(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-01
(45)【発行日】2022-07-11
(54)【発明の名称】露出面のための構造パネル
(51)【国際特許分類】
B64C 1/00 20060101AFI20220704BHJP
B64C 1/12 20060101ALI20220704BHJP
B32B 5/18 20060101ALI20220704BHJP
B32B 15/082 20060101ALI20220704BHJP
【FI】
B64C1/00 B
B64C1/12
B32B5/18
B32B15/082 B
【外国語出願】
(21)【出願番号】P 2018082872
(22)【出願日】2018-04-24
【審査請求日】2021-04-09
(32)【優先日】2017-04-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】504019881
【氏名又は名称】ロッキード マーティン コーポレイション
【氏名又は名称原語表記】LOCKHEED MARTIN CORPORATION
【住所又は居所原語表記】6801 Rockledge Drive, Bethesda, MD 20817, U.S.A.
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100088694
【氏名又は名称】弟子丸 健
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100095898
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(72)【発明者】
【氏名】スティーヴン エドワード ブロック
(72)【発明者】
【氏名】ヴェルネシア シャラエ メレディス
(72)【発明者】
【氏名】チャールズ ジェイ ノヴァク
【審査官】志水 裕司
(56)【参考文献】
【文献】米国特許出願公開第2003/0057017(US,A1)
【文献】米国特許出願公開第2011/0318564(US,A1)
【文献】特開平02-102894(JP,A)
【文献】米国特許第05154373(US,A)
【文献】米国特許出願公開第2011/0039073(US,A1)
【文献】韓国登録特許第10-1054335(KR,B1)
【文献】米国特許出願公開第2009/0181237(US,A1)
【文献】米国特許出願公開第2015/0355367(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B64C 1/00
B64C 1/12
B64D 15/00
B32B 5/18
B32B 15/082
(57)【特許請求の範囲】
【請求項1】
航空機であって、
外面と、前記航空機の前記外面に結合された複数のパネルと、を備え、
各パネルは、
金属発泡層であって、前記パネルを前記航空機の前記外面に結合するための第1の表面と、前記第1の表面の反対側の第2の表面と、前記金属発泡層内の複数の細孔と、を含む前記金属発泡層と、
前記金属発泡層の前記第2の表面上に堆積した超疎水性フッ素系コーティング層と、
前記金属発泡層内の前記複数の細孔内に堆積したエラストマと、
を含む、航空機。
【請求項2】
前記航空機の前記外面は、前記航空機の胴体、翼、垂直安定板、又は水平安定板のうちの少なくとも1つの部分である、請求項1に記載の航空機。
【請求項3】
前記金属発泡層は、中性又は負のポアソン比を有する、請求項1に記載の航空機。
【請求項4】
前記複数のパネルの各パネルは、前記金属発泡層内の前記複数の細孔内に堆積した第2のエラストマをさらに含む、請求項1に記載の航空機。
【請求項5】
前記複数のパネルは、エポキシ樹脂を用いて前記航空機の前記外面に結合されている、請求項1に記載の航空機。
【請求項6】
前記エラストマは、フッ素系エラストマ材料を含む、請求項1に記載の航空機。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に構造パネルに関し、特に露出面のための構造パネルに関する。
【背景技術】
【0002】
航空機は、着氷及び外部騒音などの、航空機、貨物及び乗客に悪影響をもたらす恐れがある多くの環境条件に曝される。航空機の翼への着氷は、軍事及び民間の両航空宇宙産業を悩ます周知の問題である。氷は、氷板の付着強度を超える臨界質量に達するとほとんど前兆なく剥がれ、胴体の側面に激突して損傷を引き起こす恐れがある。
【発明の概要】
【課題を解決するための手段】
【0003】
1つの実施形態によれば、装置が、発泡層と、コーティング層と、エラストマとを含む。発泡層は、装置を天候に曝される表面に結合する第1の表面と、第1の表面の反対側の第2の表面と、発泡層内の複数の細孔とを含む。コーティング層は、発泡層の第2の表面上に堆積する。エラストマは、発泡層の複数の細孔内に堆積する。
【0004】
別の実施形態によれば、方法が、発泡パネルの複数の細孔内にエラストマを堆積させるステップを含む。発泡パネルは、発泡パネルを天候に曝される表面に結合する第1の表面と、第1の表面の反対側の第2の表面と、発泡層内の複数の細孔とを含む。方法は、発泡パネルの第2の表面をコーティング層でコーティングするステップをさらに含む。方法は、発泡パネルを天候に曝される表面に結合するステップをさらに含む。
【0005】
さらに別の実施形態によれば、方法が、天候に曝される外面の音響条件に基づいて標的音響プロファイルを決定するステップを含む。方法は、標的音響プロファイルに基づいて複数の発泡層特性を決定するステップをさらに含む。方法は、標的音響プロファイルと複数の発泡層特性とに基づいて、1つ又は2つ以上のエラストマ特性を決定するステップをさらに含む。方法は、複数の発泡層特性を有する発泡層を準備するステップをさらに含む。方法は、1又は2以上のエラストマ特性に従って、準備した発泡層にエラストマを堆積させるステップをさらに含む。方法は、堆積したエラストマを含む発泡層を天候に曝される外面上に結合するステップをさらに含む。堆積したエラストマを含む発泡層は、標的音響プロファイルに対応する音響エネルギーを吸収する。
【0006】
本開示は、数多くの利点をもたらすことができる。例えば、発泡層とエラストマとの組み合わせは、物体による衝撃を吸収するほど十分に強く弾性的であることにより、装置が結合された表面を保護することができる。発泡パネルに使用される材料及び/又は発泡パネル内に堆積したエラストマに基づいて、力学的エネルギーの吸収を調整することができる。別の例として、発泡パネルは、中性又は負のポアソン比を有する金属発泡体を含むこともできる。中性又は負のポアソン比を有することにより、発泡パネルの付着性及び特定の吸収特性を高めることができる。本開示の別の利点は、コーティング層と発泡層との組み合わせを疎水性とすることができる点である。装置の疎水性は、装置の表面上への着氷を防ぎ、これによって天候に曝される表面上への着氷を防ぐことができる。さらに別の例として、装置は、金属片障壁(shrapnel barrier)又は低品位弾道装甲(low-grade ballistics armor)としての役割を果たすことができる非線形力学的吸収能力を示すことができる。発泡層内に堆積したフッ素系エラストマ材料を使用することで、他のいくつかの利点を実現することもできる。例えば、フッ素系エラストマは、劣化及びその他の環境的影響力に強い耐性を示すことができる。
【0007】
本明細書に開示する他の態様は他の利点をもたらす。例えば、標的音響プロファイルを用いて、音響プロファイルに基づく音響エネルギーを吸収する、堆積したエラストマを含む発泡層を生産することができる。選択的音響エネルギー吸収は、航空機などの乗物内の乗客の安全性及び快適性を高めることができる。別の例として、発泡層及びエラストマのいくつかの特性を音響プロファイルに基づいて決定することができる。音響プロファイルに最も厳密に一致する音響吸収特性を有するパネルを提供する一連の特性を選択することにより、堆積したエラストマを含む発泡層を特定の外面及び条件に合わせて最適化することができる。さらに別の例として、堆積したエラストマを含む発泡層にさらなる発泡層を追加して、形成されたパネルの吸収特性を高めることもできる。さらなる発泡層は、環境条件から保護されるように外面と発泡層との間に配置することができる。
【0008】
当業者には、以下の図、説明及び特許請求の範囲から他の技術的利点が容易に明らかになるであろう。さらに、上記では特定の利点を列挙したが、様々な実施形態は、列挙した利点の全部又は一部を含むことも、或いは全く含まないこともできる。
【0009】
以下、本開示及びその利点をさらに完全に理解できるように、添付図面と共に以下の説明を参照する。
【図面の簡単な説明】
【0010】
【
