(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-06
(45)【発行日】2022-07-14
(54)【発明の名称】地盤締固めのためのデバイスおよびそれを操作しモニタするための方法
(51)【国際特許分類】
E02D 3/046 20060101AFI20220707BHJP
【FI】
E02D3/046
【外国語出願】
(21)【出願番号】P 2018168703
(22)【出願日】2018-09-10
【審査請求日】2021-08-05
(31)【優先権主張番号】10 2017 008 535.8
(32)【優先日】2017-09-11
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】592188715
【氏名又は名称】ボーマーク・ゲー・エム・ベー・ハー
【氏名又は名称原語表記】BOMAG GMBH
【住所又は居所原語表記】INDUSTRIEGEBIET HELLERWALD,D-56154 BOPPARD,BUNDESREPUBLIK DEUTSCHLAND
(74)【代理人】
【識別番号】110001818
【氏名又は名称】特許業務法人R&C
(72)【発明者】
【氏名】ニールス・ラウクヴィッツ
【審査官】小倉 宏之
(56)【参考文献】
【文献】米国特許出願公開第2010/0215434(US,A1)
【文献】国際公開第02/001008(WO,A1)
【文献】特開2010-246365(JP,A)
【文献】特開2016-223246(JP,A)
【文献】特開2000-345547(JP,A)
【文献】特開2013-015009(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E02D 3/046
(57)【特許請求の範囲】
【請求項1】
a)フレーム(2)および前記フレーム(2)によって支持される駆動モータ(3)と、
b)前記駆動モータ(3)によって駆動される起振機(4)と、
c)前記起振機(4)に接続される地盤締固め装置、特に台板(5)またはローラドラム(6)と、
を含む、地盤締固めのためのデバイス(1)であって、
前記起振機(4)が、締固め操作の間、前記地盤締固め装置を固定振動数または振動数範囲内で振動させ、前記地盤締固めのためのデバイス(1)の振動を電気エネルギーに変換する、電気エネルギーへの振動の変換のための変換デバイス(7)が提供され、
前記変換デバイス(7)が、共鳴振動数が異なる少なくとも二つのばね質量系(10、11)を含み、個別の前記ばね質量系(10、11)によって得られた前記電気エネルギー、特にそれぞれの電圧から地盤の締固め度を確認する制御ユニット(17)が提供されることを特徴とする地盤締固めのためのデバイス。
【請求項2】
少なくとも二つの前記ばね質量系(10、11)の前記共鳴振動数の比が、1:1.5~1:3、好ましくは1:1.5~1:2.5、特に好ましくは1:1.75~1:2.25、とりわけおよそ1:2であることを特徴とする、請求項1に記載の地盤締固めのためのデバイス(1)。
【請求項3】
二つの前記ばね質量系(10、11)が、一方のばね質量系(10)の前記共鳴振動数が、設定された振動数を上回るか、もしくは前記振動数範囲の平均値を上回り、かつ/または、他方のばね質量系(11)の前記共鳴振動数が、前記振動数を下回るか、もしくは前記振動数範囲の前記平均値を下回るような方法で構成されることを特徴とする、請求項1または2に記載の地盤締固めのためのデバイス(1)。
【請求項4】
二つの前記ばね質量系(10、11)が、一方のばね質量系(10)の前記共鳴振動数が、振動数の二倍であるか、もしくは前記振動数範囲の平均値の二倍であり、かつ/または、他方のばね質量系(11)の前記共鳴振動数が、前記振動数の半分であるか、もしくは前記振動数範囲の前記平均値の半分であるような方法で構成されることを特徴とする、請求項1~3の何れか一項に記載の地盤締固めのためのデバイス(1)。
【請求項5】
第一のばね質量系(10)の共鳴振動数f
1が、振動数または前記振動数範囲の平均値に相当し、第二のばね質量系(11)の共鳴振動数f
2が、前記振動数の二倍であるか、または前記振動数範囲の前記平均値の二倍であり、第三のばね質量系(8)の共鳴振動数f
0が、前記振動数の半分であるか、または前記振動数範囲の前記平均値の半分であるような方法で構成される三つのばね質量系(10、11、8)を含むことを特徴とする、請求項1~4の何れか一項に記載の地盤締固めのためのデバイス(1)。
【請求項6】
前記変換デバイス(7)が、前記地盤と直接接触する地盤締固め構成要素上、特に台板(5)上、または前記地盤締固め装置のローラドラム(6)上に配置されることを特徴とする、請求項1~5の何れか一項に記載の地盤締固めのためのデバイス(1)。
【請求項7】
前記変換デバイス(7)が、以下の特徴:
それが、消費体と共に組立ユニット(12)、特に、前記制御ユニット(17)および/または伝送ユニット(9)および/またはディスプレイデバイスの一部であること;
それが、少なくとも一つの音声コイルを含むこと;
それが、特にネオジムから成る永久磁石(15)を含むこと;
それが地盤接触表面に対して中央または端領域内のいずれかに位置付けられるような仕方で、それが、前記地盤締固めのためのデバイス(1)上に配置されること、
の内の少なくとも一つを含むことを特徴とする、請求項1~6の何れか一項に記載の地盤締固めのためのデバイス(1)。
【請求項8】
前記変換デバイス(7)が、少なくとも一つのリニア発電機(16)を含むことを特徴とする、請求項1~7の何れか一項に記載の地盤締固めのためのデバイス(1)。
【請求項9】
前記変換デバイス(7)が、消費体、特に、前記制御ユニット(17)および/または伝送ユニット(9)に前記電気エネルギーを供給することを特徴とする、請求項1~8の何れか一項に記載の地盤締固めのためのデバイス(1)。
【請求項10】
前記地盤締固めのためのデバイス(1)が、取り付け可能な締固め機、振動板締固め機または振動ローラであることを特徴とする、請求項1~9の何れか一項に記載の地盤締固めのためのデバイス(1)。
【請求項11】
