(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-04
(45)【発行日】2022-07-12
(54)【発明の名称】半導体素子およびこれを含む半導体素子パッケージ
(51)【国際特許分類】
H01L 33/38 20100101AFI20220705BHJP
H01L 33/40 20100101ALI20220705BHJP
【FI】
H01L33/38
H01L33/40
(21)【出願番号】P 2019523753
(86)(22)【出願日】2017-11-03
(86)【国際出願番号】 KR2017012403
(87)【国際公開番号】W WO2018084631
(87)【国際公開日】2018-05-11
【審査請求日】2020-10-26
(31)【優先権主張番号】10-2016-0145902
(32)【優先日】2016-11-03
(33)【優先権主張国・地域又は機関】KR
(31)【優先権主張番号】10-2016-0148887
(32)【優先日】2016-11-09
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】521268118
【氏名又は名称】スージョウ レキン セミコンダクター カンパニー リミテッド
(74)【代理人】
【識別番号】100166729
【氏名又は名称】武田 幸子
(72)【発明者】
【氏名】ソン,ヨンジュン
(72)【発明者】
【氏名】カン,ギマン
(72)【発明者】
【氏名】キム,ミンスン
(72)【発明者】
【氏名】パク,スイク
(72)【発明者】
【氏名】イ,ヨンキョン
(72)【発明者】
【氏名】イ,ウントク
(72)【発明者】
【氏名】イム,ヒョンス
【審査官】村川 雄一
(56)【参考文献】
【文献】特開2006-059933(JP,A)
【文献】特開2016-062970(JP,A)
【文献】欧州特許出願公開第02728631(EP,A1)
【文献】米国特許第06326294(US,B1)
【文献】特開2015-002324(JP,A)
【文献】特開2014-241397(JP,A)
【文献】米国特許出願公開第2015/0270436(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L33/00-33/64
(57)【特許請求の範囲】
【請求項1】
第1導電型半導体層、第2導電型半導体層、および前記第1導電型半導体層と第2導電型半導体層との間に配置される活性層を含む発光構造物、
前記第1導電型半導体層と電気的に連結される第1電極、および、
前記第2導電型半導体層と電気的に連結される第2電極、を含み、
前記第1電極は、第1層、第2層、および第3層を含み、
前記第1層は、第1金属を含む第1金属層を含み、
前記第1金属の拡散係数は、前記第3層に含まれる第3金属の拡散係数より大きく、
前記第1層は、前記第1導電型半導体層と接触し、
前記第1層は、第1-1層、および前記第1-1層と第1金属層との間に配置される第1-2層をさらに含み、
前記第1金属層の厚さは、前記第1-1層および第1-2層の厚さの和の1.5~2.5倍である、
半導体素子。
【請求項2】
前記第1-1層は、Crを含み、
前記第1-2層は、Tiを含む、請求項
1に記載の半導体素子。
【請求項3】
前記第2電極上に配置される反射層、および前記反射層上に配置され、複数の層を含むキャッピング層をさらに含む、請求項1に記載の半導体素子。
【請求項4】
前記発光構造物は、前記第2導電型半導体層、および前記活性層を貫通して前記第1導電型半導体層の一部の領域まで配置される複数のリセスをさらに含み、
前記第1電極は、前記複数のリセスの内部に配置される、請求項1に記載の半導体素子。
【請求項5】
前記第1層は、第1領域および第2領域を含み、
前記第2領域に含まれる第1金属の比率は、前記第1領域に含まれる第1金属の比率より大きく、
前記第1領域と第2領域との厚さ比は、3:7~6.3:3.5である、請求項1に記載の半導体素子。
【請求項6】
前記第1金属はAlであり、
前記第1領域のAlの比率と前記第2領域のAlの比率との比は、1:1.5~1:2.5である、請求項5に記載の半導体素子。
【請求項7】
前記第2層の厚さは、前記第1金属層の厚さの0.4倍~0.53倍である、請求項1に記載の半導体素子。
【請求項8】
前記第2層は前記第1金属層と前記第3層の間に配置される、請求項1に記載の半導体素子。
【発明の詳細な説明】
【技術分野】
【0001】
実施例は半導体素子およびこれを含む半導体素子パッケージに関する。
【背景技術】
【0002】
GaN、AlGaNなどの化合物を含む半導体素子は、広くて調整が容易なバンドギャップエネルギーを有するなどの多くの長所を有しているため、発光素子、受光素子および各種ダイオードなどで多様に使われ得る。
【0003】
特に、半導体の3-5族または2-6族化合物半導体物質を利用した発光ダイオード(Light Emitting Diode)やレーザーダイオード(Laser Diode)のような発光素子は、薄膜成長技術および素子材料の開発によって赤色、緑色、青色および紫外線などの多様な色を具現することができ、蛍光物質を利用したり色を組み合わせることによって効率の良い白色光線も具現が可能であり、蛍光灯、白熱灯などの既存の光源と比べて低消費電力、半永久的な寿命、迅速な応答速度、安全性、環境親和性の長所を有する。
【0004】
それだけでなく、光検出器や太陽電池のような受光素子も半導体の3-5族または2-6族化合物半導体物質を利用して製作する場合、素子材料の開発により多様な波長領域の光を吸収して光電流を生成することによって、ガンマ線からラジオ波長領域までの多様な波長領域の光を利用することができる。また迅速な応答速度、安全性、環境親和性および素子材料の容易な調節の長所を有しているため、電力制御または超高周波回路や通信用モジュールにも容易に利用することができる。
【0005】
したがって、半導体素子は光通信手段の送信モジュール、LCD(Liquid Crystal Display)表示装置のバックライトを構成する冷陰極管(CCFL:Cold Cathode Fluorescence Lamp)を代替する発光ダイオードバックライト、蛍光灯や白熱電球を代替できる白色発光ダイオード照明装置、自動車ヘッドライトおよび信号灯およびGasや火災を感知するセンサなどにまで応用が拡大している。また、半導体素子は高周波応用回路やその他電力制御装置、通信用モジュールにまで応用が拡大され得る。
【0006】
特に、紫外線波長領域の光を放出する発光素子は硬化作用や殺菌作用ができるため、硬化用、医療用、および殺菌用として使われ得る。
【0007】
最近紫外線発光素子に対する研究が活発に行われているが、これまで紫外線発光素子は垂直型で具現し難い問題があり、光抽出効率が相対的に劣っている問題がある。
【発明の概要】
【発明が解決しようとする課題】
【0008】
実施例は光抽出効率が向上した半導体素子を提供する。
【0009】
実施例は電流の注入効率が優秀な半導体素子を提供する。
【0010】
実施例はボールアップ現象を最小化して第1電極の特性が向上した半導体素子を提供する。
【0011】
実施例で解決しようとする課題はこれに限定されず、下記で説明する課題の解決手段や実施形態から把握され得る目的や効果も含まれるものと言える。
【課題を解決するための手段】
【0012】
実施例に係る半導体素子は、第1導電型半導体層、第2導電型半導体層および前記第1導電型半導体層と第2導電型半導体層の間に配置される活性層を含む発光構造物;前記第1導電型半導体層と電気的に連結される第1電極;前記第2導電型半導体層と電気的に連結される第2電極;前記第2電極上に配置される反射層;および前記反射層上に配置され、複数の層を含むキャッピング層を含み、前記キャッピング層は前記反射層上に配置される第1層を含み、前記第1層はTiを含む。
【0013】
前記キャッピング層は、前記第1層上に配置され、複数の層を含む中間層をさらに含み、前記中間層は前記第1層上に直接配置され、Niを含む第1中間層を含み、前記第1層と第1中間層の厚さ比は1:1~3:1であり得る。
【0014】
前記キャッピング層は、前記第1層上に配置される第2層をさらに含み、前記第2層はAuを含むことができる。
【0015】
前記第1層は前記キャッピング層の一側に配置され、前記第2層は前記キャッピング層の他側に配置され得る。
【0016】
前記中間層はNiを含む少なくとも一つの第1中間層を含むことができる。
【0017】
前記少なくとも一つの第1中間層のうち一つは前記第1層上に配置され得る。
【0018】
前記第1層と前記第1中間層の厚さ比は1:1~3:1であり得る。
【0019】
前記中間層はTiを含む少なくとも一つの第2中間層をさらに含むことができる。
【0020】
前記第2電極と反射層の間には接合層がさらに配置され得る。
【0021】
前記発光構造物は、前記第2導電型半導体層と活性層を貫通して前記第1導電型半導体層の一部の領域まで配置される複数のリセスをさらに含み、前記第1電極は前記複数のリセスの内部に配置され得る。
【0022】
実施例に係る半導体素子は、第1導電型半導体層、第2導電型半導体層および前記第1導電型半導体層と第2導電型半導体層の間に配置される活性層を含む発光構造物;前記第1導電型半導体層と電気的に連結される第1電極;および前記第2導電型半導体層と電気的に連結される第2電極;を含み、前記第1電極は第1層、第2層および第3層を含み、前記第1層は第1金属を含む第1金属層を含み、前記第1金属の拡散係数は前記第3層が含む第3金属の拡散係数より大きく、前記第2層の厚さは前記第1金属層の厚さの0.4~0.53倍である。
【0023】
前記第2層は前記第1金属層と第3層の間に配置され得る。
【0024】