図1】いくつかの実施形態による、外面に1又は2以上のパネルを結合できる航空機例を示す図である。
【
図2】いくつかの実施形態による、
図1のパネル例を示す断面図である。
【
図3】いくつかの実施形態による、悪天候に曝される表面にパネルを結合する方法例を示すフローチャート図である。
【
図4】一定の周波数範囲にわたる音響エネルギーの吸収プロットの例である。
【
図5】いくつかの実施形態による、選択的音響エネルギー吸収特性を有するパネルを提供する方法例を示すフローチャート図である。
【発明を実施するための形態】
【0011】
本開示をより良く理解できるように、以下のいくつかの実施形態例を示す。以下の例は、本開示の範囲を限定又は規定するものとして解釈すべきではない。本開示の実施形態及びその利点は、同じ数字を用いて同じ部分及び対応する部分を示す
図1~
図5を参照することによって最も良く理解される。
【0012】
航空機の翼又はその他の部品には、運行中に氷が蓄積することがある。蓄積したままにしていると、航空機上の氷が臨界質量に達して氷板の重量が氷の付着強度を上回るようになる。すると、氷板が航空機から剥がれ、胴体などの航空機の一部に衝突して損傷を引き起こすことがある。
【0013】
航空機の部品に蓄積できる氷の量は、内蔵ヒータによって制限することができる。コーティングに組み込まれた加熱積層体又は加熱ワイヤが熱を供給して氷を溶かし、その蓄積を防ぐことができる。しかしながら、これらのワイヤ及び積層体はメンテナンスを必要とし、航空機表面における高度に局在した温度に起因してしばしば被覆破損を引き起こす。
【0014】
航空機では、大量のポリウレタン発泡体を用いて、低周波を標的とした外部騒音低減を達成することができる。しかしながら、この発泡体は航空機の通常運行中に劣化しやすい。発泡体は定期的に交換する必要があり、材料費及び維持費を増加させる。
【0015】
これらの及びその他の問題に対処するために、本開示の実施形態は、航空機の外側などの露出面に付着できる構造パネルを提供する。航空機の一部に付着したいくつかの構造パネルは、航空機が氷の衝突による損傷を受けないようにするとともに音響エネルギーを低減することができる。例えば、発泡パネルは、超疎水性コーティング層と、発泡体内に堆積させたエラストマとを含むことができる。低密度高強度発泡体は、氷の衝突による力学的エネルギーをパネルが吸収できるようにすることができる。コーティング層が着氷を防ぎ、UV耐性のある雨食用トップコートとしての役割を果たすことができる。堆積したエラストマは、発泡体を機械的に補強して音響減衰特性をもたらすことができる。
【0016】
また、選択的音響低減特性を有する発泡パネルを形成することもできる。例えば、発泡パネルは、特定の周波数を一定の吸収レベルで吸収するように構成することができる。最初に、標的表面の周囲環境に基づいて標的音響プロファイルを決定することができる。この標的音響プロファイルを用いて、標的音響エネルギーの吸収を高める発泡層特性及びエラストマ特性を最初に決定することによって発泡パネルを構成することができる。音響プロファイルに基づいてさらなる発泡層を追加して、音響エネルギーをさらに吸収するように発泡パネルの吸収特性を変化させることもできる。音響エネルギー選択的発泡パネルを形成することにより、有害な又は望ましくない音響エネルギーの低減効果を高めることができる。このようなパネルは、航空機の外側に取り付けると胴体内部の騒音量を低減することによってあらゆる乗客の快適性及び安全性を高めることができる。
【0017】
従って、本開示の態様は、1つの実施形態では発泡層と、コーティング層と、エラストマとを含む装置を含む。発泡層は、悪天候に曝される表面に装置を結合する第1の表面と、第1の表面の反対側の第2の表面と、発泡層内の複数の細孔とを含む。コーティング層は、発泡層の第2の表面に堆積する。エラストマは、発泡層の複数の細孔内に堆積する。
【0018】
本開示は、さらなる態様において、1つの実施形態では悪天候に曝される外面の音響条件に基づいて標的音響プロファイルを決定するステップを含む方法を含む。方法は、標的音響プロファイルに基づいて複数の発泡層特性を決定するステップをさらに含む。方法は、標的音響プロファイルと複数の発泡層特性とに基づいて1又は2以上のエラストマ特性を決定するステップをさらに含む。方法は、1又は2以上の発泡層特性を有する発泡層を準備するステップをさらに含む。方法は、1又は2以上のエラストマ特性に従って、準備した発泡層内にエラストマを堆積させるステップをさらに含む。方法は、堆積したエラストマを含む発泡層を悪天候に曝される外面上に結合するステップをさらに含む。堆積したエラストマを含む発泡層は、標的音響プロファイルに対応する音響エネルギーを吸収する。
【0019】
本開示は、数多くの利点をもたらすことができる。例えば、発泡層とエラストマとの組み合わせは、氷などの物体による衝撃を吸収するほど十分に強く弾性的であることにより、装置が結合された表面を保護することができる。発泡パネルに使用される材料及び/又は発泡パネル内に堆積したエラストマに基づいて、力学的エネルギーの吸収を調整することができる。別の例として、発泡パネルは、中性又は負のポアソン比を有する金属発泡体を含むこともできる。中性又は負のポアソン比を有することにより、発泡パネルの付着性及び特定の吸収特性を高めることができる。本開示の別の利点は、コーティング層と発泡層との組み合わせを疎水性とすることができる点である。装置の疎水性は、装置の表面上への着氷を防ぎ、これによって悪天候に曝される表面上への着氷を防ぐことができる。さらに別の例として、装置は、金属片障壁又は低品位弾道装甲としての役割を果たすことができる非線形力学的吸収能力を示すことができる。発泡層内に堆積したフッ素系エラストマ材料を使用することで、他のいくつかの利点を実現することもできる。例えば、フッ素系エラストマは、劣化及びその他の環境的影響力に強い耐性を示すことができる。
【0020】
本明細書に開示する他の態様は他の利点をもたらす。例えば、標的音響プロファイルを用いて、音響プロファイルに基づく音響エネルギーを吸収する、堆積したエラストマを含む発泡層を生産することができる。選択的音響エネルギー吸収は、航空機などの乗物内の乗客の安全性及び快適性を高めることができる。別の例として、発泡層及びエラストマのいくつかの特性を音響プロファイルに基づいて決定することができる。音響プロファイルに最も厳密に一致する音響吸収特性を有するパネルを提供する一連の特性を選択することにより、堆積したエラストマを含む発泡層を特定の外面及び条件に合わせて最適化することができる。さらに別の例として、堆積したエラストマを含む発泡層にさらなる発泡層を追加して、形成されたパネルの吸収特性を高めることもできる。さらなる発泡層は、環境条件から保護されるように外面と発泡層との間に配置することができる。
【0021】
当業者には、以下の図、説明及び特許請求の範囲から他の技術的利点が容易に明らかになるであろう。さらに、上記では特定の利点を列挙したが、様々な実施形態は、列挙した利点の全部又は一部を含むことも、或いは全く含まないこともできる。
【0022】
図1~
図5においてさらなる詳細を説明する。
図1には、1又は2以上のパネルを結合できる航空機例を示し、
図2は、
図1のパネル例の断面図である。
図3には、露出面にパネルを結合する方法例を示す。
図4には、一定の周波数範囲にわたってプロットした吸収係数の吸収プロット例を示す。
図5は、選択的音響エネルギー吸収特性を有するパネルを提供する方法例を示すフローチャート図である。
【0023】
図1は、いくつかの実施形態による、外面に1又は2以上のパネルを結合できる航空機例を示す図である。ある実施形態では、航空機100をあらゆるタイプの飛行車両(airborne vehicle)とすることができる。いくつかの実施形態では、航空機100が、胴体110と、翼120と、航空機100に結合された1又は2以上のパネル130とを含むことができる。
【0024】
いくつかの実施形態では、航空機100が、垂直安定板140と水平安定板150とを含むことができる。他の実施形態では、航空機100を無尾翼機とすることができる。いくつかの実施形態では、航空機100を、1又は2以上の乗客を含むことができる有人機とすることができる。他の実施形態では、航空機100を無人機(UAV)とすることができる。
【0025】
ある実施形態では、胴体110を航空機100の構造部品とすることができる。胴体110は、あらゆる形状とすることができる。いくつかの実施形態では、胴体110を、乗務員、乗客又は貨物を保持するように構成することができる。いくつかの実施形態では、胴体110を翼120に結合することができる。いくつかの実施形態では、胴体110が、垂直安定板140及び水平安定板150の一方又は両方にも結合される。
【0026】
