IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ドミニオン エンジニアリング,インク.の特許一覧

特許7101687原子力プラント用モジュール式水浄化システム
<>
  • 特許-原子力プラント用モジュール式水浄化システム 図1
  • 特許-原子力プラント用モジュール式水浄化システム 図2
  • 特許-原子力プラント用モジュール式水浄化システム 図3
  • 特許-原子力プラント用モジュール式水浄化システム 図4
  • 特許-原子力プラント用モジュール式水浄化システム 図5
  • 特許-原子力プラント用モジュール式水浄化システム 図6
  • 特許-原子力プラント用モジュール式水浄化システム 図7
  • 特許-原子力プラント用モジュール式水浄化システム 図8
  • 特許-原子力プラント用モジュール式水浄化システム 図9
  • 特許-原子力プラント用モジュール式水浄化システム 図10
  • 特許-原子力プラント用モジュール式水浄化システム 図11
  • 特許-原子力プラント用モジュール式水浄化システム 図12
  • 特許-原子力プラント用モジュール式水浄化システム 図13
  • 特許-原子力プラント用モジュール式水浄化システム 図14
  • 特許-原子力プラント用モジュール式水浄化システム 図15
  • 特許-原子力プラント用モジュール式水浄化システム 図16
  • 特許-原子力プラント用モジュール式水浄化システム 図17
  • 特許-原子力プラント用モジュール式水浄化システム 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-07
(45)【発行日】2022-07-15
(54)【発明の名称】原子力プラント用モジュール式水浄化システム
(51)【国際特許分類】
   G21F 9/06 20060101AFI20220708BHJP
   G21F 9/02 20060101ALI20220708BHJP
   G21F 9/04 20060101ALI20220708BHJP
   G21C 19/307 20060101ALI20220708BHJP
【FI】
G21F9/06 521E
G21F9/02 501Z
G21F9/04 A
G21F9/06 521N
G21C19/307 400
【請求項の数】 29
(21)【出願番号】P 2019540090
(86)(22)【出願日】2018-04-19
(65)【公表番号】
(43)【公表日】2020-06-18
(86)【国際出願番号】 US2018028286
(87)【国際公開番号】W WO2018195265
(87)【国際公開日】2018-10-25
【審査請求日】2021-04-19
(31)【優先権主張番号】62/487,702
(32)【優先日】2017-04-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】511125250
【氏名又は名称】ドミニオン エンジニアリング,インク.
【氏名又は名称原語表記】Dominion Engineering,Inc.
【住所又は居所原語表記】12100 Sunrise Valley Dr,Ste 220,Reston,Virginia 20191,United States of America
(74)【代理人】
【識別番号】100126572
【弁理士】
【氏名又は名称】村越 智史
(72)【発明者】
【氏名】アーグエイエス,デイビット
(72)【発明者】
【氏名】リトル,マイケル ジェー.
(72)【発明者】
【氏名】ヴァーラン,ロバート ディー.
【審査官】後藤 大思
(56)【参考文献】
【文献】特表2005-534908(JP,A)
【文献】特表2015-500994(JP,A)
【文献】特開2005-214123(JP,A)
【文献】特開昭58-009095(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G21F 9/06
(57)【特許請求の範囲】
【請求項1】
原子力プラント用モジュール式水浄化システムであって、前記システムが、
複数の構成で選択的に相互に接続され得る複数のモジュールを備え、
前記複数のモジュールが、
入口および出口を備え、流体流を提供するように構成されたポンプモジュールと、
前記ポンプモジュールに互換的にまたは同時に接続されるように構成された少なくとも2つの浄化モジュールと、
燃料集合体底部ノズル洗浄モジュールであって、
前記プラントの燃料集合体の下部ノズルと係合するように構成されたレセプタクルと、
前記レセプタクルの内部と流体連通する出口であって、前記複数のモジュールのうちの少なくとも1つのモジュールの入口に接続することによって、前記ポンプモジュールが、前記燃料集合体を逆洗方向に通過して前記レセプタクル内に流れ、続いて前記燃料集合体底部ノズル洗浄モジュールの前記出口を通って前記複数のモジュールのうちの前記少なくとも1つのモジュール上に流れる水流を引き起こすように構成された出口と、
前記レセプタクルに取り付けられ、前記レセプタクルと係合する燃料集合体の下部ノズルに向けて超音波エネルギーを導くように成形および構成された少なくとも1つの超音波トランスデューサと、を含む燃料集合体底部ノズル洗浄モジュールと、
を含む、原子力プラント用モジュール式水浄化システム。
【請求項2】
前記少なくとも2つの浄化モジュールが異物探索回収モジュールを含み、前記異物探索回収モジュールが、直径2.5mmより大きい物体を前記異物探索回収モジュールのレセプタクル内にトラップするように構成され、
前記異物探索回収モジュールが、前記ポンプモジュールの前記入口に取り付けられるように構成された出口を備える、請求項1に記載のシステム。
【請求項3】
前記レセプタクルが、前記レセプタクル内の物体を調べることができるように、前記異物探索回収モジュールの残りの部分から選択的に取り外し可能である、請求項2に記載のシステム。
【請求項4】
前記異物探索回収モジュールが、直径1.0mmより大きい物体を前記レセプタクル内にトラップするように構成される、請求項2に記載のシステム。
【請求項5】
前記少なくとも2つの浄化モジュールが、濾材を備えた粒子濾過モジュールを含み、前記粒子濾過モジュールが、前記粒子濾過モジュールを通る流体の流れから粒子をトラップするように構成され、前記粒子濾過モジュールが、前記ポンプモジュールの前記出口に接続するように構成された入口を有する、請求項1に記載のシステム。
【請求項6】
前記濾材が放射線耐性濾過媒体からなる、請求項5に記載のシステム。
【請求項7】
前記少なくとも2つの浄化モジュールが電気凝固モジュールを含み、前記電気凝固モジュールが、前記電気凝固モジュールを通って流れる汚染物質を、前記汚染物質が前記粒子濾過モジュールに到達する前に凝固させ、それによって前記粒子濾過モジュールによる前記汚染物質の改善された収集を促進するように、前記粒子濾過モジュールの上流に位置決めされるように構成される、請求項5に記載のシステム。
【請求項8】
前記少なくとも2つの浄化モジュールが脱塩モジュールを含み、前記脱塩モジュールが、樹脂を含み、前記脱塩モジュールを通る流体の流れからイオン状腐食生成物をトラップするように構成される、請求項1に記載のシステム。
【請求項9】
前記脱塩モジュールが流体出口を備え、前記流体出口が、前記脱塩モジュールからの使用済み樹脂が前記脱塩モジュールから原子力プラントの固体廃棄物処理システムに流され得るように、前記固体廃棄物処理システムに接続するように構成される、請求項8に記載のシステム。
