IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッドの特許一覧

特許7098522傾斜イオンビームを用いて空洞を満たすための装置及び技術
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-01
(45)【発行日】2022-07-11
(54)【発明の名称】傾斜イオンビームを用いて空洞を満たすための装置及び技術
(51)【国際特許分類】
   C23C 16/513 20060101AFI20220704BHJP
   H05H 1/46 20060101ALI20220704BHJP
   C23C 14/32 20060101ALI20220704BHJP
   H01J 37/317 20060101ALI20220704BHJP
【FI】
C23C16/513
H05H1/46 A
C23C14/32 F
H01J37/317 E
【請求項の数】 3
(21)【出願番号】P 2018528053
(86)(22)【出願日】2016-11-30
(65)【公表番号】
(43)【公表日】2019-01-17
(86)【国際出願番号】 US2016064169
(87)【国際公開番号】W WO2017100053
(87)【国際公開日】2017-06-15
【審査請求日】2019-11-14
(31)【優先権主張番号】14/962,642
(32)【優先日】2015-12-08
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500239188
【氏名又は名称】ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100134577
【弁理士】
【氏名又は名称】石川 雅章
(72)【発明者】
【氏名】ズン リアン チェン
(72)【発明者】
【氏名】ジョン ホータラ
(72)【発明者】
【氏名】シュロン リアン
【審査官】山本 一郎
(56)【参考文献】
【文献】特表2014-532304(JP,A)
【文献】米国特許第06117345(US,A)
【文献】特開2010-278330(JP,A)
【文献】特開2001-338896(JP,A)
【文献】特開平06-104205(JP,A)
【文献】特開平01-149957(JP,A)
【文献】特表2016-540360(JP,A)
【文献】米国特許第06106678(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/317
H05H 1/46
C23C 14/32
C23C 16/513
(57)【特許請求の範囲】
【請求項1】
プラズマチャンバと、
該プラズマチャンバへ、不活性ガス及び凝縮種を、それぞれ供給する、第1のガス源及び第2のガス源と、
前記不活性ガスから得られる第1のイオン及び前記凝縮種から得られる第2のイオンを含むプラズマを、前記プラズマチャンバの中で生成する、プラズマジェネレータと、
前記プラズマから前記第1のイオン及び前記第2のイオンのイオンビームを引出し、蒸着露出の前記イオンビームを、基板の平面の垂線に対して非ゼロの入射角で、前記基板内の空洞へ向ける、引出しアセンブリと、
蒸着パラメータを制御する、コントローラと、
命令を含む少なくとも1つのコンピュータ可読記憶媒体と、を備え、
前記命令は、実行されるとき、前記コントローラに、
前記蒸着露出中、前記非ゼロの入射角を調整するために、第1の制御信号を送信するステップ、及び、
前記プラズマチャンバの中への前記凝縮種のガスの流れを調整するために、第2の制御信号を送信するステップ、の内の少なくとも1つを実行させる、傾斜イオンビームを用いて空洞を満たすための装置。
【請求項2】
反応ガス種を、前記プラズマチャンバを横切ることなく、前記基板に供給する、反応ガスアセンブリを、さらに、備える、請求項1に記載の傾斜イオンビームを用いて空洞を満たすための装置。
【請求項3】
前記引出しアセンブリは、
細長い引出しアパーチャを有する引出しプレートと、
前記細長い引出しアパーチャに隣接して配置される、ビームブロッカーと、を備え、
該ビームブロッカー及び前記細長い引出しアパーチャは、前記イオンビームを第1のリボンビームとして引出し、第2のリボンビームを引出すように配置され、
前記第1のリボンビーム及び前記第2のリボンビームは、前記垂線に対して、それぞれ、第1の非ゼロ角度及び第2の非ゼロ角度を画定する、請求項1に記載の傾斜イオンビームを用いて空洞を満たすための装置。
【発明の詳細な説明】
【技術分野】
【0001】
本実施形態は、基板の処理に関し、より詳細には、トレンチ又はビアなどの空洞を満たすための技術に関する。
【背景技術】
【0002】
半導体デバイス、メモリデバイス及び他のデバイスなどのデバイスは、より小さい大きさに縮小するので、ますます、より小さい構造を処理する機能は、困難であるがやりがいのあることになる。メモリデバイス又は論理デバイスなどのデバイスの製作において、トレンチ又はビアなどの空洞は、所与の層又は材料内で形成することができ、続いて、別の材料で満たすことができる。
【0003】
