってもよい。
【0043】
図8(b)の第6変形例において、緩衝本体部10は、緩衝体1の中心軸線O上に位置する弾性材部110である第1の弾性材部110aと、第1の弾性材部110aの外周側に全周にわたって配置された環状の塑性材部120と、塑性材部120の外周側に全周にわたって配置された環状の弾性材部110である第2の弾性材部110bと、から構成されている。緩衝本体部10の軸線方向の厚みは、緩衝本体部10の全体にわたって一様であり、緩衝本体部10の軸直方向の断面の形状及び寸法、並びに、軸直方向の断面における弾性材部110及び塑性材部120の配置パターンは、緩衝本体部10の軸線方向の全長にわたって一様である。緩衝本体部10を軸線方向のいずれか一方側から観たとき、第1の弾性材部110a、第2の弾性材部110bのそれぞれの外縁形状は、いずれも四角形状であり、塑性材部120の外縁形状は、十字形状である。塑性材部120の外縁によって区画される十字形状の4つの突起部分120pは、緩衝本体部10を軸線方向のいずれか一方側から観たときの外縁形状が、略四角形状である。緩衝本体部10を軸線方向のいずれか一方側から観たとき、第2の弾性材部110bは、自身の外縁がなす四角形状の4つの角に位置するとともに、塑性材部120の外縁によって区画される十字形状の4つの突起部分120pどうしの間に配置された、4つの角部分110bcを有している。第2の弾性材部110bの4つの角部分110bcは、緩衝本体部10を軸線方向のいずれか一方側から観たときの外縁形状が、略四角形状である。
緩衝本体部10を軸線方向のいずれか一方側から観たとき、第1の弾性材部110a及び第2の弾性材部110bの4つの角部分110bcと、塑性材部120の4つの突起部分120pとは、市松模様状に、互いに直交する第1軸直方向P1、第2軸直方向P2のそれぞれにおいて交互に配置されており、塑性材部120の4つの突起部分120pどうしが、内周側において、互いに一体に連結されており、さらに、第2の弾性材部110bの4つの角部分110bcどうしが、外周側において、互いに一体に連結されている。
また、
図8(b)の例において、弾性材部110と塑性材部120とが逆であってもよい。
【0044】
図8(c)の第7変形例において、緩衝本体部10は、1つの弾性材部110と、複数(図の例では、4つ)の塑性材部120と、からなる。弾性材部110は、緩衝本体部10における軸線方向第2側O2の部分の全体を構成する、板状部分110pと、板状部分110pから軸線方向第1側O1へそれぞれ立設された、複数(図の例では、4つ)の立設部分110sと、からなる。これら複数の立設部分110sは、それぞれ第2軸直方向P1に延在するとともに、第2軸直方向P2対して垂直な第1軸直方向に沿って互いから間隔を空けて配列されている。複数の塑性材部120は、それぞれ第2軸直方向P2に延在するとともに、それぞれ複数の立設部分110sどうしの間に配置されている。緩衝本体部10の軸直方向の断面における弾性材部110及び塑性材部120の配置パターンは、軸線方向に沿って一様ではないものの、緩衝本体部10の軸線方向の厚みは、緩衝本体部10の全体にわたって一様であり、緩衝本体部10の軸直方向の断面の形状及び寸法は、緩衝本体部10の軸線方向の全長にわたって一様である。緩衝本体部10を軸線方向第2側O2から観たときの、弾性材部110の板状部分110pの外縁形状は、四角形状であり、緩衝本体部10を軸線方向第1側O1から観たときの、弾性材部110の各立設部分110s及び各塑性材部120の外縁形状は、いずれも四角形状である。
また、
図8(c)の例において、軸線方向第1側O1と軸線方向第2側O2とが逆であってもよい。すなわち、図示は省略するが、
図8(c)の例において、弾性材部110の板状部分110pは、弾性材部110の各立設部分110s及び各塑性材部120に対して軸線方向第1側O1に配置されてもよい。
また、
図8(c)の例において、弾性材部110と塑性材部120とが逆であってもよい。
【0045】
なお、上述した各変形例においては、弾性材部110と塑性材部120とが、互いに接触する部分で、互いに一体に構成(固着)されている。
【0046】
上述した
図2、
図7(a)~
図7(d)、
図8(a)、