地盤締固めのためのデバイス(1)、特に、請求項1~10の何れか一項に記載の地盤締固めのためのデバイス(1)によって生成される前記地盤締固めの変化をモニタするための方法(19)であって、
(a)前記起振機(4)によって固定振動数または振動数範囲内で振動する地盤締固め装置を活用して地盤を締固めるステップ(20)と、
(b)電気エネルギーへの振動の変換のための変換デバイス(7)を活用して前記電気エネルギーを発生させるステップ(21)であって、該変換デバイス(7)が、前記共鳴振動数が異なる少なくとも二つのばね質量系(10、11、8)を含む、ステップと、
(c)二つの前記ばね質量系(10、11、8)によって発生させた前記電気エネルギーまたは対応するパラメータを決定し、モニタするステップ(23)と、
(d)決定された発生電気エネルギーまたは対応するパラメータを前記地盤の締固めの変化と相関させるステップ(24)と、
を含む方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、地盤締固めのためのデバイスと、地盤締固めのためのデバイスを操作するための方法とに関する。更に、本発明は、地盤締固めのためのデバイスによって生じる前記地盤締固めの変化をモニタするための方法に関する。
【背景技術】
【0002】
地盤締固めのための汎用デバイスの例としては、交換可能な工具または取り付け可能な器具として、例えば掘削機の油圧アームに接続することができる取り付け可能な締固め機が挙げられる。地盤締固めのための汎用デバイスの更なる例としては、操作者プラットフォームから操作者によって駆動することができるシングルドラムローラやタンデムローラ等の締固めローラや、前記操作者が前記締固めローラのそばを歩く手動案内式締固めローラが挙げられる。更に、地盤締固めのための汎用手動案内式デバイスは、振動式ランマとも呼ばれる振動タンパ、および振動板締固め機とも呼ばれる振動板を含む。地盤締固めのための汎用デバイスは、前記地盤の前記締固めを増加させ、したがって、その荷重負担能力を向上させるために、街路および道路の建設、地下の建設、広場の建設等に頻繁に用いられる。上記汎用デバイスは、典型的には、フレームと、該フレームで支持された駆動モータとを含む。前記駆動モータは、例えば、燃焼機関であることが可能であるか、または、例えば、取り付け可能な締固め機の場合、油圧モータとして構成することもできる。前記駆動モータは、通常、地盤締固め装置に接続される起振機を駆動する。前記地盤締固め装置は、特に、典型的には台板であるか、例えば、取り付け可能な締固め機の場合、振動タンパもしくは振動板であるか、または自動推進式および手動案内式締固めローラの場合に典型的に提供されるようなローラドラムである。前記起振機は、典型的には、地盤締固めのための前記デバイスの締固め性能を向上させるために、締固め操作の間、固定振動数で、または振動数範囲内で前記地盤締固め装置を振動させるように設計される。前記振動は、前記地盤締固めデバイスから前記被締固め地盤に伝達され、前記地盤材料の前記締固めを促進する。
【0003】
前記地盤締固め装置における電気エネルギーに振動を変換するための変換デバイスを提供することは、従来技術において知られており、該変換デバイスは、地盤締固めのための前記デバイスの前記振動を電気エネルギーに変換し、それは、ひいては消費体に供給される。従来技術に係る地盤締固め装置において頻繁に用いられる消費体は、特に、例えば前記地盤締固め装置が横断する前記地盤の締固め度を確認し、それを、例えば伝送ユニットを介して、前記データを評価するためのデバイスに伝送するように設計されるセンサ配列および/または伝送ユニットの少なくとも一つのセンサを含む。前記締固め度は、典型的には、締固めを増大させると共に増大する地盤剛性として確認される。したがって、ある地盤剛性の到達から、充分な地盤締固めに達したことを結論づけることができる。例えば、特許文献1(EP2627826D1)には、前記地盤剛性を決定するための可能性が、その数学的基準と共に開示されている。
【0004】
消費体に電気を供給するために変換デバイスを用いる長所は、例えば、地盤締固めのための前記デバイスの搭載ネットワークにおいて、エラープローンケーブル接続を介して、追加的な電源から前記消費体に供給する必要がないということである。とりわけ、前記消費体が地盤締固めのための前記デバイスの振動成分上に配置される場合、前記消費体の前記供給のための信頼性のあるケーブル接続は複雑で、かつ高価であるが、それは、前記消費体の近くに配置された前記変換デバイスによって、残る前記地盤締固めデバイスとは独立して、前記消費体のための必要な前記電気エネルギーを得ることが有利である理由である。変換デバイスによって振動から電気エネルギーを得る前記手法は、エネルギーハーベスティングとして知られている。上記系は、例えば、電磁誘導または圧電効果に基づく。この場合の短所は、前記締固め度を確認するためのセンサと、前記センサへの電力の供給のための変換デバイスとの組み合わせが比較的高価であるという事実である。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
したがって、前記地盤基盤の前記締固め度の前記測定に関して地盤締固めのためのデバイスの複雑性を低下させ、したがって費用を減少させることが本発明の目的である。
【課題を解決するための手段】
【0007】
この目的は、独立請求項に記載の前記デバイスおよび前記方法により達成される。好ましい実施形態は、従属請求項において示される。
【0008】