トレンチを満たすための既知の方法は、高密度プラズマ(HDP)化学蒸着(CVD)などの化学蒸着を含む。HDPCVDプロセスは、例えば、シラン、アルゴン、酸素(酸化物に対して)又はNH3(窒化物に対して)を含む多数の種を用いて化学蒸着を実施することが必要となり得る。HDPCVDプロセスは、少なくとも部分的に材料をエッチングするための種だけでなく、その役割が材料を蒸着するための種も含むことができる。トレンチを満たすために用いられるとき、HDPCVDプロセスは、トレンチの領域に衝突するイオン化種のように、アルゴンなどのガス分子を供給することができる。シラン及び酸素などの種は、トレンチ内の誘電材料を蒸着するために、追加的に供給することができる。トレンチの表面に蒸着された誘電材料は、アルゴン種からスパッタ-エッチングを同時に受けることになり、トレンチの充填は蒸着及びエッチングを含む。トレンチはより小さい大きさに縮小し、より高いアスペクト比(トレンチの深さ(高さ)/トレンチの幅)を有して形成されるので、HDPCVDプロセスは、満たすべきトレンチの理想的構造を提供するのに、非効果的であり得る。例えば、トレンチが満たされるときに、ファセットを形成することができる。さらに、材料のスパッタリングからの再蒸着だけでなく、蒸着材料の側壁の成長も、側壁に沿う材料のオーバーハングをもたらし得る。このプロセスは、いわゆる、ピンチオフをもたらし得て、トレンチ内に埋められた空間の結果として得られた構成をもたらし得る。
【発明の概要】
【発明が解決しようとする課題】
【0004】
これらの及び他の考慮に対して、本発明が提供される。
【課題を解決するための手段】
【0005】
一実施態様において、方法は、プラズマをプラズマチャンバの中で生成する、ステップと、前記プラズマからの凝縮種及び不活性ガス種の内の少なくとも1つを含むイオンを、基板内の空洞へ、前記基板の平面の垂線に対して非ゼロの入射角で、向ける、ステップと、を含んでもよい。前記方法は、さらに、前記凝縮種を用いて、充填材料を前記空洞内に蒸着するステップを含んでもよい。該蒸着するステップは前記イオンを向けるステップと同時に行われてもよく、前記充填材料は、前記空洞の下部面上に第1の速度で堆積し、前記空洞の側壁の上部部分上に前記第1の速度より遅い第2の速度で堆積する。
【0006】
別の実施態様において、装置は、プラズマチャンバと、該プラズマチャンバへ、不活性ガス及び凝縮種を、それぞれ供給する、第1のガス源及び第2のガス源と、前記不活性ガスから得られる第1のイオン及び前記凝縮種から得られる第2のイオンを含むプラズマを、前記プラズマチャンバの中で生成する、プラズマジェネレータと、を含んでもよい。前記装置は、さらに、前記プラズマから前記第1のイオン及び前記第2のイオンのイオンビームを引出し、蒸着露出の前記イオンビームを、基板の平面の垂線に対して非ゼロの入射角で、前記基板内の空洞へ向ける、引出しアセンブリを含んでもよい。前記装置は、さらに、蒸着パラメータの1組を制御する、コントローラを含んでもよい。前記装置は、また、命令を含む少なくとも1つのコンピュータ可読記憶媒体を含んでもよく、前記命令は、実行されるとき、前記コントローラに、前記蒸着露出中、前記非ゼロの入射角を調整するために、第1の制御信号を送信するステップ、及び、前記プラズマチャンバの中への前記凝縮種のガスの流れを調整するために、第2の制御信号を送信するステップ、の内の少なくとも1つを実行させる。
【0007】
別の実施態様において、方法は、プラズマをプラズマチャンバの中で生成する、ステップと、前記プラズマからの凝縮種及び不活性ガス種の内の少なくとも1つを含むイオンを、基板内の下部面及び側壁を備える空洞へ、向ける、ステップと、を含んでもよい。前記
方法は、また、前記凝縮種を用いて、充填材料を前記空洞内に蒸着する、ステップを含んでもよい。さらに、前記方法は、エッチャントイオンビームを、前記プラズマチャンバから前記空洞へ、前記基板の平面の垂線に対して選択した非ゼロの入射角で、向ける、ステップを有する、選択エッチングを実施する、ステップを含んでもよい。このように、前記側壁の上部分の上で蒸着された充填材料は、前記空洞の他の領域で蒸着された充填材料に対して、選択的に除去される。
【図面の簡単な説明】
【0008】
図1図1A図1B図1C図1D及び図1Eは、本発明の実施形態による、空洞を満たす例をまとめて示す。
図2図2A図2B図2C図2D及び図2Eは、本発明の追加の実施形態による、空洞を満たす例をまとめて示す。
図3図3Aは、本発明の実施形態による、例示的処理システムを示し、図3Bは、図3Aに示す引出しアセンブリの実施形態の平面図を示す。
図4】本発明の実施形態による、例示的プロセスフローを示す。
図5】本発明の他の実施形態による、別の例示的プロセスフローを示す。
【発明を実施するための形態】
【0009】
図面は必ずしも縮尺されているとは限らない。図面は単に表示であり、本発明の特定のパラメータを描くことを意図していない。図面は本発明の例示的実施形態を図示することを意図しており、したがって、本発明の範囲を限定するように考慮されない。図面において、同様の数字は同様の要素を表わす。
【0010】
さらに、いくつかの図面において特定の要素は省略することができ、又は、例示の明確性のために、正確な縮尺ではなく例示される。さらに、明確性のために、いくつかの参照数字は特定の図面において省略することができる。
【0011】
本発明の方法及び装置の実施形態を示す添付図面を参照して本発明による方法及び装置を以下に詳細に説明する。これらの本発明の方法及び装置は多くの異なる形態で実施できるものであり、ここに開示した実施形態に限定されるものとして解釈されるものではない。むしろ、これらの実施形態は、本発明の開示が完全無欠となるように提供するものであるとともに、本発明のシステム及び方法の範囲を当業者に完全に伝達するものである。