図8(b)の各例においては、緩衝体1を構成する弾性材部110と塑性材部120とが、それぞれ、緩衝体1の軸線方向における緩衝本体部10の全長にわたって設けられている。
これにより、軸線方向における緩衝本体部10の全長を一定として考えたときに、仮に弾性材部110及び塑性材部120の少なくともいずれか一方が、軸線方向における緩衝本体部10の一部分のみに設けられている場合(例えば、
図8(c)の例)に比べて、より軸線方向に長い領域にわたって、弾性材部110と塑性材部120とを軸直方向に互いに隣接させ、弾性材部110の復元性能によって塑性材部120を復元させられるようにすることができる。これにより、エネルギーを効果的に吸収でき、弾性体の復元力により元の形状に戻り、複数回の衝撃の入力に対してより効果的である。
【0047】
上述した各例においては、緩衝本体部を緩衝体の軸線方向の少なくともいずれか一方側から観たときに、弾性材部110と塑性材部120とが、緩衝体1の中心軸線Oの周りで回転対称となるように配置されている。
より具体的に、
図2、
図7(b)~
図7(d)、
図8(a)、
図8(b)の各例においては、緩衝本体部10を緩衝体1の軸線方向のいずれ側から観たときも、弾性材部110と塑性材部120とが、緩衝体1の中心軸線Oの周りで4回対称となるように配置されている。
図7(a)の例においては、緩衝本体部10を緩衝体1の軸線方向のいずれ側から観たときも、弾性材部110と塑性材部120とが、緩衝体1の中心軸線Oの周りでn回対称(nは2以上の任意の整数)となるように配置されている。
図8(c)の例においては、緩衝本体部10を緩衝体1の軸線方向第1側O1から観たときに、弾性材部110と塑性材部120とが、緩衝体1の中心軸線Oの周りで2回対称となるように配置されている。
このように、弾性材部110と塑性材部120との配置パターンを回転対称とすることで、弾性材部110と塑性材部120とを、緩衝本体部10の全体の中で、より均等に分散させることができる。これにより、衝撃入力時における緩衝本体部10の挙動を、緩衝本体部10の全体にわたって、より均一にすることができる。仮に、弾性材部110と塑性材部120との配置パターンが回転対称ではない場合、軸直方向の平面内において、弾性材部110と塑性材部120との配置に偏りができてしまう結果、弾性材部110の一部分が塑性材部120から軸直方向に遠く離れすぎて塑性材部120に復元作用を及ぼすことができない場合や、逆に、塑性材部120の一部分が弾性材部110から軸直方向に遠く離れすぎて弾性材部110からの復元作用を受けられない場合が生じ得るので、緩衝本体部10の中で無駄な部分が生じるおそれがある。上記の各例のように、弾性材部110と塑性材部120との配置パターンを回転対称とし、それにより弾性材部110と塑性材部120とをより均等に分散させることで、緩衝本体部10の軸直方向における全体にわたって、弾性材部110の復元作用を、より均一かつ確実に、塑性材部120に及ぼすことが可能になる。これにより、エネルギーを効果的に吸収でき、弾性体の復元力により元の形状に戻り、複数回の衝撃の入力に対してより効果的である。
【0048】
上述した
図8(c)の例においては、緩衝本体部10を緩衝体1の軸線方向の少なくともいずれか一方側から観たときに、弾性材部110(全部又は一部)と塑性材部120(全部又は一部)とが、少なくとも1つの軸直方向に沿って、交互に配列されている。
より具体的に、
図8(c)の例においては、緩衝本体部10を緩衝体1の軸線方向第1側O1から観たときに、弾性材部110(具体的には、弾性材部110の立設部分110s)と塑性材部120とが、第1軸直方向P1に沿って交互に配列されている。
このように、弾性材部110と塑性材部120とを、少なくとも1つの軸直方向に沿って、交互に配列することで、弾性材部110と塑性材部120とを、緩衝本体部10の全体の中で、より均等に分散させることができる。これにより、衝撃入力時における緩衝本体部10の挙動を、緩衝本体部10の全体にわたって、より均一にすることができる。ひいては、緩衝本体部10の軸直方向における全体にわたって、弾性材部110の復元作用を、より均一かつ確実に、塑性材部120に及ぼすことが可能になる。これにより、エネルギーを効果的に吸収でき、弾性体の復元力により元の形状に戻り、複数回の衝撃の入力に対してより効果的である。