前記第1層は、第1-1層;および前記第1-1層と第1金属層間に配置される第1-2層をさらに含み、前記第1金属層の厚さは前記第1-1層および第1-2層の厚さの和の1.5~2.5倍であり得る。
【0025】
前記第1-1層はCrを含み、前記第1-2層はTiを含むことができる。
【0026】
前記第2電極上に配置される反射層;および前記反射層上に配置され、複数の層を含むキャッピング層をさらに含むことができる。
【0027】
前記発光構造物は、前記第2導電型半導体層と活性層を貫通して前記第1導電型半導体層の一部の領域まで配置される複数のリセスをさらに含み、前記第1電極は前記複数のリセスの内部に配置され得る。
【0028】
実施例に係る半導体素子は、第1導電型半導体層、第2導電型半導体層および前記第1導電型半導体層と第2導電型半導体層の間に配置される活性層を含む発光構造物;前記第1導電型半導体層と電気的に連結され、複数の層を含む第1電極;および前記第2導電型半導体層と電気的に連結される第2電極を含み、前記第1電極は第1層、第2層および第3層を含み、前記第1層は第1領域および第2領域を含み、前記第1層が含む第1金属の拡散係数は前記第3層が含む第3金属の拡散係数より大きく、前記第2領域が含む第1金属の比率は前記第1領域が含む第1金属の比率より大きく、前記第1領域と第2領域の厚さ比は3:7~6.3:3.5である。
【0029】
前記第2層は前記第2領域および第3層間に配置され得る。
【0030】
前記第1金属はAlであり、前記第1領域のAlの比率と前記第2領域のAlの比率の比は1:1.5~1:2.5であり得る。
【0031】
実施例に係る半導体素子パッケージは、胴体;および前記胴体に配置される半導体素子を含み、前記半導体素子は、第1導電型半導体層、第2導電型半導体層および前記第1導電型半導体層と第2導電型半導体層の間に配置される活性層を含む発光構造物;前記第1導電型半導体層と電気的に連結される第1電極;前記第2導電型半導体層と電気的に連結される第2電極;前記第2電極上に配置される反射層;および前記反射層上に配置され、複数の層を含むキャッピング層を含み、前記キャッピング層は前記反射層上に配置される第1層を含み、前記第1層はTiを含む。
【発明の効果】
【0032】
実施例によると、半導体素子の反射層内のダークスポットを最小化することによって、光抽出効率が向上し得る。
【0033】
また、半導体素子のキャッピング層を複数の層で積層して構成することによって、ストレスを緩和させるとともに、電流の注入効率を向上させることができる。
【0034】
また、半導体素子の第1電極(オーミック電極)のボールアップ現象を最小化して第1電極の特性を向上させることができる。
【0035】
本発明の多様かつ有益な長所と効果は前述した内容に限定されず、本発明の具体的な実施形態を説明する過程でより容易に理解されるはずである。
【図面の簡単な説明】
【0036】
【
図1】本発明の第1実施例に係る半導体素子の概念図。
【
図3a】本発明の第1実施例に係る半導体素子のうちキャッピング層の多様な変形例。
【
図3b】本発明の第1実施例に係る半導体素子のうちキャッピング層の多様な変形例。
【
図3c】本発明の第1実施例に係る半導体素子のうちキャッピング層の多様な変形例。
【
図3d】本発明の第1実施例に係る半導体素子のうちキャッピング層の多様な変形例。
【
図4】本発明の第2実施例に係る半導体素子の概念図。
【
図5a】リセスの個数の変化により光出力が向上する構成を説明するための図面。
【
図5b】リセスの個数の変化により光出力が向上する構成を説明するための図面。
【
図7a】半導体素子のうちキャッピング層の構造を変更して反射層を観察した図面。
【
図7b】半導体素子のうちキャッピング層の構造を変更して反射層を観察した図面。
【
図8a】本発明の一実施例に係る半導体素子のうち、第1電極の多様な変形例。
【
図8b】本発明の一実施例に係る半導体素子のうち、第1電極の多様な変形例。
【
図9a】本発明の一実施例に係る半導体素子のうち、第1電極を異ならせて構成してボールアップ現象を観察した図面。
【
図9b】本発明の一実施例に係る半導体素子のうち、第1電極を異ならせて構成してボールアップ現象を観察した図面。
【
図9c】本発明の一実施例に係る半導体素子のうち、第1電極を異ならせて構成してボールアップ現象を観察した図面。
【
図9d】本発明の一実施例に係る半導体素子のうち、第1電極を異ならせて構成してボールアップ現象を観察した図面。
【
図10】TLM測定法を通じて
図6a~
図6dの第1電極の電圧と電流値を図示したグラフ。
【
図11】本発明の実施例に係る半導体パッケージの概念図。
【発明を実施するための形態】
【0037】
本実施例は他の形態に変形されたり多様な実施例が互いに組み合わせられ得、本発明の範囲は以下で説明するそれぞれの実施例に限定されるものではない。
【0038】
特定の実施例で説明された事項が他の実施例で説明されておらずとも、他の実施例でその事項と反対または矛盾する説明がない限り、他の実施例に関連した説明と理解され得る。
【0039】
例えば、特定の実施例で構成Aに対する特徴を説明し、他の実施例で構成Bに対する特徴を説明したのであれば、構成Aと構成Bが結合された実施例が明示的に記載されておらずとも反対または矛盾する説明がない限り、本発明の技術的範囲に属するものと理解されるべきである。
【0040】
実施例の説明において、いずれか一つのelementが他のelementの「上(うえ)または下(した)(on or under)」に形成されるものと記載される場合において、上(うえ)または下(した)(on or under)は両elementが互いに直接(directly)接触したり一つ以上の他のelementが前記両elementの間に配置されて(indirectly)形成されるものをすべて含む。また「上(うえ)または下(した)(on or under)」と表現される場合、一つのelementを基準として上側方向だけでなく下側方向の意味も含み得る。
【0041】
半導体素子は発光素子、受光素子などの各種電子素子を含むことができ、発光素子と受光素子はいずれも第1導電型半導体層と活性層および第2導電型半導体層を含むことができる。
【0042】
本実施例に係る半導体素子は発光素子であり得る。
【0043】
発光素子は電子と正孔が再結合することによって光を放出するようになり、この光の波長は物質固有のエネルギーバンドギャップによって決定される。したがって、放出される光は前記物質の組成により異なり得る。
【0044】
以下では、添付した図面を参照して本発明の実施例について本発明が属する技術分野で通常の知識を有する者が容易に実施できるように詳細に説明する。
【0045】
図1は、本発明の第1実施例に係る半導体素子の概念図である。
図2aは、
図1のA部分の拡大図である。
図2bは、
図2aの変形例である。
図3a~
図3dは、本発明の第1実施例に係る半導体素子のうちキャッピング層の多様な変形例である。
【0046】
本発明の実施例に係る半導体素子は、紫外線波長帯の光を出力することができる。例示的に半導体素子は、近紫外線波長帯の光UV-Aを出力することができ、遠紫外線波長帯の光UV-Bを出力することもでき、深紫外線波長帯の光UV-Cを出力することもできる。波長範囲は半導体素子のAlの組成比によって決定され得る。
【0047】
例示的に、近紫外線波長帯の光UV-Aは320nm~420nm範囲の波長を有することができ、遠紫外線波長帯の光UV-Bは280nm~320nm範囲の波長を有することができ、深紫外線波長帯の光UV-Cは100nm~280nm範囲の波長を有することができる。
【0048】
図1および
図2aを参照すると、本発明の第1実施例に係る半導体素子100は、発光構造物110、第2電極125、反射層132およびキャッピング層140を含むことができる。
【0049】
発光構造物110は、第1導電型半導体層111、第2導電型半導体層112、および第1導電型半導体層111と第2導電型半導体層112の間に配置される活性層113を含むことができる。
【0050】
第1導電型半導体層111は-V族、-VI族などの化合物半導体で具現され得、第1ドーパントがドーピングされ得る。第1導電型半導体層111は、Inx1Aly1Ga1-x1-y1N(0≦x1≦1、0≦y1≦1、0≦x1+y1≦1)の組成式を有する半導体材料、例えばGaN、AlGaN、InGaN、InAlGaNなどから選択され得る。そして、第1ドーパントはSi、Ge、Sn、Se、Teのようなn型ドーパントであり得る。第1ドーパントがn型ドーパントである場合、第1ドーパントがドーピングされた第1導電型半導体層111はn型半導体層であり得る。
【0051】
第2導電型半導体層112は-V族、-VI族などの化合物半導体で具現され得、第2ドーパントがドーピングされ得る。第2導電型半導体層112はInx5Aly2Ga1-x5-y2N(0≦x5≦1、0≦y2≦1、0≦x5+y2≦1)の組成式を有する半導体物質またはAlInN、AlGaAs、GaP、GaAs、GaAsP、AlGaInPのうち選択された物質で形成され得る。第2ドーパントがMg、Zn、Ca、Sr、Baなどのようなp型ドーパントである場合、第2ドーパントがドーピングされた第2導電型半導体層112はp型半導体層であり得る。
【0052】
活性層113は第1導電型半導体層111と第2導電型半導体層112の間に配置され得る。活性層113は、第1導電型半導体層111を通じて注入される電子(または正孔)と第2導電型半導体層112を通じて注入される正孔(または電子)が会う層であり得る。活性層113は電子が正孔と再結合することによって低いエネルギー準位に遷移し、紫外線波長を有する光を生成することができる。
【0053】
