IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱マテリアル株式会社の特許一覧

<>
  • 特許-ヒートシンク 図1
  • 特許-ヒートシンク 図2
  • 特許-ヒートシンク 図3
  • 特許-ヒートシンク 図4
  • 特許-ヒートシンク 図5
  • 特許-ヒートシンク 図6
  • 特許-ヒートシンク 図7
  • 特許-ヒートシンク 図8
  • 特許-ヒートシンク 図9
  • 特許-ヒートシンク 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-04
(45)【発行日】2022-07-12
(54)【発明の名称】ヒートシンク
(51)【国際特許分類】
   H01L 23/36 20060101AFI20220705BHJP
   H05K 7/20 20060101ALI20220705BHJP
【FI】
H01L23/36 Z
H05K7/20 D
【請求項の数】 5
(21)【出願番号】P 2018028359
(22)【出願日】2018-02-21
(65)【公開番号】P2019145664
(43)【公開日】2019-08-29
【審査請求日】2020-09-29
(73)【特許権者】
【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
(74)【代理人】
【識別番号】100101465
【弁理士】
【氏名又は名称】青山 正和
(72)【発明者】
【氏名】渡邊 光太郎
(72)【発明者】
【氏名】幸 俊彦
【審査官】平林 雅行
(56)【参考文献】
【文献】特表2010-531536(JP,A)
【文献】特開平09-036284(JP,A)
【文献】国際公開第2005/067036(WO,A1)
【文献】特開2014-090209(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F28D 1/00-13/00
F28F 11/00-19/06
H01L 23/29
H01L 23/34-23/36
H01L 23/373-23/427
H01L 23/44
H01L 23/467-23/473
H05K 7/20
(57)【特許請求の範囲】
【請求項1】
基板部、及び該基板部の表面に立設して相互に平行に配置された多数のフィン部を有する金属成形体と、該金属成形体の前記フィン部間の溝部内に充填された複数のコイル状金属線材からなる充填体とを有しており、前記充填体は、その少なくとも一部が前記金属成形体の前記溝部の内面に冶金的接合され、前記コイル状金属線材は、その一端側と他端側とでコイルの外径が異なっており、その一部が前記金属成形体の前記溝部内面又は該溝部内の前記充填体における他の前記コイル状金属線材に冶金的接合されていることを特徴とするヒートシンク。
【請求項2】
前記コイル状金属線材の長さ方向と直交する方向の断面外形は五角形以下に形成されていることを特徴とする請求項1に記載のヒートシンク。
【請求項3】
前記コイル状金属線材は、単コイル全長をLmm、巻き数をNとしたとき、N/Lが0.1mm-1以上であることを特徴とする請求項1又は2に記載のヒートシンク。
【請求項4】
前記コイル状金属線材の最大外径をDmm、最小外径をd2mm、単コイル全長Lmmとしたとき、(D-d2)/Lが0.05以上を有することを特徴とする請求項1から3のいずれか一項に記載のヒートシンク。
【請求項5】
前記コイル状金属線材は、切削加工により生じる切削片であることを特徴とする請求項1から4のいずれか一項に記載のヒートシンク。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱を放散するために用いられるヒートシンクに関する。
【背景技術】
【0002】
パワー素子等の半導体素子を搭載したパワーモジュール等のように、発熱を伴う電子部品においては、これを正常に動作させるために、発熱素子からの熱を放散するためのヒートシンクが設けられる。このヒートシンクとしては、熱伝導性が高いアルミニウムや銅が用いられる。また、平板状の基板部の片面に多数のプレート状、ピン状等のフィンを立設させた構造のものが多く用いられ、このようなヒートシンクは、パワーモジュール等の被冷却体と基板部とを密着させ、フィンを熱媒流路に配置することにより、被冷却体を冷却する。
【0003】
例えば、特許文献1には、バルク体のフィンがベース板に立設したヒートシンクが記載されている。