【0012】
便宜上及び明瞭化のために、“上部”、“底部”、“上側”、“下側”、“垂直方向”、“水平方向”、“横方向”及び“長手方向”のような用語は、図面中に表した半導体製造デバイスの構成要素の配置及び向きに対する上述した構成要素及びこれらの構成部品の相対的な配置及び向きを記述するためにここで用いることができる。専門用語には、具体的に述べた用語、その派生語及び同様な意味の用語が含まれるものである。
【0013】
本明細書で用いられるように、単数で記載され、及び、単語「1つの」で始められる、1つの要素又は動作は、そのような除外が明記されるまでは、複数の要素又は動作を含むものとして解釈すべきである。本発明の“一実施形態”に関する言及はこの実施形態に限定されるものではない。ここに列挙した特徴事項は追加の実施形態にも導入しうるものである。
【0014】
様々な実施形態において、トレンチ又はビアの向上した充填などの基板における空洞の向上した処理を提供する技術及び装置が開示される。特に、本発明は、空洞の充填中、傾斜イオンビームの使用を含み、イオンは、基板の平面の垂線に対して非ゼロの入射角で基板へ向けられる。
【0015】
図1A図1B図1C図1D及び図1Eは、本発明の実施形態による、空洞を満たす例をまとめて示す。図1A図1B及び図1Cに示すシナリオは、デバイス構造102の処理の異なる例を例示する。図1Aにおいて、デバイス構造102は空洞106を含む基板104として示される。様々な実施形態において、空洞は、側壁108、下部面110及び上部面112を有するトレンチ、ビア又は類似の構造とすることができる。基板104は、図示しない他の特徴を含むことができ、例えば、少なくともいくつかの層は異なる材料から作られる、任意の数の層を含むことができる。基板104は、例えば、空洞106に類似の多数の空洞を含むことができる。基板104は、所定の材料から構成することができ、側壁108、下部面110及び上部面112は、同一の材料から構成される。本実施形態は、本文脈に限定されない。基板の材料は、いくつかの例において、単結晶シリコンもしくは他の構造のシリコン、酸化物又は窒化物から構成することができる。本実施形態は、本文脈に限定されない。
【0016】
特定の実施形態において、空洞106の大きさは、少なくとも1つの方向に沿って、100nmより小さくすることができる。例えば、空洞106は、トレンチの幅Wが100nmより小さいトレンチ構造を有することができる。いくつかの例において、そのようなトレンチの高さHは、100nmより大きくすることができる。そのような例において、アスペクト比H/Wは1より大きいと判断される。図1A図1Cの実施形態は、1より大きいアスペクト比を有することを含む前述の小さい大きさを有する空洞などの空洞を満たすための、困難であるがやりがいのあることに対処する。本実施形態は、本文脈に限定されない。
【0017】
さて、図1B及び図1Cに戻るに、本発明の実施形態による、空洞106を満たすために、イオンを用いる例が示される。いくつかの実施形態において、イオン120は、1つのイオンビーム又は複数のイオンビームとして供給することができ、1つのイオンビーム内の異なるイオンの軌跡は、互いに平行であり、又は、10度以下に広がる角度の範囲内に、通常はある。本実施形態は、本文脈に限定されない。図1B及び図1Cにおいて実施される動作は、異なる実施形態において、同時に又は連続して実施することができる。図1Bに示すように、基板104の平面Pに対する垂線122に対して、角度θとして示す非ゼロの入射角を形成するために、イオンの軌跡が配置される、一方向のイオンビームとして、イオン120を供給することができる。図1Bにさらに例示するように、イオン120はプラズマ源130から供給することができ、プラズマ源130は、様々な実施形態において、プラズマチャンバを含むことができる。本明細書で用いられるように、総称「プラズマ源」は、パワージェネレータ、プラズマ励起装置、プラズマチャンバ、及び、プラズマ自体を含むことができる。プラズマ源130は、誘導結合プラズマ(ICP)源、トロイダル結合プラズマ(TCP)源、容量結合プラズマ(CCP)源、ヘリコン源、電子サイクロトロン共鳴(ECR)源、傍熱型陰極(IHC)源、グロー放電源、又は、当業者に既知の他のプラズマ源とすることができる。特定の実施形態において、プラズマ源130は、アパーチャ140及びアパーチャ142を共に画定する引出しプレート134及びビームブロッカー136を含む引出しアセンブリ132を含むことができる。これらのコンポーネントの動作は、図3A及び図3Bに対して、もっと詳細に論じられる。
【0018】
プラズマ源130は、不活性ガス種だけでなく、凝縮種も含むイオン種を供給するために、用いることができる。以下に詳細に述べるように、これらの種は、充填材料のボトムアップの成長を高める方法で、充填材料の空洞106内の蒸着を制御するために、相互打用することができる。このように、ピンチオフを避けることができ、不必要な空間の空洞106内の形成を防止する。
【0019】