活性層113は、単一井戸構造、多重井戸構造、単一量子井戸構造、多重量子井戸(Multi Quantμm Well;MQW)構造、量子ドット構造または量子細線構造のうちいずれか一つの構造を有することができ、活性層113の構造はこれに限定されない。
【0054】
第2電極125は第2導電型半導体層112上に配置され得る。第2電極125は第2導電型半導体層112とオーミック接触することができる。半導体素子100の断面を基準として、第2電極125の終端は第2導電型半導体層112の終端より内側に位置することができる。
【0055】
第2電極125は相対的に紫外線光吸収の少ない透明伝導性酸化膜(Tranparent Conductive Oxide;TCO)を含むことができる。透明伝導性酸化膜は、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、AZO(Aluminum Zinc Oxide)、AGZO(Aluminum Gallium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)、IAZO(Indium Aluminum Zinc Oxide)、IGZO(Indium Gallium Zinc Oxide)、IGTO(Indium Gallium Tin Oxide)、ATO(Antimony Tin Oxide)、GZO(Gallium Zinc Oxide)、IZON(IZO Nitride)、ZnO、IrOx、RuOxおよびNiOなどから選択され得る。
【0056】
実施例によると、第2電極125は紫外線光が有するエネルギーより大きなバンドギャップを有する半導体層(例:P-AlGaN)に直接接触することができる。従来、オーミックのためにバンドギャップの小さい半導体層(例:GaN層)に第2電極125を配置するため、紫外線光が殆どGaN層で吸収される問題がある。しかし、実施例の第2電極125は大きいバンドギャップを有する半導体層(例:P-AlGaN)に直接オーミック接触するため、殆どの光は第2導電型半導体層112を透過することができる。
【0057】
例示的に、第2電極125と接触する第2導電型半導体層112の表面層はAlの組成が1%~10%であり得る。表面層のAl組成が1%より小さい場合は過度に光を吸収する問題があり、Al組成が10%より大きい場合はオーミック特性が低下し得る。
【0058】
一方、第2電極125は一般的に紫外線光を吸収することができる。したがって、第2電極125によるオーミック接触は維持しつつ光抽出効率を改善する必要がある。すなわち、本発明ではオーミック特性を維持しつつ光抽出効率を改善するために、第2電極125に透明伝導性酸化膜を使うことができる。本発明は第2電極125が透明伝導性酸化膜であるため透光性を高めることができ、第2電極125の下部に反射特性を有する導電層(反射層)を配置することによって光抽出効率を向上させることができる。
【0059】
第2電極125の厚さT1は1nm~10nmであり得る。もし、第2電極125の厚さが1nmより小さい場合、外部の衝撃によって容易にクラックが発生し得、抵抗が増加して電流の注入効率が低くなり得る。また、第2電極125の厚さが10nmより大きい場合、透過度が低くなって光損失が発生し得る。
【0060】
反射層132は第2電極125上に配置され得る。反射層132は第2電極125を覆うように配置され得る。例えば、反射層132は第2導電型半導体層112と第2電極125が接する部分を除いて第2電極125を囲むように配置され得る。反射層132は第2電極125と電気的に連結され得る。これに対し、反射層132は第2導電型半導体層112に電流を注入することができる。
【0061】
反射層132は反射率が優秀な物質で構成され得る。反射層132はアルミニウムを含むことができる。反射層132は活性層113から出射する光を反射され得る。第2電極125と反射層132の間には接合層132aがさらに配置され得る。接合層132aは第2電極125と反射層132の間の接合力を向上させることができる。接合層132aは第2電極125を囲むように配置され得る。または接合層132aは第2電極125だけでなく、第2導電型半導体層112の少なくとも一部を覆うように配置されてもよい。
【0062】
接合層132aはCr、ITO、Tiのうち選択された一つまたはこれらの組み合わせによって単層または多層で形成され得る。接合層132aがITOを含む場合、ITOは接合力を高め得る多様な物質をさらに含むこともできる。例示的に、ITOはN、Zn、Gaのうち選択された少なくとも一つの物質をさらに含むこともできる。このような物質は、ITOの蒸着時に共に蒸着されてITOの全体領域に配置され得、表面処理を通じてITOの表面にのみ配置されてもよい。しかし、これに接合層132aの材質を限定するものではない。
【0063】
接合層132aの厚さT2は1nm~5nmであり得る。ここで、接合層132aの厚さは、接合層132aと第2電極125が接する面からの最大高さを意味し得る。接合層132aの厚さが1nmより小さい場合、第2電極125と反射層132の間の接合力が低くなり得る。接合層132aの厚さが5nmより大きい場合、透過度が低くなって光損失が発生し得る。
【0064】
反射層132の厚さT3は50nm~2000nmであり得る。ここで、反射層132の厚さは、反射層132と接合層132aが接する面から最大高さを意味し得る。反射層132の厚さが50nmより小さい場合、反射率が低下し得る。反射層132の厚さが2000nmより大きい場合、反射効率が殆ど上昇しない可能性がある。
【0065】
キャッピング層140は反射層132上に配置され得る。キャッピング層140は反射層132を覆うように配置され得る。キャッピング層140は反射層132と電気的に連結され得る。キャッピング層140は反射層132を保護して物理的信頼性を改善することができる。また、キャッピング層140は第2導電型半導体層112に電流を供給することができる。キャッピング層140は電流拡散層として機能してもよい。
【0066】
キャッピング層140は、Ti、Ni、Auのうち選択された一つまたはこれらの組み合わせによって単層または多層で形成され得る。しかし、これに本発明を限定するものではない。特に、キャッピング層140は反射層132と接する領域を有することができる。そして、反射層132と接するキャッピング層の前記領域はTiが配置され得る。キャッピング層140の構造については詳しく後述する。
【0067】
図2aを参照すると、第2電極125の終端と反射層132の終端は離隔距離D1だけ離隔され得る。具体的には、第2電極125の中心(C1、
図1)を基準として、反射層132の終端は第2電極125の中心からの距離が、第2電極125の終端から第2電極125の中心からの距離より大きくてもよい。反射層132が第2電極125の側面まで配置されるため、第2電極125の側面に向かって放出される光は上部に反射され得る。これにより、実施例に係る半導体素子100は光抽出効率を向上させることができる。
【0068】
第2電極125の終端と反射層132の終端の間の離隔距離D1は、2.5μm~5μmであり得る。離隔距離D1が2.5μmより小さい場合、反射率が低下し得る。離隔距離D1が5μmより大きい場合、反射層132の角領域でストレスが増加し得、反射効率が殆ど上昇しない可能性がある。
【0069】
反射層132の終端とキャッピング層140の終端は離隔距離D2だけ離隔され得る。具体的には、反射層132の中心(C1、
図1)を基準として、キャッピング層140の終端は反射層132の中心からの距離が、反射層132の中心から反射層132の終端までの距離よりも大きくてもよい。キャッピング層140が反射層132の側面まで配置されるため、反射層132を保護することができる。
【0070】
反射層132の終端とキャッピング層140の終端の間の離隔距離D2は2.5μm~5μmであり得る。離隔距離D2が2.5μmより小さい場合、電流の注入効率および反射層の保護効果が減少し得る。離隔距離D2が5μmより大きい場合、キャッピング層140の角領域でストレスが増加し得る。
【0071】
【0072】
図2bを参照すると、第2電極125の終端と反射層132の終端は離隔距離D3だけ離隔され得る。この時、隔離距離D3は2.5μm~5μmであり得る。また、第2電極125の終端とキャッピング層140の終端も離隔距離D3だけ離隔され得る。
【0073】
すなわち、
図2bでは反射層132とキャッピング層140の終端が同一線上に位置することができる。これは反射層132の一側面の場合、反射効率に影響を及ぼす程度が軽微であるためキャッピング層140がこれを覆うことが無意味であり得るためである。
【0074】
すなわち、本発明の実施例では反射層132が第2電極125を完全に覆うように配置されることによって、反射率の向上に寄与することができる。また、キャッピング層140が反射層132の上面を覆うか、反射層132全体を覆うように配置されることによって、反射層132の保護効果が向上し得る。
【0075】
図3a~
図3dを参照して、キャッピング層140:140-1、140-2、140-3、140-4の多様な構造について説明すると次の通りである。
【0076】
まず、
図3aを参照すると、本発明の第1実施例に係るキャッピング層140-1は、第1層141、第2層142および中間層143を含むことができる。
【0077】
第1層141は反射層132上に配置され得る。第1層141はキャッピング層140-1の一側に配置され得る。例えば、第1層141は反射層132と接触することができる。第1層141はTiを含むことができる。第1層141にTiが含まれた場合、中間層143内の金属物質が反射層132に拡散することを防止することができる。
【0078】