また、特許文献2では、バルク体のフィンの間に多孔質体が充填されるヒートシンクが記載されており、フィンの比表面積が拡大することで高い熱伝達率が得られる。
また、特許文献3には、ベース板上にコイルが配置されたヒートシンクが記載されており、バルク体で構成されるフィンと比べ、比表面積が高く、高い熱伝達率を有する。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2003-119536号公報
【文献】特開2012-9482号公報
【文献】特開平6-275746号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1記載のヒートシンクでは、フィンがバルク体であるため表面積が小さく、高い熱伝達率が期待できない。特許文献2記載のものでは、多孔質体の比表面積が高いため、圧力損失が高くなりすぎてしまう。さらに、特許文献3記載の構造では、コイルは線材であり、断面積が小さく、熱抵抗が高くなるため、コイル全体に熱が行き渡りにくい。
一方、本出願人は、特許文献4にて、フィンをバルク体の芯部の表面に多孔質体を接合した構造とすることを特願2017-149843号にて、ストレートフィンの溝に繊維多孔質体が接合されたヒートシンクを提案している。このヒートシンクは、繊維が圧力損失を低減する配向を有するため、発泡金属より圧力損失が低いと想定されるが、更に低くすることが求められる。
【0006】
本発明は、ヒートシンクの熱伝達率をさらに向上させ、圧力損失をさらに低下させることを目的とする。
【課題を解決するための手段】
【0007】
本発明のヒートシンクは、基板部、及び該基板部の表面に立設して相互に平行に配置された多数のフィン部を有する金属成形体と、該金属成形体の前記フィン部間の溝部内に充填された複数のコイル状金属線材からなる充填体とを有しており、前記充填体は、その少なくとも一部が前記金属成形体の前記溝部の内面に冶金的接合され、前記コイル状金属線材は、その一端側と他端側とでコイルの外径が異なっており、一部が前記金属成形体の前記溝部内面又は該溝部内の前記充填体における他の前記コイル状金属線材に冶金的接合されている。
【0008】
このヒートシンクは、バルク体のフィン部間の溝部内に複数のコイル状金属線材からなる充填体が充填されており、フィン部及び基板部と充填体とを合わせた広い面積で熱移動が行われる。また、充填体は金属成形体の溝部内面に冶金的接合部を介して接合され、コイル状金属線材も冶金的接合により金属成形体又は他のコイル状金属線材に接合されているので、接合界面の熱抵抗が小さく、金属成形体と充填体との間の熱移動が円滑に促進される。
そして、熱媒は充填体内の空隙を通ってコイル状金属線材及び金属成形体(フィン部及び基板部)の表面との間で熱交換される。この場合、充填体におけるコイル状金属線材は、そのコイルの外径が一端と他端とで異なっているため、溝部の長さ方向に沿う熱媒の流れに対して、その線材の各部が流れに対して交差するように配置され、熱媒からの熱を確実に受けることができるとともに、熱媒の流れの障害となって、流れを乱すこと(かく乱効果)ができるため、熱交換を促進することができる。
【0009】
また、充填体はコイル状金属線材からなるので、空隙の開口径が大きくなり、発泡金属や繊維多孔体と比べ圧力損失は低下する。また、この充填体は、コイル状金属線材の太さや巻き数等を変えるだけで、溝内への充填率等を自在に制御できるため、製品設計の自由度が高い。さらに、コイル状金属線材は、線材をコイル状に巻いた形状であり、容易に成形可能である。このコイル状金属線材はタンデムロールなどで成形した線材を巻く以外に、バルク体を切削して得られる切削片の利用も該当する。
なお、フィン部及び基板部と充填体とは焼結や固相接合、あるいははんだ付けやろう付けなどによって接合される。すなわち、機械的接合とは異なり、金属原子間の化学結合を界面に有する冶金的接合とする。
【0010】
本発明のヒートシンクの好ましい実施形態として、前記コイル状金属線材の長さ方向と直交する方向の断面外形は五角形以下に形成されているとよい。
【0011】
コイル状金属線材の横断面形状は円形や楕円でもよいが、円形や楕円の場合は、コイル状金属線材が熱媒の流れに交差する方向に配置されると、流れがコイル状金属線材の両側面(円弧面)に沿って滑らかに分かれて下流側に移動する。これに対して、コイル状金属線材の横断面形状が三角形、四角形、五角形のいずれかであると、複数の平面又は曲率半径の大きい湾曲面により外形が形成されるので、その平面又は湾曲面が熱媒の流れに対して交差する方向で存在することになり、その交差する表面に衝突した流れが、コイル状金属線材の後方で渦を発生し、その結果、流れがより乱されてかく乱効果が高められ、熱交換をさらに促進することができる。なお、横断面四角形には、薄板状のものも含むものとする。