【0049】
上述した
図2、
図7(a)~
図7(d)、
図8(a)、
図8(b)の各例においては、緩衝本体部10を緩衝体1の軸線方向の少なくともいずれか一方側から観たときに、弾性材部110と塑性材部120とのいずれか一方が、弾性材部110と塑性材部120との他方の周囲を全て覆っている。
より具体的に、
図2、
図7(b)~
図7(d)、
図8(a)、
図8(b)の各例においては、緩衝本体部10を軸線方向のいずれ側から観たときも、塑性材部120が弾性材部110(
図2、
図8(a)及び
図8(b)の各例では、第1の弾性材部110a。
図7(c)及び
図7(d)の例では、複数の弾性材部110。)の周囲を全て覆っている。
図2、
図7(a)、
図8(b)の各例においては、緩衝本体部10を軸線方向のいずれ側から観たときも、弾性材部110(
図2の例では、第2の弾性材部110b。
図8(b)の例では、第2の弾性材部110b)が塑性材部120の周囲を全て覆っている。
これにより、弾性材部110の側面および塑性材部120の側面どうしの接触面積を増大でき、ひいては、弾性材部110の復元作用を、より効果的に、塑性材部120に及ぼすことが可能になる。これにより、複数回の衝撃の入力に対してエネルギーをより効果的に吸収できる。
なお、特に、
図2、
図7(a)、
図8(b)の各例のように、緩衝本体部10を緩衝体1の軸線方向の少なくともいずれか一方側から観たときに、弾性材部110が、塑性材部120の周囲を全て覆っている場合のほうが、その逆の場合よりも、復元時に弾性材部110の復元作用をより効果的に塑性材部120に及ぼすことができるので、好ましい。
【0050】
上述した各例においては、緩衝本体部10を緩衝体1の軸線方向の少なくともいずれか一方側から観たときに、弾性材部110と塑性材部120とが、幾何学的に配列されている。これにより、エネルギーを効果的に吸収でき、弾性体の復元力により元の形状に戻り、複数回の衝撃の入力に対してより効果的であるとともに、緩衝体1の製造がし易くなる。
特に、上述した
図2、
図7(a)、
図7(b)の各例は、
図7(c)、
図7(d)、
図8(a)~
図8(c)の各例に比べて、弾性材部110と塑性材部120との配置パターンがシンプルであるので、製造がし易くなる。
【0051】
上述した各例はいずれも、緩衝本体部10を軸線方向のいずれか一方側から観たときの緩衝本体部10の外縁形状が、四角形又は円形である。これにより、例えば緩衝本体部10を金型により成型する場合に、緩衝本体部10を成型するための金型の内面形状を、直方体又は円柱といったシンプルな形状にできるので、製造コストを低減できる。また、これにより、軸直方向において、緩衝本体部10の方向性を低減できるので、緩衝体1の性能を軸直方向において偏りなく発揮させることができる。
また、上述した各例はいずれも、緩衝本体部10を軸線方向のいずれか一方側から観たときの、弾性材部110及び塑性材部120のうち少なくともいずれか一方の外縁形状が、四角形又は円形である。この場合、例えば、弾性材部110又は塑性材部120を金型により成型する場合に、弾性材部110又は塑性材部120を成型するための金型の内面形状を、直方体又は円柱といったシンプルな形状にできるので、製造コストを低減できる。
【0052】
緩衝体1の緩衝本体部10は、弾性材部110と塑性材部120との少なくともいずれか一方の内部に、中空部130を有してもよい。
このような構成を有する緩衝体1の一例として、
図9~
図12に示す第8変形例を説明する。
図9は、第8変形例に係る緩衝体1が、
図1の例と同様に、免震建物SIBにおける擁壁RWに取り付けられた様子を示す斜視図である。
図10は、
図9の緩衝体1を、緩衝体1の軸線方向に平行な
図9のB-B線に沿う断面により示す、軸線方向断面図である。
図10の断面は、緩衝体1の中心軸線Oを通る断面である。
図9~
図10において、緩衝体1は、建物Bからの衝撃が1度も加わったことのない、初期の状態にある。
図11は、建物Bの側壁が緩衝体を介して擁壁に衝突したときに、
図9の緩衝体1が圧縮される様子を、
図10と同様の断面により示す、軸線方向断面図である。
図12は
図11の緩衝体1が復元する時の様子を、