【請求項10】
前記少なくとも2つの浄化モジュールが脱ガスモジュールを含み、前記脱ガスモジュールが、抽出ガス出口を備え、前記脱ガスモジュールを通る流体の流れからガスを抽出するように構成される、請求項1に記載のシステム。
【請求項11】
前記脱ガスモジュールが、真空ポンプおよび前記原子力プラントのガス廃棄物処理システムに接続して、前記脱ガスモジュールによって抽出されたガスが前記プラントの前記ガス廃棄物処理システムによって処理され得るようにする、請求項10に記載のシステム。
【請求項12】
前記少なくとも2つの浄化モジュールが過酸化物監視および注入モジュールを含み、前記過酸化物監視および注入モジュールが、燃料取り出しおよび燃料補給作業中の燃料集合体からの腐食生成物の放出を阻止するように構成される、請求項1に記載のシステム。
【請求項13】
前記少なくとも2つの浄化モジュールがクロスフロー濾過モジュールを含み、前記クロスフロー濾過モジュールが、前記クロスフロー濾過モジュールを通る流体流を(1)第1の出口を介して前記クロスフロー濾過モジュールを出る比較的清浄な水の流れと、(2)第2の出口を介して前記クロスフロー濾過モジュールを出る比較的不浄な流れとに分離するように構成される、請求項1に記載のシステム。
【請求項14】
前記少なくとも2つの浄化モジュールが濾材を備えた粒子濾過モジュールを含み、前記粒子濾過モジュールが、粒子をトラップするように構成され、前記粒子濾過モジュールが、前記ポンプモジュールの前記出口または前記クロスフロー濾過モジュールの前記第2の出口に二者択一的に接続するように構成された入口を有する、請求項13に記載のシステム。
【請求項15】
前記少なくとも2つの浄化モジュールが抽出ガス出口を備える脱ガスモジュールを含み、
前記脱ガスモジュールが、前記クロスフロー濾過モジュールの前記第1の出口に接続されるように構成された流体入口を備える、請求項13に記載のシステム。
【請求項16】
前記抽出ガス出口が、真空ポンプおよび前記原子力プラントのガス廃棄物処理システムに接続して、前記脱ガスモジュールによって抽出されたガスが前記プラントの前記ガス廃棄物処理システムによって処理され得るようにする、請求項15に記載のシステム。
【請求項17】
前記少なくとも2つの浄化モジュールが、第1の浄化モジュールおよび第2の浄化モジュールを含み、前記第1の浄化モジュールおよび前記第2の浄化モジュールが、
異物探索回収モジュールであって、前記異物探索回収モジュールのレセプタクル内に直径2.5mmより大きい物体をトラップするように構成された異物探索回収モジュール、
粒子をトラップするように構成された、濾材を備える粒子濾過モジュール、
汚染物質を凝固させるように構成された電気凝固モジュール、
樹脂を含み、イオン状腐食生成物をトラップするように構成された脱塩モジュール、
抽出ガス出口を備え、ガスを抽出するように構成された脱ガスモジュール、
燃料取り出しおよび燃料補給作業中の燃料集合体からの腐食生成物の放出を阻止するように構成された過酸化物監視および注入モジュール、または
クロスフロー濾過モジュールであって、前記クロスフロー濾過モジュールを通る流れを(1)第1の出口を介して前記クロスフロー濾過モジュールを出る比較的清浄な水の流れと、(2)第2の出口を介して前記クロスフロー濾過モジュールを出る比較的不浄な流れとに分離するように構成されたクロスフロー濾過モジュール、
の各浄化モジュールのうちのそれぞれ異なるモジュールからなる、請求項1に記載のシステム。
【請求項18】
前記少なくとも2つの浄化モジュールが、請求項17に列挙された前記各浄化モジュールから選択され、前記第1の浄化モジュールおよび前記第2の浄化モジュールとは異なる第3の浄化モジュールを含む、請求項17に記載のシステム。
【請求項19】
前記少なくとも2つの浄化モジュールが、請求項17に列挙された前記各浄化モジュールから選択され、前記第1の浄化モジュール、前記第2の浄化モジュール、および前記第3の浄化モジュールとは異なる第4の浄化モジュールを含む、請求項18に記載のシステム。
【請求項20】
複数の前記モジュールの入口または出口が、少なくとも複数の前記モジュールの前記複数の構成での相互の接続を容易にする標準化コネクタを含む、請求項1に記載のシステム。
【請求項21】
複数の前記モジュールの前記入口および前記出口が、対応する前記モジュールが別のモジュールから切り離されたときに前記モジュール内の汚染物質が漏れることを阻止するように構成されたエアオペレート式ラジアルシールを含む、請求項20に記載のシステム。
【請求項22】
前記複数のモジュールのうちの少なくとも1つのモジュールの入口を前記複数のモジュールのうちの少なくとも1つの他のモジュールの出口と相互接続する少なくとも1つの中間アダプタを更に含み、当該少なくとも1つの中間アダプタが放射線感受性の要素を含む、請求項20に記載のシステム。
【請求項23】
前記ポンプが、
入口および出口を有するインペラチャンバを形成するケーシングと、
前記ケーシングに対して回転するために前記ケーシングに接続された駆動軸であって、前記駆動軸と前記ケーシングとの間にギャップが形成される駆動軸と、
前記ケーシングに対して前記駆動軸と共に回転するために前記駆動軸に接続されたインペラと、を備え、
前記インペラが、少なくとも1つの羽根からなる第1のセットと、少なくとも1つの羽根からなる第2のセットとを含み、
前記駆動軸および前記第2のセットが、前記第1のセットに対して前記インペラの軸方向反対側に配置され、
前記少なくとも1つのインペラ羽根からなる第1のセットが、前記ケーシングの前記入口から前記ケーシングの前記出口への第1の流れを提供するように成形および構成され、 前記少なくとも1つのインペラ羽根からなる第2のセットが、前記ギャップから前記ケーシングの前記出口への第2の流れを提供するように成形および構成され、
前記第1のセットおよび前記第2のセットが、前記ポンプの使用中、前記第1の流れが前記第2の流れよりも高い流量を有するように成形および構成され、
前記第1のセットおよび前記第2のセットが、前記ポンプの使用中、前記第1の流れが前記第2の流れよりも低い圧力を有するように成形および構成される、請求項1に記載のシステム。
【請求項24】
請求項1に記載のモジュール式水浄化システムを使用する方法であって、
前記ポンプモジュールを前記少なくとも2つの浄化モジュールのうちの少なくとも1つと相互接続してそれらを通る少なくとも1つ流路を作り出す工程と、
前記相互接続前または後に、前記相互接続された各モジュールを前記原子力プラントの燃料プール内の水中に位置決めする工程と、
前記相互接続された各モジュールを通過する少なくとも1つの水の流れを引き起こすように前記ポンプを動作させ、それによって前記相互接続された各モジュールを通過する水を浄化する工程と、を含む方法。
【請求項25】
前記少なくとも2つの浄化モジュールのうちの前記少なくとも1つが濾材を備えた粒子濾過モジュールを含み、前記粒子濾過モジュールが、粒子をトラップするように構成され、前記粒子濾過モジュールが、前記ポンプモジュールの前記出口に接続するように構成された入口を有し、
前記方法が、前記動作させる工程の後に、前記粒子濾過モジュールを前記燃料プール内の燃料集合体保管ラックに移動させる工程を更に含む、請求項24に記載の方法。
【請求項26】
