IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マテリオン コーポレイションの特許一覧

特許7096791冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法
<>
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図1
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図2
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図3
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図4
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図5
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図6
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図7
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図8
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図9
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図10
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図11
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図12
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図13
  • 特許-冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-28
(45)【発行日】2022-07-06
(54)【発明の名称】冶金学的ボンドおよび密度低減金属コア層を有する金属積層体ならびにその製造方法
(51)【国際特許分類】
   B32B 15/01 20060101AFI20220629BHJP
【FI】
B32B15/01 Z
【請求項の数】 20
【外国語出願】
(21)【出願番号】P 2019130968
(22)【出願日】2019-07-16
(62)【分割の表示】P 2017518530の分割
【原出願日】2015-10-09
(65)【公開番号】P2019206184
(43)【公開日】2019-12-05
【審査請求日】2019-07-16
(31)【優先権主張番号】62/061,824
(32)【優先日】2014-10-09
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/181,436
(32)【優先日】2015-06-18
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】508348680
【氏名又は名称】マテリオン コーポレイション
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【弁理士】
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100196597
【弁理士】
【氏名又は名称】横田 晃一
(72)【発明者】
【氏名】ジョセフ ジー. カイザー
(72)【発明者】
【氏名】アーロン エム. ヴォドニック
【審査官】清水 晋治
(56)【参考文献】
【文献】登録実用新案第052770(JP,Z1)
【文献】特開平04-028483(JP,A)
【文献】特開2004-136357(JP,A)
【文献】特開2012-162756(JP,A)
【文献】特開平07-276544(JP,A)
【文献】特開平03-294032(JP,A)
【文献】特開平11-123790(JP,A)
【文献】須賀唯知,常温接合の現状と課題,溶接学会誌,日本,一般社団法人 溶接学会,1995年06月05日,1995年, 第64巻, 第4号,p.282-288
(58)【調査した分野】(Int.Cl.,DB名)
B32B 1/00-43/00
B23K 20/00-20/26
(57)【特許請求の範囲】
【請求項1】
金属積層体から作製された構成要素を備えるデバイスであって、前記金属積層体は、
第1の連続金属シートであって、アルミニウム、銅、チタン、炭素鋼、ステンレス鋼、またはそれらの合金を含む、前記第1の連続金属シートと、
第2の連続金属シートであって、アルミニウム、銅、チタン、炭素鋼、ステンレス鋼、またはそれらの合金を含む、前記第2の連続金属シートと、
前記第1の連続金属シートと前記第2の連続金属シートとの間に配置される、密度低減金属コア層であって、前記密度低減金属コア層は、コア金属から形成され、貫通孔を囲繞する連続金属マトリクスを備え、前記コア金属の密度を下回る平均密度を有し、前記密度低減金属コア層は単一部材である、前記密度低減金属コア層と、
前記第1の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと、
前記第2の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと
を備える、デバイス。
【請求項2】
前記コア金属は、アルミニウム、銅、チタン、ステンレス鋼、炭素鋼、またはそれらの合金である、請求項1に記載のデバイス。
【請求項3】
前記コア金属は、アルミニウムであり、前記第1の連続金属シートは、ステンレス鋼であり、前記第2の連続金属シートは、ステンレス鋼である、請求項1に記載のデバイス。
【請求項4】
前記密度低減金属コア層の厚さは、前記金属積層体の合計厚さの少なくとも50%である、請求項1に記載のデバイス。
【請求項5】
前記密度低減金属コア層の平均密度は、前記コア金属の密度の10%~75%である、請求項1に記載のデバイス。
【請求項6】
前記密度低減金属コア層は、前記コア金属の層を含み、前記層は、前記層を通過する貫通孔を有する、請求項1に記載のデバイス。
【請求項7】
前記貫通孔は、非対称である、請求項に記載のデバイス。
【請求項8】
前記貫通孔は、前記密度低減金属コア層の厚さの少なくとも1~2倍の大きさであるサイズを有する、請求項に記載のデバイス。
【請求項9】
前記密度低減金属コア層は、
(1)前記層を通過する貫通孔を有する前記コア金属の層、
(2)前記コア金属の織成または溶接されたワイヤメッシュもしくはスクリーン、および
(3)前記コア金属の多孔層
のうちの1つを含む、請求項に記載のデバイス。
【請求項10】
前記密度低減金属コア層は、2つまたはそれより多い密度低減金属コア層のスタックを含む、請求項1に記載のデバイス。
【請求項11】
前記2つまたはそれより多い密度低減金属コア層のスタックは、異なる幾何学形状の貫通孔、織成または溶接されたメッシュもしくはスクリーン、または孔を伴う密度低減金属コア層を含む、請求項10に記載のデバイス。
【請求項12】
前記2つまたはそれより多い密度低減金属コア層のスタックは、異なるコア金属の密度低減金属コア層を含む、請求項10に記載のデバイス。
【請求項13】
前記平面冶金学的ボンドは、ろう付けまたははんだ付け材料を含んでいない、請求項1に記載のデバイス。
【請求項14】
前記第1の連続金属シートを前記密度低減金属コア層に固着させる前記平面冶金学的ボンドは、前記第1の連続金属シートの表面の天然酸化物層を含んでおらず、かつ前記密度低減金属コア層の表面の天然酸化物層も含んでおらず、
前記第2の連続金属シートを前記密度低減金属コア層に固着させる前記平面冶金学的ボンドは、前記第2の連続金属シートの表面の天然酸化物層を含んでおらず、かつ前記密度低減金属コア層の表面の天然酸化物層も含んでいない、
請求項1に記載のデバイス。
【請求項15】
前記積層体の外面上に形成されたパターンを含み、前記パターンは、前記密度低減金属コア層の貫通孔のパターンからエンボス加工またはインプリントされている、請求項1に記載のデバイス。
【請求項16】
金属積層体から作製されたデバイス構成要素であって、前記金属積層体は、
第1の連続金属シートであって、アルミニウム、銅、チタン、炭素鋼、ステンレス鋼、またはそれらの合金を含む、前記第1の連続金属シートと、
第2の連続金属シートであって、アルミニウム、銅、チタン、炭素鋼、ステンレス鋼、またはそれらの合金を含む、前記第2の連続金属シートと、
前記第1の連続金属シートと前記第2の連続金属シートとの間に配置される、密度低減金属コア層であって、前記密度低減金属コア層は、コア金属から形成され、貫通孔を囲繞する連続金属マトリクスを備え、前記コア金属の密度を下回る平均密度を有し、前記密度低減金属コア層は単一部材である、前記密度低減金属コア層と、
前記第1の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと、
前記第2の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと
を備える、デバイス構成要素。
【請求項17】
前記デバイス構成要素は、構造パネル、電気導管ライン、自動車バンパもしくはフェンダ、電子封入体、または、デバイス筐体である、請求項16に記載のデバイス構成要素。
【請求項18】
金属積層体から作製された構成要素を備えるデバイスであって、前記金属積層体は、