図10と同様の断面により示す、軸線方向断面図である。
図9~
図12の例に係る緩衝本体部10は、上述した
図2の例の緩衝本体部10における、中心軸線O上に位置する弾性材部110(具体的には、第1の弾性材部110a)の内部に、中空部130を形成したものに相当する。本例において、中空部130は、緩衝体1の中心軸線O上に位置するとともに、弾性材部110(第1の弾性材部110a)を軸線方向に貫通している。
このように構成された緩衝体1においては、
図11に示すように、中空部130が無い場合(
図2)に比べて、衝撃の入力に応じて緩衝本体部10が軸線方向に圧縮される際に、緩衝本体部10のうち中空部130の近傍の部分(本例では、第1の弾性材部110a及び塑性材部120)が、中空部130の内側に向かって膨出されやすくなるので、剛性が低減され、その際に生じる軸線方向の反力(押し返す力)が低減される。衝撃入力時に緩衝本体部10に生じる反力と変形量とのバランスは、建物ごとに最適なものが異なり得るところ、中空部130の有無や中空部130の構成(大きさ、位置、数等)を変えるだけで、緩衝本体部10の他の構成を変えなくとも、緩衝本体部10の剛性、ひいては、衝撃緩和性能やエネルギー吸収性能等の種々の性能を、調整することが可能である。例えば、建物B及び/又は擁壁RWの強度がさほど高くない場合には、緩衝本体部10に中空部130を形成することによって、緩衝本体部10の剛性を低く設定し、それにより、建物Bが緩衝体1を介して擁壁RWに衝突する際に、緩衝体1によって過度の反力を建物Bや擁壁RWに与えないようにすることができる。あるいは、例えば、建物B及び/又は擁壁RWの強度が高い場合には、緩衝本体部10に中空部130を形成しないことによって、緩衝本体部10の剛性を高く設定し、それにより、緩衝体1のエネルギー吸収性能を高めることができる。
なお、中空部130は、緩衝本体部10における任意の弾性材部110及び/又は塑性材部120の内部に形成してよい。例えば、
図9の例において、第1の弾性材部110aに代えて又は加えて、塑性材部120、及び/又は、第2の弾性材部110bの内部に、中空部130を形成してもよい。
中空部130は、
図9の例のように、緩衝本体部10を軸線方向に貫通していることが、緩衝本体部10の剛性を低減させる観点から好ましいが、これに限られず、緩衝本体部10の軸線方向第1側O1及び第2側O2の少なくともいずれか一方側で、貫通せずに塞がれたものでもよい。
【0053】
中空部130は、
図7~
図8を参照しながら説明した各例を含め、任意の構成の緩衝本体部10に適用できる。
図13(a)~
図13(b)は、中空部130を有する緩衝体1のさらなる例を、それぞれ例示している。
図13(a)に示す第9変形例は、上述した
図7(d)の例の緩衝本体部10における、各弾性材部110の内部に、それぞれ中空部130を形成したものに相当する。各中空部130は、それぞれ、弾性材部110を軸線方向に貫通している。
図13(b)に示す第10変形例は、上述した
図8(a)の例の緩衝本体部10における、各弾性材部110の内部に、それぞれ中空部130を形成したものに相当する。各中空部130は、それぞれ、弾性材部110を軸線方向に貫通している。
【0054】
緩衝体1は、緩衝本体部10の軸線方向の少なくともいずれか一方側の面11S、12Sに設けられた板部材20を、備えてもよい。この場合、板部材20と緩衝本体部10とは、互いに接触する部分で、接着(接着剤による接着、加硫接着等)等により、互いに固着されるとよい。板部材20は、任意の材料で構成してよいが、例えば、樹脂(例えば、超高分子量ポリエチレン(UHMW-PE)などの硬質樹脂)、又は、金属(例えば、鉄)が好適である。
このような構成を有する緩衝体1の一例として、
図14~
図17に示す第11変形例を説明する。
図14は、第11変形例に係る緩衝体1が、
図1の例と同様に、免震建物SIBにおける擁壁RWに取り付けられた様子を示す斜視図である。
図15は、
図14の緩衝体1を、緩衝体1の軸線方向に平行な
図14のC-C線に沿う断面により示す、軸線方向断面図である。
図15の断面は、緩衝体1の中心軸線Oを通る断面である。
図14~
図15において、緩衝体1は、建物Bからの衝撃が1度も加わったことのない、初期の状態にある。