前記少なくとも2つの浄化モジュールのうちの前記少なくとも1つがクロスフロー濾過モジュールを含み、
前記動作させる工程によって、前記クロスフロー濾過モジュールが流入する流れを(1)第1の出口を介して前記クロスフロー濾過モジュールを出る比較的清浄な水の流れと、(2)第2の出口を介して前記クロスフロー濾過モジュールを出る比較的不浄な流れとに分離する、請求項24に記載の方法。
【請求項27】
前記動作させる工程により、前記比較的不浄な流れが前記燃料プール内に戻される、請求項26に記載の方法。
【請求項28】
前記放射線感受性の要素がシールを含む、請求項22に記載のシステム。
【請求項29】
前記複数のモジュールの1つが、UV灯を含む紫外線浄化モジュールを含む、請求項1に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、米国特許仮出願第62/487,702号(出願日:2017年4月20日、名称:「Modular Water Purification System for Nuclear Power Plants」)に基づく優先権を主張し、その内容は全体として参照により本明細書に組み込まれる。
【背景技術】
【0002】
様々な実施形態は、一般に原子力プラントにおいて使用される水浄化システムに関する。
【0003】
原子力プラント(例えばPWR、BWR、およびCANDU)における、特に使用済み燃料プール、原子炉容器、および原子炉キャビティ内の水中の汚染物質は、通常のメンテナンス作業の効率を妨げる水の透明度の問題を引き起こし、作業者への放射線被曝を増加させ、プラント設備の信頼性を低下させ、および/または化学管理を脅かす恐れがある。これらの汚染物質には、イオン状、コロイド状、および粒子状の腐食生成物、シリカ、放射性および非放射性ガス、機械加工デブリ、および/または生物種が含まれ得る。
【発明の概要】
【0004】
1つ以上の非限定的実施形態は、1種類以上の汚染物質の効率的な除去を促進するモジュール式浄化システムを提供する。このシステムはモジュール式であり、1つ以上の浄化モジュールと共に使用することができ、浄化モジュールのそれぞれは、浄化設備の操作および保管のために既存のプラントインフラストラクチャを活用し、放射性廃棄物管理を簡素化する利便性の良いフォームファクターで構成され得る。
【0005】
1つ以上の非限定的実施形態は、原子力プラント(PWR、BWR、およびCANDU)における、例えば使用済み燃料プール、原子炉容器、および/または原子炉キャビティ内の水の改善された浄化を、例えば以下を介して促進する:i)使用済み燃料プールおよび原子炉キャビティ内およびその周囲で行われるメンテナンス作業中の、放射化された腐食生成物(イオン状、コロイド状、および粒子状)の除去を介した放射線被曝の低減、
ii)シリカ、腐食生成物、ガス/ナノバブル、および他の汚染物質の除去による水の透明度と作業者効率の向上、iii)放射化された腐食生成物粒子の除去による汚染の拡散の削減、iv)異物の除去による設備の信頼性の向上、v)燃料漏れ後の安全性の向上を含む、放射性ガスまたは他の浮遊汚染物質の吸入による内部被曝のリスクの低減、および/または、vi)使用済み燃料および原子炉キャビティ水を浄化するのに必要な労力を低減し、水浄化中に収集/生成された放射性廃棄物(例えば、固体および気体汚染物質)をより適切に管理するための設備設計の改善。
【0006】
1つ以上の非限定的実施形態は、原子力プラント用のモジュール式水浄化システムを提供する。このシステムは、複数の構成で選択的に相互に接続され得る複数のモジュールを含む。複数のモジュールは、入口および出口を備え、流体流を提供するように構成されたポンプモジュールと、ポンプモジュールに互換的にまたは同時に接続されるように構成された少なくとも2つの浄化モジュールとを含む。
【0007】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールはFOSARモジュールを含み、FOSARモジュールは、FOSARモジュールのレセプタクル内に直径2.5mmより大きい物体をトラップするように構成され、ポンプモジュールの入口に取り付けられるように構成された出口を備える。これらの実施形態の1つ以上によれば、レセプタクルは、レセプタクル内の物体を調べることができるように、FOSARモジュールの残りの部分から選択的に取り外し可能である。これらの実施形態の1つ以上によれば、FOSARモジュールは、直径1.0mmより大きい物体をレセプタクル内にトラップするように構成される。
【0008】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールは濾材を備えた粒子濾過モジュールを含み、粒子濾過モジュールは粒子濾過モジュールを通る流体の流れから粒子をトラップするように構成される。粒子濾過モジュールは、ポンプモジュールの出口に接続するように構成された入口を有する。これらの実施形態の1つ以上によれば、濾材は放射線耐性である。
【0009】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールは電気凝固モジュールを含み、電気凝固モジュールは、電気凝固モジュールを通って流れる汚染物質を、それらが粒子濾過モジュールに到達する前に凝固させ、それによって粒子濾過モジュールによるそのような汚染物質の改善された収集を促進するように、粒子濾過モジュールの上流に位置決めされるように構成される。
【0010】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールは脱塩モジュールを含み、脱塩モジュールは樹脂を含み、脱塩モジュールを通る流体の流れからイオン状腐食生成物をトラップするように構成される。これらの実施形態の1つ以上によれば、脱塩モジュールは流体出口を備え、流体出口は、脱塩モジュールからの使用済み樹脂が脱塩モジュールから原子力プラントの固体廃棄物処理システムに流され得るように、固体廃棄物処理システムに接続するように構成される。
【0011】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールは脱ガスモジュールを含み、脱ガスモジュールは抽出ガス出口を備え、脱ガスモジュールを通る流体の流れからガスを抽出するように構成される。これらの実施形態の1つ以上によれば、脱ガスモジュールは、真空ポンプおよび原子力プラントのガス廃棄物処理システムに接続して、脱ガスモジュールによって抽出されたガスがプラントのガス廃棄物処理システムによって処理され得るようにする。
【0012】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールは過酸化物監視および注入モジュールを含み、過酸化物監視および注入モジュールは、燃料取り出しおよび燃料補給作業中の燃料集合体からの腐食生成物の放出を阻止するように構成される。
【0013】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールはクロスフロー濾過モジュールを含み、クロスフロー濾過モジュールは、クロスフロー濾過モジュールを通る流体流を(1)第1の出口を介してクロスフロー濾過モジュールを出る比較的清浄な水の流れと、(2)第2の出口を介してクロスフロー濾過モジュールを出る比較的不浄な流れとに分離するように構成される。これらの実施形態の1つ以上によれば、粒子濾過モジュールは入口を有し、この入口は、ポンプモジュールの出口またはクロスフロー濾過モジュールの第2の出口に二者択一的に接続するように構成される。