第1の連続金属シートであって、アルミニウム、銅、チタン、炭素鋼、ステンレス鋼、またはそれらの合金を含む、前記第1の連続金属シートと、
第2の連続金属シートであって、アルミニウム、銅、チタン、炭素鋼、ステンレス鋼、またはそれらの合金を含む、前記第2の連続金属シートと、
前記第1の連続金属シートと前記第2の連続金属シートとの間に配置される、密度低減金属コア層であって、前記密度低減金属コア層は、貫通孔を囲繞する連続金属マトリクスの形態のコア金属を含み、前記コア金属の密度を下回る平均密度を有し、前記密度低減金属コア層は単一部材である、前記密度低減金属コア層と、
前記第1の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと、
前記第2の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと
を備える、デバイス。
【請求項19】
金属積層体から作製された構成要素を備えるデバイスであって、前記金属積層体は、
第1の連続金属シートと、
第2の連続金属シートと、
前記第1の連続金属シートと前記第2の連続金属シートとの間に配置される、密度低減金属コア層であって、前記密度低減金属コア層は、コア金属から形成され、貫通孔を囲繞する連続金属マトリクスを備え、前記コア金属の密度を下回る平均密度を有し、前記密度低減金属コア層は単一部材であ前記コア金属はアルミニウムであり、前記第1の連続金属シートはステンレス鋼であり、前記第2の連続金属シートはステンレス鋼である、前記密度低減金属コア層と、
前記第1の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと、
前記第2の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと
を備える、デバイス。
【請求項20】
金属積層体から作製された構成要素を備えるデバイスであって、前記金属積層体は、
第1の連続金属シートと、
第2の連続金属シートと、
前記第1の連続金属シートと前記第2の連続金属シートとの間に配置される、密度低減金属コア層であって、前記密度低減金属コア層は、コア金属から形成され、貫通孔を囲繞する連続金属マトリクスを備え、前記コア金属の密度を下回る平均密度を有し、前記密度低減金属コア層は単一部材であ前記密度低減金属コア層は、2つまたはそれより多い密度低減金属コア層のスタックを含む、前記密度低減金属コア層と、
前記第1の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと、
前記第2の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと
を備える、デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、2014年10月9日に出願された米国仮特許出願第62/061,824号および2015年6月18日に出願された米国仮特許出願第62/181,436号に対する優先権を主張するものである。これらの出願は、それらの全体が参照により本明細書中に援用される。
【0002】
本開示は、スタンピングされた金属構成要素の重量を低減させるために使用可能な剛性シート材料、特に、金属積層体シート材料に関する。
【背景技術】
【0003】
軽量材料の必要性が、多くの産業にわたって広がっている。自動車および航空宇宙産業では、軽量材料が、改良された燃料経済性のために所望される。消費者用娯楽器具では、軽量シート材料が、増進された性能のために所望される。消費者用電子機器およびモバイルデバイスでは、デバイス筐体ならびに他の構成要素のために軽量シート材料を使用することが、携帯性を増進し、より軽いデバイスを提供する。より一般的には、そのような産業における製造者は、高い比強度および具体的剛性値ならびに/または他の所望される性質を伴う材料を依然として選択しながら、構成要素の重量および厚さを低減させる努力をしている。
【0004】
複合材料の使用は、軽量材料への道筋として拡大し続けている。これらは、炭素もしくはガラス繊維複合材、金属マトリクス複合材、ハニカムコア材料、または種々の他の一般的構成を含み得る。しかしながら、複合材料解決策は、典型的には、製造コストが高い。炭素繊維に関して、これは、マトリクス材料のレイアップおよび含浸のコストを含む。金属マトリクス複合材の製造は、典型的には、比較的に小さいバッチにおける粉末金属処理を要求する。これらの複合材料の高い製造コストは、それらの大規模な採用への障害である。
【0005】
さらに、多くの大量生産構成要素のために使用される、金属コイルからのスタンピングおよび形成等の従来の低コスト金属形成プロセスは、時として、複合材料と適合しない。
【発明の概要】
【発明が解決しようとする課題】
【0006】
したがって、軽量であるが剛性であるシート材料を必要とする用途において使用するための軽量、剛性、かつ容易に形成される、および/または金属構成要素のスタンピングおよび形成のための既存の金属加工インフラストラクチャと適合する、シート材料を提供する必要性が、依然として存在する。
【課題を解決するための手段】
【0007】
本願の開示は、全てのテキストおよび図面を含め、その全体として、すなわち、まとめて考慮されるべきである。
【0008】
種々の実施形態では、第1の連続金属シートと、第2の連続金属シートと、第1の金属シートと第2の連続金属シートとの間に配置される、密度低減金属コア層であって、コア金属を含み、コア金属の密度を下回る平均密度を有する、密度低減金属コア層と、第1の連続金属シートを密度低減金属コア層に固着させる、平面冶金学的ボンドと、第2の連続金属シートを密度低減金属コア層に固着させる、平面冶金学的ボンドとを備える、金属積層体が、開示される。
【0009】
コア金属は、アルミニウム、銅、チタン、ステンレス鋼、炭素鋼、またはそれらの合金であってもよい。第1の連続金属シートは、アルミニウム、銅、チタン、炭素鋼、ステンレス鋼、またはそれらの合金を含んでもよく、第2の連続金属シートは、アルミニウム、銅、チタン、炭素鋼、ステンレス鋼、またはそれらの合金を含んでもよい。
【0010】
具体的実施形態では、コア金属は、アルミニウムであり、第1の連続金属シートは、ステンレス鋼であり、第2の連続金属シートは、ステンレス鋼である。
【0011】
密度低減金属コア層の厚さは、金属積層体の合計厚さの少なくとも50%であってもよい。密度低減金属コア層の平均密度は、コア金属の密度の10%~75%であってもよい。より具体的な実施形態では、密度低減金属コア層の平均密度は、コア金属の密度の50%またはそれを下回る密度である。密度低減金属コア層は、層を通過する貫通孔を有するコア金属の層を含んでもよい。貫通孔は、非対称であってもよい。貫通孔は、少なくとも密度低減金属コア層の厚さと同程度の大きさのサイズを有することができる。貫通孔は、少なくとも密度低減金属コア層の厚さの2倍の大きさのサイズを有してもよい。より具体的な実施形態では、密度低減金属コア層は、(1)層を通過する貫通孔を有するコア金属の層と、(2)コア金属の織成または溶接されたワイヤメッシュもしくはスクリーンと、(3)コア金属の多孔層とのうちの1つを含む。
【0012】
密度低減金属コア層は、2つまたはそれを上回る密度低減金属コア層のスタックを含むことができる。2つまたはそれを上回る密度低減金属コア層のスタックは、異なる幾何学形状の貫通孔、織成または溶接されたメッシュもしくはスクリーン、または孔を伴う密度低減金属コア層を含んでもよい。2つまたはそれを上回る密度低減金属コア層のスタックは、異なるコア金属の密度低減金属コア層を含むことができる。
【0013】
具体的実施形態では、金属積層体の平面冶金学的ボンドは、ろう付けまたははんだ付け材料を含んでいない。加えて、さらにより具体的な実施形態では、第1の連続金属シートを密度低減金属コア層に固着させる平面冶金学的ボンドは、第1の連続金属シートの表面の天然酸化物層を含んでおらず、かつ密度低減金属コア層の表面の天然酸化物層も含んでおらず、第2の連続金属シートを密度低減金属コア層に固着させる平面冶金学的ボンドは、第2の連続金属シートの表面の天然酸化物層を含んでおらず、かつ密度低減金属コア層の表面の天然酸化物層も含んでいない。
【0014】
いくつかの実施形態では、第1の連続金属シートを密度低減金属コア層に固着させる平面冶金学的ボンドは、(1)第1の連続金属シートの表面上の天然酸化物層を除去またはオーバーコーティングし、密度低減金属コア層の表面上の天然酸化物層を除去またはオーバーコーティングするステップと、(2)第1の連続金属シートおよび密度低減金属コア層をプレスロールするステップとを含むプロセスによって形成され、第2の連続金属シートを密度低減金属コア層に固着させる平面冶金学的ボンドは、(1)第2の連続金属シートの表面上の天然酸化物層を除去またはオーバーコーティングし、密度低減金属コア層の表面上の天然酸化物層を除去またはオーバーコーティングするステップと、(2)第2の連続金属シートおよび密度低減金属コア層をプレスロールするステップとを含むプロセスによって形成される。
【0015】
第1の連続金属シートおよび密度低減金属コア層をプレスロールするステップならびに第2の連続金属シートおよび密度低減金属コア層をプレスロールするステップは、第1の連続金属シートおよび密度低減金属コア層ならびに第2の連続金属シートをプレスロールするステップとして同時に実施され、密度低減金属コア層は、第1および第2の連続金属シート間に挟装されてもよい。
【0016】
金属積層体は、積層体の外面上に形成され、密度低減金属コア層の貫通孔のパターンからエンボス加工またはインプリントされたパターンを含んでもよい。
【0017】
金属積層体は、積層体コイルを含んでもよい。