特定の実施形態において、イオン120は、不活性ガス及び凝縮ガスの混合を含むことができ、一方、他の実施形態において、イオン120は、凝縮ガスを含むことができる。プラズマ源130の種の組成は、既知の材料を蒸着するために用いる、既知のHDPCVDプロセスに対する組成に類似にすることができる。例えば、SiO2などの充填材料を蒸着する例において、シラン(SiH4)、N2O及びアルゴンを含む種をプラズマ源130へ供給することができる。少なくともこれらの種のいくつかは、イオン化することができ、図示のようにイオン120を形成することができる。他の実施形態において、Si0O2を形成するためにシラン(SiH4)及び酸素(O2)を用いるなどで、以下に論じるように、酸素は、基板104へ個別に供給することができる。様々な実施形態において、イオン120に加えて、空洞106の中の充填材料を形成するのに役立つ蒸着種を含む中性種(図示せず)を、イオン120に呼応して供給することができる。中性種は、いくつかの場合において、イオン120の軌跡と異なる軌跡を有することができる。
【0020】
特定の実施形態において、イオン120と共に、基板104に供給される中性種は、反応種(図示せず)を含むことができ、反応種は、プラズマチャンバを横切ることなく、基板104に供給される。反応種は、イオン120の部分を形成する他の中性種又は凝縮種を含む他の種と反応するために、選択することができる。反応種は、したがって、空洞106内に堆積する充填材料の部分を形成することができる。本発明の実施形態による充填材料124の例は、SiO2、Si3N4、Al2O3、アモルファスシリコン、CO、Ta、W、Alを含む。本実施形態は、本文脈に限定されない。
【0021】
図1B及び図1Cの実施形態において、空洞106内の充填材料124の堆積は、イオン120の方向性を制御することにより、制御することができる。例えば、充填材料124は、下部面110、側壁108及び上部面112を含む空洞106の様々な表面の上に瞬間的に蒸着することができる。同時に、イオン120にさらされる表面からの材料の再スパッタリングなどのエッチングを始めるのに十分なエネルギーを有するイオン120を供給することができる。イオン120の軌跡を制御することにより、充填材料124が空洞106内に蒸着される間に、空洞106の特定の部分は、イオン120によるエッチングのターゲットとすることができる。充填材料124の正味の堆積プロファイルは、したがって、蒸着、及び、空洞106の部分の空間的にターゲットとされたエッチングの組合せを表わすことができる。
【0022】
図1B及び図1Cに示されるように、充填材料124は、空洞106の下部面110に、第1の速度で堆積することができ、側壁108の下部分108Bに、異なる速度で、又は、第1の速度に類似の速度で堆積することができる。さらに、充填材料124は、側壁108の上部分108Aに、第1の速度より小さい第2の速度で堆積することができる。特定の実施形態において、θとして示される非ゼロの入射角は、垂線122に対して、30度以下にすることができる。イオン120は、したがって、側壁108のさらされる領域に突き当たることができ、上部分108Aなどのさらされる領域の中への充填材料124の堆積速度を低減する。様々な実施形態において、イオン120のイオンエネルギーは、デバイス102への不必要な損傷を引き起すことなく、充填材料124のエッチングを生成するために、調整することができる。イオン120に対する例示的イオンエネルギーの範囲は、500eVから1500eVを含む。上部面112によるイオン120の陰影のため、空洞106の下部領域は、イオン120によるエッチングに、より少なくさらされ得る。このように、下部面110及び側壁108の下部分108Bへの材料の堆積速度は、充填材料124を形成する蒸着種の蒸着速度により、主として決定することができる。
【0023】
図1D及び図1Eは、図1及び図1のシナリオの後の過程での充填材料124のプロフィルの発達を例示する。図1D又は図1Eに示す充填材料124の構造を生成するために、通常、図1B及び図1Cに示す動作は、繰り返し、又は、継続することができる。なお、イオン化されない材料は、一部分において、空洞106内で凝縮することができ、一方、イオン120は、非ゼロの入射角で、空洞106の中に向けられる。このプロセスにより、上部分108Aの近くの領域におけるのに対して、下部面110の近く及び下部分108Bの近くではより早く、充填材料124の継続する堆積をもたらす。図1Eは、図1Dのシナリオの後の追加の過程を示し、最も低い表面を表わす充填材料124の下部面は、空洞106の上部面112とほとんど同一平面である。図1Aから図1Eに例示する充填プロセスは、したがって、充填材料124の蒸着の異なる段階中、充填材料124の再入不可プロフィルを生成し、ピンチオフ又は空間形成のない空洞106を満たす機能もたらす。
【0024】
本発明の追加の実施形態により、空洞を満たすために用いられる充填材料のプロフィルを制御するために、蒸着動作に加えて、別個のエッチング動作を用いることができる。図2A図2B図2C及び図2Dは、本発明の追加の実施形態による、空洞を満たす例をまとめて示す。図2Aにおいて、例示的充填動作が示され、垂線122に対して非ゼロの入射角で、イオンが空洞106へ向けられる。この特定の実施形態において、イオン202は1つの側壁へ向けることができ、一方、イオン204は反対側の側壁へ向けられ、2つの側壁は側壁108として示される。イオン202及びイオン204は、イオン化されない種(図示せず)と共に、空洞106へ供給することができ、イオン化されない種の少なくとも一部が、充填材料の蒸着をもたらし得る。イオン202及びイオン204は、いくつかの実施形態において、互いに、同時に供給することができる。