【0014】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールは脱ガスモジュールを含み、脱ガスモジュールは抽出ガス出口を備え、クロスフロー濾過モジュールの第1の出口に接続されるように構成された流体入口を備える。これらの実施形態の1つ以上によれば、抽出ガス出口は、真空ポンプおよび原子力プラントのガス廃棄物処理システムに接続して、脱ガスモジュールによって抽出されたガスがプラントのガス廃棄物処理システムによって処理され得るようにする。
【0015】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールは第1および第2の浄化モジュールを含み、第1および第2の浄化モジュールは各々、異なる種類の上記浄化モジュール(例えば、FOSARモジュール、粒子濾過モジュール、電気凝固モジュール、脱塩モジュール、脱ガスモジュール、過酸化物監視および注入モジュール、またはクロスフロー濾過モジュール)を含む。これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールは、上記に列挙された各浄化モジュールから選択され、第1および第2の浄化モジュールとは異なる第3の浄化モジュールを含む。これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールは、上記に列挙された各浄化モジュールから選択され、第1、第2、および第3の浄化モジュールとは異なる第4の浄化モジュールを含む。
【0016】
これらの実施形態の1つ以上によれば、複数のモジュールの入口または出口は、少なくとも複数のモジュールの複数の構成での相互の接続を容易にする標準化コネクタを含む。これらの実施形態の1つ以上によれば、複数のモジュールの入口および出口は、対応するモジュールが別のモジュールから切り離されたときにモジュール内の汚染物質が漏れることを阻止するように構成されたエアオペレート式ラジアルシールを含む。
【0017】
これらの実施形態の1つ以上によれば、システムは、複数のモジュールのうちの少なくとも1つのモジュールの入口を複数のモジュールのうちの少なくとも1つの他のモジュールの出口と相互接続する少なくとも1つの中間アダプタを含む。このような各アダプタを使用して、線量率が高く、保守が困難であり得る個々のモジュールからの各膨張式シールなどの放射線に敏感な品目の分離を容易にしてもよい。
【0018】
これらの実施形態の1つ以上によれば、システムは燃料集合体底部ノズル洗浄モジュールも含み、燃料集合体底部ノズル洗浄モジュールは、プラントの燃料集合体の下部ノズルに係合するように構成されたレセプタクルと、レセプタクルの内部と流体連通する出口であって、複数のモジュールのうちの少なくとも1つのモジュールの入口に接続することによって、ポンプモジュールが、燃料集合体を逆洗方向に通過してレセプタクル内に流れ、続いて燃料集合体底部ノズル洗浄モジュールの出口を通って複数のモジュールのうちの前記少なくとも1つのモジュール上に流れる水流を引き起こすように構成された出口と、レセプタクルに取り付けられ、レセプタクルと係合する燃料集合体の下部ノズルに向けて超音波エネルギーを導くように成形および構成された少なくとも1つの超音波トランスデューサと、を備える。
【0019】
これらの実施形態の1つ以上によれば、ポンプは、入口および出口を有するインペラチャンバを形成するケーシングと、ケーシングに対して回転するためにケーシングに接続された駆動軸であって、駆動軸とケーシングとの間にギャップが形成される駆動軸と、ケーシングに対して駆動軸と共に回転するために駆動軸に接続されたインペラと、を備える。これらの実施形態の1つ以上によれば、インペラは、少なくとも1つの羽根からなる第1のセットと、少なくとも1つの羽根からなる第2のセットとを含む。これらの実施形態の1つ以上によれば、駆動軸および第2のセットは、第1のセットに対してインペラの軸方向反対側に配置される。これらの実施形態の1つ以上によれば、少なくとも1つのインペラ羽根からなる第1のセットは、ケーシングの入口からケーシングの出口への第1の流れを提供するように成形および構成される。これらの実施形態の1つ以上によれば、少なくとも1つのインペラ羽根からなる第2のセットは、ギャップからケーシングの出口への第2の流れを提供するように成形および構成される。これらの実施形態の1つ以上によれば、第1のセットおよび第2のセットは、ポンプの使用中、第1の流れが第2の流れよりも高い流量を有するように成形および構成される。これらの実施形態の1つ以上によれば、第1のセットおよび第2のセットは、ポンプの使用中、第1の流れが第2の流れよりも低い圧力を有するように成形および構成される。
【0020】
1つ以上の非限定的実施形態は、入口および出口を有するインペラチャンバを形成するケーシングと、ケーシングに対して回転するためにケーシングに接続された駆動軸であって、駆動軸とケーシングとの間にギャップが形成される駆動軸と、ケーシングに対して駆動軸と共に回転するために駆動軸に接続されたインペラと、を備えたポンプを提供する。
【0021】
これらの実施形態の1つ以上によれば、インペラは、少なくとも1つの羽根からなる第1のセットと、少なくとも1つの羽根からなる第2のセットと、を含む。これらの実施形態の1つ以上によれば、駆動軸および第2のセットは、第1のセットに対してインペラの軸方向反対側に配置される。これらの実施形態の1つ以上によれば、少なくとも1つのインペラ羽根からなる第1のセットは、ケーシングの入口からケーシングの出口への第1の流れを提供するように成形および構成される。これらの実施形態の1つ以上によれば、少なくとも1つのインペラ羽根からなる第2のセットは、ギャップからケーシングの出口への第2の流れを提供するように成形および構成される。
【0022】
これらの実施形態の1つ以上によれば、第1のセットおよび第2のセットは、ポンプの使用中、第1の流れが第2の流れよりも高い流量を有するように成形および構成される。
【0023】
これらの実施形態の1つ以上によれば、第1のセットおよび第2のセットは、ポンプの使用中、第1の流れが第2の流れよりも低い圧力を有するように成形および構成される。
【0024】
これらの実施形態の1つ以上によれば、インペラは、一体的に形成された非溶接インペラを含む。
【0025】
これらの実施形態の1つ以上によれば、第1のセットおよびインペラチャンバは、洗浄目的のために入口を介してアクセス可能である。
【0026】
これらの実施形態の1つ以上によれば、第2のセットおよびケーシングは、使用中、第2の流れが(1)ケーシングと(2)駆動軸およびインペラとの間の界面から汚染物質を洗い流す傾向となるように成形および構成される。
【0027】
1つ以上の非限定的実施形態は、モジュール式水浄化システムのこれらの実施形態の1つ以上を使用する方法を提供する。これらの実施形態の1つ以上によれば、この方法は、ポンプモジュールを前記少なくとも2つの浄化モジュールのうちの少なくとも1つと相互接続してそれらを通る少なくとも1つ流路を作り出す工程と、前記相互接続前または後に、相互接続された各モジュールを原子力プラントの燃料プール内の水中に位置決めする工程と、相互接続された各モジュールを通過する少なくとも1つの水の流れを引き起こすようにポンプを動作させ、それによって相互接続された各モジュールを通過する水を浄化する工程と、を含む。