第2層142はキャッピング層140-1の最外側に配置され得る。すなわち、第2層142はキャッピング層140-1の他側に配置され得る。具体的には、第2層142はキャッピング層140-1内で反射層132と最も離隔して配置され得る。第2層142はAuを含むことができる。第2層142がAuを含むことによって、キャッピング層140-1の形成後に行われる多様な工程中のキャッピング層140-1内部の物質の酸化や変形を防止することができる。
【0079】
第2層142の厚さは30nm~300nmであり得る。第2層142の厚さが30nmより小さい場合、キャッピング層140-1の変形防止効果が減少し得る。第2層142の厚さが300nmより大きい場合、薄膜のストレスが増加し得る。
【0080】
中間層143は第1層141と第2層142の間に配置され得る。中間層143は単層または多層で構成され得る。中間層143は1個~6個の層で構成され得る(中間層143は省略されてもよいが、これは
図3bの構成であるため後述する。)。中間層143が6個の層より多い場合、工程時間および工程の複雑性が増加して工程の効率性が低下し得る。
【0081】
中間層143はNiを含む少なくとも一つの第1中間層143aを含むことができる。この時、第1中間層143aのうち一つは第1層141上に配置され得る。例えば、第1中間層143aは第1層141と接触することができる。また、中間層143はTiを含む少なくとも一つの第2中間層143bをさらに含むこともできる。もちろん、第2中間層143bは省略されてもよい。中間層143が多数の第1中間層143aと第2中間層143bを含む場合、第1中間層143aと第2中間層143bは交互に配置され得る。
【0082】
このように、
図3aの実施例でキャッピング層140-1は3個~8個の層で構成され得る(キャッピング層が一つまたは二つの層で形成されてもよいがこれは
図3bおよび
図3dの構成であるため後述する。)。ここで、中間層143は1個~6個の層で構成され得る。また、中間層143は1個~3個の第1中間層143aを含むことができる。また、中間層143は存在しないか、1個~3個の第2中間層143bを含むことができる。
【0083】
キャッピング層140-1は中間層143をなす層の個数が多くなるほど電流の注入効率が増加し得る。すなわち、キャッピング層140-1が第2導電型半導体層112に電流を供給するため、キャッピング層140-1の厚さが増加するほど電流の注入効率が増加し得る。
【0084】
この時、キャッピング層140-1内でTiを含む層(第1層141または第2中間層143b)は、Niを含む層(第1中間層143a)と交互に配置され得る。このように、多数の互いに異なる層を交互に積層させる場合、一つの層を厚く形成するのと比べてストレスを緩和させることができる。したがって、全体キャッピング層140-1の厚さが増加しても薄膜のストレスを緩和させるとともに、電流の注入効率を向上させることができる。
【0085】
図3bを参照すると、本発明の第2実施例に係るキャッピング層140-2は第1層141および第2層142を含むことができる。第1層141および第2層142は前述と同一の構成で構成され得る。すなわち、
図3bに開示されたキャッピング層140-2は
図3aに開示されたキャッピング層140-1で中間層143が省略されたものであり得る。
【0086】
図3cを参照すると、本発明の第3実施例に係るキャッピング層140-3は第1層141および中間層143を含むことができる。第1層141および中間層143は前述と同一の構成で構成され得る。すなわち、
図3cに開示されたキャッピング層140-3は
図3aに開示されたキャッピング層140-1で第2層142が省略されたものであり得る。
【0087】
図3dを参照すると、本発明の第4実施例に係るキャッピング層140-4は第1層141を含むことができる。第1層141は前述と同一の構成で構成され得る。すなわち、
図3dに開示されたキャッピング層140-4は
図3aに開示されたキャッピング層140-1で第2層142および中間層143が省略されたものであり得る。
【0088】
図3a~
図3dに開示された通り、キャッピング層140は少なくとも一つの層で構成され得る。好ましくは、キャッピング層140は1個~8個の層で構成され得る。この時、キャッピング層140内の中間層143は1個~6個の層で構成され得る。キャッピング層140が含む層が8個より多い場合、工程時間および工程の複雑性が増加して工程の効率性が低下し得る。
【0089】
具体的には、キャッピング層140は、Ti、Ti/Au、Ti/Ni、Ti/Ni/Au、Ti/Ni/Ti、Ti/Ni/Ti/Au、Ti/Ni/Ti/Ni、Ti/Ni/Ti/Ni/Au、Ti/Ni/Ti/Ni/Ti、Ti/Ni/Ti/Ni/Ti/Au、Ti/Ni/Ti/Ni/Ti/Ni、Ti/Ni/Ti/Ni/Ti/Ni/Au、Ti/Ni/Ti/Ni/Ti/Ni/Ti、Ti/Ni/Ti/Ni/Ti/Ni/Ti/Auのうち選択されたいずれか一つで構成され得る。
【0090】
キャッピング層140の全体厚さは100nm~2000nmであり得る。この時、キャッピング層140が含む層の個数にかかわらず、キャッピング層140の全体厚さは少なくとも100nm以上であり得る。例えば、キャッピング層140が一つまたは二つの少数の層だけで構成されても、キャッピング層140の厚さは少なくとも100nmであり得る。キャッピング層140の厚さが100nmより小さい場合、電流の注入効率および反射層132の保護効果が減少し得る。キャッピング層140の厚さが2000nmより大きい場合、工程時間および工程の複雑性が増加して工程の効率性が低下し得る。また、キャッピング層140の厚さが2000nmより大きい場合、薄膜のストレスが増加し得る。
【0091】
キャッピング層140内の第1層141の厚さは30nm~300nmであり得る。第1層141の厚さが30nmより小さい場合、中間層143が含む物質(例えば、Ni)が反射層132に拡散され得る。このような場合、反射層132にダークスポット(dark spot)(例えば、Niが拡散した領域)が生成されて反射率が減少し得る。第1層141の厚さが300nmより大きい場合、第1層141のストレスが増加し得る。
【0092】
第1中間層143aおよび第2中間層143bの厚さは10nm~300nmであり得る。第1中間層143aの厚さが10nmより小さい場合、互いに異なる層を交互に積層させたことによるストレス緩和効果が軽微であり得る。第1中間層143aの厚さが300nmより大きい場合、薄膜のストレスが増加し得る。
【0093】
第1層141と第1中間層143aの厚さ比は1:1~3:1であり得る。第1層141と第1中間層143aの厚さ比が1:1より小さい場合、中間層143が含む物質が反射層132に拡散され得る。第1層141と第1中間層143aの厚さ比が3:1より大きい場合、第1層141の厚さが相対的に大きくなり過ぎてストレスが増加し得る。
【0094】
第1中間層143aと第2中間層143bの厚さ比は1:1~1:3であり得る。第1中間層143aと第2中間層143bの厚さ比が1:1より小さい場合、第1中間層143aが含む物質が拡散され得る。第1中間層143aと第2中間層143bの厚さ比が1:3より大きい場合、第2中間層143bの厚さが相対的に大きくなり過ぎてストレスが増加し得る。
【0095】
図4は、本発明の第2実施例に係る半導体素子の概念図である。
図5aおよび
図5bは、リセスの個数の変化により光出力が向上する構成を説明するための図面である。
図6aは、
図4のB部分の拡大図である。
図6bは、
図6aの変形例である。
【0096】
図4を参照すると、発光構造物110、複数個のリセスR、第1電極121、第2電極125、反射層132およびキャッピング層140を含むことができる。
【0097】
発光構造物110は、
図1で説明した発光構造物110の構成がそのまま適用され得る。発光構造物110の上面には凹凸が形成され得る。このような凹凸は発光構造物110から出射する光の抽出効率を向上させることができる。凹凸は紫外線の波長により平均高さが異なり得、UV-Cの場合、300nm~800nm程度の高さを有し、平均500nm~600nm程度の高さを有する時に光抽出効率が向上し得る。
【0098】
複数個のリセスRは、第2導電型半導体層112の一面から活性層113を貫通して第1導電型半導体層111の一部の領域まで配置され得る。リセスRの内部には第1絶縁層151および第2絶縁層152が配置されて、第1導電層131を第2導電型半導体層112および活性層113と電気的に絶縁させることができる。
【0099】
第1電極121は、リセスRの上面に配置されて第1導電型半導体層111と電気的に連結され得る。第1電極121は、第1絶縁層151によって露出して第1導電型半導体層111と電気的に連結され得る。第1電極121は、第1絶縁層151により活性層113および第2導電型半導体層112と電気的に絶縁され得る。第1電極121はオーミック電極であり得る。
【0100】
第1電極121は、ITO(indium tin oxide)、IZO(indium zinc oxide)、IZTO(indium zinc tin oxide)、IAZO(indium aluminum zinc oxide)、IGZO(indium gallium zinc oxide)、IGTO(indium gallium tin oxide)、AZO(aluminum zinc oxide)、ATO(antimony tin oxide)、GZO(gallium zinc oxide)、IZON(IZO Nitride)、AGZO(Al-Ga ZnO)、IGZO(In-Ga ZnO)、ZnO、IrOx、RuOx、NiO、RuOx/ITO、Ni/IrOx/Au、またはNi/IrOx/Au/ITO、Ag、Ni、Cr、Ti、Al、Rh、Pd、Ir、Sn、In、Ru、Mg、Zn、Pt、Au、Hfのうち少なくとも一つを含んで形成され得るが、このような材料に限定されはしない。