【0025】
図1Bを再び参照するに、一例において、プラズマ源130から引出しアパーチャ144を通るイオンビームとして、イオンを引出すことにより、イオン202及びイオン204は、供給することができ、引出しアパーチャ144は引出しアセンブリ132内に形成される。特に、イオン202として示すイオンの第1の部分は、引出しアパーチャ144の第1の部分を通る第1のイオンビームとして、引出すことができ、一方、イオン204として示すイオンの第2の部分は、引出しアパーチャ144の第2の部分を通って引出すことができる。一実施形態において、イオン202は、角度θとして示す垂線122に対して第1の非ゼロの入射角を形成することができ、一方、イオン204は、角度-θとして示す垂線122に対して第2の非ゼロの入射角を形成することができる。特に、垂線122は、第1の非ゼロの入射角θ及び第2の非ゼロの入射角-θを2等分することができる。空洞106の対称空洞構造のために、この形状により、イオン202及びイオン204が、同じ(絶対値の)入射角で、向かい合った側壁の同じそれぞれの部分を捕まえることを引き起すことができる。そのような状況下で、充填材料210の対称プロファイルが発達することができる。他の実施形態において、イオン202及びイオン204は、垂線122に対して異なる角度で供給することができる。
【0026】
図2Aに一般的に示すプロセスが、図1Bから図1Eに一般的に例示されるように、成長中の充填材料210の受け入れ可能なプロファイルをもたらすことができる間に、いくつかの条件下で、図2Aのシナリオの後に実施するために、少なくとも1つのエッチング動作を有用にすることができる。このエッチングは、ボットムアッププロセスにより、空洞104の充填の強化をさらに低減することができ、ピンチオフ及び覆われた空間を避ける。
【0027】
さて、図2Bに戻るに、充填材料210の一部を除去するために、エッチングプロセスが実施される、図2Aの後のシナリオが示される。図2Bにおいて、エッチャント212が空洞106へ向けられる。様々な実施形態において、エッチャント212は選択的エッチャントとすることができ、エッチャント212は充填材料210の選択的エッチングを実施することをもたらす。特に、充填材料210の一部は、基板104の材料に対して、選択的に除去されることができる。エッチャント212は選択的エッチングのための既知の種を含むことができる。例えば、充填材料がSiO2の中で蒸着され、空洞106がシリコンの中で形成される実施形態において、エッチャント212はCHFから得ることができる。特定の例において、CHFは、プラズマ源130などのプラズマ源の中へ流れることができ、少なくとも部分的にイオン化することができ、空洞106へ供給することができる。図2Bにおいて、エッチャント212により選択的エッチングプロセスが実施された後の、充填材料210の結果として得られるプロファイルを示す。充填材料210は、側壁108の上部分108Aから除去され、一方、基板104の材料は除去しない。
【0028】
様々な実施形態において、充填材料210を蒸着するステップと充填材料の選択的エッチングをするステップは、充填サイクルを構成することができ、少なくとも1つの追加の充填サイクルが、最初の充填サイクルの後に、実施される。図2Cに例示されるように、例えば、図2Aの動作に類似の続く蒸着プロセスを、追加の充填材料210を蒸着するために、実施することができる。例示されるように、イオン224として示されるイオンビーム、及び、イオン226として示される別のイオンビームは、一対の向かい合わせの側壁の方へ向けることができ、一方、イオン化されない種(図示せず)は空洞106へ供給することができる。これにより、図示の充填材料210のプロファイルを生成することができる。図2Dにおいて、図2Cに示す蒸着の後に、エッチャント232を空洞106の中へ向けることにより、追加の選択的エッチングを実施することができる。いくつかの実施形態において、エッチャント232はエッチャント212と同じにすることができる。再び、充填材料210は、側壁108の上部分108Aから選択的に除去することができる。いくつかの実施形態において、図2A~2Bの動作が多数回、繰り返されるときに、エッチャント212だけでなくエッチャント232も、下部面110の近くの充填材料210を部分的にエッチングすることができる間に、充填材料210の全体のプロファイルは再入不可を続けることができ、ピンチオフ構造を避けながら、空洞106を満たすことを可能にする。図2Eは、図2A~2Bの動作が多数回、繰り返されるときに、生成される、充填材料のプロファイル発達の例を示す。プロファイル240は、図2Dのシナリオの後の第1の過程での充填材料210の充填材料プロファイルを例示し、一方、プロファイル242は、プロファイル240により表わされる過程の後の第2の過程を示す。
【0029】
いくつかの実施形態において、図2B及び図2Dのシナリオにおいて、例えば、イオン202及びイオン204の配置に類似して、垂線122に対して、非ゼロの入射角で、イオンが向けられるときに、選択的エッチャントを空洞106へ供給することができる。このように、選択的エッチャントは、イオンにさらされる充填材料の部分のみをエッチングすることができ、一方、下部面110に隣接する部分などの充填材料の他の部分はエッチングにさらすことができない。そのような選択的エッチャントの例は、CHFを含むことができる。選択的エッチャントの別の例は、CHF及びアルゴンの混合物とすることができる。空洞の側壁の一部が、蒸着プロセスの後に、さらされるままであるいくつかの例において、イオンのビームのイオンエネルギーは、空洞の壁を形成するさらされる基板の材料のかなりのスパッタリングが起こるレベルより下に維持することができる。