【0028】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールのうちの前記少なくとも1つは濾材を備えた粒子濾過モジュールを含み、粒子濾過モジュールは、粒子をトラップするように構成され、ポンプモジュールの出口に接続するように構成された入口を有し、この方法は、前記動作させる工程の後に、粒子濾過モジュールを燃料プール内の燃料集合体保管ラックに移動させる工程を更に含む。
【0029】
これらの実施形態の1つ以上によれば、前記少なくとも2つの浄化モジュールのうちの前記少なくとも1つはクロスフロー濾過モジュールを含む。これらの実施形態の1つ以上によれば、前記動作させる工程によって、クロスフロー濾過モジュールが流入する流れを(1)第1の出口を介してクロスフロー濾過モジュールを出る比較的清浄な水の流れと、(2)第2の出口を介してクロスフロー濾過モジュールを出る比較的不浄な流れとに分離する。
【0030】
これらの実施形態の1つ以上によれば、前記動作させる工程により、比較的不浄な流れが燃料プール内に戻される。
【0031】
1つ以上の実施形態は、原子力プラントの燃料集合体を洗浄するように構成されたシステムを提供する。このシステムは、ポンプと、ポンプに接続されたフィルタと、燃料集合体底部ノズル洗浄モジュールと、を備える。底部ノズル洗浄モジュールは、原子力プラントの燃料集合体の下部ノズルと係合するように構成されたレセプタクルと、レセプタクルの内部をポンプおよびフィルタに接続することによって、ポンプがその動作時に、燃料集合体を逆洗方向に通過してレセプタクル内に流れ、続いてフィルタ上に流れる水流を引き起こす流体経路と、レセプタクルに取り付けられ、燃料集合体からデブリを取り除くように、レセプタクルに係合する燃料集合体の下部ノズルに向けて超音波エネルギーを導くように成形および構成された少なくとも1つの超音波トランスデューサと、を備える。
【0032】
様々な非限定的実施形態によれば、フィルタは、粒子フィルタ、サイクロンフィルタ、および/またはストレーナフィルタを含んでもよい。
【0033】
本発明の様々な実施形態のこれらおよび/または他の態様の1つ以上、並びに関連する構造要素の動作方法および機能、そして製造における各部分の組み合わせと経済性については、添付図面を参照しつつ、以下の説明と添付の特許請求の範囲を検討することによってより明らかになるであろう。これらは何れも本明細書の一部を構成する。本明細書において、同様の参照符号は種々の図における対応部分を表す。一実施形態において、本明細書に例示される構造部品は、一律の縮尺に従って描かれている。ただし、図面は例示および説明のみを目的とし、本発明の限定事項の定義として意図されたものではないことが明白に理解されるべきである。更に、本明細書における任意の一実施形態に示される、または説明される構造的特徴は、他の各実施形態においても用いられ得ることが理解されるべきである。本明細書および特許請求の範囲において用いられる場合、単数形の「a」、「an」、および「the」には複数のものへの言及が含まれる。ただし、文脈によって別に解すべきことが明らかな場合にはこの限りでない。
【0034】
本明細書において開示される全ての閉鎖式の値の範囲(例えば、「AとBの間」)および開放式の値の範囲(例えば、「Cより大きい」)は、その範囲内の全ての範囲を明示的に含む。例えば、1から10までと開示された範囲は、2から10まで、1から9まで、3から9まで、などの範囲をも開示しているものと理解される。
【図面の簡単な説明】
【0035】
様々な実施形態並びにそれらの他の目的および更なる特徴をより理解するために、添付図面と共に用いられるべき以下の記載が参照される。
【0036】
図1】1つ以上の実施形態によるモジュール式水浄化システムの概略側面図である。
【0037】
図2図1に示されるシステムの1つ以上の実施形態によるポンプモジュールの側面図である。
【0038】
図3図1に示されるシステムの1つ以上の実施形態によるクロスフローフィルタモジュールの側面図である。
【0039】
図4図1に示されるシステムの1つ以上の実施形態によるイオン交換/脱塩モジュールの側面図である。
【0040】
図5図1に示されるシステムの1つ以上の実施形態による粒子フィルタモジュールの側面図である。
【0041】
図6図1に示されるシステムの1つ以上の実施形態による脱ガスモジュールの側面図である。
【0042】
図7図1に示されるシステムの1つ以上の実施形態によるFOSARモジュールの側面斜視図である。
【0043】
図8図7のFOSARモジュールの切り欠き図である。
【0044】
図9図2に示されるポンプモジュールの1つ以上の実施形態によるポンプの切り欠き側面図である。
【0045】
図10図9に示されるポンプの切り欠き斜視図である。
【0046】
図11図1に示されるシステムの様々な実施形態による様々なモジュールの様々な非限定的な例示的構成の側面図である。
図12図1に示されるシステムの様々な実施形態による様々なモジュールの様々な非限定的な例示的構成の側面図である。
図13図1に示されるシステムの様々な実施形態による様々なモジュールの様々な非限定的な例示的構成の側面図である。
図14図1に示されるシステムの様々な実施形態による様々なモジュールの様々な非限定的な例示的構成の側面図である。
【0047】
図15図1に示されるシステムの様々な実施形態による燃料集合体底部ノズル洗浄モジュールの側面図である。
【0048】
図16図15に示される底部ノズル洗浄モジュールの部分切り欠き側面図である。
【0049】
図17図15に示される底部ノズル洗浄モジュールの底面図である。
【0050】
図18図1に示されるシステムの各モジュールを相互接続するための中間アダプタの使用を示す部分斜視図である。
【発明を実施するための形態】
【0051】
モジュール式水浄化システム10は、原子力プラント20において水から汚染物質を除去するように構成されている。図1は、プラント20の使用済み燃料プール30内の水を浄化するためのシステム10の使用を示す。ただし、システム10は、代替的に、様々な実施形態の範囲から逸脱することなく、プラント20の他の部分(例えば、原子炉容器、原子炉キャビティ、一次または二次冷却材ループなど)内の流体を浄化するために使用され得る。
【0052】
原子力プラント20は、プラントの種類(例えば、PWR、BWR、CANDU)に応じて、原子炉と、原子力プラントの他の典型的な各構成要素とを含む。
【0053】
システム10の様々な実施形態は、以下の各水処理モジュールのうちの1つ、2つ、またはそれ以上の任意の組み合わせを含む:ポンプモジュール(群)100、FOSARモジュール(群)250、クロスフロー濾過モジュール(群)300、微粒子濾過モジュール(群)320、脱塩/脱イオンモジュール(群)340、脱ガスモジュール(群)350、燃料集合体底部ノズル洗浄モジュール450、電気凝固モジュール(群)、過酸化物監視/注入モジュール(群)、および/または紫外線浄化モジュール(群)。FOSARモジュール(群)250、クロスフローモジュール(群)300、微粒子濾過モジュール(群)320、脱塩モジュール(群)340、および脱ガスモジュール(群)350はそれぞれ、プロセス流体(例えば燃料プール水)をそれぞれ異なる各成分(例えば濾過水、粒子、大きな物体など)に分離するように構成された浄化モジュールである。これらの様々な水処理モジュールの各機能を組み合わせて単一のモジュール(例えば、ポンプとFOSARユニットとを含む単一のモジュール)としてもよい。