【0012】
本発明のヒートシンクの好ましい実施態様として、前記コイル状金属線材は、単コイル全長をLmm、巻き数をNとしたとき、N/Lが0.1mm-1以上であるとよい。
N/Lが0.1mm-1未満では、流れの乱される機会が少なく、かく乱効果において所期の効果を得ることが難しい。
また、本発明のヒートシンクの好ましい実施態様として、前記コイル状金属線材の最大外径をDmm、最小外径をd2mm、単コイル全長Lmmとしたとき、(D-d2)/Lが0.05以上を有するとよい。
【0013】
本発明のヒートシンクの好ましい実施態様として、切削加工により生じる切削片を用いることができる。
切削片であれば、特別な加工は必要なく、そのまま用いることが可能であり、入手も容易である。
【発明の効果】
【0014】
本発明によれば、コイル状金属線材を使用することによるフィン表面積拡大効果、及び熱媒の流れを乱すかく乱効果を促進できるので、ヒートシンクの熱伝達率を向上させることができ、空隙の径が大きいので圧力損失も低下させることができる。
【図面の簡単な説明】
【0015】
図1】本発明の一実施形態のヒートシンクの平面図に相当する外観観察画像である。
図2図1のヒートシンクの側面図に相当する外観観察画像である。
図3】本発明の一実施形態のヒートシンクを模式化して示す斜視図である。
図4図3の一部を拡大した平面図である。
図5図3の一部を拡大した側面図である。
図6】金属成形体の溝部に充填された充填体の模式図である。
図7】充填体を構成するコイル状金属線材の模式図である。
図8】コイル状金属線材として用いられる切削片の写真である。
図9】切削片の断面写真である。
図10】一実施形態のヒートシンクの製造方法を模式的に示す側面図である。
【発明を実施するための形態】
【0016】
以下に、本発明の実施形態を説明する。
本発明の一実施形態を示すヒートシンク101は、図1及び図2の観察画像、図3図5に示すように、金属成形体10と複数のコイル状金属線材21からなる充填体20とを組み合わせた複合構造とされている。
【0017】
金属成形体21は、平板状の基板部11と、その基板部11の片面に立設した多数の帯板状(プレート状)のフィン部12と、これらフィン部12間の溝部13内に充填された複数のコイル状金属線材21からなる充填体20とを有している。
金属成形体10の基板部11とフィン部12とは、アルミニウム(アルミニウム合金を含む。)のバルク体によって一体に形成されたアルミニウム成形体である。また、充填体20は、図6及び図7に示すように、基板部11及びフィン部12と同じ材質のアルミニウムからなるコイル状金属線材21により形成され、1個の溝部13内に複数個が充填されて充填体20を構成している。
なお、これら金属成形体10及び充填体20は、熱伝導性が良好であれば、アルミニウム又はアルミニウム合金からなるものに限られるものではなく、後述するように焼結により接合されるので、焼結できる金属であれば、金属成形体10と充填体20とが異なる金属からなるものでもよい。
【0018】
この場合、基板部11は、例えば矩形状の平面形状を有しており、図3図5に示すように、フィン部12は、基板部11の表面から所定の高さh1、所定の厚さt1で立設されている。図3に示す例では、フィン部12は、基板部11の表面と平行な面方向において、縦方向(奥行方向、長さ方向)の全長にわたって設けられ、基板部11の横方向(幅方向)に所定の間隔c1をおいて相互に平行に並べられている。そして、各フィン部12の間に間隔c1の開口幅を有する溝部13が設けられている。また、これらのフィン部12のうち、最も外側の両側部に配置される外側フィン部12は、基板部11の両側縁よりも内側に配置されている。但し、外側フィン部12の外側側面と基板部11の両側縁面は同一面であっても良い。すなわち、必ずしも外側フィン部12は、基板部11の両側縁よりも内側に配置しなくても良い。
また、最も外側のフィン部12の外側面から基板部11の側縁までの離間距離c2はフィン部12間の離間間隔c1と同じか、それより小さく形成されている。
【0019】