【0030】
このタイプの選択的エッチングは、したがって、空洞の特定の領域がイオンにさらされないままであるため、空間的に選択するエッチングを提供し、一方、充填材料のエッチングに対して、基板04が、エッチングされないままか、又は、低減した速度でエッチングされるかの化学的選択性も提供する。このように、充填材料を側壁の上部領域から除去する間に、空洞の下部部分の方への充填材料の蒸着が有利に働くようにすることにより、ボットムアップの充填プロセスを強化することができる。
【0031】
さらに別の実施形態において、充填材料を蒸着するための既知の蒸着動作の後に、充填材料の選択的エッチングが続くことができ、通常、図2Aに示す配置により、選択的エッチャントを形成するイオンは、空洞の側壁の方へ向けられる。既知の蒸着動作の例は、HDPCVDプロセスを含み、イオンは、垂線に沿って、基板面へ向けられる。既知のHDPCVDプロセス自体の使用が、空洞の中の充填材料のための理想的でないプロファイルを生成する傾向があり得るのに、本実施形態において、蒸着動作は、垂直でないイオンを用いる選択的エッチング動作と交互に起こることができ、充填材料は、下部領域とは対照的に、側壁の上部部分に沿って優先的に除去される。
【0032】
なお更なる本発明の実施形態において、空洞の方へ向けられるイオンの軌跡は、充填プロセス中、調整することができる。例えば、再び、図1B~1Eを参照するに、イオン120の非ゼロの入射角の大きさは、一方では図1B、1Cのシナリオと、図1Dのシナリオとの間で調整することができる。1つの特定の例において、θの大きさは、図1B及び1Cのシナリオでは25度とすることができ、一方、θの大きさは、図1Dのシナリオでは15度に低減することができる。θの大きさは、図1Eのシナリオでは、さらに10度に低減することができる。この調整は、異なる実施形態において、離散的動作で、又は、連続的方法で行うことができる。トレンチの受け入れ角度は充填材料の堆積と共に変わるので、θの大きさの調整は、イオンを、充填プロセスの異なる段階で適切な角度で向けることを可能にする。
【0033】
図3Aは、本発明の実施形態による、システム300として示す例示的処理システムを示す。システム300は、本明細書で開示する技術により、基板の中の空洞の充填を実施するために、特別に、調整することができる。システム300は、プラズマチャンバ302、プロセスチャンバ310、並びに、プラズマチャンバポンプ330及びプロセスチャンバポンプ332を含む様々な既知のコンポーネントを含むことができる。異なる実施形態において、プラズマチャンバ302は、誘導結合プラズマ(ICP)源、トロイダル結合プラズマ(TCP)源、容量結合プラズマ(CCP)源、ヘリコン源、電子サイクロトロン共鳴(ECR)源、傍熱型陰極(IHC)源、グロー放電源、又は、当業者に既知の他のプラズマ源の部分を形成することができる。図3Aで示唆されるように、プラズマチャンバ302は、RF電源308により駆動される誘導結合プラズマ源の部分とすることができる。システム300は、さらに、凝縮種を形成するための前駆ガスを供給するガス源304を含むことができる。一例において、前駆ガスは、酸化シリコン(SiO2)又は窒化シリコン(Si3N4)を形成するために用いるべきシランとすることができる。本実施形態は、本文脈に限定されない。ガス源304は、アルゴン又は他の不活性ガスなどの不活性ガスをプラズマチャンバ302へ供給するために用いることができる。そのような不活性ガスは、例えば、イオン120、イオン202、イオン204、イオン224又はイオン226の一部を形成することができる。本実施形態は、本文脈に限定されない。追加の実施形態において、酸素含有ガス又は窒素含有ガスなどの他のガスを供給するために、追加のガス源(図示せず)をプラズマチャンバに連結することができる。
【0034】
システム300は、プロセスチャンバ310に対してプラズマチャンバ302にバイアスをかけるために配置されるバイアスシステム318を含むことができる。図3Aに示す特殊な例において、正の電圧がバイアスシステム318によりプラズマチャンバ302へ印加される間に、プロセスチャンバ310は接地することができる。
【0035】
システム300は、さらに、引出しアセンブリ316を含むことができ、引出しアセンブリ316は引出しアセンブリ132の変形である。引出しアセンブリ316は、プラズマチャンバ302の中で創生されるプラズマと、プロセスチャンバ310の中に配置される基板ステージ312との間に配置することができる。基板ステージ312は、基板104に連結することができ、X軸に平行な方向に沿って可動にすることができる。いくつかの実施形態において、基板ステージ312は、Z軸に平行な方向に沿って可動にすることができ、さらに、Y軸に平行な方向に沿って可動にすることができる。
【0036】