【0054】
ポンプモジュール100
【0055】
図1および図2に示すように、ポンプモジュール100は、流体入口100aと、流体出口100bと、ハウジング100cとを備える。図2に示すように、モジュール100は、駆動軸150を介してポンプ140を駆動するモータ110を含む。
【0056】
図1に示すように、モータ110は、燃料プール30から電源および好適なモータ制御装置(例えば、オン/オフおよび/または速度制御スイッチ)に通じる電力線120を介して電力供給される電気モータ110である。各代替的実施形態によれば、モータ110は、代替的に、任意の他の好適なエネルギー源(例えば、空気圧エネルギー、油圧エネルギー、機械的エネルギーなど)によって電力供給されてもよい。
【0057】
図9から図10に示すように、様々な非限定的実施形態によれば、ポンプ140は、ハウジング100cに取り付けられるか、またはハウジング100cと一体に形成されるケーシング160を含む遠心ポンプである。ケーシング160は、入口170aおよび出口170bを有するインペラチャンバ170を画定する。入口170aは、ポンプモジュール100の入口100aと流体連通(またはそれを画定)し、出口170bは、ポンプモジュール100の出口100bと流体連通(またはそれを画定)する。ポンプ140のインペラ180は、駆動軸150がモータ110によって駆動されるときにチャンバ170内で回転可能となるように駆動軸150に取り付けられている。
【0058】
図9および図10に示すように、インペラ180は、一組の高流量低圧インペラ羽根200を一組の低流量高圧インペラ羽根210と軸方向に分離するディスク形状の本体190を含む。高流量羽根200は、純粋にまたは概ね半径方向に延びてもよく、入口170aから出口170bへの水の高流量低圧流205を提供するように構成される。この流れ205は、流体の大部分をシステム10の相互接続された各モジュールに通過させる。羽根200は、流れ205を介してポンプ140を通る実質的なサイズの固体の非損傷通過および/または自由通過を促進する開放インペラ設計を提供する。
【0059】
様々な実施形態によれば、入口170aは、モジュール100が上流モジュールから離れているとき(または入口170aが燃料プール30からの直接的な入口を形成するように上流モジュールが不使用である場合)直接アクセス可能である。そのようなアクセス可能性は、羽根200およびインペラチャンバ170のかなりの部分への直接アクセスを容易にして使用後のポンプ140のすすぎ/汚染除去に役立つ。
【0060】
高圧羽根210は、螺旋形状であってもよく、(1)ケーシング160と駆動軸150との間のギャップによって形成された小さな入口170cから(2)出口170bへの、図9に示す流路矢印220に沿った比較的高圧で低流量の水の流れを提供するように構成される。この高圧流220は、デブリがケーシング160とインペラ180との間の狭い界面で沈着することを阻止するように構成される。高圧流200はまた、ポンプ140の他の表面および/または隙間に沿ったデブリの堆積を阻止してもよい。その結果、羽根210および流れ220は、ポンプ140内の汚染物質の堆積を回避するように汚染物質をバルク流体流220に押し込む傾向があり、ポンプ140の各構成要素の放射能を制限する傾向がある。
【0061】
流れ220は、ケーシング160と駆動軸150/インペラ180との間に、それらの間の摩擦を低減する傾向がある油圧軸受を形成してもよい。
【0062】
様々な実施形態によれば、高圧流220が、チャンバ170から駆動軸150とケーシング160との間の入口170cを通ってポンプ外に流れる流体流を阻止するため、ケーシング160と駆動軸150(またはインペラ180)との間の軸シールは省略される。したがって、そのような流れ220は、放射線被曝下で劣化する可能性があるエラストマー性および/または他の非放射線耐性シールの使用を回避するシールレス構成を促進し得る。
【0063】
様々な実施形態によれば、流れ220に沿った内向きの漏れは許容可能であり、モジュール100が保管される水中環境およびポンプ140の停止時のチャンバ170内の内部ライン圧力の欠如のため、ポンプ140の停止時にシーリングの必要はない。
【0064】
様々な実施形態によれば、i)羽根210は、羽根200よりも高い圧力の流れを提供するように構成され、ii)羽根210は、羽根200よりも低い流量を提供するように構成され、iii)羽根210は、羽根200よりも軸方向に(すなわち、駆動軸150の軸に沿って)短く、および/または、iv)羽根210の各々は、羽根210がディスク190上で半径方向外向きに延びるにつれて、羽根200よりもより円周方向(例えば、螺旋方向)に進行する。
【0065】
様々な実施形態によれば、インペラ180および/またはケーシング160はそれぞれ、汚染粒子をトラップすることができる隙間の数およびサイズを低減または最小化する(打ち抜きおよび溶接された構成とは対照的な)一体構造を有する。
【0066】
様々な実施形態によれば、ポンプモジュール100の各使用期間の間の、ギャップ/間隙における粒子の重力に基づく沈降を最小限にするように、インペラ180およびハウジング160は、そのようなギャップ/間隙が(重力の観点から)下向きになる傾向があるように配向される。
【0067】
典型的な浄化用途について、ポンプモジュール100は、(1)少なくとも10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、250、300、400、および/または500ガロン/分、(2)2000、1500、1250、1000、750、600、500、450、400、350、340、330、320、310、300、290、280、270、260、250、240、230、220、210、および/または200ガロン/分未満、および/または(3)任意の2つのそのような上限と下限の流量間(例えば、10ガロン/分と2000ガロン/分の間、50ガロン/分と1000ガロン/分の間、100ガロン/分と500ガロン/分の間、および/または150ガロン/分と300ガロン/分の間)の総流量(羽根200、210の両セットの寄与を含む)を生成するようなサイズに形成されてもよい。ただし、より大量の水の一般的な浄化(この場合、より速い回転がより高速な洗浄を促進するために有益である)については、ポンプ140およびモジュール100のサイズを大きくし、および/または複数のポンプ140、複数のモジュール100、および/または複数の水処理モジュールを並行して用いて、より高い流量(例えば、3,000ガロン/分)を達成してもよい。
【0068】
ポンプモジュール100は、それに取り付けられた他の各モジュールへのおよび/または他の各モジュールからの流れを送達する。様々な実施形態によれば、ポンプモジュール100を流れる汚染物質の量を低減するように、様々な水処理モジュール(例えば、FOSARモジュール250および/または粒子モジュール320)をポンプモジュール100の上流に配置してもよく、それによってポンプモジュール100に損傷を与えることを回避、および/またはその放射能を低減させ得る。
【0069】
FOSARポンプモジュール250
【0070】