航空機100は、悪天候に曝される外面160を有することができる。外面160は、航空機100の飛行中を含む運行中に、風、雨、雪、氷、騒音又はその他の環境条件による影響を受けることができる。外面160は、胴体110、翼120、垂直安定板140及び水平安定板150のうちの1つ又は2つ以上の表面に延びることができる。
【0027】
1又は2以上のパネル130は、航空機100の外面160のあらゆる好適な部分に結合することができる。例えば、パネル130は、胴体110、翼120、垂直安定板140及び水平安定板150のうちの1つ又は2つ以上に結合することができる。いくつかの実施形態では、航空機100の特定の部分に複数のパネル130を結合することができる。例えば、航空機100の胴体110の外面160に2つのパネル130を結合することができる。
【0028】
いくつかの実施形態では、パネル130が、剥がれた氷又はその他の発射体(projectiles)から航空機100を保護することができる。例えば、飛行中には、航空機100の翼120上に氷が着氷することがある。この氷は、臨界質量に達した後に翼120から剥がれて、航空機100の胴体110、翼120、垂直安定板140又は水平安定板150に衝突することがある。航空機100に結合されたパネル130は、剥がれた氷を偏向させて衝突によるエネルギーを吸収することによって航空機100を保護することができる。別の例では、パネル130が、非線形力学的エネルギー吸収能力を有する被覆材(cladding)として機能することにより、航空機100の金属片障壁又は低品位弾道装甲としての役割を果たすことができる。
【0029】
パネル130は、航空機100及びあらゆる乗客又は貨物を音響的障害又は損傷から保護することもできる。例えば、パネル130は、航空機100及び/又はその乗客及び貨物に悪影響を及ぼす音響エネルギーを吸収することができる。具体例として、パネル130は、航空機100の1又は2以上のエンジンによって生成される音響エネルギーを吸収することができる。
【0030】
図2は、いくつかの実施形態による、悪天候に曝される表面210に結合できる例示的なパネル130を示す断面図である。特定の実施形態では、パネル130が、発泡層131と、コーティング層132と、エラストマ133とを含む。発泡層131は、第1の表面134と、第1の表面134の反対側の第2の表面135と、発泡層131内の複数の細孔136とを含む。コーティング層132は、発泡層131の第2の表面135上に堆積する。エラストマ133は、発泡層131の細孔136内に堆積する。
【0031】
発泡層131は、あらゆる好適な発泡材料を含むことができる。いくつかの実施形態では、発泡層131が、金属発泡体、セラミック発泡体、又はガラス状炭素発泡体を含む。例えば、発泡層131は、アルミニウム、銅、又はニッケルなどの特定の金属から形成された多孔質金属発泡体を含むことができる。金属発泡体は、発泡層131及びパネル130の所望の特性を提供するために、1又は2以上の金属を含むことができる。一例として、発泡層131は、約80%が空気である多孔質アルミニウムの層とすることができる。多孔質アルミニウムは、極めて軽量であるだけでなく、発泡体内の細孔が断熱性をもたらすこともできる。
【0032】
いくつかの実施形態では、発泡層131がセラミック発泡体を含む。例えば、発泡層131は、アルミニウムを含むセラミック発泡体である。別の例では、セラミック発泡体が酸化チタンを含む。さらに別の例では、発泡層131が、炭化物セラミックであるセラミック発泡体を含む。いくつかの実施形態では、発泡層131が、ガラス状炭素発泡体を含む。ガラス状炭素発泡体は、熱分解ポリマーから得ることができる。
【0033】
一般に、発泡層131内の発泡材料は、物体の衝突によるエネルギーなどの力学的エネルギーを発泡パネル130が吸収できるようにする。物体衝突パネル130は、発泡層131を圧縮させて、衝撃を長時間にわたってパネル130の広い領域に分散させることができる。例えば、航空機100の胴体110に付着したパネル130には、航空機100の翼120から剥がれた氷板が衝突することがある。氷板による衝撃は発泡層131を圧縮させ、この圧縮が衝突時間を長引かせることによって、衝撃力を長時間にわたってパネル130の広い領域に分散させる。このように、パネル130の発泡層131は、力学的エネルギー吸収を通じて、航空機100の一部、又は建造物の屋根及び外壁などの他の表面を有害な衝撃から保護することができる。
【0034】
いくつかの用途では、異なる発泡組成物が異なる利点をもたらすことができる。いくつかの実施形態では、ニッケル及びアルミニウムなどの特定の金属発泡体が、非線形力学的エネルギー吸収能力を有することができる。従って、金属発泡体は、氷の衝突による損傷を抑えることができるだけでなく、金属片障壁又は低品位弾道装甲としての役割を果たすこともできる。パネル130内の金属発泡体による金属片又は弾道からの保護は、従来使用されている無孔被覆材と比べて低重量コストである。
【0035】
また、金属発泡体は、その機械的特性を調整するように後処理することができる。例えば、この後処理中に、発泡体のポアソン比を変化させることができる。特定の実施形態では、金属発泡体が、中性(例えば、約0)又は負のポアソン比を有することができる。
【0036】
一般に、ポアソン比は、軸歪みに対する横歪みの符号付き比率である。換言すれば、ポアソン比は、材料に加わる圧縮に対して垂直な方向における、材料の膨張比率を表す。通常、材料は正のポアソン比を示す。すなわち、材料は、圧縮方向と直交する方向に膨張する。いくつかの例では、材料を加工してポアソン比を変化させることができる。いくつかの実施形態では、中性又は負のポアソン比をもたらすことができる。
【0037】
中性又は負のポアソン比を有する材料は、パネル130に望ましい特性をもたらすことができる。例えば、ポアソン比が小さければ小さいほど、圧縮方向に対して垂直な方向における膨張は少なくなる。膨張が少ないと、パネル130と悪天候に曝される表面210との間の付着性を高めることができる。膨張が少ないと、衝撃エネルギーの吸収による圧縮に関わらず、発泡層131がその形状を維持しやすくなる。別の例として、ポアソン比は、材料の力学的吸収特性を決定することができる。中性又は負のポアソン比を与えることにより、発泡層131の力学的吸収特性が高まってさらなるエネルギー吸収が可能になり、又は特定のタイプの衝撃に合わせて吸収特性を調整できるようになる。例えば、非線形力学的エネルギー吸収能力を有する調整された発泡体は、金属片障壁又は低品位弾道装甲として有用になり得る。
【0038】
中性又は負のポアソン比の材料を提供するには、様々な過程を使用することができる。一例として、中性又は負のポアソン比を与えるために、金属発泡体を塑性的に変形させてその構造を変化させることができる。当業者であれば、中性又は負のポアソン比の材料を提供するあらゆる好適な方法を使用することができると認識するであろう。
【0039】
セラミック発泡体及び炭素発泡体は、これらの金属発泡体の利点とは異なる利点、又はこれらの利点に加えた利点をもたらすことができる。セラミック発泡体及び炭素発泡体は、高温耐性をもたらすように加工することができる。例えば、セラミック発泡体又は炭素発泡体を高温から保護するために、これらの発泡体に特定の高温エラストマを適用することができる。いくつかの実施形態では、セラミック発泡体又は炭素発泡体が、華氏450度(約232.2℃)を超える温度に耐える。このようにして、パネル130を高温領域に配置することができる。一例として、航空機100の特定の部分、具体的にはエンジン及び/又は排気領域の付近は高温の影響を受けることがある。高温エラストマを用いて加工したセラミック発泡体又は炭素発泡体を有するパネル130を高温領域に配置すると、表面を衝撃から保護するとともに音響エネルギーを低減することができる。
【0040】
いくつかの実施形態では、悪天候に曝される表面210に複数のパネル130を結合することができる。各パネル130は、各パネル130が結合された悪天候に曝される表面210の異なる部分のために選択される異なる特性を有することができる。例えば、高温の影響を受ける悪天候に曝される表面210の一部(例えば、航空機100のエンジン付近の外面160の一部)に第1のパネル130の発泡層131を結合する場合には、この発泡層を、高温エラストマを用いて加工することができる。他の実施形態では、第2のパネル130の発泡層131が、この悪天候に曝される表面210の部分を保護するのに最適な非線形力学的エネルギー吸収特性を有する金属発泡体を含むこともできる。以下でさらに詳細に説明するように、パネル130は、発泡層131内で使用される発泡体のタイプの違いに加えて、発泡層131の複数の細孔内に堆積したエラストマ133に基づいて特定の用途に合わせて調整することもできる。
【0041】