ガスがプラズマチャンバ302へ供給され、電力がRF電源308により供給されるとき、プラズマをプラズマチャンバ302の中に生成することができる。バイアス電圧が、パルス状に又は連続的に、プラズマチャンバ302へ印加されるとき、イオンは、プラズマチャンバ302の中のプラズマから引出すことができ、基板314へ向けることができる。図3Aに示す例において、イオンビーム320は、プラズマチャンバ302から基板314へ向けられる。図1B及び図1Cも参照するに、図3Aのイオンビーム320は、垂線122に対して非ゼロの入射角で基板314に衝突する一対のイオンビームとして、向けることができる。図3Aの例において、垂線122は、図示のデカルト座標系のZ軸に平行に配置される。
【0037】
様々な実施形態により、凝縮種はプラズマチャンバ302の中で生成することができ、少なくとも一部の凝縮種は、イオンビーム320に含まれるイオンを形成する。凝縮種は、さらに、上記で論じたように、中性種を含むことができる。システム300により生成される結果として得られる充填材料のプロファイルは、前記の図に示す充填材料のプロファイルに類似とすることができる。
【0038】
様々な実施形態により、システム300は、プラズマチャンバを横切ることなく、反応性ガス種を基板104へ供給するために、反応性ガスアセンブリを含むことができる。図3Aの例において、ガス源322は第1のガス326をプロセスチャンバ310へ供給することができ、一方、ガス源324は第2のガス328をプロセスチャンバ310へ供給することができる。これらのガスは、プラズマチャンバ302をバイパスすることによるガスラインを用いて、供給することができ、それ故に、ガスはプラズマチャンバ302を通って流れない。例えば、図1Aから図2Eに一般的に示されるプロセスにより、空洞の中にSiO2を蒸着するために、シランをプラズマチャンバ302へ供給することができ、シランからの凝縮種はイオンビーム320の一部を形成する。空洞内にSiO2を形成するために、酸素の源をシランと共に供給することができる。特に、ガス源322又はガス源324を用いて酸素を直接、プロセスチャンバ310へ流すことは、有用であり得る。これにより、シリコンを供給する凝縮種から分離して、成長する充填材料の中に酸素の源を供給することにより、放出ライン中のいかなる蒸着も避けることができる。
【0039】
さて、図3Bに戻るに、引出しアセンブリ316の実施形態の平面図が示される。本例において、引出しアセンブリ316は、X軸に沿う長さに対して、Y軸に沿う、より大きい幅を有する細長い引出しアパーチャ344を有する引出しプレート342を含む。引出しアセンブリ316は、また、細長い引出しアパーチャ344に隣接して配置されたビームブロッカー346も含むことができる。ビームブロッカー346及び細長い引出しアパーチャ344は、したがって、第1のリボンビームとして、ギャップ348を通ってイオンビーム320を引出し、かつ、ギャップ350を通って第2のリボンビームを引出すように、配置することができる。
【0040】
そのようなリボンビームは、所定の過程での基板104の全体の幅をさらすために用いることができる。前述の実施形態で説明したように、これにより、充填プロセスに対し、基板104にわたって配置された多数の空洞106をさらすことができる。細長い引出しアパーチャ344を通って引出されたリボンビームは、通常、X軸に平行な軌跡を有することができ、一方、軌跡は、また、Z軸に対して、又は、垂線122に対して非ゼロの入射角を形成する。したがって、基板104の幅にわたってY軸に沿って配置されたトレンチなどの多数の空洞は、類似の方法でイオンビーム320にさらすことができる。向上した空洞の充填プロセスは、したがって、基板104の幅にわたって、即時に、提供することができる。さらに、X方向に沿って基板104をスキャンすることにより、基板104の全体などの基板104のターゲット領域は、向上した空洞の充填プロセスに対して、逐次的方法でさらすことができる。
【0041】
いくつかの実施形態により、例えば、図2A~2Dに示すように、交互の蒸着及びエッチング動作を含むプロセスを実施するために、システム300を使用することができる。例えば、空洞をSiO2で満たすために、蒸着動作は、シラン及びアルゴンをプラズマチャンバ302の中に流すことを必然的に伴い得て、プラズマを形成する。ガス源324が、空洞をSiO2で満たすための蒸着動作において、酸素を基板104に供給する間に、イオンビーム320を基板104に向けることができる。エッチング動作において、CHFなどのガスをプラズマチャンバ302に供給することができ、CHFは、空洞106のターゲットの部分に衝突するエッチングイオンビームを形成するために、用いることができる。異なる動作で用いられる種の間のいかなる二次汚染も除去するために、所定の蒸着動作とエッチング動作との間に除去動作を実施することができる。
【0042】
様々な実施形態において、システム300は、空洞の充填中、充填材料の動的プロファイル制御を提供するために、コンポーネントを含むことができる。一例において、さらに、図3Aに示すように、システム300は、システム300の様々なコンポーネントを制御するために用いる、制御システム340を含むことができる。制御システム340は、エッチングパラメータだけでなく、蒸着パラメータの1組も制御するために、コントローラ340Aを含むことができる。制御システム340は、さらに、命令を含む少なくとも1つのコンピュータ可読記憶媒体などの媒体340Bを含むことができ、命令は、実行されるとき、コントローラ340Aに特定の動作を実施させる。これらの動作の中に含まれるのは、プラズマチャンバの中に供給される凝縮種のガスの流れを調整するために、第2の制御信号を送信することだけでなく、蒸着露出中、イオンビームの非ゼロ入射角を調整するために、第1の制御信号を送信することでもある。他の動作の中でも、これらの動作の制御は、システム300に、所定の空洞内に充填材料の独自に調整したプロファイルを提供する機能を与える。