図1に示すように、FOSARモジュール250は、「異物探索および回収(Foreign Object Search and Retrieval)(FOSAR)」を支援する。図1に示すように、FOSARモジュール250は、真空ホース270に接続する入口250aと、ポンプモジュール100の入口100aに(直接または中間導管280を介して)接続する出口250bとを備える。各代替的実施形態によれば、FOSARモジュール250は、代替的に、ポンプモジュール100に物理的に組み込まれてもよい。図7から図8に示すように、FOSARモジュール250のハウジング250cは、サイクロン分離器および/または穿孔スクリーン250dを組み込んで、大きな物体260(例えば、>0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.5、2.0、および/または2.5mmの直径)を分離して取り出す一方、より小さな汚染物質の通過を許容する。ただし、各代替的実施形態によれば、他の種類の物体分離器(例えば、遠心分離器以外)を使用して、モジュール250を流れる水から大きな物体260を分離してもよい。
【0071】
様々な非限定的実施形態によれば、システム10の流れのストリームの早い段階にFOSARモジュール250を位置決めすることにより、さもなければそのような大きな物体260によって引き起こされる可能性のある損傷から下流モジュール(例えばポンプモジュール100)を物理的に保護する。
【0072】
様々な非限定的実施形態によれば、高度に放射化された大きな物体260(例えば、放射化ステライトの断片)は、設備の最大リスクである「ホットスポット」を表すことがあり、その場合、放射線量率の上昇によりポンプモジュール100の搬送または維持が困難または不可能になるであろう。様々な非限定的実施形態による図7から図8に示すように、FOSARモジュール250は、これらの物体260を流れのストリームの早い段階で捕捉して、ポンプモジュール100および他の各下流モジュールの放射線学的および/または物理的保護を提供してもよい。
【0073】
デブリ260の廃棄前に、その特質と起源を識別することが望ましい場合がある。例えば、図1に示すように、様々な実施形態によれば、システム10の真空ホース270を使用して、異物侵入(Foreign Material Intrusion)事象(例えば、ボールベアリングの故障)の後にプール30の水中床30aを真空引きしてもよい。様々な実施形態によれば、FOSARモジュール250を使用して、個々の断片260のそれぞれを収集および説明し、異物のすべてが回収されたかどうかの決定的な確認を可能してもよい。様々な実施形態によれば、および図7に示すように、FOSARモジュール250は、ハウジング250cまたはシステム10のモジュール250の他の好適な部分(例えば、別個の遠隔操作式潜水ロボット)に取り付けられたカメラ295を含む。モジュール250の下部収集レセプタクル290の全体または一部は、カメラ295がレセプタクル290を覗き込むことを可能にするカメラ検知光透過性材料(すなわち、カメラ295によって検知されている光波長を透過させる)からなり、遠隔ユーザーがカメラ295からの写真および/または映像を調べ、そこに写っている物体260を識別できるようにしてもよい。追加的および/または代替的に、カメラ295は、レセプタクル290内の物体260を直接見るように、ハウジング250cの内側に取り付けられてもよい。様々な実施形態によれば、真空ホース270は、プール30内の選択された各エリア内のデブリを真空引きするように、プラント20のロボット物質処理ツールによって操作される。
【0074】
様々な実施形態によれば、モジュール250の底部の円錐型収集レセプタクル部290は、取り外し可能バケット290(または他のレセプタクル)を備えてもよく、取り外し可能バケット290は、モジュール250の残りの部分から取り外されて、FOSARモジュール250のレセプタクル内にトラップされた大きな物体260の補足的検査および/または除去を促進してもよい。追加的および/または代替的に、モジュール250の底部は、別個の収集コンテナがモジュール250の下方に配置されたときに手動で開くことができる選択的に解放可能なトラップドアを含んでもよく、その結果、大きな物体260はこの個別の収集コンテナ内に落下する。
【0075】
追加的および/または代替的に、FOSARモジュール250は、大きな物体260が長期保管/廃棄のために下流のフィルタモジュール320内に再収集されるように、大きな物体260を選択的に放出して流体流に戻すよう手動で操作されるように構成されてもよい。例えば、モジュール250は、モジュール250の底部(出口250bではなく)を次の下流モジュール(例えば、ポンプモジュール100)に接続するバルブ付きバイパス導管を組み込んでもよい。バルブを開いて、物体260を次の下流モジュールに流してもよい。
【0076】
追加的および/または代替的に、バケット290または他のコンテナ内に収集された大きな物体260は、以下に説明される放射線耐性濾過/保管モジュール(群)内に直接放出することができ、その結果、それらモジュールのフィルタ要素を使用して、さもなければ大き過ぎてポンプモジュール100および/または他の各モジュールを通過できないであろう大きなデブリ260を収集および保管することができる。例えば、これは、(1)FOSARモジュール250をポンプモジュール100の下流および粒子濾過モジュール320の上流に再位置決めする、および/または(2)物体260をレセプタクルから濾過モジュール320の入口320a内に直接排出できるようにフィルタモジュール320を切り離す、ことによってなされ得る。
【0077】
様々な実施形態によれば、FOSARモジュール250は排除され、真空ホース270はポンプモジュール100の入口100aに直接接続する。
【0078】
クロスフローモジュール300
【0079】
図1および図3に示すように、クロスフローモジュール300は、ハウジング300cと、入口300aと、不浄/汚染物質濃縮出口300bと、濾過済み/清浄水出口300dとを備える。図1に示すように、クロスフローモジュール300を使用して、ポンプモジュール100からの流れを比較的清浄な水(出口300dから出る)と比較的汚染された/不浄な/濃縮された水(出口300bから出る)とに、そのような分離/浄化を達成するための濾過媒体を汚すことなく分離することができる。クロスフローモジュール250は、周知のクロスフロー分離原理に依存する。様々な実施形態によれば、不浄/デブリ濃縮出口300bからの体積流量は、濾過水出口300dからの体積流量よりも小さい。
【0080】
様々な実施形態によれば、クロスフローモジュール300は、他の下流の各水処理モジュール(例えば、脱塩モジュール340、脱ガスモジュール350)の使用を、これらの他のモジュール340、350の高放射能汚染による汚染または損傷を防止するための専用の粒子濾過モジュール320を必要とすることなく促進する。例えば、図13に示すモジュール構成において、微粒子濾過モジュール320は省略され、出口300bを通る不浄な/濃縮された流れが燃料プール30内に直接戻り、これによって汚染物質がシステム10の濾過媒体を汚してしまうことが回避される。
【0081】
追加的および/または代替的に、下流の粒子フィルタモジュール320(例えば、図1および図11に示すような)と共に使用される場合、クロスフローフィルタモジュール250は、汚染物質を、出口300bを通って下流の粒子フィルタモジュール320内に出るより低い流量のストリームに濃縮し、それによって下流の粒子フィルタモジュール320を通る流量を低減させるのに役立ち得る。この効果を活かして、所定のフィルタモジュール320の流量容量に対してより高いシステム全体の流量を達成することができる。