発泡層131は、発泡層131内の複数の細孔136を含む。発泡層131の多孔性は、複数の利点をもたらす。まず、上記で示唆したように、細孔136は、発泡層131及びパネル130の密度を、従って重量を低減する。乗物が運ぶ重量は、燃費及びその他の動作上の検討事項に影響を与え得る。このことは、燃料コストが高く、搬送重量を最小化するように慎重に給油が計画される航空機では特に顕著となり得る。
【0042】
いくつかの実施形態では、発泡層131内の細孔136をエラストマ133などの他の材料で満たすことができる。以下でさらに詳細に説明するように、エラストマ133は、発泡層131の機械的補強及び音響エネルギー低減の最適化を含め、パネル130のいくつかの特性を強化することができる。
【0043】
発泡層131において使用される特定の発泡体は力学的吸収特性を示すが、このような特性は、発泡層131の細孔136の一部に1又は2以上のエラストマ133を導入することによって強化することができる。細孔136内に堆積したエラストマ133は、発泡層131が衝撃に耐えて効果的にエネルギーを吸収するのに役立つ一定の弾性を有することができる。発泡層131の細孔136内に堆積させるエラストマ133のタイプは、具体的な用途に基づいて異なることができる。例えば、航空機100の胴体110上でパネル130を使用する場合には第1のタイプのエラストマ133を選択することができ、高温の影響を受ける悪天候に曝される表面210にパネル130を結合する場合には第2のタイプのエラストマ133を使用することができる。
【0044】
エラストマ133は、発泡層131を機械的に補強することに加えて、パネル130に音響エネルギー低減特性を与えることもできる。いくつかの実施形態では、エラストマ133が、特定の周波数又は周波数帯における音響エネルギーを低減するように選択される。特定の周波数を標的にするには、エラストマ133のタイプ、発泡層131に使用する発泡体のタイプ、発泡層131の細孔密度、及び発泡層131内のエラストマ133の飽和のうちの1つ又は2つ以上を調整又は考慮することができる。最適なパラメータは、目標用途によって決定することができる。例えば、航空機100の胴体110上のプロペラ付近のパネル130では、パネル130が低周波数の音響エネルギーを高吸収係数で吸収するようなエラストマ133を選択して堆積させることができる。
【0045】
いくつかの実施形態では、エラストマ133が、(フルオロエラストマとも呼ばれる)フッ素系エラストマである。本開示において使用するフッ素系エラストマは、米国標準ASTMによって「FKM」フルオロエラストマのカテゴリ下に分類されるあらゆる材料を意味することができる。フッ素系エラストマは、パネル130内の発泡層131に適用した時にいくつかの利点をもたらすことができる。例えば、フッ素系エラストマは、他のエラストマよりも耐久性があり、環境条件及び化学物質に高い耐性を示すことができる。また、特定のフッ素系エラストマは、特定の周波数の音響低減をもたらすことができる。例えば、発泡層131内に堆積したフッ素系エラストマは、例えばプロペラエンジンの音から生じるエネルギーなどの低周波数の音響エネルギーを吸収することができる。
【0046】
特定の実施形態では、発泡層131の細孔136内に第2のエラストマ133を堆積させることができる。第1のエラストマ133と第2のエラストマ133とを組み合わせると、力学的エネルギー及び音響エネルギー吸収特性などの所望の特性を高めることができる。当業者であれば理解するように、複数のエラストマ133の組み合わせには、特定の堆積法及び/又は硬化法が必要となり得る。いくつかの実施形態では、発泡層131の細孔136内に2よりも多くのエラストマを堆積させることができる。例えば、他の2つのエラストマ133に加えて第3のエラストマ133を堆積させることができる。エラストマ133の相対的な量は、発泡層131内の発泡体、パネル130を結合する露出面のタイプ及び露出面の環境条件のうちの1つ又は2つ以上に基づいて調整することができる。
【0047】
いくつかの実施形態では、パネル130が、発泡層131の第2の表面135上に堆積したコーティング層132を含む。コーティング層132は、悪天候に直接曝されるパネル130の第2の表面135上に堆積させることができる。悪天候への曝露は、雨、氷、雪、騒音、風、日光又は他のあらゆる環境条件への曝露を含むことができる。上述したように、航空機100の一部から剥がれた氷板による衝撃は、外面160に損傷をもたらす恐れがある。パネル130は、このような衝撃によるエネルギーを吸収するだけでなく、このようなエネルギーの発生を防ぐように構成することもできる。例えば、コーティング層132(及び任意に発泡層131)は、表面エネルギーを低減することによって着氷を制限する材料又は化学物質を含むことができる。表面エネルギーの小さな表面では、表面と水などの液体との間の接触角が大きくなり得る。この角度は、表面と液体との間の結束力を表すことができ、大きな角度は小さな結束力(すなわち、表面を湿らせるエネルギー的有利性が低いこと)を表すことができる。
【0048】
いくつかの実施形態では、コーティング層132が、コーティング層132の表面上に形成された氷板を危険な厚み又はサイズまで蓄積する前に剥がれるようにする材料を含むことができる。特定の実施形態では、コーティング層132が、表面に氷が形成されるのを防ぐのに役立つ材料を含むことができる。特定の実施形態では、コーティング層132が、超疎水性フッ素系コーティングである。いくつかの実施形態では、コーティング層132が、コーティング層132の着氷を制限する特性を最適化する様々な濃度の1又は2以上のエラストマコーティングを含むことができる。
【0049】
いくつかの実施形態では、コーティング層132が雨食用トップコートとしての役割を果たすことができる。軍用機及び民間機ともに、様々な航空機は、最大400ノット又はそれよりも速い速度で表面に衝突する水から保護する必要がある。水滴によって航空機の様々なコーティングが剥ぎ取られてしまい、メンテナンス及び塗り直しが必要となることもある。雨食用トップコートは、その下部のコーティング又は材料の腐食を防ぐために施すことができる。このように、コーティング層132は、パネル130の他の層及び悪天候に曝される表面210を保護する雨食用トップコートとしての役割を果たすこともできる。
【0050】
いくつかの実施形態では、コーティング層132がUV耐性を有することができる。紫外線放射は、パネル130及び/又は悪天候に曝される表面210の特定の部分に損傷を与えることがある。例えば、多くの天然ポリマー及び合成ポリマーは、UV放射に曝されると劣化することがある。パネル130の材料が劣化すると、構造的欠陥、或いは力学的エネルギー又は音響エネルギーの吸収低下を招くことがある。例えば、UV放射がエラストマ133を劣化させることにより、氷板からの衝撃によってパネル130に亀裂が生じ、又は悪天候に曝される表面210からパネル130が分離してしまうこともある。このように、コーティング層132は、パネル130及び悪天候に曝される表面210をUV放射から保護することができる。
【0051】
コーティング層132は、上述した有利な特性のうちの1つ又は2つ以上を有することができる。例えば、コーティング層132は、雨食及びUV劣化を共に防いで着氷を制限する材料を含むことができる。他の実施形態では、パネル130が、これらの特性のうちの1つ又は2つ以上をもたらすさらなるコーティング層を含むこともできる。例えば、コーティング層132の上部に雨食用トップコートを適用することができる。
【0052】
パネル130は、発泡層131の第1の表面134を悪天候に曝される表面210に結合することによって、悪天候に曝される表面210に結合することができる。いくつかの実施形態では、悪天候に曝される表面210が乗物の表面である。いくつかの実施形態では、乗物が、航空機100、船、ロケット又は宇宙船である。例えば、悪天候に曝される表面210は、
図1に示すような航空機100の外面160とすることができる。
【0053】
いくつかの実施形態では、悪天候に曝される表面210を建造物の外面とすることができる。このような実施形態では、パネル130が、雨、氷、ひょう、みぞれ又はデブリによる力学的衝撃を吸収し、建造物内部の音響エネルギーを低減することによって建造物を保護することができる。例えば、建造物内の活動を妨害する恐れのある過剰な騒音を発する工場付近の建造物の外側に複数のパネル130を取り付けることができる。
【0054】
パネル130は、悪天候に曝される表面210にあらゆる好適な手段によって結合することができる。特定の実施形態では、悪天候に曝される表面210に、エポキシ樹脂によってパネル130を結合することができる。例えば、エポキシ樹脂を用いて航空機100の外面160に複数のパネル130を結合することができる。パネルを標的表面に結合する手段は、発泡層130の組成、悪天候に曝される表面210のタイプ及び接着面が曝される条件などの様々な因子に基づいて異なることができる。当業者であれば、悪天候に曝される表面160にパネル130を結合する方法は複数存在することができると認識するであろう。