【0018】
金属積層体を製造する方法もまた、本明細書に開示され、該方法は、2つの外側連続金属層間に挟装される密度低減金属コア層を含む、金属積層体をプレスロールするステップであって、密度低減金属コア層は、コア金属を含み、コア金属の密度を下回る平均密度を有する、ステップと、プレスロールするステップに先立って、密度低減金属コア層および金属積層体における別の層と接触する連続金属シートの各表面上の天然酸化物層を除去またはオーバーコーティングするステップとを含む。
【0019】
プレスロールするステップは、金属積層体の厚さにおいて50%もしくはそれを下回る、または25%もしくはそれを下回る圧下率を生産してもよい。プレスロールするステップは、密度低減金属コア層の厚さにおいて60%もしくはそれを下回る、または40%もしくはそれを下回る圧下率を生産してもよい。
【0020】
密度低減金属コア層は、コア金属の密度を下回る平均密度を伴う密度低減金属コア層を提供する、貫通孔を含んでもよい。プレスロールするステップは、密度低減金属コア層の貫通孔を排除するべきではない。
【0021】
プレスロールするステップにおいて印加される圧力は、金属積層体の外面上に密度低減金属コア層の貫通孔のパターンをエンボス加工またはインプリントするために有効であってもよい。
【0022】
プレスロールするステップは、2つの外側連続金属層を密度低減金属コア層に冶金学的に結合してもよい。
【0023】
密度低減金属コア層の、および金属積層体における別の層と接触する連続金属シートの各表面上の天然酸化物層を除去またはオーバーコーティングするステップの動作は、各該表面上の天然酸化物層を除去するステップを含んでもよい。これは、スパッタリングプロセスを使用して行われることができる。
【0024】
本明細書に開示される方法は、プレスロールするステップにおいて使用されるプレスローラと、各該表面上の天然酸化物層を除去またはオーバーコーティングするステップにおいて使用される表面活性化デバイスとの両方を封入する密封封入体内で実施されることができる。
【0025】
本方法はさらに、金属積層体を積層体コイルとして配列するために、金属積層体を巻取りロール上で巻き取るステップを含んでもよい。本方法は、必ずしも、金属積層体の製造においてはんだ付けまたはろう付けを実施するステップを含まない。
【0026】
本明細書に開示される方法を使用して製造される金属積層体または積層体コイルもまた、本明細書に開示される。
本発明は、例えば、以下を提供する。
(項目1)
金属積層体であって、
第1の連続金属シートと、
第2の連続金属シートと、
前記第1の連続金属シートと第2の連続金属シートとの間に配置される、密度低減金属コア層であって、前記密度低減金属コア層は、コア金属を含み、前記コア金属の密度を下回る平均密度を有する、密度低減金属コア層と、
前記第1の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと、
前記第2の連続金属シートを前記密度低減金属コア層に固着させる、平面冶金学的ボンドと、
を備える、金属積層体。
(項目2)
前記コア金属は、アルミニウム、銅、チタン、ステンレス鋼、炭素鋼、またはそれらの合金である、項目1に記載の金属積層体。
(項目3)
前記第1の連続金属シートは、アルミニウム、銅、チタン、炭素鋼、ステンレス鋼、またはそれらの合金を含み、
前記第2の連続金属シートは、アルミニウム、銅、チタン、炭素鋼、ステンレス鋼、またはそれらの合金を含む、
項目1-2のうちのいずれか1つに記載の金属積層体。
(項目4)
前記コア金属は、アルミニウムであり、前記第1の連続金属シートは、ステンレス鋼であり、前記第2の連続金属シートは、ステンレス鋼である、項目1に記載の金属積層体。
(項目5)
前記密度低減金属コア層の厚さは、前記金属積層体の合計厚さの少なくとも50%である、項目1-4のうちのいずれか1つに記載の金属積層体。
(項目6)
前記密度低減金属コア層の平均密度は、前記コア金属の密度の10%~75%である、項目1-5のうちのいずれか1つに記載の金属積層体。
(項目7)
前記密度低減金属コア層の平均密度は、前記コア金属の密度の50%またはそれを下回る密度である、項目6に記載の金属積層体。
(項目8)
前記密度低減金属コア層は、層を通過する貫通孔を有する前記コア金属の層を含む、項目1-7のうちのいずれか1つに記載の金属積層体。
(項目9)
前記貫通孔は、非対称である、項目8に記載の金属積層体。
(項目10)
前記貫通孔は、少なくとも前記密度低減金属コア層の厚さと同程度の大きさのサイズを有する、項目8-9のうちのいずれか1つに記載の金属積層体。
(項目11)
前記貫通孔は、少なくとも前記密度低減金属コア層の厚さの2倍の大きさのサイズを有する、項目8-9のうちのいずれか1つに記載の金属積層体。
(項目12)
前記密度低減金属コア層は、(1)前記層を通過する貫通孔を有するコア金属の層と、(2)前記コア金属の織成または溶接されたワイヤメッシュもしくはスクリーンと、(3)前記コア金属の多孔層とのうちの1つを含む、項目1-7のうちのいずれか1つに記載の金属積層体。
(項目13)
前記密度低減金属コア層は、2つまたはそれを上回る密度低減金属コア層のスタックを含む、項目1-12のうちのいずれか1つに記載の金属積層体。
(項目14)
前記2つまたはそれを上回る密度低減金属コア層のスタックは、異なる幾何学形状の貫通孔、織成または溶接されたメッシュもしくはスクリーン、または孔を伴う密度低減金属コア層を含む、項目13に記載の金属積層体。
(項目15)
前記2つまたはそれを上回る密度低減金属コア層のスタックは、異なるコア金属の密度低減金属コア層を含む、項目13-14のうちのいずれか1つに記載の金属積層体。
(項目16)
前記平面冶金学的ボンドは、ろう付けまたははんだ付け材料を含んでいない、項目1-15のうちのいずれか1つに記載の金属積層体。
(項目17)
前記第1の連続金属シートを密度低減金属コア層に固着させる平面冶金学的ボンドは、前記第1の連続金属シートの表面の天然酸化物層を含んでおらず、かつ前記密度低減金属コア層の表面の天然酸化物層も含んでおらず、
前記第2の連続金属シートを密度低減金属コア層に固着させる平面冶金学的ボンドは、前記第2の連続金属シートの表面の天然酸化物層を含んでおらず、かつ前記密度低減金属コア層の表面の天然酸化物層も含んでいない、
項目1-16のうちのいずれか1つに記載の金属積層体。
(項目18)
前記第1の連続金属シートを密度低減金属コア層に固着させる平面冶金学的ボンドは、(1)前記第1の連続金属シートの表面上の天然酸化物層を除去またはオーバーコーティングし、前記密度低減金属コア層の表面上の天然酸化物層を除去またはオーバーコーティングするステップと、(2)前記第1の連続金属シートおよび前記密度低減金属コア層をプレスロールするステップとを含むプロセスによって形成され、
前記第2の連続金属シートを密度低減金属コア層に固着させる平面冶金学的ボンドは、(1)前記第2の連続金属シートの表面上の天然酸化物層を除去またはオーバーコーティングし、前記密度低減金属コア層の表面上の天然酸化物層を除去またはオーバーコーティングするステップと、(2)前記第2の連続金属シートおよび前記密度低減金属コア層をプレスロールするステップとを含むプロセスによって形成される、
項目1-17のうちのいずれか1つに記載の金属積層体。
(項目19)
前記第1の連続金属シートおよび密度低減金属コア層をプレスロールするステップならびに前記第2の連続金属シートおよび密度低減金属コア層をプレスロールするステップは、前記第1の連続金属シートおよび前記密度低減金属コア層および前記第2の連続金属シートをプレスロールするステップとして同時に実施され、前記密度低減金属コア層は、前記第1および第2の連続金属シート間に挟装される、項目18に記載の金属積層体。
(項目20)
前記積層体の外面上に形成され、前記密度低減金属コア層の貫通孔のパターンからエンボス加工またはインプリントされたパターンを含む、項目1-19のうちのいずれか1つに記載の金属積層体。
(項目21)
積層体コイルを含む、項目1-20のうちのいずれか1つに記載の金属積層体。
(項目22)
金属積層体を製造する方法であって、
2つの外側連続金属層間に挟装される密度低減金属コア層を含む、金属積層体をプレスロールするステップであって、前記密度低減金属コア層は、コア金属を含み、前記コア金属の密度を下回る平均密度を有する、ステップと、
前記プレスロールするステップに先立って、前記密度低減金属コア層および前記金属積層体における別の層と接触する連続金属シートの各表面上の天然酸化物層を除去またはオーバーコーティングするステップと、
を含む、方法。
(項目23)
前記プレスロールするステップは、前記金属積層体の厚さにおいて50%またはそれを下回る圧下率を生産する、項目22に記載の方法。
(項目24)
前記プレスロールするステップは、前記金属積層体の厚さにおいて25%またはそれを下回る圧下率を生産する、項目22に記載の方法。
(項目25)
前記プレスロールするステップは、前記密度低減金属コア層の厚さにおいて60%またはそれを下回る圧下率を生産する、項目22-24のうちのいずれか1つに記載の方法。
(項目26)
前記プレスロールするステップは、前記密度低減金属コア層の厚さにおいて40%またはそれを下回る圧下率を生産する、項目22-24のうちのいずれか1つに記載の方法。
(項目27)
前記密度低減金属コア層は、前記コア金属の密度を下回る平均密度を伴う前記密度低減金属コア層を提供する、貫通孔を含む、項目22-26のうちのいずれか1つに記載の方法。
(項目28)
前記プレスロールするステップは、前記密度低減金属コア層の貫通孔を排除しない、項目27に記載の方法。