【0043】
異なる実施形態において、非ゼロ入射角を調整するために用いられる第1の制御信号を送信することは、プラズマチャンバ302の中のプラズマの電力を調整するために、調整信号をRF電源308へ送信することを含むことができる。既知のプラズマシステムにおいて、プラズマの電力を調整することは、引出しアパーチャで形成されるプラズマのメニスカスの形状を調整し得ることであり、したがって、プラズマからのイオンの引出しの角度を調整し得ることであり、空洞に入射するイオンビームの非ゼロの入射角の変化をもたらす。上記のように、充填プロセスを進めるときに、垂線に対して入射角を低減することは、有用であり得る。したがって、空洞内の充填材料の量が増大するときに、入射角を調整するため、蒸着露出中、プラズマの電力を周期的に又は連続的に調整するために、制御システム340を用いることができる。これにより、例えば、ピンチオフのない空洞の適切な充填を確かにするために、充填材料の発達するプロフィルの最適な調整を可能にし得る。
【0044】
異なる実施形態において、非ゼロの入射角を調整するために用いられる第1の制御信号を送信することは、Z軸に平行な方向に沿って、基板104と引出しアセンブリ316との間の分離を調整するために移動信号を送信することを必然的に伴う。この分離の調整は、また、プラズマチャンバ302から引出されるイオンビームの非ゼロの入射角に作用することができ、したがって、充填中のイオンビームの入射角を動的に変更するために、用いることができる。
【0045】
プラズマチャンバ302の中へのガスの流れを調整するための制御信号の送信は、例えば、空洞をSiO2で満たす間に、シランの流れを調整するために、用いることができる。このシランの流れの調整は、充填プロセス中の蒸着とエッチングとの比率を調整するために、用いることができ、したがって、充填材料の結果として生じるプロフィルに作用することができる。
【0046】
図4は、本発明の実施形態による、例示的プロセスフロー400を示す。ブロック402において、プラズマがプラズマチャンバの中で生成される。いくつかの実施形態において、プラズマは、不活性ガス種だけでなく、凝縮種も含むことができる。
【0047】
ブロック404において、プラズマからの凝縮種及び不活性ガス種の内の少なくとも1つを含むイオンを、基板内の空洞へ向ける動作が実施される。特に、イオンは、基板の平面の垂線に対して非ゼロの入射角で、向けることができる。
【0048】
ブロック406において、凝縮種を用いて、充填材料を空洞内に蒸着する動作が実施される。充填材料は、空洞の下部面上に第1の速度で堆積することができ、空洞の側壁の上部部分上に第1の速度より遅い第2の速度で堆積することができる。このプロフィルにより、例えば、ピンチオフのない空洞の充填を促進することができる。
【0049】
図5は、本発明の実施形態による、例示的プロセスフロー500を示す。ブロック502において、プラズマがプラズマチャンバの中で生成される。ブロック504において、プラズマからの凝縮種及び不活性ガス種の内の少なくとも1つを含むイオンを、基板内の下部面及び側壁を有する空洞へ向ける動作が実施される。
【0050】
ブロック506において、凝縮種を用いて、充填材料を空洞内に蒸着する動作が実施される。いくつかの実施形態において、基板の平面の垂線に対して非ゼロの入射角で、向けられるイオンビームの中に、凝縮種を供給することができる。
【0051】
ブロック508において、選択エッチングが実施される。選択エッチングは、基板の平面の垂線に対して選択した非ゼロの入射角で、プラズマチャンバからのエッチャントイオンビームを空洞へ向けることを含むことができる。蒸着動作中に空洞の側壁の上部部分に蒸着された充填材料は、したがって、空洞の他の領域に蒸着された充填材料に対して、選択的に除去することができる。
【0052】
要約すれば、本実施形態は、アクティブなデバイス領域の損傷を防止するためのより良い機能を提供することを含み、トレンチ又は他の空洞を満たすための既知の技術に対して優位性を提供する。例えば、特に、トレンチの充填の初期段階において、垂線に対して非ゼロの入射角で、イオンを向けることにより、高精度なデバイスコンポーネントを配置することができるトレンチの底に衝突することから、イオンを遮蔽することができる。さらに、本発明の実施形態は、トレンチにおいて高いアスペクト比を有することも含めて、空間の形成を回避する、より良い機能を提供する。
【0053】
本発明の特定の実施形態を本明細書において説明したけれども、本発明は、技術が可能であり、本明細書が同様に読むことができると同じく、その範囲は広いので、本発明はそれらに限定されない。したがって、上記説明は限定するものとして解釈すべきでない。その代わりに、上記説明は、単に、特定の実施形態の例示である。当業者は、添付の特許請求の範囲及び精神内で、他の実施形態を思い描くであろう。
図1A
図1B
図1C
図1D
図1E
図2A
図2B
図2C
図2D
図2E
図3A
図3B
図4
図5