図16は、建物Bの側壁BWが緩衝体1を介して擁壁RWに衝突したときに、
図14の緩衝体1が圧縮される様子を、
図15と同様の断面により示す、軸線方向断面図である。
図17は
図16の緩衝体1が復元する時の様子を、
図16と同様の断面により示す、軸線方向断面図である。
図14~
図17の例に係る緩衝体1は、上述した
図2の例の緩衝本体部10の軸線方向の両側の面11S、12Sに、板部材20を、それぞれ接着等により固着させたものに相当する。ただし、板部材20は、上述した任意の例の緩衝本体部10に設けてよい。
板部材20を、緩衝本体部10の軸線方向第1側O1(受衝側)の面11Sに固着させた場合、衝撃の入力に応じて緩衝本体部10が軸線方向に圧縮され(
図16)、その後、復元する際(
図17)に、板部材20によって、塑性材部120の挙動が、軸直方向に均一化される。これにより、例えば、復元時において、塑性材部120のうち、弾性材部110から軸直方向に遠い部分だけが、弾性材部110からの復元作用を受けられずに圧縮したままの状態で残るのを防止できる。よって、より安定的に、塑性材部120を復元させることができ、ひいては、複数回の衝撃の入力に対してエネルギーをより効果的に吸収できるようになる。
また、板部材20を、緩衝本体部10の軸線方向第1側O1(受衝側)の面11Sに固着させた場合、当該面11Sに何も設けていない場合(
図2の場合)に比べて、衝撃の入力に応じて緩衝本体部10が軸線方向に圧縮される際に、緩衝本体部10の軸線方向第1側O1(受衝側)の面11S及びその近傍の部分が、板部材20によって拘束される結果、径方向に膨張できず、それにより、緩衝本体部10が、より大きな軸線方向の反力を生むようになる。この場合、例えば、緩衝本体部10を小型化すれば、緩衝体1の設置スペースを低減しつつ、同じ反力が得られるようにすることもできる。なお、逆に、
図2の例のように、緩衝本体部10の軸線方向第1側O1(受衝側)の面11Sに何も設けていない場合は、緩衝本体部10が生む反力を小さく設定できる。
一方、板部材20を、緩衝本体部10の軸線方向第2側O2(取付側)の面12Sに固着させた場合は、緩衝本体部10を、板部材20を介して、簡単かつ安定的に、擁壁RW等に取り付けることができる。この場合、例えば、板部材20に、締結具(図示せず)のための取付孔20hを設けるとよい。
【0055】
緩衝体1は、
図14~
図17の例のように緩衝本体部10の軸線方向第2側O2(取付側)の面12Sに板部材20を設ける代わりに、例えば
図18に示す第12変形例のように、緩衝本体部10の側面に、取り付け用のフランジ部140を備えてもよい。
図18の例において、フランジ部140は、緩衝本体部10と一体に構成されており、締結具(図示せず)のための取付孔10hを有している。これにより、緩衝本体部10を、フランジ部140を介して、簡単かつ安定的に、擁壁RW等に取り付けることができる。
図18に示すように、フランジ部140の軸線方向第2側O2の面は、緩衝本体部10の軸線方向第2側の面12Sと、面一であると、好適である。
図18の例では、フランジ部140が、上述した
図2の例の緩衝本体部10における最も外周側の弾性材部110(具体的には、第2の弾性材部110b)に、接着又は一体成形等によって一体に構成されており、弾性材部110と同じ材料から構成されている。ただし、フランジ部140は、緩衝本体部10と一体に構成される限り、任意の材料から構成されてよく、例えば、塑性材部120と同じ材料から構成されてもよい。
また、フランジ部140は、上述した任意の例の緩衝本体部10に設けられてよい。
【0056】
図示は省略するが、上述した各例においては、緩衝体1に外力が加わっていない状態(緩衝体1の自然状態)において、弾性材部110よりも塑性材部120が緩衝体1の軸線方向第1側O1(受衝側)に突き出ていてもよい。この場合、塑性材部120の軸線方向の全長は、弾性材部110の軸線方向の全長よりも、長い。この構成は、特に、緩衝本体部10の軸線方向第1側O1(受衝側)の面11Sに板部材20が設けられていない場合に、好適である。塑性材部120が突き出ている事により、衝撃の入力時において、最初に、突き出た塑性材部120に衝撃が入力されることでエネルギーをある程度吸収でき、その後で、衝撃が弾性材部110にも加わることにより、エネルギー吸収と復元力を生じさせることができる。