(項目29)
前記プレスロールするステップにおいて印加される圧力は、前記金属積層体の外面上に前記密度低減金属コア層の貫通孔のパターンをエンボス加工またはインプリントするために有効である、項目27-28のうちのいずれか1つに記載の方法。
(項目30)
前記プレスロールするステップは、前記2つの外側連続金属層を前記密度低減金属コア層に冶金学的に結合する、項目22-29のうちのいずれか1つに記載の方法。
(項目31)
前記密度低減金属コア層および前記金属積層体における別の層と接触する連続金属シートの各表面上の天然酸化物層を除去またはオーバーコーティングするステップの動作は、各前記表面上の天然酸化物層を除去するステップを含む、項目22-30のうちのいずれか1つに記載の方法。
(項目32)
前記除去するステップは、スパッタリングプロセスを使用して、各前記表面上の天然酸化物層を除去するステップを含む、項目31に記載の方法。
(項目33)
前記方法は、前記プレスロールするステップにおいて使用されるプレスローラと、各前記表面上の天然酸化物層を除去またはオーバーコーティングするステップにおいて使用される表面活性化デバイスとの両方を封入する密封封入体内で実施される、項目22-32のうちのいずれか1つに記載の方法。
(項目34)
前記金属積層体を積層体コイルとして配列するために、前記金属積層体を巻取りロール上で巻き取るステップをさらに含む、項目22-33のうちのいずれか1つに記載の方法。
(項目35)
前記方法は、前記金属積層体の製造においてはんだ付けまたはろう付けを実施するステップを含まない、項目22-34のうちのいずれか1つに記載の方法。
(項目36)
項目22-35のうちのいずれか1つに記載の方法を使用して製造される、金属積層体または積層体コイル。
【図面の簡単な説明】
【0027】
以下は、図面の簡単な説明であり、これは、本明細書に開示される例示的実施形態を例証することを目的として提示され、それを制限することを目的として提示されるわけではない。別様に示されない限り、図面は、図式的であり、必ずしも、縮尺通りに描かれない。
【0028】
図1図1および2は、それぞれ、密度低減金属コア層を伴う軽量金属積層体構造の上面図および側面図を図式的に示す。図1および2では、層は、左から右に移動して連続的に除去され、図1の上面図において下位層を示す。
図2図1および2は、それぞれ、密度低減金属コア層を伴う軽量金属積層体構造の上面図および側面図を図式的に示す。図1および2では、層は、左から右に移動して連続的に除去され、図1の上面図において下位層を示す。
図3図3は、上面図において示される、図1および2の積層体構造の密度低減金属コア層に関する1つの幾何学形状選択肢の詳細である。
図4図4は、層間に冶金学的ボンドを形成する例証的クラッディング処理を使用して、図1および2の金属積層体構造を製造するための好適な製造システムを例証する。
図5図5は、図4のシステムを使用してロールとして好適に製造される、図1および2の積層体の積層体ロールの斜視図を示す。
図6図6A-6Dは、図1、2、および5の積層体の密度低減金属コア層に関する4つの異なる貫通孔構成の概略上面図を示す。
図7図7および8は、本明細書に説明されるような実際に加工される積層体の表面(図7)および断面(図8)の写真である。
図8図7および8は、本明細書に説明されるような実際に加工される積層体の表面(図7)および断面(図8)の写真である。
図9図9および10は、密度低減開口部が選択されたパターンを画定する、例証的密度低減金属コア層の上面図を示す。
図10図9および10は、密度低減開口部が選択されたパターンを画定する、例証的密度低減金属コア層の上面図を示す。
図11図11は、密度低減開口部が金属積層体構造に対して異方性性質を提供するように配向される貫通スリットを含む、別の例証的密度低減金属コア層の上面図を示す。
図12図12は、図1および2の穿孔されたコア試料に関して本明細書に説明されるように測定された、荷重-偏向曲線を提示する。
図13図13および14は、そのそれぞれが密度低減金属コア層のスタックを含む、2つの積層体構造の側面図を図式的に示す。
図14図13および14は、そのそれぞれが密度低減金属コア層のスタックを含む、2つの積層体構造の側面図を図式的に示す。
【発明を実施するための形態】
【0029】
本開示は、その中に含まれる所望される実施形態および実施例の以下の詳細な説明を参照することによって、より容易に理解され得る。以下の明細書および続く請求項では、以下の意味を有するものと定義される、いくつかの用語を参照する。
【0030】
明確にするために、具体的用語が以下の説明において使用されるが、これらの用語は、図面における例証のために選択された実施形態の特定の構造のみを指すことが意図され、本開示の範囲を定義または限定することは意図されない。図面および以下に続く説明では、同様の数字指定は、同様の機能の構成要素を指すことを理解されたい。
【0031】
単数形「a」、「an」、および「the」は、文脈によって明確に別様に示されない限り、複数指示物も含む。
【0032】
用語「comprising(~を備える)」は、列挙された構成要素の存在を要求し、他の構成要素の存在も可能にするように本明細書で使用される。用語「comprising(~を備える)」は、列挙された構成要素のみの存在を可能にする用語「consisting of(~から成る)」と共に、列挙された構成要素の製造から生じ得る任意の混入物を含むように解釈されるべきである。
【0033】
数値は、同一の有効桁数まで四捨五入されると同一である数値と、値を判定するために本願で説明されるタイプの従来の測定技法の実験誤差未満だけ記載された値と異なる数値とを含むものと理解されたい。
【0034】
本明細書に開示される全ての範囲は、記載された端点を包括し、かつ独立して組み合わせ可能である(例えば、「2グラム~10グラム」の範囲は、端点である2グラムおよび10グラムと、全ての中間値とを包括する)。本明細書に開示される範囲の端点および任意の値は、精密な範囲または値に限定されず、それらは、これらの範囲および/または値に近似する値を含むように十分に曖昧である。
【0035】
量に関連して使用される修飾語「約」は、記載された値を包括し、文脈によって指示される意味を有する。範囲の文脈において使用されるとき、修飾語「約」はまた、2つの端点の絶対値によって定義される範囲を開示するものと見なされるべきである。例えば、「約2~約10」の範囲はまた、範囲「2~10」も開示する。用語「約」は、示される数の±10%を指し得る。例えば、「約10%」は、9%~11%の範囲を示し得、「約1」は、0.9~1.1を意味し得る。
【0036】
本明細書に開示されるいくつかの実施形態では、多層金属構造が、穿孔された(例えば、多孔性または拡張された)金属コアと、金属連続外側シートとを有する。より一般的には、金属コア層は、密度低減金属コア層であり、密度は、層密度を低減させる役割を果たす、穿孔、孔、または他の空間/空孔を含んでいない同一金属の同等の層と比較して、低減される。(本文脈では、「密度」は、金属コアの体積にわたる平均密度、すなわち、コア層体積によって除算されるコア層質量の比率として理解されるべきである。)多層金属構造は、構成要素重量を低減させる一方、高い強度および剛性を提供する。冶金学的に結合される金属シート材料は、いくつかの実施形態では、3ミリメートルを下回る実質的に均一な厚さの密度低減金属コア層を含むが、より大きい厚さも、想定され、2つの連続金属シートが、多孔性金属コアの主面に冶金学的に結合される。いくつかの実施形態では、各金属シートは、厚さが0.5ミリメートルを下回るが、より大きい厚さも、想定され、さらに、2つの連続金属シートは、概して、異なる厚さを有してもよい。
【0037】
そのような複合シートでは、連続金属シートは、ろう付け、はんだ付け、または接着剤の使用等の技法によって、密度低減金属コア層に固着され得る。しかしながら、そのような技法によって形成されたボンドは、構造的統合性を制限する中間層(ろう材料、はんだ材料、または接着剤)を含み、故に、ろう付け、はんだ付け、または接着剤を使用して形成された複合シートは、大きい歪みを生成する深絞り等の金属加工技法と適合しない場合がある。ろうおよび接着剤はまた、有意な厚さを有し、通常、大規模な処理、特に、リールツーリールプロセスにおいて均一に適用することが困難であり得る液体または溶融状態で適用される。冶金学的ボンド、つまり、介在するボンド材料および介在する酸化物層を全く伴わない原子レベルのボンドが、良好な構造的統合性を有し、高歪みを導入する金属加工プロセスと適合する。冶金学的ボンドはまた、「乾式形成」され、つまり、表面上に液体または溶融材料を堆積させることを伴わない。しかしながら、平面境界面にわたって冶金学的ボンドを得ることは、困難である。
【0038】
平面冶金学的ボンドを形成し得る一技法は、クラッディングであり、2つの金属シートが、高圧力下で、通常、ローラ間でともに圧接される。クラッディングは、表面酸化物を破壊し、2つのシート間に冶金学的ボンドを形成する。しかしながら、金属表面上の固有酸化物層を克服するために、高圧力が、印加されなければならず、高い圧下率(すなわち、層厚さの低減およびその厚さを横断する伸長として現れる圧縮塑性変形)をもたらす。密度低減金属コア層の場合では、高いクラッディング圧力は、密度低減金属コア層を、その(平均)密度が実質的に増大される、および/またはその構造的統合性が損なわれる程度まで圧縮もしくは変形し、それによって、その有益な特性を無効にし得る。
【0039】