【0101】
第2電極125は第2導電型半導体層112上に形成され得る。第2電極125は、第1絶縁層151によって露出して第2導電型半導体層112と電気的に連結される。第2電極125はオーミック電極であり得る。第2電極125は
図1で開示された構成と同一に構成され得る。
【0102】
また、前述した通り、第2電極125と接触する第2導電型半導体層112の表面層はアルミニウムの組成が1%~10%であるため電流の注入が容易であり得る。
【0103】
第1導電層131は発光構造物110の下部面とリセスRの形状に沿って配置され得る。第1導電層131は第2絶縁層152によりキャッピング層140と電気的に絶縁され得る。第1導電層131は第2絶縁層152を貫通して第1電極121と電気的に連結され得る。
【0104】
第1導電層131は反射率が優秀な物質で構成され得る。例示的に、第1導電層131はアルミニウムを含むことができる。第1導電層131がアルミニウムを含む場合、活性層113から放出される光を上部に反射する役割をして光抽出効率を向上させることができる。
【0105】
第2導電層(132、または反射層と記載)は第2電極125上に配置され得る。反射層132は第2電極125を覆うように配置され得る。反射層132は第2電極125と電気的に連結され得る。反射層132は第1絶縁層151の側面と下面に接することができる。反射層132が第1絶縁層151の側面と下面と接する場合、第2電極125の熱的、電気的信頼性が向上し得る。また、反射層132は反射率が優秀な物質で構成され得る。例示的に、反射層132はアルミニウム(Al)、銀(Ag)、金(Au)、あるいは銅(Cu)を含むことができる。反射層132は第1絶縁層151との接着力が良い物質で構成され得る。反射層132は第1絶縁層151と第2電極125の間に放出される光を上部に反射して光抽出効率を向上させることができる。反射層132は第2導電型半導体層112に電流を注入することもできる。
【0106】
反射層132は
図1で開示された構成と同一に構成され得る。
【0107】
キャッピング層140は反射層132上に配置され得る。キャッピング層140は反射層132を覆うように配置され得る。キャッピング層140は
図1で開示された構成と同一に構成され得る。また、キャッピング層140は
図3a~
図3dのうち選択されたいずれか一つの構成で構成され得る。
【0108】
第1絶縁層151および第2絶縁層152はSiO2、SixOy、Si3N4、SixNy、SiOxNy、Al2O3、TiO2、AlNなどからなる群から少なくとも一つが選択されて形成され得るが、これに限定されない。第1絶縁層151および第2絶縁層152は単層または多層で形成され得る。例示的に、第1、2絶縁層151,152は、銀Si酸化物やTi化合物を含む多層構造のDBR(distributed Bragg reflector)でもよい。しかし、必ずしもこれに限定されず、第1、2絶縁層151、152は多様な反射構造を含むことができる。
【0109】
第1、2絶縁層151、152が反射機能を遂行する場合、活性層113から側面に向かって放出される光を上向き反射させて光抽出効率を向上させることができる。紫外線半導体素子は青色光を放出する半導体素子に比べて、リセスRの個数が多くなるほど光抽出効率がより効果的であり得る。
【0110】
特に、
図5aおよび
図5bを参照して、リセスの個数による光出力の変化について説明すると次の通りである。
【0111】
図5aおよび
図5bは、
図4の半導体素子200で発光構造物110を省略して図示した平面図であり得る。すなわち、リセスRの中心には第1電極121が配置され得る。また、リセスRは第2電極125と離隔領域Lだけ離隔され得る。
【0112】
そして、発光構造物110はAl組成が高くなると、発光構造物110内で電流拡散特性が低下し得る。また、活性層113はGaN系の青色発光素子に比べて側面に放出する光量が増加するようになる(TMモード)。このようなTMモードは紫外線半導体素子で発生し得る。
【0113】
紫外線半導体素子は青色GaN半導体素子に比べて電流分散特性が劣っている。したがって、紫外線半導体素子は青色GaN半導体素子に比べて相対的に多くの個数のリセスRを形成して第1電極121を配置する必要がある。
【0114】
図5aを参照すると、それぞれの第1電極121周辺地点にのみ電流が分散し、距離の遠い地点では電流密度が急激に低くなり得る。したがって、有効発光領域P1が狭くなり得る。
【0115】
有効発光領域P1は、電流密度が最も高い第1電極121の中心での電流密度を基準として、電流密度が40%以下である境界地点までの領域と定義することができる。例えば、有効発光領域P1はリセスRの中心から40μm以内の範囲で注入電流のレベル、Alの組成により調節され得る。
【0116】
低電流密度領域P2は、電流密度が低いため発光にあまり寄与できない可能性がある。したがって、実施例は電流密度が低い低電流密度領域P2に第1電極121をさらに配置するか反射構造を利用して光出力を向上させることができる。
【0117】
一般的に青色光を放出するGaN系の半導体素子の場合、相対的に電流分散特性が優秀であるため、リセスRおよび第1電極121の面積を最小化することが好ましい。リセスRと第1電極121の面積が大きくなるほど活性層113の面積が小さくなるためである。
【0118】
しかし、実施例の場合、アルミニウムの組成が高くて電流分散特性が相対的に劣っているため、活性層113の面積を犠牲にしても第1電極121の個数を増加させて低電流密度領域P2を減らしたり、または低電流密度領域P2に反射構造を配置することが好ましい。
【0119】
図5bを参照すると、リセスRの個数が48個の場合にはリセスRを横と縦方向に一直線に配置できず、ジグザグに配置され得る。この場合、低電流密度領域P2の面積はさらに狭くなって殆どの活性層が発光に参加することができる。
【0120】
リセスRの個数が70個~110個となる場合、電流がさらに効率的に分散して動作電圧がさらに低くなり、光出力は向上し得る。UV-Cを発光する半導体素子では、リセスRの個数が70個より少ない場合は電気的光学的特性が低下し得、110個より多い場合は電気的特性が向上し得るが発光層の体積が減少して光学的特性が低下し得る。この時、リセスRの直径は20μm~70μmであり得る。
【0121】
一方、半導体素子200の一側の角領域には第2電極パッド160が配置され得る。第2電極パッド160は第1絶縁層151により反射層132および第2電極125と電気的に連結され得る。すなわち、第2電極パッド160と反射層132、および第2電極125は、一つの電気的チャネルを形成することができる。また、第2電極パッド160は第2絶縁層152により第1導電層131と電気的に絶縁される。
【0122】
第2電極パッド160は中央部分が陥没して上面が凹部と凸部を有することができる。第2電極パッド160の凹部にはワイヤー(図示されず)がボンディングされ得る。したがって、接着面積が広くなって第2電極パッド160とワイヤーがさらに堅固にボンディングされ得る。
【0123】
第2電極パッド160は光を反射する作用ができる。したがって、第2電極パッド160が発光構造物110と近いほど半導体素子200の光抽出効率が向上し得る。また、第2電極パッド160の凸部の高さは活性層113より高くてもよい。したがって、第2電極パッド160は活性層113から素子の水平方向に放出される光を上部に反射して光抽出効率を向上させ、指向角を制御することができる。
【0124】
発光構造物110の下部面とリセスRの形状に沿って接合層170がさらに配置され得る。接合層170は第1導電層131上に形成され得る。接合層170は導電性材料を含むことができる。例示的に接合層170は、金、錫、インジウム、アルミニウム、シリコン、銀、ニッケル、および銅から構成される群から選択される物質またはこれらの合金を含むことができる。
【0125】
接合層170上には基板180が配置され得る。基板180は導電性物質で構成され得る。例示的に基板180は金属または半導体物質を含むことができる。また、基板180は電気伝導度および/または熱電導度が優秀な金属であり得る。例示的に、基板180は、シリコン、モリブデン、シリコン、タングステン、銅およびアルミニウムから構成される群から選択される物質またはこれらの合金を含むことができる。この場合、半導体素子の動作時に発生する熱を迅速に外部に放出することができる。
【0126】
発光構造物110の上部面と側面にはパッシベーション層190が形成され得る。パッシベーション層190は第2電極125と隣接した領域で第1絶縁層151と接触することができる。
【0127】
図6aを参照すると、第2電極125の終端と反射層132の終端は離隔距離D4だけ離隔され得る。具体的には、第2電極125の中心(C2、
図4)を基準として、反射層132の終端は第2電極125の中心からの長さが第2電極125の中心から第2電極125の終端までの長さよりも大きくてもよい。反射層132が第2電極125の側面まで配置されるため、第2電極125の側面に向かって放出される光を上部に反射して光抽出効率を向上させることができる。
【0128】
第2電極125の終端と反射層132の終端の間の離隔距離D4は2.5μm~5μmであり得る。離隔距離D4が2.5μmより小さい場合、反射率が低下し得る。離隔距離D4が5μmより大きい場合、反射層132の角領域でストレスが増加し得、反射効率が殆ど上昇しない可能性がある。
【0129】
反射層132の終端とキャッピング層140の終端は離隔距離D5だけ離隔され得る。具体的には、反射層132の中心(C2、
図4)を基準として、キャッピング層140の終端は、反射層132の中心からの長さが反射層132の中心から反射層132の終端までの長さよりも大きくてもよい。キャッピング層140が反射層132の側面まで配置されるため、反射層132を保護することができる。