一方、充填体20を構成しているコイル状金属線材21は、図7に模式的に示したように、全体としてはコイル状に巻回されているが、完全なコイル形状ではなく、全体にねじられるようにして形成されている。また、その一端と他端とのコイルの外径が異なっており、コイルの一端の外径d1が他端の外径d2より大きく形成されている(外径d1の大きい側の端部を大径側端部12a、小さい側の端部を小径側端部12bとする)。この場合、全体としてはコイル状にねじられて変形しているため、コイルの外径も、円の外径として測定することは困難であり、その先端からほぼ1巻き分の線材において最も外側に配置され、180°対向する2箇所をコイルの長さ方向と直交する方向に測定したときに得られる寸法を外径とする。
また、このコイル状金属線材21は、単コイル全長(一つのコイル状金属線材の全長)をLmm、巻き数をNとしたとき、N/Lが0.1mm-1以上とされ、最大外径をDmm、最小外径をd2mmとしたとき、(D-d2)/Lが0.05以上を有する。ここでいう最大外径Dは、コイル状金属線材21を単体で測定した場合の最大外径d1とは異なり、フィン部12間に充填されることにより径方向に押圧変形された状態のときの最大長径とその直角に対応する短径の平均値をいう。
さらに、各コイル状金属線材21の長さ方向に直交する横断面形状は、図9に示すように、円形ではなく、三角形状に形成されている。
【0020】
そして、充填体20は、前述したフィン部12の間隔c1を埋めるように、フィン部12の長さ方向に沿って複数設けられており、金属成形体10の溝部13の内面(フィン部12又は基板部11の表面)に焼結部(冶金的接合部)22を介して接合されている。この場合、図6に示すように、充填体20における各コイル状金属線材21は、必ずしも、その全てがフィン部12又は基板部11に接合されているとは限らず、コイル状金属線材21同士が焼結部22を介して接合されている場合もある。ただし、溝部13内の1個の充填体20として捉えたときには、全長のいずれかの部分でフィン部12又は基板部11に焼結部22を介して接合されている。
言い換えれば、各コイル状金属線材21においては、金属成形体10の溝部13の内面と他のコイル状金属線材21の両方に焼結部22を介して接合されているものもあれば、金属成形体10の溝部13の内面には接合されずに、他のコイル状金属線材21に焼結部22を介して接合されたもの、あるいは、逆に、他のコイル状金属線材21には接合されずに、金属成形体10の溝部13の内面に焼結部22を介して接合されたものが混在している。図6において、ハッチングして示したコイル状金属線材21は、金属成形体10には接合されておらず、他のコイル状金属線材21のみに接合されている。
【0021】
また、前述したように、各コイル状金属線材21は、その大径側端部21aと小径側端部21bとの外径が異なることから、大径側端部21aから小径側端部21bに向かうコイル状金属線材21の円周方向は、溝部13の長さ方向と交差する方向に配置される。このため、溝部13内を流れる熱媒の流れを受けるようにコイル状金属線材21が交差して配置される。また、横断面が、複数の平面又は湾曲面を組み合わせた三角形状をなしていることから、熱媒の流れに対してその平面又は湾曲面が交差することになる。
【0022】
この充填体20を構成するコイル状金属線材21は、好適には、フライス盤等による切削加工によって生じた切削片(図8及び図9参照)が用いられる。この切削片は、切削工具の切れ刃の形状、特に切れ刃における逃げ面の形状や、被削材の切削特性、切削条件等によって横断面形状が特定される。ただし、その形状は一定ではなく、不定形である。この切削片のように、コイル状金属線材21の横断面形状は、精密に加工して得られる形状のものだけでなく、複数の角部を有しており、その角部間の面が前述した平面、湾曲面の他、若干の凹凸のある曲面等によって構成され、全体として三角形状とみなされる形状である。
なお、本発明において、コイル状金属線材は三角形に限るものではなく、四角形、五角形のものも用いることができる。
【0023】
なお、このヒートシンク101において、基板部11の表面で熱媒が流通させられる領域の平面積とフィン部12の高さh1との積で求められる全体体積のうち、フィン部12及び充填体20の金属(アルミニウム)部分を除く空間体積の比率(空隙率)が、50%以上65%以下とするのが好ましい。
このうち、空隙率を計算するための全体体積は、図3に示す例のように、フィン部12が立設されている基板部11の表面の全体が大気等に露出し、その表面全体で熱媒(例えば空気や水)と熱交換する場合は、基板部11の全体の平面積(S1×S2)とフィン部12の高さh1との積とすればよい。