具体的には、上記目的は、異なる共鳴振動数を有する少なくとも二つのばね質量系を含む変換デバイスを設けた、前記記載の前記導入部で記載された通りの地盤締固めのための汎用デバイスと、個別の前記ばね質量系から得られた前記電気エネルギー、特に前記電圧から前記地盤のそれぞれの前記締固め度を決定する制御ユニットと、により達成される。本発明は、地盤締固めのための前記デバイスの前記振動数が、測定時における前記地盤の前記締固め度に、すなわち前記地盤剛性に依存するという知見に基づくものである。地盤締固めのための前記デバイスが、例えば、前記振動運動に対する無視してよい抗力だけを示す極めて柔らかい地盤上で振動している場合、地盤締固めのための前記デバイスは、実質的に、前記起振機によって設定された前記振動数で振動する。一方で、より堅い基盤が締固められる場合、追加的な振動数成分を伴う加速も生じる。これらは、例えば、より高い調波とも称される前記振動数の二倍、またはより低い調波とも称される前記振動数の半分である。したがって、前記より高いおよびより低い調波は、それぞれ前記起振機によって設定される前記振動数の二倍および半分の地盤締固めのための前記デバイスの振動を指す。この場合のばね質量系は、ばね装着体が機械的振動を行うことが可能なことが、知られている系を指す。本文脈において、ばね質量系は、特に、機械的振動を電気エネルギーに変換する変換デバイスの振動部分を指す。共鳴振動数が異なる二つのばね質量系を用いることによって、前記変換デバイスが、前記振動数に応じて/依存して、各ばね質量系において、地盤締固めのための前記デバイスの前記振動から電気エネルギーを得るような仕方で前記共鳴振動数を選択することができる。この場合、地盤締固めのための前記デバイスの前記振動の前記振動数成分の合成は、前記ばね質量系の定義済みの前記共鳴振動数と、上記系の電気エネルギーの対応する生成とから推定される。
【0009】
地盤締固めのための前記デバイスの前記振動によって前記ばね質量系を振動させ、次いで、前記変換デバイスによって該振動が利用されて電気エネルギーが得られる。電気エネルギーへの前記ばね質量系の前記振動の前記変換は、例えば、電気誘導またはエネルギーハーベスティングのための他の任意の方法によって起きる可能性がある。地盤締固めのための前記デバイスの前記振動が、前記ばね質量系の前記共鳴振動数に相当する振動数に達する場合、前記ばね質量系の前記振動は最大値に達する。このばね質量系の前記振動の結果として前記変換デバイスによって得られた電力の量は、この範囲内において特に高い。共鳴振動数が異なる二つのばね質量系の前記配列によって、前記変換デバイスが特にこのばね質量系において特に高い量の電気エネルギーを得ることができるように前記ばね質量系の内の一つが前記共鳴振動数で操作される二つの振動数範囲が利用可能である。この場合の前記電気エネルギーの前記生成は、個別の前記ばね質量系の各々において別々に測定される。
【0010】
例えば、ばね質量系が前記起振機によって決定された前記振動数に設定される場合、すなわち、このばね質量系の前記共鳴振動数が、前記起振機が地盤締固めのための前記デバイスを振動させる前記振動数に相当する場合、前記ばね質量系は、地盤締固めのための前記デバイスが特に柔らかい基盤を締固めるたびに最大量の電気エネルギーを生成することになる。前記第二のばね質量系は、例えば、前記より高い調波に設定され得る。このことは、例えば、前記第二のばね質量系が前記起振機の前記振動数の二倍に相当する共鳴振動数を有することを意味する。前記起振機の前記振動数の二倍における、すなわち、前記より高い調波における地盤締固めのための前記デバイスの前記振動は、前記地盤の前記締固めが増大するにつれて増大する。このように、前記第二のばね質量系は、前記基盤の地盤剛性または締固め度が増大するにつれて、比例的により高い量の電気エネルギーを生成する。前記第二のばね質量系を前記起振機の前記振動数の半分に設定することも可能である。したがって、この場合、前記第二のばね質量系の前記共鳴振動数は、いわゆる前記より低い調波の前記範囲内である。地盤締固めのための前記デバイスが前記基盤上で跳び上がり始めるたびに、すなわち、それが前記地盤との接触を部分的に失う場合、前記より低い調波の前記振動数範囲内の振動は、地盤締固めのための前記デバイスにおいて発生する。このことは、特に、前記基盤の前記締固め度が極めて高くなる場合に起きる。したがって、その場合、前記第二のばね質量系による電気エネルギーの前記生成の増大は、非常に高い度合いの地盤剛性の指標となる。
【0011】
したがって、本発明の基本的な考えは、前記変換デバイスの前記ばね質量系の前記エネルギー生成から前記基盤の前記締固め度を推定することができるということである。これは、例えば、それぞれの前記ばね質量系における電気エネルギーの前記生成の絶対値によって生じ得る。代替的には、例えば、前記第一および第二のばね質量系によって生成された前記電気エネルギーの比、例えば、それぞれ生成された前記電気エネルギーの商または差から相対値を計算することも可能である。電気エネルギーまたは電気パラメータのピーク値および/または二乗平均平方根値を用いて、これを行うことができる。同様に、この相対値から前記地盤の前記地盤剛性または締固め度を推定することができる。したがって、前記地盤剛性の前記測定のための従来の加速度計の使用は必要ではない。したがって、本発明は、特に、前記地盤の前記締固め度が単に前記変換デバイスにおける電気エネルギーの前記生成からのみ確認される地盤締固めのためのデバイスに関する。本発明の別の長所は、前記変換デバイスが電流を生成し、同時に外部源からの電源電圧を必要としないという事実である。従来の加速度計は、測定信号を発生させるために電源電圧を必要とする。エネルギーハーベスティングを実行する従来の系は、別個のエネルギーハーベスティングデバイスも使用し、結果として生じる前記電気エネルギーにより加速度計を操作する。前記締固め度の前記計算のためであって、追加的な加速度計を供給する目的のためでなく、エネルギーハーベスティングによって生成された前記電気エネルギーを直接用いる際、本発明に係る前記系は、別個の供給源が余分であるように、複数のばね質量系を活用してエネルギーハーベスティングによって電気エネルギーを発生させる。この目的のために、前記ばね質量系は、エネルギーの生成量の比較によって前記締固めに関する結論が可能になるようにある振動数に対して調整される。したがって、本発明に係る前記変換デバイスは、電池であろうと、地盤締固めのための前記デバイス上の電気ネットワークへの接続であろうと、外部電源に依存しない。更に、本発明に係る前記デバイスは、前記変換デバイスの他に、追加的な加速度計、特に、機能するために電気エネルギーを供給する必要がある加速度計を含まない。
【0012】