【0130】
反射層132の終端とキャッピング層140の終端の間の離隔距離D5は2.5μm~5μmであり得る。離隔距離D5が2.5μmより小さい場合、電流の注入効率および反射層の保護効果が減少し得る。離隔距離D5が5μmより大きい場合、キャッピング層140の角領域でストレスが増加し得る。
【0131】
【0132】
図6bを参照すると、第2電極125の終端と反射層132の終端は離隔距離D6だけ離隔され得る。この時、離隔距離D6は2.5μm~5μmであり得る。また、第2電極125の終端とキャッピング層140の終端は、離隔距離D6より小さい離隔距離を有して離隔され得る。もちろん、第2電極125の終端とキャッピング層140の終端は離隔距離D6だけ離隔してもよい。
【0133】
すなわち、
図6bでは中心(C2、
図4)を基準として、キャッピング層140の終端が反射層132の終端より近く形成され得る。また、反射層132とキャッピング層140の終端は同一線上に位置することもできる。これは反射層132の外側面の場合、反射効率に影響を及ぼす程度が軽微であるためキャッピング層140がこれを覆うことが無意味であり得るためである。
【0134】
すなわち、本発明の実施例では反射層132が第2電極125を完全に覆うように配置されることによって、反射率の向上に寄与することができる。また、キャッピング層140が反射層132の上面を覆うか、反射層132全体を覆うように配置されることによって、反射層132の保護効果が向上し得る。
【0135】
<実験例>
反射層の観察
図7aおよび
図7bは、半導体素子のうちキャッピング層の構造を変更して反射層を観察したものである。
【0136】
図7aでは本発明で開示した通りにキャッピング層を構成し、
図7bではキャッピング層のうち中間層を異ならせて構成した。すなわち、
図7aと
図7bはキャッピング層の構造を異ならせて試料を製作し、これを300°で熱処理した後に光学顕微鏡で観察した結果である。
図7aは光学顕微鏡で200倍拡大して反射層を観察した結果である。
図7bの(a)は光学顕微鏡で200倍拡大して反射層を観察した結果であり、
図7bの(b)は1000倍拡大して反射層を観察した結果である。
【0137】
より具体的には、
図7aの場合、第2電極/接合層/反射層/キャッピング層をITO/Cr/Al/Ti/Ni/Ti/Ni/Auで構成した。
図7bの場合、第2電極/接合層/反射層/キャッピング層をITO/Cr/Al/Ni/Ti/Ni/Auで構成した。すなわち、
図7aの場合、キャッピング層のうち反射層と直接接する層(第1層)をTiで構成し、
図7bの場合、キャッピング層のうち反射層と直接接する層をNiで構成した。
【0138】
図7aを参照すると、キャッピング層の第1層をTiで構成する場合、反射層上にダークスポットが観察されなかった。すなわち、第1層によってキャッピング層の物質(例えば、Ni)が反射層に拡散することを防止することができる。
【0139】
図7bを参照すると、キャッピング層の第1層をNiで構成する場合、反射層上に多数のダークスポットが観察された。すなわち、第1層をNiで形成するため、キャッピング層に存在する物質(例えば、Ni)が反射層に拡散してダークスポット(反射層に拡散したNi)が観察されることが分かる。特に、
図7bの場合、反射層と第1層(Ni)が直接に接触しているので、Niの拡散がより容易に行われ得る。
【0140】
反射率の測定
表1は、第2電極/接合層/反射層/キャッピング層(第1層)を構成して反射率を測定したものである。比較例1、2は第1層にNiが使われたし、実施例1は第1層にTiが使われた。また、比較例1は熱処理前の反射率を表し、比較例2および実施例1は熱処理後の反射率を表す。
【0141】
【0142】
比較例1と比較例2を参照すると、同じ材料で構成されても熱処理後に反射率がより減少することを確認することができる。これは、熱処理によってNiの拡散がより活発となり得るためである。すなわち、熱処理後の反射層に、より多くのダークスポットが生成されて反射率が減少することが分かる。半導体素子は多様な工程中に高温の環境に露出され得るため、熱処理後にも適正水準の反射率を確保することが重要である。
【0143】
実施例1の場合、熱処理後に測定された反射率であるにもかかわらず、熱処理前の比較例1の反射率より高い反射率を示す。すなわち、キャッピング層(第1層)にTiを適用することによって、反射層のダークスポットの生成を抑制し、向上した反射率を得ることができる。
【0144】
このように、本発明の実施例ではキャッピング層のうち、反射層と直接接する第1層をTiで構成することができる。本発明は第1層によってキャッピング層内の物質が反射層に拡散することを防止することができる。したがって、反射層にダークスポットが生成されることを防止して反射率を向上させることができる。
【0145】
図8aおよび
図8bは、本発明の一実施例に係る半導体素子のうち、第1電極の多様な変形例である。
【0146】
まず、
図8aを参照して第1実施例に係る第1電極について説明すると次の通りである。
【0147】
第1電極121-1は第1導電型半導体層(111、
図1)とオーミック接触し、少なくとも一つの伝導性物質を含むことができる。第1電極121-1は複数の層を含むことができる。第1電極121-1は、第1導電型半導体層111と接する第1面121-1aおよび第1導電層131と接する第2面121-1bを含むことができる。
【0148】
第1電極121-1は、第1層122-1、第2層123および第3層124を含むことができる。ここで、第1層122-1は、第1-1層122a、第1-2層122b、第1-3層122cを含むことができる。第1-1層122a、第1-2層122b、第1-3層122c、第2層123および第3層124は順次配置され得る。
【0149】
第1電極121-1の第1-1層122a、第1-2層122b、第1-3層122c、第2層123および第3層124は、順次蒸着された後に熱処理が行われ得る。熱処理後、第1層122-1内の金属物質は互いに混合され得る。これについては、
図8bを参照してより具体的に後述する。
【0150】
一方、第1電極121-1の熱処理後、第1電極121-1にはボールアップ(ball up)現象およびボイド(void)が発生し得る。特に、第1電極121-1の第2面121-1bにはボールアップ(ball up)現象が発生し得る。
【0151】
これは、第1-3層122cが含む第1金属(例えば、Al)と第3層124が含む第3金属(例えば、Au)の拡散係数が互いに異なるためである。ここで、拡散係数は単位時間当りに拡散する程度を示す係数であって、拡散係数が大きいほど拡散速度が大きくなり得る。すなわち、第1金属が第3金属より拡散係数がより大きく、より早い拡散速度を有することができる。換言すると、第1金属は第3層124に向かって拡散しようとする性質を有することができる。
【0152】
したがって、第1層122-1のうち第1金属の比率が高い一部の領域で、第1金属物質が第3層124に向かって移動することができる。第1金属物質の移動により、第1-3層122c、第2層123および第3層124の一部の領域には表面が膨らむボールアップ(ball-up)現象が発生し得る。また、ボールアップ領域の下部には第1金属物質が移動した後の空席であるボイド(Kirkendall void)が発生し得る。
【0153】
ボールアップ現象は半導体素子の効率を減少させ得る。すなわち、ボールアップ領域には電流が集まる現象が発生し得る。また、ボールアップ領域(またはボイド領域)に沿って第1電極121の腐食が発生し得る。これは第1電極121のオーミック特性を低下させ得る。これを防止するために、第1電極121の構成、特に第1-3層122cおよび第2層123の適切な厚さ制御を通じて、オーミック特性を維持するとともにボイドの発生を最小化させることが好ましい。
【0154】
第1層122-1は第1絶縁層151によって露出して第1導電型半導体層111と電気的に連結され得る。第1層122-1は第1面121-1aを通じて第1導電型半導体層111と電気的に連結され得る。第1層122-1はCr、TiおよびAlを含むことができる。ここで、Alは第1電極121-1のオーミック特性を制御することができる。Alが多くなるほどオーミック特性は向上するものの、ボールアップ現象は増加し得る。したがって、Alが適正水準を越えて過度に多くなる場合、ボールアップおよびボイドの増加により、かえってオーミックが行われないこともある。
【0155】
第1層122-1のうち、第1金属(例えば、Al)を含む第1金属層(第1-3層、122c)の厚さは100~120nmであり得る。第1-3層122cの厚さが100nmより小さい場合、オーミック特性が低下し得る。第1-3層122cの厚さが120nmより大きい場合、ボールアップ現象(またはボイド)が発生し得る。
【0156】
一方、第1-3層122cの厚さは第1-1層122aおよび第1-2層122bの厚さの和の1.5~2.5倍となり得る。第1-3層122cの厚さがこのような比率を外れ、第1層122-1内で相対的に過度に小さな厚さを有したり、過度に大きな厚さを有する場合、オーミックが行われないこともある。
【0157】
第1層122-1が含む複数の層は、それぞれ互いに異なる金属物質を含むことができる。例えば、第1-1層122aはCrを含むことができ、第1-2層122bはTiを含むことができるが、これに本発明が限定されはしない。
【0158】
第2層123は第1層122-1上に配置され得る。具体的には、第2層123は第1-3層122c上に配置され得る。第2層123は第1層122-1と第3層124の間の障壁の役割をすることができる。特に、第2層123は第1-3層122cと第3層124の間の拡散係数の差による拡散を防止することができる。第2層123は第2金属(例えば、Ni)を含むことができる。Niを含む層が厚くなるほど、ボールアップ現象は減少するものの、オーミック特性は低下し得る。