本明細書に開示されるいくつかの実施形態では、冶金学的に結合される金属シートは、金属のマトリクスによって囲繞される多数の貫通孔を有する、多孔性金属コア(または、換言すると、貫通孔を伴う金属層)を含み、3ミリメートルを下回る実質的に均一な厚さを有し、同一サイズのシートの表面積の半分を下回るマトリクスの表面積をコアの主面上に有し、十分な強度を提供する。連続金属マトリクスの短いセグメントによって囲繞される、実質的に均一なパターンの孔を有する多孔性金属コアは、薄いシートがコアに冶金学的に結合されると、有利な機械的特性および低減された重量を有する、冶金学的に結合される金属シート材料のために好適なコアを提供する。
【0040】
本明細書に開示されるいくつかの実施形態では、連続金属シートによってクラッディングされる密度低減金属コア層を含む積層体が、以下の動作によって作製される。第1の主面、第2の主面、および多数の貫通孔、細孔、または他の密度低減特徴を有する、密度低減金属コア層が、提供される。それぞれ、2つの主面を有し、いくつかの実施形態では、0.5ミリメートルを下回る厚さを有する、2つの連続金属シートもまた、提供される。金属シートのそれぞれの主面のうちの少なくとも1つは、活性化される。密度低減金属コア層の主面は両方とも、活性化される。金属シート活性化表面は、密度低減金属コア層の活性化主面と接触させられ、金属シートは、0.1%~50%低減の圧下率(つまり、ロール動作によって生産されるスタックの合計厚さにおける0.1%~50%の低減)を伴うロール動作において密度低減金属コア層上に冶金学的に結合される(すなわち、密度低減金属コア層は、連続金属シート間に挟装される)。いくつかの好ましい実施形態では、圧下率は、合計スタック厚さにおける25%またはそれを下回る圧下率である。ロール動作は、金属シートおよび密度低減金属コア層が、冶金学的にともに結合されるようにする。それによって形成される平面冶金学的ボンドには、有機接着剤、ろう付けされた金属、またははんだがない(すなわち、これらの3つは、いずれも存在しない)。いくつかの例証的実施形態では、金属シート表面および密度低減金属コア層の表面の活性化は、好ましくは、スパッタリングによって達成される。
【0041】
概して、表面の活性化は、空気への暴露に起因して金属表面上に自然に存在する、汚染物質の除去を伴う。例えば、天然表面酸化物が、空気暴露に起因して存在する。種々の炭化水素等の他の汚染物質もまた、空気暴露された金属表面上に存在し得る。金属シートおよび密度低減金属コア層表面の活性化は、これらの汚染物質、特に、天然表面酸化物を除去することを伴う。スパッタリングが、1つの好適なアプローチであるが、清潔かつ酸化物のない金属表面を生産するための他の想定される表面活性化アプローチは、熱除去(表面酸化物を排除するために十分な温度まで加熱すること)を含む。他の表面活性化プロセスでは、表面酸化物および/または他の表面汚染物質は、除去されず、むしろ、物理蒸着プロセス(例えば、スパッタ堆積、真空蒸発等)を使用して、典型的には、10マイクロメートル(μm)またはそれを下回る厚さ、より好ましくは、2μmまたはそれを下回る厚さを伴う未処理金属層の薄いコーティングを用いてオーバーコーティングされる。オーバーコーティングされる未処理金属層は、金属シートと同一タイプの金属であってもよい、または異なる金属であってもよい。ステンレス鋼シートの表面のオーバーコーティングに関して、オーバーコーティングする未処理金属層は、非限定的実施例として、ニッケル、アルミニウム、鉄、銅、またはチタン金属層であってもよい。薄いことに加えて、オーバーコーティングされる未処理金属層の表面は、酸化物層を有するべきではない。より一般的には、表面活性化は(天然酸化物の除去またはオーバーコーティングによるかにかかわらず)、活性化表面の急速な再酸化を防止するために、制御された雰囲気、例えば、真空または不活性ガス中で実施される。
【0042】
制御された大気(例えば、不活性または真空)中での酸化物除去を含む表面活性化後、密度低減金属コア層上に連続金属シートのクラッディングを実施することによって、クラッディング圧力は、冶金学的平面ボンドを形成するために酸化物層を破壊しなければならない従来のクラッディングプロセスと比較して、実質的に低減されることができる。低減されたクラッディング圧力は、細孔、貫通孔、または他の密度低減特徴の圧縮塑性変形を低減もしくは排除することによって、密度低減金属コア層がその低減された密度をより良好に保持することを可能にする。冶金学的ボンドを伴う軽量積層体材料が、それによって、得られ、これは、構造的にロバストであり、大きい歪みを導入する深絞り等の金属加工プロセスに対して好適である。
【0043】
一方、印加されるクラッディング圧力、密度低減金属コア層の貫通孔または他の密度低減特徴のサイズおよび形状、クラッディングする連続金属シートの厚さ、剛性、または他の性質、ならびに場合によっては他の要因に応じて、密度低減金属コア層および連続シート材料の結合の結果は、結果として生じる積層体シートが、密度低減金属コア層の貫通孔または他の開口部のパターンに対応する表面パターンを呈することであり得る。そのようなパターニングは、密度低減金属コア層の貫通孔への連続金属シートのわずかな変形(すなわち、わずかな「膨らみ」)に起因する、または貫通孔対マトリクスにわたる積層体表面上の結合ロールの差圧に起因する表面テクスチャ変化に起因し得る。動作の任意の特定の理論に限定されるわけではないが、クラッディング中、貫通孔にわたって付与される圧力は、表面シートの非常に小さい弾性偏向に起因して、コアの「マトリクス」にわたる面積において付与される圧力を下回ると考えられる。その結果、表面が結合後に平坦である(すなわち、貫通孔への表面シートの測定可能な膨らみを含んでいない)場合であっても、テクスチャ差異が、表面上にパターンをエンボス加工またはインプリントし得るクラッディングされた表面シートの暴露された表面上に存在する。この効果は、有利であり、例えば、密度低減金属コア層の貫通孔のための装飾パターンを選定することによって、結合される積層体複合材料に意図的に設計された装飾表面性質を提供し得ることを、本明細書において認識されたい。そのようなパターンは、例えば、モバイルデバイスの金属筐体のための複合材料を使用して、消費者用電子機器製造者のロゴを表し得る。他の用途では、表面パターニングは、有益なこととして、摩擦を増加させる、または他の有用な表面性質を提供し得る表面テクスチャリングもしくは粒度を提供し得る。
【0044】
結果として生じる複合積層体材料は、固体シート金属構造構成要素のためのコスト効果の高い代替物として使用されるために十分な強度および剛性を伴って構築されることができる。複合積層体材料は、軽量、剛性、従来の金属加工方法によって形成可能、特性において均一であり得、製造が低コストであり、有機接着剤、ろう付け化合物、またははんだが存在しない。
【0045】
本明細書に開示される構成要素、プロセス、および装置のより完全な理解が、付随の図面を参照することによって得られることができる。図面は、本開示を限定することを目的としてではなく、本開示の好ましい実装を例証することのみを目的として提供される。
【0046】
図1および2は、それぞれ、3つの層を有する積層体シート材料10の上面(すなわち、平面)図および側面図を示す。積層体シート材料10は、図1において示される幅Wと、矢印Lによって示される長さ方向とを有する。典型的なロールツーロール製造プロセス(図4および5を参照して本明細書に後で説明される例証的実施例)では、ロールは、幅Wを有し、長さ方向Lに延在する(すなわち、巻回される)。故に、図1および2は、方向Lに沿って切断される積層体シートの一部または切断された長さを例証する。
【0047】
積層体シート材料10は、金属の連続薄シート(すなわち、層)である上面金属層12を含む。一実施形態では、上面層12は、0.1ミリメートルの厚さの近傍にあり得、ステンレス鋼の連続シートであるが、より大きいまたはより小さい厚さも、想定される。密度低減金属コア層14は、上面金属層12と幅Wが等しく、貫通孔22を囲繞する短い相互接続金属セグメント20を含む(詳細図3もまた参照)。図3の詳細図面に最良に見られるように、密度低減金属コア層14がハニカムパターンの貫通孔を有するように、例証的貫通孔22は、六角形の孔である。ハニカムパターンは、六角形の開口部22が非常に対称的な正則格子を形成し得るため、有利であるが、本明細書に説明されるように、密度低減金属コア層14は、多種多様な密度低減開口部、貫通孔、ポート、間隙付きファイバメッシュ等を有することができる。密度低減金属コア層14は、所望される材料性質を有するように選択される金属から加工される。一例証的実施例では、密度低減金属コア層14は、アルミニウムまたはアルミニウム合金であり、約0.5ミリメートルの厚さである(但し、再び、これは、単に実施例であり、より大きいまたはより小さい厚さも、想定される)。他の実施形態では、密度低減金属コア層14は、最大3ミリメートルの厚さを有することができる(但し、再び、より大きい厚さも、想定される)。他の実施形態では、密度低減金属コア層14は、チタン、ステンレス鋼、炭素鋼、または銅等の別の金属から成る。
【0048】
密度低減金属コア層14は、ダイカッティング、スタンピング、または他の方法によって作製され、金属マトリクス要素20間に空間22を有する金属シートを生産することができる。種々のプロセスが、空間22を打ち抜き、それぞれのパターンの孔を形成することによって、穿孔された金属を作成するために採用されてもよい。別の好適なプロセスは、短く離間されたスリットを伴う金属シートを切断し、金属シートを延伸させ、金属シートを塑性的に変形させ、それによって、これらのスリットを貫通孔22に拡張させることによって、空間22を形成するように金属シートを拡張させるステップを含む。この拡張される金属プロセスの利点は、シートにおける全ての金属が使用され、いかなる打ち抜き廃棄物も作成されないことである。(拡張される金属プロセスでは、全体的長さが増加される一方、質量は同一に留まり、したがって、平均密度=質量/体積が減少するため、シートの密度は、体積を拡大させることによって低減されることに留意されたい。)