この場合の、前記ばね質量系の前記共鳴振動数は、有利には、地盤締固めのための前記デバイス、特に前記起振機が操作中である場合に前記ばね質量系の内の少なくとも一つが共振するような仕方で選択される。得られた前記電気エネルギーから前記地盤の前記締固め度を推定するために、少なくとも二つの前記ばね質量系の前記共鳴振動数の前記比は、1:1.5~1:3、好ましくは1:1.5~1:2.5、より好ましくは1:1.75~1:2.25、とりわけおよそ1:2であることが更に好ましい。この場合の「およそ」は、この場合、軽微なずれ、例えば製造または較正の不正確さは無視されるものの、少なくとも二つの前記ばね質量系の前記共鳴振動数の前記比が厳密に1:2であることを意味する。
【0013】
本発明は、明らかに二つのばね質量系に限定されるものではないが、少なくとも二つのばね質量系を含む。例えば、三つ、四つ、五つまたは更により多くのばね質量系等の複数のばね質量系は、地盤剛性の変化または前記地盤の前記締固め度の変化をより正確に検出するために提供され得る。上記ばね質量系の全ては、好ましくは互いに異なる共鳴振動数を有する。しかし、共鳴振動数が同じ複数のばね質量系と共鳴振動数が異なる追加的なばね質量系とを組み合わせることも可能である。このように、各共鳴振動数範囲に対して複数の振動系を提供するにつれて、生成された電気エネルギーの総量は増加する。同時に、前記地盤のある地盤剛性またはある締固め度に関連付けられた前記信号が増幅される。例えば、共鳴振動数が同じ二つ、三つ、四つまたは五つのばね質量系のそれぞれの群を共鳴振動数が異なるばね質量系の更なる群と組み合わせることができる。全体的に、前記共鳴振動数が同じおよび/または異なる任意の数のばね質量系の前記組み合わせによって、前記変換デバイスが少なくとも一つの消費体のための充分な電気エネルギーを提供し、同時に前記地盤の前記締固め度を測定する任意の大きさの振動数範囲をカバーすることが可能である。本発明によれば、重要なことは、単に、共鳴振動数が異なる少なくとも二つのばね質量系を常に提供するということだけである。
【0014】
上記で既に説明されたように、地盤締固めのための前記デバイスが操作される典型的な前記振動数または典型的な振動数範囲に従って、それぞれの前記ばね質量系の前記共鳴振動数を選択することができる。特に、前記ばね質量系の前記共鳴振動数は、地盤締固めのための前記デバイスの通常操作の間に典型的に生じる前記振動数範囲の中または端にある。したがって、選択された前記共鳴振動数は、当該の前記デバイスによる地盤締固めの間に典型的に生じる前記振動数範囲に相当する。この場合、注目すべきことは、地盤締固めのためのデバイスの特定の振動数が多くの要因によって決まることである。一例を挙げると、起振機デバイス、例えば不均衡起振機の操作条件等の機械特異的パラメータが重要である。別の例としては、前記被締固め地盤材料の特性、例えばその剛性等の外部作業条件も電流振動数に影響する。したがって、この場合、設定振動数または振動数範囲を参照する場合、これは、特に典型的な作業状況を参照する。したがって、典型的な振動数または振動数範囲は、例えば経験的に決定され得る。したがって、前記変換デバイスは、好ましくは、具体的には、その特定の振動数を有する地盤締固めのための特定のデバイスにおける使用のために設計される。例えば、地盤締固めのための前記デバイスが前記締固め操作の主要部分の間に作動する設定振動数がある場合、または、地盤締固めのための前記デバイスについて、前記締固め操作の間に生じる前記振動数範囲の少なくとも平均値が知られている場合、例えば、この値における前記ばね質量系の前記共鳴振動数の内の一つを設定することが可能である。この場合、前記締固め操作の大きな部分の間、このばね質量系が前記変換デバイスのための充分な振動運動を提供して、少なくとも一つの消費体のための充分な電気エネルギーを生成し、同時に、前記地盤の前記締固め度を測定することができることが確保される。しかし、単に二つのばね質量系だけによって、または少なくともできるだけ少ないばね質量系によって、できるだけ大きな振動数範囲をカバーするために、前記ばね質量系の前記共鳴振動数は、好ましくは、設定振動数または前記振動範囲の前記平均値のあたりに設定される。例えば、二つの前記ばね質量系は、好ましくは、一方のばね質量系の共鳴振動数が前記設定振動数を上回るか、もしくは前記振動数範囲の前記平均値を上回り、かつ/または、他方のばね質量系の共鳴振動数が前記振動数を下回るか、もしくは前記振動範囲の前記平均値を下回るような方法で構成される。したがって、一方のばね質量系の前記共鳴振動数は、特に他方のばね質量系と比較して、前記振動のより高い調波またはより低い調波のいずれかにより近い。したがって、上記ばね質量系の電気エネルギーの前記生成の増加は、前記地盤の前記締固め度の増加を示す。同時に、前記変換デバイスは、前記振動数範囲全体にわたって少なくとも一つの消費体のための充分な電気エネルギーを提供しなければならない。前記振動数範囲全体にわたる充分なエネルギー生成の基準をなお満たすと共に前記ばね質量系の前記共鳴振動数のばらつきが大きくなればなるほど、前記ばね質量系、および、したがって、前記変換デバイスによってカバーされる前記振動数範囲は広くなる。しかし、同時に、前記ばね質量系の前記共鳴振動数は、できるだけ信頼性のある、前記地盤の前記締固め度および関連の変化の測定を可能にするために、可能な限り、前記振動数、前記より高い調波および/または前記より低い調波に近いものでなければならない。従来の加速度計に対する別の差異は、前記共鳴振動数が地盤締固めのための前記デバイスの典型的な前記振動数範囲内にあるということである。従来の加速度計は、できるだけ直線的な振動数応答を有すると考えられ、すなわち、それらは、少なくともある振動数範囲(例えば、0~400Hzまたは0~20kHz)内で同じ感度(例えば、1m/s2当たりのボルト)を有しなければならない。この目的のために、前記センサの固有の前記共鳴振動数は、前記最大測定周波数より、したがって、典型的な前記振動数範囲より著しく高くなければならない。更に、従来の加速度計において、前記減衰を頻繁に増大させて、前記余剰共鳴振動数を最小限に抑える。例えば、従来の加速度計において、前記センサ素子の前記減衰は、重要な前記減衰比(減衰比D=1)に近くなるように頻繁に選択される。本発明に係る前記ばね質量系において、供給源のための充分な電気エネルギーを発生させることと、相互作用する前記振動の振動数成分の評価を得ることとの両方のために、前記共鳴振動数は、厳密に対象の前記振動数範囲内にあるように意図的に選択される。この目的のために、前記減衰は、前記共振範囲を狭くするようにむしろ低く維持されるものとする。したがって、前記ばね質量系は、好ましくは、低い減衰を有するか、または全く有さない。したがって、本発明によれば、前記ばね質量系の前記減衰比Dは、例えば、<0.5、好ましくは<0.4、より好ましくは<0.3、更に好ましくは<0.2、とりわけ<0.1であることができる。前記ばね質量系は、例えば充分な程度に摩擦効果を回避することによってそれらが対応する前記減弱比Dを示すような方法で設計される。