【0055】
図3は、いくつかの実施形態による、悪天候に曝される表面210にパネル130を結合する方法例300を示すフローチャート図である。
【0056】
方法300は、発泡パネル131などの発泡パネル又はあらゆる好適な発泡構造の複数の細孔内にエラストマ133などのエラストマを堆積させるステップ310から開始することができる。堆積したエラストマは、発泡パネルを機械的に補強するとともに音響エネルギー吸収をもたらすことができる。また、堆積したエラストマは、発泡パネルの疎水性を高めることもできる。上記で開示したように、エラストマ133は、パネル130の目標用途に基づいて、様々な因子に基づいて選択することができる。
【0057】
ステップ320において、ステップ310で発泡パネル内にエラストマを堆積させた後に、発泡パネル131の第2の表面135などの表面をコーティング層132などのコーティング層でコーティングする。上述したように、コーティング層132は、発泡層131に一定の保護をもたらすことができる。例えば、コーティング層132は、UV耐性を有し、雨食用トップコートとしての役割を果たし、及び/又は発泡パネル131に疎水性表面を提供することができる。特定の実施形態では、コーティング層132が、超疎水性フッ素系コーティングである。
【0058】
ステップ330において、ステップ320の発泡パネルを悪天候に曝される表面(例えば、航空機100の外面160又は悪天候に曝される表面210)に結合する。ステップ310のコーティング層132とステップ310の堆積したエラストマとを含む発泡パネルは、あらゆる好適な方法で表面に結合することができる。発泡パネルを結合するために使用する技術は、発泡パネル内の発泡体のタイプ、悪天候に曝される表面のタイプ及び悪天候に曝される表面の環境条件のうちの1つ又は2つ以上に依存することができる。特定の実施形態では、エポキシ樹脂を用いて発泡パネルを悪天候に曝される表面に結合することができる。特定のエポキシ樹脂は、表面の衝撃及び発泡パネルの圧縮にも関わらず発泡パネルが確実に表面に結合された状態を保つように選択することができる。方法300は、ステップ330の後に終了することができる。
【0059】
図3に示す方法300には、変更、追加又は省略を行うことができる。方法300は、さらに多くのステップ、さらに少ないステップ又は他のステップを含むこともできる。例えば、任意のステップ315において、発泡パネルを加工して中性又は負のポアソン比を有する発泡パネルを準備することができる。上述したように、中性又は負のポアソン比を有することはいくつかの利点を有することができる。さらに、ステップは、並行して又はいずれかの好適な順序で実行することもできる。方法300のステップに関してパネル130の様々な構成要素を説明したが、方法300のステップは、パネル130のあらゆる好適な構成要素又はその組み合わせを用いて行うことができる。
【0060】
図4は、パネル130などの構造パネル内の1又は2以上の要素の特性を決定するために使用できる例示的な吸収プロット400である。
図4に示すように、吸収プロット400は、吸収係数を音響エネルギーの周波数の関数として示すものである。換言すれば、吸収プロット400は、各周波数において吸収される音響エネルギーの量又は部分を示す。吸収プロット400は、標的ピーク周波数405と、標的吸収係数410と、標的周波数幅415とを含む。
【0061】
一般に、吸収プロット400は、ある環境の標的音響プロファイルを表すこともできる。例えば、吸収プロット400は、特定の領域、表面又は空間の音響環境に基づくことができる。いくつかの実施形態では、吸収プロット400が、運行中の航空機100の外面160などの悪天候に曝される表面210における様々な周波数の音響エネルギーの測定値に基づくことができる。一例として、吸収プロット400は、悪天候に曝される表面210における一定の周波数にわたる音響エネルギーの測定値を用いて生成することができる。測定された周波数毎に、測定された周波数範囲にわたる音響エネルギー強度値を用いて吸収係数値を求めることができる。例えば、高い吸収係数値は、その周波数での高い測定強度に関連することができる。測定された音響エネルギー強度に基づく吸収プロット400の生成には、人間の感度又は悪天候に曝される表面のタイプなどの他の因子が影響を与えることもある。例えば、通常の人間に聞こえる範囲外の周波数は考慮しなくてもよく、或いはさらに低い又はゼロの吸収係数値に関連することができる。このように、吸収プロット400は標的音響プロファイルを表すことができ、この吸収プロット400を用いて標的音響プロファイルと同様の音響エネルギー吸収特性を有するパネル130などの構造パネルを生産するための材料又は部品を準備することができる。
【0062】
図4に示すように、吸収プロット400は、図示の周波数範囲にわたる連続曲線を示す。いくつかの実施形態では、吸収プロット400が、連続プロットをもたらすように外挿された不連続プロット又は一連の不連続点である。いくつかの実施形態では、吸収プロット400が、特定の周波数範囲内又は特定の吸収係数範囲内でのみ示される。いくつかの実施形態では、吸収プロット400が単一の曲線ではなく、周波数範囲にわたる曲線の組である。例えば、周波数毎に吸収係数の範囲が存在し、吸収プロット400が、これらの周波数値にわたる下部曲線及び上部曲線によって境界される領域を示すようにすることができる。
【0063】
いくつかの実施形態では、吸収プロット400が、材料又は組成物の吸収特性を表すことができる。例えば、様々な周波数における音響エネルギーの材料による吸収を測定することによってプロットを生成することができる。この材料の吸収特性を測定することによって生成された吸収プロットを標的音響プロファイルと比較することができる。このように、吸収プロット400を用いて、選択された特性が所望の正しい又は適切な吸収特性をもたらすことを確認することができる。従って、吸収プロット400は、標的音響プロファイルとして使用できるだけでなく、生産された材料の特性を標的音響プロファイルと比較するツールとして使用することもできる。
【0064】
標的ピーク周波数405は、吸収係数が最大になる周波数である。例えば、吸収プロット400は、対応する吸収係数がプロット400上の周波数にわたって最大になる単一の標的ピーク周波数405を示す。いくつかの実施形態では、吸収プロット400が複数の標的ピーク周波数405を有し、これらの標的ピーク周波数405における吸収係数を唯一の極大値とすることができ、例えば1つのピークが他のピークよりも大きいが、それぞれのピークが吸収係数を局所的に最大化することができる。例えば、特定の材料の吸収係数の2つのピークを有する吸収プロット(twin peak absorption plot)は、低周波数ピーク値と高周波数ピーク値とを有することができる。
【0065】
標的吸収係数410は、特定の周波数における吸収係数の値である。一般に、吸収係数は、特定の周波数においてどれほどの音響エネルギーが吸収されるかについての測定値である。いくつかの実施形態では、標的吸収係数410の特定の値が標的ピーク周波数405のために選択される。例えば、ある材料又は組成物は、特定の標的ピーク周波数405において0.90を上回る吸収係数を有することが望ましいと考えられる。このように、少なくとも標的ピーク周波数405における標的吸収係数410と同程度の大きさの吸収係数を有する材料を選択することができる。選択された材料は、その特定の周波数における音響エネルギーの大部分を吸収する。
【0066】
標的周波数幅415は、特定の値を上回る吸収係数を有する最大周波数と最小周波数との間の幅である。例えば、吸収プロット400における標的周波数幅415は、a1で表す吸収係数における周波数幅である。いくつかの実施形態では、少なくとも標的ピーク周波数405の周囲の標的周波数幅415と同程度の大きさの周波数幅を有する材料が選択される。例えば、標的ピーク周波数405が400Hzの値を有する場合には、少なくとも100Hzの標的周波数幅415と同程度の大きさの周波数幅の材料を有することが望ましいと考えられる。標的ピーク周波数405の周囲の周波数範囲は、対称とすることも、又は非対称とすることもできる。標的周波数幅415は閾値吸収係数値に依存するので、(単複の)適切な材料を決定する際には、閾値と標的周波数幅415とを利用することができる。上記の例を使用すると、標的ピーク周波数405における0.90の吸収係数が選択された場合には、0.85の吸収係数値における100Hzの標的周波数幅415を選択することもできる。この結果、標的音響プロファイル特性に一致する材料又は組成物は、この100Hzの帯域内の0.85を上回る吸収係数と、特定のピーク周波数における少なくとも0.90の吸収係数とを有する。