【0049】
貫通孔を採用する代わりに、密度低減金属コア層は、他の密度低減空間構成を有することができる。例えば、密度低減金属コア層は、織成または溶接されたワイヤメッシュもしくはスクリーンであってもよく、密度低減は、織成された金属繊維を囲繞する大量の孔または空気空間によって達成される。細孔、貫通孔、または同等物を含まない同一金属の連続金属シートと比較して、低減された密度を伴う密度低減金属コア層を加工するための他のアプローチも、想定される。いくつかの例証的実施例では、密度低減金属コア層は、コアの合計面積によって除算される開口面積の量によって判定されるように、体積比約10%~約90%の多孔率を有する。言い換えると、これらの実施形態では、密度低減金属コア層14は、コア金属の密度を包括する10%~90%の平均密度を有する(「コア金属の密度」は、コア金属の密度、すなわちコア金属材料の密度であり、これは示強性である)。より具体的な実施形態では、多孔率は、少なくとも50%である(つまり、密度低減金属コア層14の平均密度は、コア金属の密度の50%またはそれを下回る密度である)。いくつかの実施形態では、密度低減金属コア層14の多孔率は、25%~90%である(つまり、密度低減金属コア層14の平均密度は、コア金属の密度を包括する10%~75%である)。いくつかの実施形態では、密度低減金属コア層14の多孔率は、50%~90%である(つまり、密度低減金属コア層14の平均密度は、コア金属の密度を包括する10%~50%である)。
【0050】
積層体シート材料10はさらに、薄い連続金属シート(すなわち、連続金属層)である底面金属層16を含む。例証的実施例では、上面層12および底面層16は両方とも、ステンレス鋼であり、約0.1ミリメートルの厚さである。積層体10では、密度低減金属コア層14は、2つの外側連続金属シートまたは層12、16間に挟装される。2つの連続金属シートまたは層12、16は、積層体10の外側「皮膜」を形成し、故に、時として、(外側)金属皮膜12、16と称される。他の実施形態では、上面層12および底面層16は、同一または異なる厚さを有し、いくつかの実施形態では、最大0.5mmの厚さを伴うことができる。再び、これらは、単に、例証的実施例であり、他の厚さ(例えば、0.5mmを上回る厚さ)もまた、想定される。いくつかの実施形態では、2つの層12、16は、いくつかの用途に対して有利であり得る対称性を提供する、同一の厚さを有する(例えば、したがって、シート12、16のどちらが構造における「上面」シートとして採用されるかは問題ではない)が、この対称性は、要求されない。
【0051】
種々の産業において商業的価値を伴う例証的実施形態では、連続金属シート12、16は、ステンレス鋼シートである一方、密度低減金属コア層14は、アルミニウムまたはアルミニウム合金金属である。他の実施形態では、上面および底面金属層は、アルミニウム、チタン、炭素鋼、または銅である。再び、2つの層12、16は、場合によっては有利な対称性を提供する同一の材料から作製され得るが、これは、要求されない。また、密度低減金属コア層14が、連続金属シート12、16と同一の材料から作製されることが想定されることにも留意されたい。
【0052】
密度低減金属コア層14はまた、比較的に薄く、好ましい実施形態のように、その質量の半分を上回るものが、貫通孔または他の密度低減空孔特徴の作成において除去されている。3つの層12、14、16は、平面冶金学的ボンド18によってそれらの接触する表面においてともに冶金学的に結合される、すなわち、層の金属は、有機接着剤、ろう付け化合物、またははんだの存在なしに、相互に直接結合される。この積層体シート材料10の作成は、接触する金属表面の活性化後の天然表面酸化物の再形成を防止するために、真空、不活性ガス、または他の制御された大気中で実施される製造技法を採用する。(さらに、接触する表面を活性化させるために好適に使用される多くの表面活性化技法は、ある制御された大気、例えば、スパッタリングガス等を用いてバックフィルされた真空中でのみ実施されることができる。)種々の実施形態では、コアの厚さは、積層体材料の合計厚さの少なくとも50%であり、いくつかの好ましい実施形態では、金属積層体の合計厚さの約50%~約95%である。
【0053】
本明細書に使用されるように、用語「アルミニウム」は、純粋なアルミニウムと、アルミニウム合金とを含む。例えば、密度低減金属コア層14は、1000シリーズアルミニウム合金(すなわち、最小99重量%のアルミニウム含有量を含有する合金)、2000シリーズ合金(すなわち、銅を含有する合金)、3000シリーズ合金(すなわち、マンガンを含有する合金)、4000シリーズ合金(すなわち、シリコンを含有する合金)、5000シリーズ合金(すなわち、マグネシウムを含有する合金)、6000シリーズ合金(すなわち、マグネシウムおよびシリコンを含有する合金)、7000シリーズ合金(すなわち、亜鉛を含有する合金)、または8000シリーズ合金(すなわち、他のシリーズによって網羅されていない他の要素を含有する合金)等のアルミニウム合金等のコア金属を含み得る。ある産業用途においてコア金属として特に好適であり得るいくつかの具体的合金は、2024、5052、6061、または7075を含む。
【0054】
ここで図4を参照すると、積層体シート材料10を作成するための例証的方法および装置が、説明される。第1の供給ロール30が、積層体10において上面連続金属層12を形成する第1の連続金属シート32のコイルを支持する。第2の供給ロール34が、積層体10において底面連続金属層16を形成する第2の連続金属シート36のコイルを支持する。第3の供給ロール40が、積層体10において密度低減金属コア層14を形成する密度低減金属シート42のコイルを支持する。シート42は、供給ロール40上に巻回される前に事前穿孔されることができるか、または代替として、シート42は、随意のダイカッティングロール44または同等物によって穿孔される連続金属シートであり得る。第1の連続金属シート32、第2の連続金属シート36、および密度低減金属シート42はそれぞれ、それらのそれぞれの供給ロール30、34、40からそれぞれの活性化装置に牽引される。第1の連続金属シート32は、第1の電極ロール52の一部の周囲に巻着し、第1の活性化デバイス54が、第1の電極ロール52に隣接して支持される。例えば、活性化デバイス52は、スッパンタリングデバイスであり得、プラズマが第1の電極ロール52と第1の活性化デバイス54との間に生成され、これは、第1の電極ローラ52に対して係合されていない第1の連続金属シート32の表面を活性化する。この活性化は、不純物、酸化物、および第1の連続金属シート32のさらなる処理への他の障害を除去する(例えば、スパッタリング処理する)。いくつかの好適なスパッタリングデバイスが、例えば、Saijo et al.による、米国特許第6,150,037号およびSaijo et al.による、米国特許第7,175,919号(参照することによって本明細書に組み込まれる)に説明される。他の実施形態では、活性化は、好適な金属層を用いてオーバーコーティングすることにより、酸化物/不純物層を「埋める」ことによる。いくつかの好適なオーバーコーティングアプローチが、例えば、Yano et al.による、米国特許第6,455,172号およびMarancikによる、米国特許第4,011,982号(参照することによって本明細書に組み込まれる)に開示される。同様に、第2の連続金属シート36は、第2の供給ロール34から牽引され、第2の電極ローラ56の周囲に部分的に巻着し、第2の電極ローラ56に隣接して支持される第2の活性化デバイス58が、第2の連続金属シート36の暴露された表面を活性化する(例えば、スパッタリング処理する)。
【0055】
(使用される場合、ダイカッティングローラ44を通過した後の)密度低減金属シート42は、第3の活性化デバイス60と第4の活性化デバイス62との間を通過され、例えば、スパッタリングによって、シート42の対向する側を再び活性化する。図4に示される構成では、両面は、シート42がデバイス60、62間を通過すると同時に活性化され、代替として、本処理は、連続的に実施されてもよい(図示せず)。第3および第4の活性化デバイス60、62が示されるように対向して配置される場合、金属シート42への電気接触が、隣接する支持ローラまたは同等物(図示せず)を通して提供されることができる。
【0056】