【0015】
本発明の別の好ましい実施形態において、二つの前記ばね質量系は、一方のばね質量系の共鳴振動数が、前記振動数の二倍、もしくは前記振動数範囲の前記平均値の二倍(すなわち、前記より高い調波の前記範囲内)であり、かつ/または他方のばね質量系の共鳴振動数が、前記振動数の半分、もしくは前記振動数範囲の前記平均値の半分(すなわち、前記より低い調波の前記範囲内)であるような方法で設計される。前記ばね質量系の前記共鳴振動数のそのような選択は、広い振動数範囲をカバーすることと、上記範囲内の任意の振動数で充分な電気エネルギーを提供する前記変換デバイスを有することとの両方のために特によく適している。更に、前記ばね質量系の前記共鳴振動数がそれぞれ前記より高い調波および前記より低い調波である場合、前記基盤の前記締固め度を特によく測定することができる。三つのばね質量系が提供される実施形態が特に好ましい。これらは、前記第一ばね質量系の共鳴振動数が前記振動数の二倍であるか、または前記振動数範囲の前記平均値の二倍であり、前記第二ばね質量系の共鳴振動数が前記振動数の半分であるか、または前記振動数範囲の前記平均値の半分であり、前記第三ばね質量系の共鳴振動数が前記振動数または前記振動数範囲の前記平均値に相当するような方法で設計される。すなわち、三つの前記ばね質量系の前記共鳴振動数は、前記振動数または前記振動数範囲の前記平均値と、上記振動数の二倍、すなわち、前記より高い調波と、上記振動数の半分、すなわち、前記より低い調波とに相当する。このように、締固めの間、前記地盤の地盤剛性または締固め度の変化の進行を特によく追跡することができる。例えば、この場合、締固めパラメータを計算するために、前記より高い調波および前記振動数に関連付けられたそれぞれの前記測定値の商を用いることができる。この場合、同様に、ピーク値および/または二乗平均平方根値を考えることができる。前記計算のために「より高い調波/振動数」および「より低い調波/振動数」という商の線形結合を用いることも可能である。前述したように、上記文脈における「振動数」という用語は、前記起振機によって設定される前記基礎振動数を指す。
【0016】
概して、前記変換デバイスは、締固め操作の間に振動する地盤締固めのための前記デバイス上の任意の位置に配置され得る。地盤締固めのための前記デバイスの他の領域を更に前記地盤締固め装置の前記振動から切り離すことができるものの、典型的には、前記起振機によって最も振動するのは前記地盤締固め装置である。したがって、前記変換デバイスは、締固め機能を有し、かつ前記地盤と直接接触する構成要素上、特に、台板上、または前記地盤締固め装置のローラドラム上に配置されることが好ましい。前記地盤締固め装置、特に前記台板または前記ローラドラムが、前記地盤締固めデバイスの中で最も激しい振動を受けることによって、最大量の振動エネルギーが前記変換デバイスに伝達され得る。
【0017】
好ましくは、前記変換デバイスは、消費体と共に組立ユニット、特に、前記制御ユニットおよび/または伝送ユニットおよび/またはディスプレイデバイスの一部であることができる。したがって、前記変換デバイスおよび前記消費体は、地盤締固めのための前記デバイス上の任意の所望の位置に一緒に装着され得るモジュールを形成する。上記組立ユニットの装着は、それが、地盤締固めのための前記デバイスの他の構成要素とは独立して機能し、単に地盤締固めのための前記デバイスの振動を捕捉し得ることを必要とするだけであるので、特に可撓性である。この場合、組立ユニットとしての前記構成は、特に、単に単一の設置ステップにおいて地盤締固めのための前記デバイス上に前記変換デバイスおよび前記消費体を一緒に装着することができることを意味する。前記変換デバイスおよび前記消費体は、好ましくは、前記組立ユニットにおいて互いに固定して接続され、そのような組立ユニットとして製造される。そのような組立ユニットまたはモジュールは、地盤締固めのための既存のデバイスを改造するためのキットとしても適切である。
【0018】
前記変換デバイスは、前記地盤締固め装置上の任意の位置に配置され得る。前記変換デバイスは、好ましくは、それが地盤接触表面に対して中央または端領域内のいずれかに位置付けられるような方法で、地盤締固めのための前記デバイス上に配置される。したがって、前記変換デバイスは、例えば、作業方向に対して垂直に延びる前記地盤締固め装置の中央内、または前記地盤締固め装置の側面端領域内に配置され得る。
【0019】
上記したように、前記変換デバイスは、原則として、任意の適切なエネルギーハーベスティング技術を含むことができる。例えば、前記変換デバイスは、永久磁石、特にネオジムから成る永久磁石を含むことができる。代替的には、幾つかの永久磁石を提供することができる。追加的にまたは代替的には、前記変換デバイスは、少なくとも一つの音声コイルを含む。したがって、前記変換デバイスに、例えば、固定磁石および可動コイル、または固定コイルおよび可動磁石を用いることができる。前記変換デバイスは、特に好ましくは、少なくとも一つのリニア発電機を含む。直線に沿って運動を電気エネルギーに変換するそのような発電機は、振動運動から電気エネルギーを得るために、したがって、それぞれの前記周波数において対応する振動から前記基盤の前記締固め度を確認するためにも特に適切である。
【0020】