【0159】
第2層123の厚さは45~65nmであり得る。第2層123の厚さが45nmより小さい場合、第1層122-1の第1金属が第3層124に向かって拡散して空隙およびボールアップ現象が発生し得る。第2層123の厚さが65nmより大きい場合、オーミック特性が低下し得る。
【0160】
第2層123は第1-3層122cの厚さの0.4~0.53倍の厚さを有することができる。第2層123の厚さが第1-3層122cの厚さの0.4倍より小さい場合、ボールアップ現象およびボイドが発生し得る。すなわち、障壁の役割をする第2層123が第1-3層122cと対比して相対的に小さい厚さを有するようになって拡散防止の役割が十分に行われない可能性もある。第2層123の厚さが第1-3層122cの厚さの0.53倍より大きい場合、オーミック特性が低下し得る。すなわち、オーミック特性を制御する第1-3層122cの厚さが相対的に小さくなることによって、オーミック特性が低下し得る。
【0161】
第3層124は第2層123上に配置され得る。第3層124は第2面121-1bを通じて第1導電層131と電気的に連結され得る。第3層124はAuを含むことができるが、これに本発明が限定されはしない。
【0162】
図8bを参照して第2実施例に係る第1電極について説明すると次の通りである。
【0163】
第1電極121-2は第1導電型半導体層(111、
図1)とオーミック接触し、少なくとも一つの伝導性物質を含むことができる。第1電極121-1は複数の層を含むことができる。第1電極121-1は、第1導電型半導体層111と接する第1面121-2aおよび第1導電層131と接する第2面121-2bを含むことができる。
【0164】
第1電極121-2は、第1層122-2、第2層123および第3層124を含むことができる。第1層122-2は、第1領域122dおよび第2領域122eを含むことができる。
【0165】
図8bに係る第1電極121-2は、
図8aに係る第1電極121-1が熱処理されたものであり得る。熱処理後、第1電極(121-1、
図8a)の第1層122-1が含む金属が混合されることによって、第1電極(121-2、
図8b)の第1層122-2となり得る。
【0166】
第1層122-2は第1絶縁層151によって露出して第1導電型半導体層111と電気的に連結され得る。第1層122-2は第1面121-2aを通じて第1導電型半導体層111と電気的に連結され得る。第1層122-2はCr、TiおよびAlを含むことができる。ここで、Alは第1電極121-1のオーミック特性を制御することができる。
【0167】
第1層122-2は第1領域122dおよび第2領域122eを含むことができる。第1領域122dは第1層122-2の第1面121-2aから仮想線Lまでの領域であり得る。第2領域122eは仮想線Lから第1層122-2と第2層123の間の境界面までの領域であり得る。
【0168】
第1領域122dと第2領域122eはいずれもCr、Ti、Alを含むことができる。この時、第1領域122d内のAl(第1金属)の比率よりも、第2領域122eのAlの比率が大きくてもよい。また、第1領域122d内のCr、Tiの比率の合計は、第2領域122e内のCr、Tiの比率の合計より大きくてもよい。
【0169】
これは、第1領域122dが熱処理前の第1層(122-1、
図8a)のうち、第1-1層122aおよび第1-2層122bと対応する領域に配置されているためである。すなわち、熱処理によって第1層(121-1、
図8a)内の金属物質が互いに拡散および混合されても、第1-1層122aおよび第1-2層122bに存在していたCr、Tiは第1-1層122aおよび第1-2層122bが配置された領域(第1領域)に相対的に多く存在し得る。
【0170】
また、第2領域122eは熱処理前の第1-3層122cと対応する領域に配置され得る。したがって、熱処理によって第1層(121-1、
図8a)内の金属物質が互いに拡散および混合されても、第1-3層122c内に存在していたAlは第1-3層122cが配置された領域(第2領域)に相対的に多く存在し得る。
【0171】
仮想線Lは、第1層122-2内で第1領域122dと第2領域122eを3:7~6.5:3.5に分ける地点に位置し得る。すなわち、第1層122-2内の第1領域122dと第2領域122eの厚さ比は3:7~6.5:3.5となり得る。これは前述した通り、熱処理前(
図8a)の第1-3層122cの厚さが第1-1層122aおよび第1-2層122bの厚さの和の1.5~2.5倍を有するためであり得る。
【0172】
また、第1領域122d内のAlの比率と第2領域122e内のAlの比率の比は、1:1.5~1:2.5であり得る。これは前述した通り、熱処理前(
図8a)の第1-3層122cの厚さが第1-1層122aおよび第1-2層122bの厚さの和の1.5~2.5倍を有するためであり得る。すなわち、第1-3層122cの厚さが第1-1層122aと第1-2層122bの厚さの合計より相対的に大きく、このため、第1-3層122cが含んでいだAlが第2領域122eに多く残っているためである。
【0173】
第2層123は第1層122-2上に配置され得る。具体的には、第2層123は第2領域122e上に配置され得る。第2層123は第1層122-2と第3層124の間の障壁の役割をすることができる。特に、第2層123は第1層122-2が含む第1金属(例えば、Al)と第3層124が含む第3金属(例えば、Au)の間の拡散係数の差による拡散を防止することができる。第2層123は第2金属(例えば、Ni)を含むことができる。
【0174】
第2層123の厚さは45~65nmであり得る。第2層123の厚さが45nmより小さい場合、第1層122-2の第1金属が第3層124に向かって拡散して空隙およびボールアップが発生し得る。第2層123の厚さが65nmより大きい場合、オーミック特性が低下し得る。
【0175】
第3層124は第2層123上に配置され得る。第3層124は第2面121-2bを通じて第1導電層131と電気的に連結され得る。第3層124はAuを含むことができるが、これに本発明が限定されはしない。
【0176】
このように、本発明はオーミック特性を制御するAlを含む層と、障壁の役割をするNiを含む層の適切な厚さ制御を通じてオーミック特性を維持するとともに、ボールアップ現象およびボイドの発生を最小化することができる。
【0177】
<実験例>
接触比抵抗、表面特性およびオーミック特性の比較
第1-1層/第1-2層/第1金属層(第1-3層)/第2層/第3層の構造で第1電極を形成した。ここで、第1金属層および第2層の厚さを異ならせて比較例1、実施例1、実施例2および実施例3を構成した。この時、第1金属層はAlを含むことができ、第2層はNiを含むことができる。このような第1電極には熱処理が行われ得る。
【0178】
表2は、比較例1、実施例1、実施例2および実施例3のそれぞれの厚さおよびTLM測定法による接触比抵抗値を開示したものである。
【0179】
【0180】
図9a~
図9dは、本発明の一実施例に係る半導体素子のうち、第1電極を異ならせて構成してボールアップ現象を観察したものである。
図9aは比較例1を観察した結果、
図9bは実施例1を観察した結果、
図9cは実施例2を観察した結果、
図9dは実施例3を観察した結果である。
図10は、TLM測定法を通じて
図9a~
図9dの第1電極の電圧と電流値を図示したグラフである。
図10のグラフにおいて、傾きが大きいほど抵抗が低く、これはオーミック特性が良いことを意味し得る。以下では表2を共に参照して、比較例1、実施例1、実施例2および実施例3を比較する。
【0181】
比較例1の場合、第1金属層が130nmの厚さを有するため、実施例1~実施例3に比べてボールアップ現象が顕著に多く観察されることを確認することができる(
図9a)。表2を参照すると、接触比抵抗値は実施例2、3に比べて多少大きな値を示すことを確認することができる。
図10を参照すると、実施例1、2に比べてオーミック特性は悪いものの、実施例3に比べては非常に良いオーミック特性を示すことが分かる。しかし、結果として比較例1はボールアップ現象が多く観察されるという点で第1電極として適切ではない。
【0182】
実施例1の場合、ボールアップ現象がほとんど観察されないため表面特性が非常に優秀であることが分かる(
図9b)。一方、実施例1は比較例1と同様に最も大きい接触比抵抗値を有する。しかし、
図10を参照すると、実施例3に次いでオーミック特性が良いことを確認することができる。結果として、実施例1の接触比抵抗値は実施例2,3に比べては多少高いものの、表面特性とオーミック特性が優秀であるため、第1電極として使われ得る。
【0183】
実施例2の場合、実施例1に比べて第1金属層(Al)の厚さを厚く構成した。Alがオーミック特性を制御する金属であるため、実施例2の接触比抵抗は実施例1に比べて顕著に低くなることを確認することができる(表2)。また、
図10を参照すると、実施例2のオーミック特性が最も良いことを確認することができる。しかし、第1金属層が厚くなることによって、実施例1に比べてボールアップ現象が、より多く発生し得る(
図9c)。結果として、実施例2は接触比抵抗およびオーミック特性で最も優秀な結果を示すため、実施例1、3に比べては表面特性が多少足りないものの、これを勘案して第1電極として使われ得る。
【0184】
実施例3の場合、実施例2に比べて第2層(Ni)の厚さを厚く構成した。Niが金属の拡散を防止する障壁の役割をするため、実施例3は実施例2に比べてボールアップ現象がほとんど観察されないことを確認することができる(