【0067】
図4は、本開示の態様の背景を示す例示としての役割を果たすものにすぎない。悪天候に曝される各表面又は材料は、異なる対応する吸収プロットを有することができる。例えば、特定の表面又は材料に対応する吸収プロットは、複数のピーク周波数を有することを含めて異なるピーク周波数を有し、様々な吸収係数値における異なる周波数幅を含む異なる形状を有することができる。特定の材料又は材料の組成物は、吸収プロットの変動性に起因して異なる音響エネルギープロファイルの吸収を標的にするように選択することができる。さらに、特定の材料又は組成物は、標的周波数範囲における一定レベルの音響エネルギーを最も良く吸収するように調整することもできる。
【0068】
図5は、いくつかの実施形態による、選択的音響エネルギー吸収特性を有するパネルを提供する例示的な方法500を示すフローチャート図である。方法500は、標的音響プロファイルを決定するステップ502から開始する。標的音響プロファイルは、周波数と、周波数帯と、これらの周波数における関連する吸収レベルとの組を含むことができる。例えば、標的音響プロファイルは、悪天候に曝される表面又はその付近の周波数範囲にわたる音響エネルギーレベルなどの音響環境に対応することができる。具体例として、標的音響プロファイルは、航空機100の胴体110付近の外面160の音響エネルギープロファイルに基づいて生成される吸収プロット400などの吸収プロットとすることができる。
【0069】
いくつかの実施形態では、悪天候に曝される外面が、航空機100の外面160などの乗物の外面である。乗物は、周囲の流体の乱流に起因する、外面付近の高強度の音響エネルギーに曝されることが多い。高速の乗物は、空気又は水などの流体を通過する乗物の速さに起因して特にこの現象の影響を受けやすい。音響プロファイルは、動作中の乗物の音響条件に基づくことができる。具体例として、標的音響プロファイルは、運行中の航空機の表面付近の音響エネルギープロファイルに対応することができる。いくつかの実施形態では、乗物が、船、航空機、自動車及びロケットのうちの1つである。各乗物は、異なる音響条件の影響を受けることができる。音響プロファイルは、特定の乗物、或いはそのタイプ又は階級に合わせて個別に調整することができる。例えば、ロケット及び自動車は、その動作中に大きく異なる音響条件の影響を受けるが、それぞれがその音響エネルギー低減の恩恵を受けることができる。
【0070】
特定の実施形態では、音響プロファイルが、悪天候に曝される表面付近の音響エネルギーに対する人間の感度に基づく。ステップ502において、人間に影響する周波数に焦点を合わせることによって音響プロファイルを決定することができる。例えば、ステップ502において音響プロファイルを決定する際には、人間に聞こえる周波数範囲を上回る又は下回る、或いは人間に悪影響を与えない音響エネルギーの特定の周波数は無視するか、或いは検討事項から除外することができる。いくつかの実施形態では、音響プロファイルが、悪天候に曝される表面の共振周波数、及び悪天候に曝される表面付近の物体、構造又は人物の振動感度を含むさらなる検討事項に基づく。
【0071】
いくつかの実施形態では、音響プロファイルが、標的ピーク周波数405と、標的吸収係数410と、標的周波数幅415とを含む。例えば、特定の周波数における強度が高い音響エネルギーは、吸収される音響エネルギーを最大化する音響プロファイルの標的ピーク周波数405であると判断することができる。一定の周波数範囲にわたる音響エネルギーを吸収することが望ましいと考えられるので、最も高い強度レベルの周波数を中心とする周波数を標的ピーク周波数405として選択することができる。いくつかの実施形態では、人間の感度又はその他の検討事項を考慮するように、標的ピーク周波数405を最も高い強度レベルの周波数405から離すことができる。別の例として、標的ピーク周波数405は、最も全体的な音響エネルギーの吸収を行うように決定することもできる。このようにすると、たとえ標的ピーク周波数405に一致するピーク吸収係数を有していない材料であっても、悪天候に曝される表面210などの標的環境又はその付近のほとんどの音響エネルギーを依然として吸収することができる。
【0072】
いくつかの実施形態では、音響プロファイルの標的吸収係数410を1又は2以上の周波数について決定することができる。一例として、標的吸収係数410は、標的ピーク周波数405、及び標的ピーク周波数405の周囲の標的周波数幅415内の周波数範囲の一方又は両方における吸収係数の閾値として選択することができる。標的周波数幅415は、その周波数範囲にわたる最小の吸収係数をもたらす特定の吸収係数において決定することができる。このように、音響プロファイルは、吸収プロット400などの標的吸収プロット又はその範囲を形成するために使用できる複数の特性を含むことができる。標的音響プロファイルは、さらなるステップにおいて、悪天候に曝される外面における標的音響プロファイルに一致する音響エネルギーを最適に吸収するために使用することができる。
【0073】
ステップ504において、決定された標的音響プロファイルを用いて複数の発泡層特性を決定する。発泡層特性は、ステップ502の音響プロファイルに基づいて音響エネルギーを吸収する最適な発泡層の選択に役立つように決定することができる。いくつかの実施形態では、複数の発泡層特性が、発泡層材料と、発泡層の細孔密度と、発泡層の厚みとを含む。異なる発泡層材料は、一定の周波数範囲にわたる異なる吸収係数の音響エネルギーを吸収することができる。さらに、異なる発泡層材料は、発泡層の細孔内における異なるエラストマの堆積を可能にすることもできる。例えば、いくつかの高温エラストマは、高温環境に耐え抜くことができる材料のみに適用することができる。いくつかの実施形態では、発泡層材料が、金属発泡体、セラミック発泡体又はガラス状炭素発泡体のうちの1つである。上述したように、異なるタイプの発泡材料は、異なる特性及び用途を有することができる。このことは、これらの音響特性にも等しく当てはまる。従って、音響プロファイルに応じて異なる発泡層材料を使用することができる。
【0074】
発泡層の細孔密度は、発泡層内の細孔の密度である。一般に、細孔密度が高ければ高いほど音響吸収も高くなる。しかしながら、細孔密度が高いと、衝突又はその他の有害な事象に対する発泡層の弾性が低下することがある。従って、細孔密度は、音響特性に加えて機械的特性にも照らして選択することができる。特定の実施形態では、細孔密度が、所定の値の組から選択される。例えば、細孔密度は、インチ当たり5個、10個、20個又は40個の細孔の組から選択することができる。
【0075】
発泡層の厚みも、発泡層の音響特性に影響を与えることができる。例えば、発泡層を厚くすると、より多くの音響エネルギーを吸収できるようにはなるが、動作条件に起因する摩耗及び引裂の影響を受けやすくなり得る。例えば、厚い発泡層は大きな外形を示すことができ、空気又は別の流体はその全体にわたって流れる必要がある。また、厚い発泡層は、標的外面に取り付け、又は取り付けて維持することが困難になり得る。従って、発泡層の厚みは音響プロファイルに基づいて決定することができ、いくつかの実施形態では他の機能的検討事項に基づいて決定することができる。
【0076】
様々な発泡層特性は、相互依存することができる。換言すれば、音響プロファイルに基づいて1つの特性を最適化すると、音響プロファイルに従って音響エネルギーを吸収する際の発泡層の全体的有効性が低下することがある。いくつかの実施形態では、発泡層の様々な特性を最適に選択するために、複数の発泡層特性の決定が様々な相互依存性を考慮する。
【0077】
ステップ506において、決定された標的音響プロファイルと決定された発泡層特性とを用いて1又は2以上のエラストマ特性を決定する。異なるタイプのエラストマは、発泡層の音響特性を異なる音響プロファイルに良好に一致するように変化させることができる。さらに、発泡層内のエラストマの異なる飽和レベルは、異なる形で音響特性を変化させることができる。例えば、異なるエラストマタイプ及び飽和レベルは、ピーク吸収周波数をシフトさせ、又は吸収係数の周波数幅を閾値レベルよりも高く変化させることができる。
【0078】
いくつかの実施形態では、1又は2以上のエラストマ特性が、エラストマ組成とエラストマ飽和レベルとを含む。エラストマ組成は、発泡層内に堆積するエラストマの1又は2以上のタイプの指定とすることができる。いくつかの実施形態では、エラストマ組成物が、フルオロエラストマであるエラストマを含む。上述したように、フルオロエラストマは、様々な理由で有利となり得る。フルオロエラストマは、音響エネルギーの発泡層吸収を高める上でも有用となり得る。
【0079】