本発明に係る前記変換デバイスは、好ましくは、消費体、特に、前記制御ユニットおよび/または伝送ユニットおよび/またはディスプレイデバイスに電気エネルギーを供給するように設計される。前記ばね質量系の前記共鳴振動数は、特に、地盤締固めのための前記デバイスの締固め操作の間に典型的に生じる振動数範囲内で前記変換デバイスが少なくとも一つの前記消費体の前記供給のための充分な電気エネルギーを常に提供するような仕方で選択される。前記プロセスにおいて、前記ばね質量系の異なる前記共鳴振動数の結果として、それぞれのばね質量系の振動によって生成される電気エネルギーの割当が異なるが、前記変換デバイスは、常に同時に全てのばね質量系を使用する。一方のばね質量系は前記共鳴振動数範囲内で操作されるが、他方のばね質量系は、異なる前記共鳴振動数の結果としてあまり振動せず、したがって、前記変換デバイスによって生成される電気エネルギーの総量のより小さい割当を占める。地盤締固めのための前記デバイスの締固め操作の間に前記振動数が通常生じる前記振動数範囲が知られていることから、前記ばね質量系の前記共鳴振動数は、前記変換デバイスが、少なくとも一つの前記消費体に供給するために充分な電気エネルギーを常に発生させるような仕方で選択され得る。このようにして、前記消費体への電気エネルギーの供給が前記締固め操作の期間全体にわたって保証されることが確保される。特に、前記変換デバイスによってのみ、少なくとも一つの前記消費体に電気エネルギーが供給される。したがって、前記変換デバイスと少なくとも一つの消費体とから成る前記ユニットは、潜在的に地盤締固めのための前記デバイス上に存在する他の電源から、例えば、搭載ネットワークの電池または他の何らかの電源、例えば交流電源から、エネルギー的に独立している。そのような電源は存在することができるが、前記変換デバイスから、特に少なくとも一つの前記消費体からエネルギー的に分かれている。
【0021】
前記記載の前記導入部で既に述べたように、本発明は、地盤締固めのための全ての汎用デバイスのために適切である。したがって、本発明に係る地盤締固めのための前記デバイスは、手動案内式の前記種類であろうと、または、それが前記操作者のためのプラットフォームを含むものであろうと、特に、取り付け可能な締固め機、振動タンパもしくは振動式ランマ、振動板もしくは振動板締固め機、または振動ローラであることができる。
【0022】
前記記載の前記導入部で述べられた前記目的は、地盤締固めのためのデバイス、特に、上記の通りの地盤締固めのためのデバイスによって生成される前記地盤締固めの変化をモニタするための方法であって、起振機によって固定振動数または振動数範囲内で振動する地盤締固め装置を活用して地盤を締固めるステップと、電気エネルギーへの振動の変換のための変換デバイスを活用して電気エネルギーを発生させるステップであって、該変換デバイスが、共鳴振動数が異なる少なくとも二つのばね質量系を含む、ステップと、二つの前記ばね質量系によって発生させた前記電気エネルギーまたは対応するパラメータを確認し、モニタするステップと、確認された前記発生電気エネルギーまたは対応するパラメータを前記地盤の前記締固め、特に前記地盤剛性の変化と相関させるステップと、を含む方法により更に達成される。本発明に係る地盤締固めのための前記デバイスについての上記の特徴、効果および長所は、上記方法にも当てはまる。重複を避けるために、この場合、この点に関して上記の記載を参照する。特に、二超のばね質量系を与える選択肢も、上記ばね質量系の内の少なくとも二つが異なる共鳴振動数を示す限り、明らかに本発明に係る前記方法に当てはまる。本発明に係る前記モニタリング方法は、加速度計等、振動の検出のための別個のセンサが必要でないという長所を有する。このことによって、地盤締固めのための前記デバイスの複雑性および、したがって、製造費用が減少する。
【0023】
本発明は、以下のものを模式的に示す図に示される例を活用して、以下に更に詳細に説明される。
【図面の簡単な説明】
【0024】
【
図3】柔らかい地盤の場合の前記ばね質量系の前記振動の振動数-振幅図である。
【
図4】より堅い地盤の場合の前記ばね質量系の前記振動の振動数-振幅図である。
【
図5】極めて堅い地盤の場合の前記ばね質量系の前記振動の振動数-振幅図である。
【
図6】地盤締固めのためのデバイスによって生成された前記地盤締固めの変化をモニタするための前記方法の流れ図である。
【発明を実施するための形態】
【0025】
同様の部分または同様の機能を有する部分は、前記図において同一の参照符号によって示される。繰り返される構成要素は、必ずしも各図において別々に示されるわけではない。
【0026】
図1A、1B、1Cおよび1Dは、それぞれ地盤締固めのための汎用デバイス1を示す。具体的には、
図1Aは取り付け可能な締固め機を示し、
図1Bは締固めローラを示し、
図1Cは振動タンパを示し、
図1Dは振動板を示す。地盤締固めのための全てのデバイス1は、機械フレームまたはフレーム2を含む。更に、それらは、例えば、
図1Bの前記締固めローラ、
図1Cの前記振動タンパ、および
図1Dの前記振動板の場合、燃焼機関、特にディーゼル燃焼機関である駆動モータ3を含む。
図1Aの前記取り付け可能な締固め機の場合、前記駆動モータ3は、例えば迅速連結系による、掘削機の油圧系に接続され得、かつ前記油圧系よって駆動され得る油圧モータである。何よりも、前記駆動モータ3は、地盤締固めのための前記デバイス1の前記地盤締固め装置を振動させる起振機4を駆動する。前記地盤締固め装置は、
図1Aの前記取り付け可能な締固め機、
図1Cの前記振動タンパおよび
図1Dの前記振動板における台板5として、
図1Bの前記締固めローラにおけるローラドラム6として構成される。締固め操作の間、地盤締固めのための前記デバイス1は、前記被締固め地盤にわたって、前記台板5または前記ローラドラム6によって案内される。前記デバイス1の重量と前記地盤締固め装置の振動運動との結果として、前記デバイス1によって全面的に駆動される前記地盤は、ますます締固められる。また、地盤締固めのための前記デバイス1は、変換デバイス7を含む。原則として、前記変換デバイス7は、前記デバイス1上のどこにでも配置され得、具体的には、例えば、
図1Aの前記取り付け可能な締固め機および