活性化に続いて、金属シート32、36、42は、隣接させられ、プレスロール72、72間でともに圧接される。制御された圧縮力が、それらを低低減固体状態結合プロセスにおいて冶金学的にともに結合し、図1および2の積層体10を形成するように印加される。プレスロールする前に天然酸化物が除去される、または薄い金属層を用いてオーバーコーティングされる(つまり、それ自体に天然酸化物が存在しない)ため、冶金学的ボンド18は、従来のクラッディングプロセスと比較してはるかに低い圧縮力において形成されることができ、より低い圧縮力は、密度低減金属コア層14の低減された変形を伴うクラッディングを可能にする。圧縮力は、材料に導入される塑性変形の観点から有用に定量化されることができる。例えば、いくつかの実施形態では、圧接力は、プレスロール72、74に供給される連続金属シート32、34および金属コア材料42の長さと比較すると、プレスロール72、74から退出する積層体シート材料10の長さにおいて10%を下回る変化を提供するように制限される。加えて、または代替として、積層体の厚さにおける低減は、圧縮力のメトリックとして使用されてもよい。結果として生じる積層体10が軽量に(つまり、全体的密度が低く)なることが意図されるため、プレスロールすることによって導入される塑性圧縮(すなわち、厚さ低減)の量を制限することが所望される。言い換えると、プレスロールするプロセスによって導入される厚さの低減によって測定されるような低い圧下率を有することが所望される。接触する活性化表面が、通常の天然酸化物を有する接触表面と比較して、プレスロール中に冶金学的ボンドをはるかに容易に形成するため、低い圧下率が、図4の装置を部分的に使用して達成される。「天然酸化物」は、空気への金属表面の非常に短い暴露であっても、それに応じて、鋼およびアルミニウムの表面を含む、殆どコーティングされていない、または未処理金属表面上に本質的に形成される酸化物層である。プレスロールする前に結果として生じる積層体において他の層と接触する層の表面の酸化物層を除去することによって、冶金学的ボンド18を形成するために印加される必要がある力(または圧力)は、大幅に低減され、これは、順に、圧下率を大幅に低減させる。いくつかの実際に実施された実験では、25%またはそれを下回る圧下率が、積層体10全体に対して達成される。(つまり、プレスロールすることによって導入される層のスタックの厚さにおける低減率は、25%またはそれを下回る。)より一般的には、圧下率は、50%またはそれを下回る圧下率に保たれることが好ましい。これらの値は、全体としてのスタックに対するものである。密度低減金属コア層14は、貫通孔、孔を有する、コア金属の織成または溶接されたワイヤメッシュもしくはスクリーンとして構築される、または別様にコア金属の密度と比較して低い平均密度を有するため、密度低減金属コア層14の圧下率は、全体としてのスタックの圧下率を上回るであろうことが予期される。例えば、全体としてのスタックが25%またはそれを下回る圧下率を呈する実際に実施された実験では、(貫通孔とともに形成された)密度低減金属コア層14の圧下率は、より大きい、例えば、30%であった。概して、密度低減金属コア層14の圧下率は、好ましくは、60%またはそれを下回り、より好ましくは、40%またはそれを下回る。さらに、密度低減金属コア層14が貫通孔を含む実施形態では、プレスロールすることは、好ましくは、貫通孔を排除しない(但し、それらの寸法は、プレスロールすることによって改変され得る)。
【0057】
継続して図4を参照し、さらに図5を参照すると、プレスローラ72、74から出力された冶金学的に結合された積層体シート材料10は、巻取りロール80上に好適に巻き取られる。図5は、幅Wを有し、外側連続金属シート12、16によってクラッディングされ、(当然ながら、積層体コイル100において巻回された構成である)平面冶金学的ボンド18によってともに結合された密度低減金属コア層14を含む、積層体10のロールを含む巻回された積層体または積層体コイル100を例証し、そこから、図1に示される積層体10の一部が、好適に切断され得る。有利なこととして、冶金学的ボンド18は、積層体コイル100の巻回された構成においてそれらの統合性を維持する、強いボンドである。随意に、積層体を冶金学的に結合した後、熱処理が、ストランドまたはバッチプロセスにおいて実施され、接触する層間に拡散を駆動し、界面接着を改良してもよい。
【0058】
特に、図4を再び継続して参照すると、図4の製造装置全体は、密封封入体82内に含有される。密封封入体82は、真空ポンプ84の動作によって低減された圧力に保たれる真空チャンバであり得る。低減された圧力は、活性化デバイス54、58、60、62に隣接して生じる活性化プロセスにおいて有用である。有意に低減された圧力はまた、活性化後の材料の酸化を防止することを補助し、プレスロール72、74によって実施されるクラッディングをサポートする。低減された圧力に加えて(またはその代わりに)、密封封入体82内に含有される制御された大気は、不活性大気であり、例えば、アルゴン等の不活性ガスを用いてバックフィルされてもよい。
【0059】
図6を簡潔に参照すると、密度低減金属コア層14は、種々の貫通孔構成を採用することができる。図6Aは、再び、図1および3の実施形態のハニカム貫通孔パターンを例証し、密度低減金属コア層14が六角形の開口部22を囲繞する金属マトリクス20を含むように、六角形の開口部22が、シートに形成される。他の幾何学形状を伴う開口部も、想定される。例えば、図6Bは、(六角形ではなく)円形の開口部のハニカム構造を例証する。図6Cは、正方形の開口部の正則デカルトアレイ構造を示す。また、開口部は、異なる程度の異方性を有し得ることも理解されたい。例えば、異方性の菱形の開口部を備える構造が、図6Dに描写される。異方性の開口部を採用することは、有利な異方性性質、例えば、異なる方向において異なる量の剛性を伴う積層体を提供することができる。
【0060】
ここで図7および8を参照すると、積層体10の形態の試料シートが、図4を参照して実質的に説明されるようにクラッディングされた。密度低減金属コア層14は、図6Bに図式的に示されるような円形の開口部を採用した。初期3層試料は、50%の開口面積を伴う0.0224インチの穿孔された5052アルミニウムコアを含む密度低減金属コア層の両側上に、0.0063インチのステンレス301皮膜(連続金属シート12、16に対応する)を伴い、全体的に0.035インチゲージであった。積層体の表面は、図7に示される一方、図8は、積層体の断面画像を示す。図7および8の真空クラッディング実験では、コアゲージ(つまり、密度低減金属コア層の厚さ)は、0.032インチから0.0224インチに減少し、ゲージ(厚さ)における30%の低減に対応した。一方、外側連続ステンレス鋼クラッディングシートは、0.0063インチの厚さであり、真空クラッディング後にその厚さのままで測定された。全ての3つの層を組み合わせると、ゲージ(厚さ)における全体的な低減は、21.5%であった。つまり、本実施例におけるロール動作によって引き起こされる合計圧下率は、合計厚さにおいて21.5%の低減であり、密度低減金属コア層の圧下率は、厚さにおいて30%の低減であった。
【0061】
図7に見られるように、穿孔されたコアにおける円形の開口部は、積層体の外側上に、視覚的に容易に感知されるパターン(すなわち、「ディンプル」)模様を生成した。図8の断面図は、これらのディンプルが貫通孔へのクラッディング鋼のわずかな突起または膨らみに起因することを示す。この模様は、貫通孔が(連続金属シート12、16の厚さに対して)大きいことに起因し、この表面模様は、密度低減金属コア層に対して同一(平均)密度を維持するように、鋼皮膜厚さに対してより多い数のより小さい貫通孔を使用することによって抑制されることができる。ディンプルはまた、加えて、または代替として、プレスローラ72、74によって印加される圧縮力を低減させることによって抑制されてもよい。この圧縮力を最適化し、ディンプル模様を最小限にしながら、所与の用途のために十分に強い平面冶金学的ボンド18を提供することは容易である。
【0062】
一方、いくつかの用途に関して、図7に見られるもの等、連続金属シート12、16の外面上に密度低減金属コア層14の貫通孔のパターンをインプリントすることが、審美的な理由から、または表面摩擦を増加させるため等、望ましくあり得る。
【0063】
図9を参照すると、例えば、密度低減金属コア層14の貫通孔は、随意に、図9に示される「日輪」パターン、または製造者のロゴ、もしくは製造品のブランド名等の選定されたパターンに形成されることができる。開口部は、密度低減金属コア層14に対して平均密度において意図される低減を提供するために依然として十分な総面積であるように選定されるが、それらの具体的配置は、結果として生じる積層体10の表面上に所望されるパターンをインプリントするように選定される。
【0064】
図10を参照すると、いくつかの実施形態では、図9に示される日輪パターンは、密度低減金属コア層14の貫通孔パターンの繰り返し単位セルとしての役割を果たす。ここでは、各単位セルの貫通孔の合計面積を調節することに加えて、隣接する単位セル間の間隔は、密度低減金属コア層14に対して所望される平均密度低減を達成するように調節されることができる。
【0065】
図11を参照すると、本アプローチの延長として、非対称パターンの貫通孔(例えば、貫通孔の長さ断面方向が略整合パターンに配列される、非対称断面の貫通孔および/または一方向に沿ったその間隔が、横方向に沿ったものよりも小さい貫通孔)が、全体的質量を所望される軽量値に保ちながら、性質を複合積層体10の一方向に最適化するように採用されてもよい。例証的な図11は、全てが同一方向に配向される、伸長貫通孔(すなわち、貫通スロット)を採用する。より低い程度の異方性を伴う、そのような異方性貫通孔パターンの別の実施例が、図6Dに示される。本アプローチは、所望される積層体重量を達成するために、全体的開口面積を標的値に保ちながら、積層体10のある材料性質が一方向に最大限にされることを可能にする。例えば、図11の異方性貫通スロットは、有利な異方性のシート導電率もしくはシート熱伝導率、異方性の機械的性質等を提供し得る。
【表1】
【0066】
表1を参照すると、積層体試料が、それらの機械的性質に関して試験された。コイル(例えば、図5のような積層体コイル100)が、表1に列挙されるように、外側皮膜(シート)層のためにステンレス鋼を使用し、円形穿孔(図6B)および菱形穿孔(図6D)の両方を伴う種々のアルミニウム密度低減金属コア層を有するように加工された。合計の結合された厚さは、0.37~0.90mmに変動し、コアにおける開口面積パーセンテージは、50%~67%に及んだ。実施例番号5は、図7および8に撮像される試料に対応する。