エラストマ飽和は、提供される発泡層内のエラストマの飽和レベルを表す。例えば、エラストマ飽和は、エラストマで満たされた発泡層内の空間の割合とすることができる。別の例として、エラストマ飽和は、提供される発泡層に対するエラストマの重量又は量とすることができる。
【0080】
いくつかの実施形態では、決定されたエラストマ組成物が複数のエラストマを含む。例えば、ステップ506は、標的音響プロファイルと決定された発泡層特性とに基づいて第1及び第2のエラストマを選択するサブステップと、標的音響プロファイルと、決定された発泡層特性と、2つのエラストマの特性とに基づいて2つのエラストマ間の比率を決定するサブステップとを含むことができる。このように、2又は3以上のタイプのエラストマを混合することによって音響エネルギー低減特性を最適化することができる。
【0081】
いくつかの実施形態では、ステップ504及び506の一方又は両方の最中に発泡層及びエラストマの特性を決定する際に、所望の力学的吸収特性を考慮することもできる。発泡層が、衝突事象を受ける表面上で使用されるように意図されている場合、発泡層及びエラストマの特性は、これらの発泡層及びエラストマを用いて形成されるパネルが音響エネルギーを吸収することに加えて衝撃に耐えることを可能にするように選択することができる。例えば、特性によっては、音響エネルギー吸収を最適化するためには望ましいかもしれないが、意図する用途が力学的エネルギーの吸収も必要としている場合には有害又は準最適となり得るものもある。このように、音響エネルギー吸収のための特性の決定は、さらなる力学的エネルギー吸収の検討事項によって制約されることもある。
【0082】
ステップ508において、決定された発泡層特性を有する発泡層を準備する。例えば、決定された発泡層特性を用いて、特定の細孔密度及び発泡層の厚みを有する発泡層材料を選択することができる。決定された発泡層特性を有する発泡層を準備する前に、発泡体を加工するさらなるステップを行うこともできる。例えば、発泡層は、所望の厚み又はサイズに合わせて成形することができ、或いは特定のポアソン比などの特定の機械的特性を与えるように加工することもできる。いくつかの実施形態では、決定された発泡層特性に基づいて、所定の発泡材料、細孔密度及び厚みの組から発泡層を選択することができる。予め構成された発泡層は、決定された特性にさらに厳密に整合するように加工することもできる。
【0083】
ステップ510において、決定されたエラストマ特性に従ってエラストマを堆積させる。この結果、決定されたエラストマ特性を用いて選択されたエラストマが堆積した、決定された発泡層特性を用いて選択された発泡層を提供することができる。このように、堆積したエラストマを含む発泡層は、音響プロファイルに対応する音響エネルギーを吸収するように最適化することができる。
【0084】
エラストマが複数のエラストマタイプ又は異なるエラストマの混合物を含むいくつかの実施形態では、ステップ510が、各エラストマを発泡層内に堆積させるサブステップを含むことができる。他の実施形態では、2又は3以上のエラストマを混合した後に単一工程でエラストマを堆積させる。
【0085】
ステップ512において、堆積したエラストマを含む発泡層を、悪天候に曝される外面に結合する。発泡層は、あらゆる好適な技術を用いて外面に結合することができる。表面又は選択された発泡層のタイプは、堆積したエラストマを含む発泡層をどのように表面に結合するかを決定することができる。いくつかの実施形態では、エポキシ樹脂を用いて発泡層を表面に結合する。
【0086】
発泡層を外面に結合することにより、堆積したエラストマを含む発泡層は、標的音響プロファイルに対応する音響エネルギーを吸収できるようになる。標的音響プロファイルは、悪天候に曝される外面付近の音響環境に基づくことができるので、堆積したエラストマを含む発泡層は、外面付近の音響エネルギーの大部分を吸収することができる。このように、悪天候に曝される標的表面の音響条件に基づいて選択的に音響エネルギー吸収を行うことができる。
【0087】
異なる外面は異なる音響条件を有することができ、本明細書で説明するいくつかの実施形態では、堆積したエラストマを含む発泡層を、これらの条件に合わせて音響吸収を標的化するように調整することができる。一例として、航空機は、飛行中又は離陸中などの運行中に特定の音響環境を有することができる。特定の条件に基づく音響プロファイルを使用することにより、提供する発泡層及び堆積したエラストマは、航空機の外面に結合した時に音響エネルギーを最適に吸収できるようになる。この例を続けると、いくつかの実施形態は、乗客を有害な騒音及び音響エネルギーから保護するとともに、振動感度の高い装置を保護して航空機上又はその付近の危険な共振を低減することができる。
【0088】
一例として、方法500は、航空機の外面のための発泡層を提供することができる。この例では、標的音響プロファイルが、航空機の外面の周囲の音響エネルギーの強度に基づくことができる。例えば、プロペラ機の外面は、プロペラによって生じる150~400Hzの音響エネルギーの影響を受けることができる。或いは、ジェット機では、この音響エネルギーが600Hz~1.25kHzで最も強くなることができる。
【0089】
この例を続けると、特定の周波数範囲に対する人間の感度を考慮することもできる。例えば、表面における音響エネルギーと、特定の周波数に対する人間の感度とを考慮する標的音響プロファイルでは、2kHzのピーク周波数を選択することができる。この例では、2kHzのピーク周波数では0.99の標的吸収係数を選択し、1480Hz~2840kHzの範囲を捕らえるように1360Hzの標的周波数幅を選択することができる。これらの選択された値を用いて発泡層特性を決定することができる。この例では、標的音響プロファイルに基づいて、0.5インチの厚みとインチ当たり20個の細孔の細孔密度とを有するアルミニウム発泡体を選択することができる。次に、音響プロファイルと選択された発泡層とに基づいてエラストマを選択することができる。この例では、選択された発泡層の周波数減衰曲線を低周波数にシフトさせるように1種FKMフルオロエラストマを選択することができる。例えば、エラストマは、400Hz~2kHzにおいて減衰率が0.99よりも大きくなるように吸収減衰曲線をシフトさせるために、発泡層を約50%まで部分的にのみ満たすように選択することができる。選択されたエラストマが堆積した選択された発泡層は、選択的音響低減をもたらすために航空機の外面に結合することができる。
【0090】
上記で示した例の変形では、航空機の外面を、例えば補助動力装置(APU)付近の高温領域とすることができる。この場合、高温の大気を考慮することができる。この結果、最大華氏1100度(約593.3℃)の排気温度に耐えるように、アルミニウム発泡体の代わりにセラミック発泡体又は炭素発泡体を選択することができる。また、この例では、異なるフルオロエラストマを選択することができる。例えば、代わりにFKM 2種エラストマを選択することができる。これらの例は教示例として示すものにすぎず、本開示の範囲内では他の無数の実施形態が検討される。
【0091】
いくつかの実施形態では、方法500が、標的音響プロファイルに基づいてさらなる発泡層を提供すべきかどうかを判断するステップと、堆積したエラストマを含む発泡層にさらなる発泡層を結合するステップとをさらに含むことができる。さらなる発泡層を追加すると、堆積したエラストマを含む発泡層の音響吸収特性を変化させることができる。一例として、さらなる発泡層は、エラストマを含む発泡層の吸収ピークを、高吸収係数でさらに広い範囲の周波数が吸収されるように拡げることができる。また、さらなる発泡層は、発泡パネルとエラストマとによって吸収されるピーク周波数を変化させることもできる。
【0092】
さらに、発泡層及びエラストマは、さらなる発泡層を劣化又は摩耗及び引裂から保護することもできる。例えば、発泡層及びエラストマは氷板などの物体による衝撃を吸収し、これによってさらなる発泡層を保護してさらなる発泡層の運用年数を延ばすことができる。いくつかの実施形態では、さらなる発泡層を柔らかい又は脆弱な材料で構成することができる。いくつかの実施形態では、さらなる発泡層が、メラミン発泡体の層である。メラミン発泡体は、周知の音響吸収特性を有するが、特に飛行中の航空機の外部などの破壊的環境では急速に劣化する。堆積したエラストマを含む発泡層にメラミン発泡体を追加することにより、音響プロファイルにさらに良好に一致する音響吸収特性をもたらすように音響吸収特性を高めることができる。同時に、メラミン発泡体は、発泡層及びエラストマによって保護されることにより、発泡体の寿命全体を通じて音響エネルギー吸収を高める続けることができるようになる。
【0093】