図1Dの前記振動板における前記台板5上に配置される。
図1Cの前記振動タンパにおいて、前記変換デバイスは、例証として前記タンパ足に固定されるが、それは、例えば前記台板5上等、前記デバイス1上の他の位置にも配置され得る。
図1Bの前記締固めローラにおいて、変換デバイスは、それぞれ二つの前記ローラドラム6上に配置され、前記変換デバイスは、図示のために、前記ローラドラム6の一方の前記中空円筒形ローラドラムの内側シェルの内周部上と、他方のローラドラム6のドラムマウント上とに配置される。しかし、上述のように、前記変換デバイス7のこれらの配置位置は、単に図示のためだけのものである。
【0027】
図2は、
図1A~1Dの地盤締固めのためのデバイス1に実装される変換デバイス7の構造を示す。全体で、前記変換デバイス7は、この場合、第一のばね質量系10および第二のばね質量系11として構成される二つのリニア発電機16を含む。前記変換デバイス7内に配置することが可能であり、かつ前記変換デバイス7が含むことが可能な任意の第三のばね質量系8が、破線によって更に示唆される。各ばね質量系10、11、8は、少なくとも一つの(示された前記例において、実際は二つが示される)(一つまたは複数の)ばね13を含む。事前に張られた前記ばね13は、永久磁石15を支持し、移動可能であり、特に直線的に移動可能である。導電性材料、例えば銅線で作製されたコイル14は、前記コイル14の内部の前記永久磁石15の運動によって前記コイル14内で電流が誘導されるように前記永久磁石15の周辺に配置される。前記ばね装着永久磁石15によって、前記変換デバイス7は、振動に感度があるように構成される。このことは、前記変換デバイス7が、振動の際に前記リニア発電機16内において電気エネルギーを得ることを意味する。示された前記実施形態において、前記変換デバイス7は、次いで、制御ユニット17および伝送ユニット9に、得られた前記電気エネルギーを供給する。例えば、前記制御ユニット17は、それぞれの前記ばね質量系10、11、8によって生成される前記電気エネルギーを測定し、未加工のデータ、または処理されたデータのいずれかとして、得られた前記データを前記伝送ユニット9に渡す。前記伝送ユニット9は、無線接続を介して受信デバイス(図示せず)に前記データを伝送する。無線伝送の任意型は、この点についての選択肢、例えば、WLAN、ブルートゥース(登録商標)、赤外線インターフェースおよび同種のものである。前記変換デバイス7は、組立ユニット12として、前記制御デバイス17および前記伝送ユニット9と共に構成される。前記組立ユニット12は、単一の設置ステップで、全体として地盤締固めのためのデバイス1上のモジュール様式で設置され得るような方法で設計された、単一の、あらかじめ作製された構成要素である。前記組立ユニット12は、既存の地盤締固めのためのデバイス1内に設置することも可能であり、したがって、改造のためにも適切である。
【0028】
図3、4および5は、前記振動数fが横軸にプロットされ、前記振幅Aが縦軸にプロットされる振動数-振幅図をそれぞれ示す。前記振動数f
1は、前記起振機4によって設定される前記振動数範囲の前記振動数または平均値である。前記振動数f
2は、f
1の前記振動数の二倍であるが、前記振動数f
0は、f
1の前記振動数の半分である。したがって、前記振動数f
2は、前記より高い調波であるが、f
0は、前記振動数f
1の前記より低い調波である。
図3~5においてそれぞれプロットされたグラフは、前記振動数fの関数としての前記ばね質量系10、11、8の前記振幅の進行を示す。示された前記実施形態において、前記実線を有する前記グラフは、前記起振機4によって設定された前記振動数f
1に適合する共鳴振動数f
1を有する前記第一のばね質量系10に関し、破線の前記グラフは、前記起振機4によって設定された前記振動数f
1の二倍の共鳴振動数f
2を有する前記第二のばね質量系11に関し、点線の前記グラフは、前記起振機4によって設定された前記振動数f
1の半分の共鳴振動数f
0を有する前記第三のばね質量系8に関する。前記共鳴振動数f
0、f
1またはf
2における、前記変換デバイス7の、したがって、前記ばね質量系10、11、8の起振によって、対応する前記ばね質量系10、11、8におけるそれぞれの前記共鳴振動数f
0、f
1またはf
2についての前記振幅Aの著しい増加が生じる。より大きい振幅Aによって、前記永久磁石は、より大きな電気エネルギーを前記コイル14内に発生させるように、例えば、より高い電圧が生じるように、前記コイル14を通ってより急速に、かつより遠くに移動する。前記消費体、例えば、前記制御ユニット17および前記伝送ユニット9またはディスプレイデバイス(図示せず)は、常に充分な電気エネルギーを供給されることを必要とするので、全てのリニア発電機16によって提供される電気エネルギーの総量が前記消費体に供給するために充分であることが重要である。
【0029】
図3は、非常に柔らかい基盤上の地盤締固めのための前記デバイスの前記操作を示す。前記図は、実質的に、前記地盤締固め装置が空中で自由に振動している状況に相当する。前記地盤締固め装置の前記振動は、実質的に、前記振動数f
1、すなわち、前記起振機4によって設定された前記振動数における振動に相当する。上記振動数f
1が前記第一のばね質量系10の前記共鳴振動数にも相当するので、前記第一のばね質量系10は、図に示されるように、それに応じて高い振幅で振動する。対照的に、その他の二つのばね質量系11、8は、実質的には全く振動しないが、このことは、それぞれの前記共鳴振動数f
2およびf
0で前記水平の破線および点線によってそれぞれ示唆される。
図4は、
図3よりも明確に堅い基盤上の地盤締固めのための前記デバイスの操作を示す。このことは、例えば、前記地盤が、ある程度既に締固められたという事実によるものである可能性がある。より固体の前記基盤のため、前記地盤の振動応答は、前記地盤締固め装置の前記振動がもはや単に前記起振機4によって設定された前記振動数f
1だけを含まないように変化した。振動数f
1に加えて、この場合の前記地盤締固め装置の前記振動は、前記振動数f
2の二倍、いわゆる前記より高い調波を有する構成要素を更に含む。前記変換デバイス7が、前記より高い調波で設定された共鳴振動数f