図9d)。しかし、第2層が厚くなることによって、実施例2に比べて接触比抵抗が増加し(表2)、オーミック特性が低下することを確認することができる(
図10)。結果として、実施例3は接触比抵抗とオーミック特性が実施例1、2に比べては多少足りないものの、表面特性が優秀であるため、第1電極として使われ得る。
【0185】
第1電極の多様な変形によるTLM測定結果
表3は、第1電極を多様に変形し、TLM測定法を通じてRc、Rs、ρcを比較したものである。第1電極は第1-1層/第1-2層/第1金属層(第1-3層)/第2層/第3層の構造を有することができる。第1電極には熱処理が行われてもよい。第1金属層はAlを含むことができ、第2層はNiを含むことができる。また、第1-1層はCrを含むことができ、第1-2層はTiを含むことができ、第3層はAuを含むことができる。
【0186】
R1、R2、R3の場合は本発明の実施例に係る第1電極であり、T1、T2-1、T2-2、T3-1、T3-2、T3-3は変形された第1電極である。ここで、中間層は第2層と第3層間にさらに他の層が配置されたことを意味する。Rc、Rs、ρcは、それぞれTLM測定法による接触抵抗、面抵抗、接触比抵抗を意味する。オーミック特性は抵抗が大きくなるほど低下する。
【0187】
【0188】
T1の場合、オーミック特性の向上のために第1金属層(Al)の厚さを300nmに形成し、障壁の役割のために第2層(Ni)の厚さを100nmに形成した。また、第2層と第3層間にCu/Niの中間層をさらに形成した。ここで、Cuは障壁の役割をすることができる。しかし、このような場合、オーミック特性の向上よりは、過度のAl、NiによってR1に比べて接触抵抗値がかなり大きくなるため、かえってオーミック特性が低下することが予想できる。特に、面抵抗および接触比抵抗値が負数値を示すため、T1にはオーミックが行われなかったことが分かる。したがって、T1は第1電極として適切ではない。
【0189】
T2-1の場合、第1金属層の厚さはR2と同じである。T2-1は第2層の厚さを100nmに形成し、中間層をさらに形成してR2に比べて障壁の役割が向上し得るかを観察した。しかし、第2層および中間層の過度な厚さによって、かえってオーミックが行われないことがある。すなわち、T2-1は接触抵抗、面抵抗および接触比抵抗がR2に比べてかなり大きくなるため、第1電極として適切ではない。
【0190】
T2-2の場合、第2層の厚さを減らし、その代わりに中間層にCu障壁層を追加した。しかし、T2-2はR2に比べて接触抵抗が増加してオーミックが低下するため、第1電極として適切ではない。
【0191】
T3-1、T3-2の場合、第1金属層の厚さをそれぞれ60nm、90nmに形成した。T3-1の場合、R3に比べて接触抵抗、面抵抗、接触比抵抗がすべて相当量増加することを確認することができる。すなわち、T3-1は第1金属層の厚さが第2層に比べて相対的に小さくなってオーミックが行われないことがある。また、T3-2の場合、R3に比べて接触抵抗が増加することを確認することができる。すなわち、T3-2は第1金属層の厚さが第2層に比べて相対的に小さいものの、T3-1に比べては厚いため、オーミック特性が低下し得る。したがって、T3-1、T3-2は第1金属層の厚さが第2層に比べて相対的に小さいため、第1電極として適切ではない。
【0192】
T3-3の場合、第1金属層の厚さを150nmに形成した。このような場合、接触抵抗、面抵抗がすべてR3に比べて減少することを確認することができる。しかし、
図9aを参照すると、ボールアップ現象およびボイドがかなり多く発生することが予想できる。すなわち、T3-3は接触抵抗、面抵抗がすべて低いためオーミック特性が向上することもあり得るが、表面特性が悪いため第1電極として適切ではない。
【0193】
図11は、本発明の実施例に係る半導体パッケージの概念図である。
【0194】
半導体素子はパッケージで構成され、樹脂(resin)やレジスト(resist)やSODまたはSOGの硬化用として使われ得る。または半導体素子は治療用または医療用として使われたり、空気清浄器や浄水器などの殺菌に使われてもよい。
【0195】
図11を参照すると、半導体素子パッケージは、溝3が形成された胴体2、胴体2に配置される半導体素子1、および胴体2に配置されて半導体素子1と電気的に連結される一対のリードフレーム5a、5bを含むことができる。半導体素子1は前述した構成をすべて含むことができる。
【0196】
胴体2は紫外線光を反射する材質またはコーティング層を含むことができる。胴体2は複数の層2a、2b、2c、2d、2eを積層して形成することができる。複数の層2a、2b、2c、2d、2eは同じ材質でもよく、異なる材質を含んでもよい。
【0197】
溝3は半導体素子から遠くなるほど広くなるように形成され、傾斜面には段差3aが形成され得る。
【0198】
透光層4は溝3を覆うことができる。透光層4はガラス材質であり得るが、必ずしもこれに限定されない。透光層4は紫外線光を有効に透過できる材質であれば特に制限されない。溝3の内部は空いた空間であり得る
【0199】
半導体素子は照明システムの光源として使われたり、映像表示装置の光源や照明装置の光源として使われ得る。すなわち、半導体素子はケースに配置されて光を提供する多様な電子素子に適用され得る。例示的に、半導体素子とRGB蛍光体を混合して使う場合、演色性(CRI)が優秀な白色光を具現することができる。
【0200】
前述した半導体素子は発光素子パッケージで構成され、照明システムの光源として使われ得るが、例えば映像表示装置の光源や照明装置などの光源として使われ得る。
【0201】
映像表示装置のバックライトユニットとして使われる時にエッジタイプのバックライトユニットとして使われたり、直下タイプのバックライトユニットとして使われ得、照明装置の光源として使われる時に照明器具やバルブタイプで使われてもよく、また、移動端末の光源として使われてもよい。
【0202】
発光素子は前述した発光ダイオードの他にレーザーダイオードがある。
【0203】
レーザーダイオードは、発光素子と同様に、前述した構造の第1導電型半導体層と活性層および第2導電型半導体層を含むことができる。そして、p-型の第1導電型半導体とn-型の第2導電型半導体を接合させた後、電流を流した時に光が放出されるelectro-luminescence(電界発光)現象を利用するが、放出される光の方向性と位相において差異点がある。すなわち、レーザーダイオードは励起放出(stimulated emission)という現象と補強干渉現象などを利用して、一つの特定の波長(単色光、monochromatic beam)を有する光が同じ位相を有して同じ方向に放出され得、このような特性によって光通信や医療用装備および半導体工程装備などに使われ得る。
【0204】
受光素子としては、光を検出してその強度を電気信号に変換する一種のトランスデューサーである光検出器(photodetector)を挙げることができる。このような光検出器として、光電池(シリコン、セレン)、光出力導電素子(硫化カドミウム、セレン化カドミウム)、フォトダイオード(例えば、visible blind spectral regionでもtrue blind spectral regionでピーク波長を有するPD)、フォトトランジスタ、光電子増倍管、光電管(真空、ガス封入)、IR(Infra-Red)検出器などがあるが、実施例はこれに限定されない。
【0205】
また、光検出器のような半導体素子は、一般的に光変換効率が優秀な直接遷移半導体(direct bandgap semiconductor)を利用して製作され得る。または光検出器は構造が多様であり、最も一般的な構造としては、p-n接合を利用するpin型光検出器と、ショットキー接合(Schottky junction)を利用するショットキー型光検出器と、MSM(Metal Semiconductor Metal)型光検出器などがある。
【0206】
フォトダイオード(Photodiode)は発光素子と同様に、前述した構造の第1導電型半導体層と活性層および第2導電型半導体層を含むことができ、pn接合またはpin構造からなる。フォトダイオードは逆バイアスあるいはゼロバイアスを加えて動作するようになり、光がフォトダイオードに入射すると電子と正孔が生成されて電流が流れる。この時、電流の大きさはフォトダイオードに入射する光の強度にほぼ比例し得る。
【0207】
光電池または太陽電池(solar cell)はフォトダイオードの一種であって、光を電流に変換することができる。太陽電池は、発光素子と同様に、前述した構造の第1導電型半導体層と活性層および第2導電型半導体層を含むことができる。
【0208】
また、p-n接合を利用した一般的なダイオードの整流特性を通じて電子回路の整流器として利用され得、超高周波回路に適用されて発振回路などに適用され得る。
【0209】
また、前述した半導体素子は必ずしも半導体でのみ具現されず、場合により金属物質をさらに含むこともできる。例えば、受光素子のような半導体素子は、Ag、Al、Au、In、Ga、N、Zn、Se、P、またはAsのうち少なくとも一つを利用して具現され得、p型やn型ドーパントによってドーピングされた半導体物質や真性半導体物質を利用して具現されてもよい。
【0210】
以上、実施例を中心に説明したがこれは単に例示に過ぎず、本発明を限定するものではなく、本発明が属する分野の通常の知識を有する者であれば本実施例の本質的な特性を逸脱しない範囲で、以上に例示されていない多様な変形と応用が可能であることが分かるはずである。例えば、実施例に具体的に示された各構成要素は変形して実施できるものである。そして、このような変形と応用に関係した差異点は、添付された特許請求の範囲で規定する本発明の範囲に含まれるものと解釈されるべきである。