【0024】
このように構成したヒートシンク101を製造する場合、例えばアルミニウムの押出成形、鍛造成形、鋳造成形、あるいは基板部11とフィン部12とをろう接などで接合することにより、基板部11とフィン部12とを有するバルク体の金属成形体10を一体に形成し、そのフィン部12間の溝部13内に、図10に示す型51を用いて充填体20を接合する。その型51は、例えばカーボン等、金属成形体10及び充填体20のコイル状金属線材21と反応しにくい材料からなり、図10(a)に示すように、片面に、フィン部12を収容するための矩形状の凹部52が形成された板状に形成され、その型51を図10(b)に示すように基板部11に対向するように重ね合わせると、金属成形体10と型51との間に充填体20を形成するための空間53が形成される。
【0025】
コイル状金属線材21は、フライス盤等の切削加工で生じた切削片を用意する。
そして、複数個のコイル状金属線材21の長さ方向を金属成形体10の各フィン部12間の溝部13に沿うように配置して、図10(a)に示すように、溝部13上に並べて配置する。この場合、コイル状金属線材21の大径側端部21aの外径d1が各フィン部12の間隔c1よりも大きいものをフィン部12間に並べる。その後、大径側端部の外径d1が間隔c1よりも小さいものがある場合は、フィン部12間に配置したコイル状金属線材21に重ねるようにして配置するとよい。したがって、コイル状金属線材21の大径側端部21aは、フィン部12の離間間隔c1より大きい外径のものも、離間間隔1cと同程度のものも、離間間隔c1より小さい外径のものも存在する。小径側端部21bも離間間隔c1より大きいもの、同程度のもの、小さいものが存在する。
【0026】
このようにしてフィン部12の間の溝部13上に適した重量比(1:1.5など)のマグネシウムとシリコンの粉末をバインダーにより表面に付着させたコイル状金属線材21を並べて配置した後、金属成形体10に型51を重ね合わせて、コイル状金属線材21を溝部13内に押し込むようにして、空間53内にコイル状金属線材21を充填する。そして、例えば不活性雰囲気で600℃~660℃の温度で0.5分~60分間、加熱することにより、コイル状金属線材21と金属成形体10(フィン部12又は基板部11)との接点やコイル状金属線材21相互間の接点で焼結させることにより、金属成形体10と充填体20と及び充填体20内のコイル状金属線材21同士が焼結部22を介して一体に接合されたヒートシンク101を得ることができる。
【0027】
このように構成されるヒートシンク101においては、金属成形体10の各フィン部12間の溝部13内に充填体20が充填されており、フィン部12及び基板部11(金属成形体10)と充填体20とを合わせた広い面積で熱移動が行われる。また、フィン部12及び基板部11と充填体20とは焼結部22を介して接合されているので、フィン部12及び基板部11と充填体20との接合界面の熱抵抗が小さく、基板部11及びフィン部12から充填体20への熱移動が円滑に促進される。そして、熱媒は充填体20内の空隙を通って充填体20、フィン部12及び基板部11の表面との間で熱交換される。この場合、ヒートシンク101には充填体20により大きな表面積が形成されているので、充填体20が受けた熱が熱媒に効率的に移動することにより、優れた熱伝達率が得られる。また、充填体20は熱媒の流れの障害となり、熱媒の流れを乱すことができるため、バルク体のみからなるヒートシンクと比較して、比表面積が大きくなる以上に熱交換が促進される効果がある。
【0028】
また、前述したように、充填体20はコイル状金属線材21は空隙の開口径が大きいため、発泡金属や繊維多孔体と比べ、圧力損失が低い。また、この充填体20は、コイル状金属線材21の太さや外径、充填方法を変えるだけで、空隙率の大きさ等を自在に制御できるため、製品設計の自由度が高い。
なお、フィン部12及び基板部11と充填体20とは焼結部22によって接合され、ろう材を用いていないので、ろう材の浸透による充填体20の空隙率の低下(金属密度の増加)が生じない。ただし、適量のろう材であれば使用してもよい。本発明においては、焼結部やろう接部を含めて冶金的接合部と称す。
【0029】