2を有する第二のばね質量系11を含むので、前記第二のばね質量系11は、直ちに、この相におけるかなりの振動や、したがって、電気エネルギーの生成も開始する。次いで、最後に、地盤剛性の更なる増加または前記基盤の前記締固め度の更なる増加によって、
図5に示される前記状況が生じる。
図5は、前記基盤が、前記地盤締固め装置が跳び上がることを開始し、部分的に前記地盤との接触を失うようにしっかりと既に締固められた操作上の相を示す。その結果、前記起振機4によって設定された前記振動数f
1の半分の前記地盤締固め装置の前記振動において、振動数f
0を有する新しい振動成分が生じる。結果的に、前記振動数f
0を有する前記より低い調波で設定された共鳴振動数を有する前記第三のばね質量系8は、かなりの振動や、電気エネルギーの生成も開始する。個別の前記ばね質量系10、11、8においてそれぞれ生成される前記電気エネルギーは、前記制御ユニット17によって登録される。特に
図3、4および5の比較から明らかであるように、地盤剛性の増加によって、個別の前記ばね質量系10、11、8は、特に相互に対して異なる信号を送出するようになり、それによって前記地盤の前記地盤剛性または締固め度に関する推論が可能になる。ここで、例えば、前記制御ユニット17が、前記ばね質量系10、11、8から受信された前記信号を前記地盤剛性の示度に直接変換するという提供を行うことができる。別の場合、前記制御ユニット17は、前記地盤剛性または締固め度の前記決定が後に起きるように、未処理の前記測定値を単に中継するように構成され得る。前記データは、例えば、無線接続を介してそれらを受信デバイスに伝送する前記伝送ユニット9に中継される。次いで、受信デバイスは、例えば、前記データが更に処理されること、および/または、前記地盤剛性の示度が地盤締固めのための前記デバイスの前記操作者に表示されることを確保する。しかし、この示度は、例えば、前記組立ユニット12に取り付けられ、外側から操作者に視認できるディスプレイによって、前記組立ユニット12において直接生じる可能性もある。この場合、前記地盤剛性の前記決定は、特に、前記起振機4によって設定された前記振動数f
1に相当する共鳴振動数を有する前記ばね質量系10の前記電力発生と比較して前記振動数f
1の二倍に相当する共鳴振動数f
2を有する前記ばね質量系11による電気エネルギーの前記生成の増加を地盤剛性の対応する増加に転換するような仕方で起きる。前記振動数f
1の半分に設定された共鳴振動数f
0を有する前記ばね質量系8による電気エネルギーの前記生成の増加は、同様に、地盤剛性の更により大きな増加に転換される。このように、前記地盤の前記剛性を測定するための従来の加速度計が必要でないように、個別の前記ばね質量系10、11、8によって、単に電気エネルギーの前記生成だけに基づいて、前記地盤剛性を確認することができる。
【0030】
地盤締固めのための異なるデバイス1またはそれらの起振機4によって設定された前記振動数は、当該の地盤締固めのためのデバイス1の型と前記モデルおよび構成とに応じて変化する。例えば、前記振動数は、通常、取り付け可能な締固め機については35~60Hz、振動板締固め機については35~100Hz、ローラについては25~75Hz、タンパについては10~14Hzの範囲である。例えば45Hzの作業振動数を有する取り付け可能な締固め機の場合、ばね質量系は、f1=45Hzに調整されなければならない。したがって、次いで、更なるばね質量系は、f2=90Hz、すなわち前記作業振動数の二倍に調整されなければならない。次いで、更なるばね質量系を、例えば、f0=22.5Hzにおける前記より低い調波に調整することもできる。前記地盤の前記剛性の前記決定のために、次いで、前記基礎振動数(45Hz)の振幅に対する前記より高い調波(90Hz)の振幅の比を決定することができる。この比は、締固めの増大と共に増加する。取り付け可能な前記締固め機が二つの作業周波数、例えば、45Hzおよび60Hzを有することも可能である。この場合、妥協点として、一つのばね質量系の共鳴振動数をf1=52.5Hzに、更なるばね質量系の共鳴振動数をf2=105Hzに設定することが可能である。上記構成は、使用可能な信号を発生させることができるように作業周波数45Hzおよび60Hzの両方における前記ばね質量系の充分な起振を提供する。上記デバイス1の前記標準振動数を適合させることによって、取り付け可能な前記締固め機について挙げられた前記例を地盤締固めのための他のデバイス1に適用することができる。この場合、対応する前記操作周波数において少なくとも二つの充分に高い増幅が確保されるような方法で前記ばね質量系の前記共鳴振動数を選択することは重要である。この最小の要件は、本発明の全ての実施形態に当てはまる。
【0031】
図6は、地盤締固めのためのデバイス1によって生成される前記地盤締固めの変化をモニタするための本発明に係る前記方法19のフローチャートを示す。前記方法19は、起振機4によって振動させた地盤締固め装置を活用して地盤を締固めすること20を開始する。前記変換デバイス7を活用して電気エネルギーを発生させること21は、前述したように、同時に生じる。このことは、特に、異なる共鳴振動数f
0、f
1、f
2を有する少なくとも二つのばね質量系10、11、8によって生じる。前記方法19によれば、次いで、各々個別のばね質量系10、11、8によって発生させた前記電気エネルギーまたは対応するパラメータの決定およびモニタリング23は、決定された前記発生電気エネルギーまたは対応する前記パラメータと、上記でも記載される通りの地盤締固めの前記変化との相関24の前に生じる。このようにして、前記地盤剛性を確認するための別個の加速度計を提供する必要がなく、それによって、地盤締固めのための前記デバイス1の総費用が減少する。
【産業上の利用可能性】
【0032】
本発明は、地盤締固めのためのデバイスと、地盤締固めのためのデバイスを操作するための方法に利用できる。
【符号の説明】
【0033】
1 地盤締固めのためのデバイス
2 フレーム
3 駆動モータ
4 起振機
5 台板
6 ローラドラム
7 変換デバイス
10、11 ばね質量系
17 制御ユニット