【0067】
積層体10の試料に関する有効曲げ弾性率が、印加された荷重における梁偏向を弾性率に結び付ける周知の梁曲げ方程式
【数1】
を利用して実験的に特性評価された。式中、Pは、片持ち梁の遠位端に印加される力であり、lは、梁長さであり、wは梁幅であり、tは、梁厚さである。δmaxと表される梁の最大偏向は、
【数2】
によって与えられ、式中、
【数3】
である。
【0068】
図12を参照すると、実験的な荷重-偏向曲線が、図1および2の穿孔されたコア試料に関して示される。傾向線を図12に示される線形弾性領域に適合することによって、有効曲げ弾性率が、計算された。つまり、荷重-偏向曲線の線形部分が、曲弾性率Eを実験的に判定するために使用された。図1および2の複合材料の有効曲げ弾性率は、151GPaであると見出された。
【0069】
曲げ時、複合梁構造の剛性は、梁の上面および底面上の材料の剛性によって大きく左右される。この曲弾性率は、
【数4】
と定義され、式中、Eは、各層の弾性率であり、Iは、各層に対する慣性モーメントである。図1および2の積層体10のもの等の3層挟装構造に関して、皮膜層(I)およびコア(I)に対する慣性モーメントは、
【数5】
および
【数6】
であり、式中、tは、コア材料の厚さであり、tは、全体的複合厚さであり、bは、梁の幅である。
しかしながら、穿孔されたコアに関して、コアの有効幅bは、因数(1-f)によって低減されるようにモデリングされ、
【数7】
をもたらすことができ、式中、fは、穿孔によって除去されるコア材料の割合である。これらの方程式を使用して、予測された曲げ弾性率値が、先に説明されたような片持ち曲げ測定値から実験的に判定されたものと比較された。これらの結果が、表1の実施例に対して表2に提示される。
【表2】
測定および計算された曲弾性率値の良好な一致は、密度低減金属コア層14を含む積層体構造10が、剛性、軽量、かつ形成可能な材料を提供していることを確認する。
【0070】
剛性軽量梁として使用するための材料の比較のために、Ashbyによって元々開発された共通メトリックが、使用される。このメトリックは、メトリックE1/2/ρによって材料を比較し、より大きい値は、剛性軽量梁としての優れた性能に対応する。表3は、表1の例示的複合材料に関して測定された値を、アルミニウム、鋼、およびチタン等の一般的なスタンピングおよび形成される金属に関する公表値と比較する。
【表3】
【0071】
表3に提示されるE1/2/ρ値によって実証されるように、図1および2の積層体10は、従来の金属と比較して、軽量曲げ材料として優れた性能を提供することが可能である。さらに、複合積層体10の製造は、ロールツーロール処理を使用して経済的であり、結果として生じる積層体は、強い冶金学的ボンドに起因して、スタンピングおよび形成等の従来の金属加工と適合する。
【0072】
表1の実際に加工された試料は、穿孔されたアルミニウムコア層にわたって結合された鋼連続金属シートを含む。実際に加工された積層体材料の特徴は、低減された重量(例えば、公称上、鋼よりも60%軽い)と、増加された剛性(例えば、公称上、アルミニウムよりも2倍剛性である)と、大量生産スタンピングプロセスにおいて完全に形成可能であることとを含む。
【0073】
鋼/アルミニウム構造が試験試料として加工されたが、開示されるアプローチは、より一般的には、他の金属組み合わせにも適用可能である。表4は、いくつかの他の想定される積層体構造を列挙する。表4は、積層体10のためのいくつかの好適な金属組み合わせの非限定的リストとして理解されるべきであり、積層体10は、他の金属組み合わせを含み得ることを理解されたい。
【表4】
【0074】
金属組み合わせ毎に、種々の合金および材料硬度が、利用可能である。例えば、表4のアルミニウム/アルミニウム複合材は、2024、3003、6061、または7075等の等級から構築されてもよい。熱処理可能アルミニウム等級に関して、強度を増加させるために、スタンピングおよび形成後に析出硬化処理が、含まれることができる。金属の種々の組み合わせが、積層体10のための具体的性質を達成するために使用されてもよい。例えば、表4の鋼/鋼組み合わせは、構成要素重量を低減させながら、また、高温安定性を達成するために使用されてもよい。
【0075】
前述の実施例では、3つの層、すなわち、単一の密度低減金属コア層14と、2つのクラッディング連続金属シート12、16とを含む複合積層体構造10が、採用された。しかしながら、コアを非常に低い密度に維持しながら可能な限り外側鋼皮膜を分離させるために、複数の密度低減金属コア層を層化することが有益であり得る。2つまたはそれを上回る密度低減金属コア層のスタックを採用することは、合計コア厚さを保ちながら、各層の貫通孔のサイズを小さく保つことを促進する。アクセス可能な穿孔寸法と厚さとの間には、相関が存在し、概して、穿孔サイズ(例えば、円形断面の貫通孔の直径として、または六角形断面を伴う貫通孔の最大直径として測定される)は、コア層の厚さの少なくとも1~2倍であり、好ましくは、さらに大きくあるべきである。しかし、図7および8を参照して説明されるように、大きいサイズの貫通孔は、積層体の表面上にディンプルの形成をもたらし得、これは、いくつかの用途に対して望ましくない場合がある。それに反して、より薄い個々のゲージを伴う2つまたはそれを上回る密度低減金属コア層のスタックは、厚いコアを維持しながら、小さい穿孔および開口面積の大きな割合を可能にするであろう。
【0076】
図13を参照すると、積層体が、図1および2の積層体10と類似し、クラッディング連続金属シート12、16を含むが、しかしながら、図1および2の実施形態の単一の密度低減金属コア層14は、図13の実施形態では、3つの密度低減金属コア層14、14、14のスタックによって置換される。この3層コア構成は、高強度連続クラッディングシート12、16のより広い分離を可能にし、これは、この分離に対して密度を(さらに)低減させながら、大きい曲げ剛性を維持する。3つの密度低減金属コア層14、14、14のスタックはまた、全体的コア厚さに対してより小さい細孔サイズを可能にする。そのような多コア層設計では、3つの密度低減金属コア層のスタックにおける密度低減金属コア層の数は、例証的な3つの層以外のものであり得る(例えば、2つの層、3つの層、4つの層等であり得る)ことを理解されたい。そのようなスタックにおいてより微細な細孔幾何学形状を提供することはまた、表面を平坦に保つことに役立つ。
【0077】
図13の積層体は、付加的源シートロールが必要とされ得ることを除いて、図4を参照して先に説明されたものと同一の低低減結合プロセスを使用して加工され得る。複数の層結合を達成するために、ローラを通した2回またはそれを上回る通過が、図13のより大きい層のスタックを蓄積するために利用され得る。(実際には、図1および2の3層積層体10であっても、2回の通過、例えば、層12、14の間に冶金学的ボンドを形成するための1回および層14、16の間に冶金学的ボンドを形成するための第2の通過を採用することが想定される。)(天然酸化物の除去またはオーバーコーティングによるかにかかわらず)別の層に継合する表面毎に表面活性化を実施する(つまり、密度低減金属コア層14に接触する連続クラッディング層12の表面を活性化し、密度低減金属コア層14の両面を活性化し、密度低減金属コア層14の両面を活性化し、密度低減金属コア層14の両面を活性化し、密度低減金属コア層14に接触する連続クラッディング層16の表面を活性化する)ことによって、強い平面冶金学的ボンドが、境界面のそれぞれ(つまり、層12と14との間、および層14と14との間、および層14と14との間、および層14と16との間)に形成される。
【0078】
図14を参照すると、密度低減金属コア層のスタックを採用する別の利点は、スタックの異なる層が、異なる材料から作製され得ることである。例えば、図14の例証的積層体は、3つの密度低減金属コア層のスタックを含み、外側の2つの密度低減金属コア層14outerは、1つの金属から作製され、共通貫通孔幾何学形状を有し、内側の密度低減金属コア層14innerは、異なる金属から作製される、および/または外側層14outerと比較して異なる貫通孔幾何学形状を有する。例えば、中間コア14innerは、最低密度のために最適化され得る一方、外側コア層14outerは、(図7および8を参照して先に説明されたものと同一の機構を使用して)積層体の表面上に所望されるインプリントパターンを提供するように最適化される。所望されるパターンは、ロゴ、画像、または視覚的に魅力的な表面仕上げであり得る。複数の層はまた、各層において異なる剛性および/または密度性質を伴うストリップの性質を調整するためにも利用され得る。
【0079】
金属積層体は、航空宇宙、自動車、および消費財用途においてスタンピングされた金属を現在使用する、多様な用途のために使用されることができる。特定の用途は、軽量構造パネル、電気導管ライン、バンパまたはフェンダ、電子封入体、および同等物を含むことができる。複合積層体の他の使用も、当業者に容易に想起されるであろう。金属積層体の固有の難燃性およびコアと皮膜材料との間の冶金学的境界面の温度安定性は、航空宇宙および自動車産業に対して特に有利な性質である。
【0080】
本開示は、好ましい実装に関して説明された。修正ならびに改変が、本明細書の熟読および理解に応じて他者に想起されるであろう。添付される請求項またはその均等物の範囲内にある限りにおいて、全てのそのような修正および改変を含むことが、本発明者によって意図される。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14