いくつかの実施形態では、方法500が、発泡層を超疎水性フッ素系コーティング層でコーティングするステップをさらに含む。上述したように、コーティング層は、UV耐性のある雨食用トップコートとしての役割を果たすことができる。このように、コーティング層は、雨食及びUV放射への曝露による劣化から発泡層を保護するのに役立つことができる。
【0094】
いくつかの実施形態では、方法500が、悪天候に曝される外面から発泡層を切り離すステップと、悪天候に曝される外面上に、堆積したエラストマを含む別の発泡層を結合するステップとをさらに含む。いくつかの実施形態では、優れた発泡層を形成するために使用できる新たな技術又は材料を見出すことができる。このようにして、古い発泡層を交換することができる。従って、いくつかの実施形態では、古い発泡層を除去して新しいものに交換することができる。
【0095】
図5に示す方法500には、変更、追加又は省略を行うことができる。方法500のステップは、並行して又はいずれかの好適な順序で実行することもできる。さらに、方法500は、さらに多くのステップ、さらに少ないステップ又は他のステップを含むこともできる。方法500のステップは、パネル130及び/又は航空機100の構成要素を含むあらゆる好適な構成要素又はその組み合わせを用いて行うことができる。
【0096】
本開示は、数多くの利点をもたらすことができる。例えば、発泡層とエラストマとの組み合わせは、物体による衝撃を吸収するほど十分に強く弾性的であることにより、装置が結合された表面を保護することができる。発泡パネルに使用される材料及び/又は発泡パネル内に堆積したエラストマに基づいて、力学的エネルギーの吸収を調整することができる。別の例として、発泡パネルは、中性又は負のポアソン比を有する金属発泡体を含むこともできる。中性又は負のポアソン比を有することにより、発泡パネルの付着性及び特定の吸収特性を高めることができる。本開示の別の利点は、コーティング層と発泡層との組み合わせを疎水性とすることができる点である。装置の疎水性は、装置の表面上への着氷を防ぎ、これによって悪天候に曝される表面上への着氷を防ぐことができる。別の利点として、装置は、金属片障壁又は低品位弾道装甲としての役割を果たすことができる非線形力学的吸収能力を示すことができる。発泡層内に堆積したフッ素系エラストマ材料を使用することで、他のいくつかの利点を実現することもできる。例えば、フッ素系エラストマは、劣化及びその他の環境的影響力に強い耐性を示すことができる。
【0097】
本明細書に開示した他の態様は他の利点をもたらす。例えば、標的音響プロファイルを用いて、堆積したエラストマを含む発泡層を、音響プロファイルに基づく音響エネルギーを吸収するように調整することができる。選択的音響エネルギー吸収は、航空機などの乗物内の乗客の安全性及び快適性を高めることができる。別の例として、発泡層及びエラストマのいくつかの特性を音響プロファイルに基づいて決定することができる。音響プロファイルに最も厳密に一致する音響吸収特性を有するパネルを提供する一連の特性を選択することにより、堆積したエラストマを含む発泡層を特定の外面及び条件に合わせて最適化することができる。さらに別の例として、堆積したエラストマを含む発泡層にさらなる発泡層を追加して、形成されたパネルの吸収特性を高めることもできる。さらなる発泡層は、環境条件から保護されるように外面と発泡層との間に配置することができる。
【0098】
当業者には、以下の図、説明及び特許請求の範囲から他の技術的利点が容易に明らかになるであろう。さらに、上記では特定の利点を列挙したが、様々な実施形態は、列挙した利点の全部又は一部を含むことも、或いは全く含まないこともできる。
【0099】
本開示の範囲は、本明細書において説明又は図示した実施形態例に対する、当業者が理解する全ての変更、置換、変形、改変及び修正を含む。本開示は、本明細書において説明又は図示した実施形態例に限定されるものではない。さらに、本開示では、本明細書におけるそれぞれの実施形態を、特定の構成部品、要素、機能、動作又はステップを含むものとして説明し図示したが、これらの実施形態は、いずれも本明細書のあらゆる箇所で説明又は図示した構成部品、要素、機能、動作又はステップの、当業者が理解するあらゆる組み合わせ又は置換を含むことができる。さらに、添付の特許請求の範囲における、特定の機能を実行するように適合された(adapted to)、するように構成された(arranged to)、することができる(capable of)、するように構成された(configured to)、することができる(enabled to)、又はするように動作する(operative to)装置、システム、或いは装置又はシステムの構成部品についての言及は、これらの装置、システム又は構成部品がそのように適合され、構成され、行うことができ、構成され、行うことができ、又は動作できる限り、これらの装置、システム又は構成部品、或いはその特定の機能が作動するか否か、オンになっているか否か、又はロック解除されているか否かに関わらず、これらの装置、システム又は構成部品を含む。
【0100】
複数の実施形態を用いて本開示を説明したが、当業者には無数の変更、変形、改変、転換及び修正を提案することができ、本開示は、このような変更、変形、改変、転換及び修正を添付の特許請求の範囲内に収まるものとして含むように意図される。以下に本発明の実施態様を記載する。
(実施態様1)航空機であって、外面と、前記航空機の前記外面に結合された複数のパネルと、を備え、各パネルは、
金属発泡層であって、前記パネルを前記航空機の前記外面に結合するための第1の表面と、前記第1の表面の反対側の第2の表面と、前記金属発泡層内の複数の細孔と、を含む前記金属発泡層と、
前記金属発泡層の前記第2の表面上に堆積した超疎水性フッ素系コーティング層と、
前記金属発泡層内の前記複数の細孔内に堆積したエラストマと、
を含む、航空機。
(実施態様2)前記航空機の前記外面は、前記航空機の胴体、翼、垂直安定板、又は水平安定板のうちの少なくとも1つの部分である、実施態様1に記載の航空機。
(実施態様3)前記金属発泡層は、中性又は負のポアソン比を有する、実施態様1に記載の航空機。
(実施態様4)前記複数のパネルの各パネルは、前記金属発泡層内の前記複数の細孔内に堆積した第2のエラストマをさらに含む、実施態様1に記載の航空機。
(実施態様5)前記複数のパネルは、エポキシ樹脂を用いて前記航空機の前記外面に結合されている、実施態様1に記載の航空機。
(実施態様6)前記エラストマは、フッ素系エラストマ材料を含む、実施態様1に記載の航空機。
(実施態様7)装置であって、
発泡層であって、前記装置を天候に曝される表面に結合するための第1の表面と、前記第1の表面の反対側の第2の表面と、前記発泡層内の複数の細孔と、を含む前記発泡層と、
前記発泡層の前記第2の表面に堆積したコーティング層と、
前記発泡層内の前記複数の細孔内に堆積したエラストマと、を備える、装置。
(実施態様8)前記発泡層は、金属発泡体、セラミック発泡体、又はガラス状炭素発泡体を含む、実施態様7に記載の装置。
(実施態様9)前記天候に曝される表面は、建造物の外面である、実施態様7に記載の装置。
(実施態様10)前記天候に曝される表面は、乗物の表面である、実施態様7に記載の装置。
(実施態様11)前記乗物は、航空機、船、ロケット又は宇宙船である、実施態様10に記載の装置。
(実施態様12)前記コーティング層は、超疎水性フッ素系コーティングである、実施態様7に記載の装置。
(実施態様13)前記発泡層は、セラミック発泡体、又はガラス状炭素発泡体を含み、
前記堆積したエラストマは、華氏450度(約232.2℃)を上回る温度に耐えることができる耐熱性エラストマである、実施態様7に記載の装置。
(実施態様14)前記発泡層は、中性又は負のポアソン比を有する金属発泡体を含む、実施態様7に記載の装置。
(実施態様15)前記エラストマは、フッ素系エラストマ材料を含む、実施態様7に記載の装置。
(実施態様16)発泡パネルの複数の細孔内にエラストマを堆積させるステップであって、前記発泡パネルが、天候に曝される表面に発泡パネルを結合するための第1の表面と、前記第1の表面の反対側の第2の表面と、前記発泡層内の複数の細孔と、を含む、エラストマを堆積させるステップと、
前記発泡パネルの前記第2の表面をコーティング層でコーティングするステップと、
前記発泡パネルを前記天候に曝される表面に結合するステップと、を含む、方法。
(実施態様17)前記発泡パネルを処理して、中性又は負のポアソン比を有する前記発泡パネルを提供するステップをさらに含む、実施態様16に記載の方法。
(実施態様18)提供される前記発泡層の発泡体は、金属発泡体、セラミック発泡体、又はガラス状炭素発泡体を含む、実施態様16に記載の方法。
(実施態様19)前記コーティング層は、超疎水性フッ素系コーティングである、実施態様16に記載の方法。
(実施態様20)前記天候に曝される表面は乗物の表面であり、前記乗物は、航空機、船、ロケット、又は宇宙船である、実施態様16に記載の方法。