あるいは、上述した各例においては、緩衝体1に外力が加わっていない状態(緩衝体1の自然状態)において、塑性材部120よりも弾性材部110が緩衝体1の軸線方向第1側O1(受衝側)に突き出ていてもよい。この場合、弾性材部110の軸線方向の全長は、塑性材部120の軸線方向の全長よりも、長い。この構成は、特に、緩衝本体部10の軸線方向第1側O1(受衝側)の面11Sに板部材20が設けられていない場合に、好適である。弾性材部110が突き出ている事により、衝撃の入力時において、最初に、突き出た弾性材部110に衝撃が入力されることで衝撃をある程度緩和でき、その後で、衝撃が塑性材部120にも加わることにより、エネルギー吸収と復元力を生じさせることができる。
【0057】
なお、以上では、緩衝体1が免震建物SIBに設けられる場合について説明したが、緩衝体1は、免震装置SIDが設けられていない通常の建物Bとこれに対向配置された構造物(擁壁等)との少なくともいずれか一方に取り付けられてもよい。
【0058】
上述した各例における緩衝体1は、例えば
図19に示すように、免震建物SIBにおいて、建物Bの側壁BWと擁壁RWとを連結するように取り付けられてもよい。この場合、緩衝体1は、軸線方向の少なくとも一方側の面が、建物Bの側壁BW又は擁壁RWに固定される。この構成によれば、地震発生時には、地震の規模に関わらず、常に、免震装置SIDと緩衝体1とが同時に機能を発揮することとなる。
また、緩衝体1は、免震装置SIDが設けられていない通常の建物Bとこれに対向配置された構造物(擁壁等)とを連結するように取り付けられてもよい。
【0059】
上述した各例における緩衝体1は、例えば
図20に示すように、免震建物SIBにおいて、建物Bの底部BBの下において、免震装置SID(特に、免震ゴム)と直列に取り付けられてもよい。ここで、「免震装置SIDと直列に取り付け」るとは、すなわち、緩衝体1の中心軸線Oを鉛直方向に指向させた状態で、緩衝体1を免震装置SIDの上側又は下側(
図20の例では、上側)に設置することを指す。この場合、地震発生時には、免震装置SIDによって水平方向の揺れのエネルギーを吸収するだけでなく、緩衝体1によって鉛直方向の揺れのエネルギーを吸収することもできる。
【0060】
〔等価粘性減衰定数heq(0.33Hz/100%)の測定方法〕
等価粘性減衰定数heqについてはJIS K6410-2(2011)の6.2.2のせん断特性試験の記載に沿って測定した。
【産業上の利用可能性】
【0061】
本発明の緩衝体は、例えば、地震発生時に建物が受けうる衝撃や揺れのエネルギーを吸収するために好適に利用できる。本発明の緩衝体は、建物の外部(例えば、建物の側壁の外面や建物の底部の下面)、建物の内部、又は建物に対向配置された構造物(擁壁等)に設置されると好適なものであり、免震建物における建物の外部、建物の内部、又は建物に対向配置された構造物に設置されるとより好適なものであり、免震建物における建物の側壁やこれに対向配置された擁壁に設置されるとさらに好適なものである。
【符号の説明】
【0062】
1:緩衝体、 10:緩衝本体部、 10h:取付孔、 11S:緩衝本体部の軸線方向第1側の面、 12S:緩衝本体部の軸線方向第2側の面、 20:板部材、 20h:取付孔、 21S:板部材の軸線方向第1側の面、 22S:板部材の軸線方向第2側の面、 110、110a、110b:弾性材部、 110bc:弾性材部の角部分、 110p:弾性材部の板状部分、 110s:弾性材部の立設部分、 120:塑性材部、 120p:塑性材部の突起部分、 130:中空部、 140:フランジ部、 210:試験片、 211,212:金属板、 213:試験体、 214:中央固定治具、 215:固定治具、 216:ジョイント、 221:一軸せん断試験機の上部、 222:一軸せん断試験機の下部、 B:建物、 BB:建物の底部、 BW:建物の側壁、 F:基礎、 L:履歴ループ、 O:緩衝体の中心軸線、 O1:軸線方向第1側、 O2:軸線方向第2側、 P1:第1軸直方向、 P2:第2軸直方向、 RW:擁壁、 SIB:免震建物、 SID:免震装置