この場合、各コイル状金属線材21は、コイルの外径が一端と他端とで異なっているため、溝部13の長さ方向に沿う熱媒の流れに対して、その線材の各部が流れに対して交差するように配置され、熱媒からの熱を確実に受けることができる。また、各コイル状金属線材21の横断面形状が複数の平面又は曲率半径の大きい湾曲面により三角形状に形成されているため、その平面又は湾曲面が熱媒の流れに対して交差する方向で存在することになる。そして、これらの相乗作用により、熱媒の流れをコイル状金属線材21の平面又は湾曲面により受けて、熱媒からの熱を確実に受けるとともに、その表面に衝突した流れが、コイル状金属線材の後方で渦を発生し、その結果、流れがより乱されてかく乱効果が高められ、熱交換をさらに促進することができる。
したがって、熱伝達率が高いヒートシンク101とすることができる。
【0030】
なお、本発明は上記実施形態に限定されるものではく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
【実施例
【0031】
本発明の実施例(試料番号1~3)として、図3に示す上記実施形態の帯板状(プレート状)のフィン部12を有するヒートシンク101を作製した。この場合、基板部11は、縦S1:55mm×横S2:38mm、板厚h0:4mmとし、フィン部12を基板部11の全長にわたって形成した。各フィン部12の高さh1は6mmとした。フィン部12の数、フィン部12の離間間隔(溝部13の幅)c1、最も外側のフィン部12の外側面から基板部11の側縁まで(橋溝部)の離間距離c2、コイル状金属線材21の最大外径、最小外径、コイル状金属線材単体の全長(単コイル全長)、巻き数は表1の通りとした。また、コイル状金属線材21の最小外径は、前述の小径側端部12bの外径d2であるが、最大外径は、フィン部12の間に充填した状態での最大長径とその直角に対応する短径の平均値である。
また、実施例のコイル状金属線材21の断面はほぼ三角形状に形成されている。
【0032】
また、比較例(試料番号4,5)として、充填体20として繊維多孔体を使用したヒートシンクを作製した。このヒートシンクは、試料番号1~3の金属成形体10と同様の寸法で形成した。
【0033】
金属成形体10,16及び充填体20の材料としては、A1050を用いた。
空隙率は、フィン部12,15が立設されている基板部11,14の表面全体(全体体積V=S1×S2×h1)で熱媒と熱交換するものとし、充填体20の体積をもとに算出した。
【0034】
圧力損失は、一方向に熱媒(水)が流れる冷却性能測定装置を使用した。その測定装置に各ヒートシンクをはめ込み、フィン部12に30℃の熱媒を体積流量4L/min(一定)で流し、ヒートシンク前後の差圧を測定して、これを圧力損失とした。熱媒は、フィン部12の長さ方向に流通させた。
【0035】
熱伝達率の導出には、圧力損失測定で用いた冷却性能装置による試験で得られた各種測定値を使用した。そして、ヒートシンクの基板部11上(フィン部12とは反対面上)に柔軟性のある放熱グリス、被冷却体(発熱素子)、断熱材の順で重ね、押さえ治具により被冷却体を50cm・Nのトルクで圧着した。25℃の一定の温度に調整された試験室の下、フィン部12,15に30℃の熱媒(水)を4L/min(一定)で5分間流し、被冷却体の温度(発熱前温度)が安定していることを確認した後、約450Wの電力Qで被冷却体を15分間発熱させ、基板部11と、これら基板部11中央の被冷却体との界面の温度Tb1と水温Twとを測定した。そして、温度Tb1から、熱媒(水)と基板部11との界面の温度Tb2を、Tb2=[Tb1-{Q×h0/(A×k)}]の計算式から算出した。ここで、h0は基板部11の厚み、Aは被冷却体の基板部11への取付面積、kはA1050の熱伝導率である。また、熱伝達率Hを、H=[Q/{A×(Tb2-Tw)}]の計算式から算出し、ヒートシンクの熱伝達率指標として評価した。すなわち、熱伝達率Hが大きいほど熱交換性能に優れたヒートシンクである。
これらの結果を表1~表3に示す。なお、試料番号9及び10は、充填体を設けず、金属成形体10のみからなるヒートシンクであるから、表1~表3中、充填体に関係する項目は「―」で記載した。
【0036】
【表1】
【0037】
【表2】
【0038】
これらの結果からわかるように、充填体20を有する試料番号1~3では、熱伝達率が40kw/mK以上であり、圧力損失も小さい。これに対して試料番号4,5は、熱伝達率は高いが、圧力損失が大きくなっている。
【符号の説明】
【0039】
101 ヒートシンク
10 金属成形体
11 基板部
12 フィン部
13 溝部
20 充填体
21 コイル状金属線材
22 焼結部(冶金的接合部)
51 型
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10