【0082】
微粒子濾過モジュール320
【0083】
図1および図5に示すように、微粒子濾過モジュール320は、ハウジング320cと、入口320aと、出口320bとを備える。様々な実施形態によれば、微粒子濾過モジュール320は、汚染物質、腐食生成物粒子、および/またはシリカ(例えば、ボロフレックス(boroflex)使用済み燃料ラックの劣化由来の)を捕捉するように設計された微細メッシュフィルタ材料を含む。このモジュール320は、例えば、参照によりその全体が本明細書に組み込まれる米国特許第8,052,879号に開示されている濾過技術を組み込み得る。
【0084】
モジュール320のフィルタ(群)(例えば、直列および/または並列フィルタまたはフィルタカートリッジ)は、全金属構造および全金属濾過媒体を利用してもよい。様々な非限定的実施形態によれば、モジュール320のフィルタ(群)は、(0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、および/または1.0ミクロン)以上の直径を有する粒子をトラップするように設計される。様々な実施形態によれば、0.5ミクロンの閾値が、ほとんどのプール30洗浄用途に適切である。必要に応じて、特定の用途向けに、より細かい濾過グレードの変形(例えば、0.1ミクロン以下まで細かくした)を実施することができる。
【0085】
様々な実施形態によれば、モジュール320内の各フィルタは、例えば、米国特許第8,052,879号に記載された方法で濾過容量を再生するための超音波攪拌を行うか行わないかに拘わらず、逆洗することもできる。
【0086】
試験および現場経験により、これらの粒子濾過モジュール320の様々な非限定的実施形態が、様々な従来技術のフィルタおよびフィルタコンテナよりも著しく高い放射能を有する腐食生成物を保持できることが示されている。様々な非限定的実施形態によれば、これらのフィルタモジュール320の容量は、粒子濾過モジュール320が放射線耐性材料で構成され(例えば、金属および/またはセラミックで構成される、有機材料またはプラスチック以外の材料で構成される)、長期間水中に留まることができる(したがって、厳重にシールドされる)ため、収集された放射能によって過度に制限されることはない。
【0087】
様々な従来のフィルタは、プラスチック、紙、および/または放射線耐性でない他の有機材料などの材料で構成される。その結果、高放射能粒子が収集されると、これらの材料は劣化する。また、これらは放射性核種の崩壊を許容する使用済み燃料プール環境における長期保管には好適でない。例えば、DTS(現在はAVANTechが所有)が提供する大容量フィルタコンテナは、これらのプラスチック/紙製の各フィルタを廃棄物処理用に事前パッケージ化された、厳重にシールドされた各コンテナに組み込む。これらのコンテナは多数のプラスチック/紙製フィルタからなるため、これらのコンテナの容量はそれに応じて高くなる(質量ベース)。ただし、これらの事前パッケージ化されたフィルタコンテナは水上に設置され、収集される物質の量は、典型的には作業者を高レベルの放射線に曝すことを回避する作業によって制限される。したがって、これらのフィルタのより高い容量は十分に利用されない。また、高度に放射化された物体/粒子は、ホース内を通過中に作業者を高レベルの放射線に曝す可能性があり、物体/粒子が水上に位置するホースの一部内にトラップされた場合、より深刻な問題を引き起こす可能性があるため、上面(すなわち水上)濾過は一般的に望ましくない。
【0088】
図1に示す実施形態において、フィルタモジュール320の入口320aは、クロスフローフィルタモジュール300の不浄/デブリ濃縮出口300bに接続する。したがって、モジュール320は、濃縮され、比較的低流量の汚染物質で満たされた水の流れを受ける。代替的に、図12に示すように、フィルタモジュール320の入口320aは、ポンプモジュール100の出口100bに直接(すなわち、中間クロスフローフィルタモジュール300なしで)接続してもよい。
【0089】
様々な実施形態によれば、システム10を通る全体的流量を増加させるために、複数のフィルタモジュール320を並列に配置してもよい。
【0090】
脱塩モジュール340
【0091】
脱塩モジュール340は、流体入口340aと、濾過済み流体出口340bと、ハウジング340cとを含む。脱塩モジュール340は、イオン腐食生成物を除去する。このモジュール340は、粒子濾過モジュール320と同じ外側パッケージングおよびインターフェースを使用してもよいが、濾過媒体の代わりにイオン交換樹脂で満たされている。図4に示すように、このモジュール340は、プラント20の固形廃棄物処理システム345に接続する水中の各流体接続部340dも含んでもよく、各流体接続部340dは、モジュール340の容量が使い果たされたときまたは水浄化完了時に、モジュール340からの使用済み樹脂がこのシステム345に直接流され得るようになっている。このような各接続部は、プラントの固形廃棄物処理システム345の既存の能力を活かして、システム10によって収集された廃棄物を処理することができる。
【0092】
図1に示すように、固形廃棄物処理システム345は、燃料プール30内に配置された(例えば、プール30の水中床30a上にある)中間保管容器345を含んでもよい。
【0093】
図1図11、および図13に示す各実施形態において、クロスフローモジュール300の清浄水出口300dは、事前濾過された水を脱塩モジュール340に提供するように脱塩モジュール340の入口340aに接続する。図13に示すモジュール構成において、微粒子濾過モジュール320は省略されており、出口300bを通る不浄な/濃縮された流れは燃料プール30内に直接戻る。図14に示す実施形態において、ポンプモジュール100の出口は、脱塩モジュール340の入口340aに直接接続してもよい。
【0094】
脱ガスモジュール350
【0095】
図1および図6に示すように、脱ガスモジュール350は、水入口350aと、水出口350bと、ハウジング350cと、抽出ガス出口350dとを含む。様々な実施形態によれば、水入口350aは、(1)図11および図13に示すように直接的に、または(2)図1に示すように、介在する脱塩モジュール340を介して間接的に、クロスフローモジュール300の清浄水出口300bに接続する。代替的に、図14に示すように、ポンプモジュール100の出口は、脱ガスモジュール350の入口350aに直接接続してもよい。
【0096】
図1および図6に示すように、抽出ガス出口350dは、接続真空ホース370を介して真空ポンプ360の入口360aに流体接続する。図1に示すように、ポンプ360の出口360bは、ホース380を介してプラント20のガス廃棄物処理システム390に接続して、除去されたガスが安全かつ効率的に排出され得るようにする。代替的に、出口360bは、プラント20内の雰囲気(例えば、燃料プール30上部の空気)に単純に逃されてもよい。
【0097】
図1に示すように、ホース370は、ポンプ360が水上にある(例えば、燃料プール30に隣接する水上床400上に位置する)ように水中から水上に通過する。代替的に、適切な各上流モジュール/周辺機器を使用して高放射能粒子/デブリを除去する場合、脱ガスモジュール350を水上に(例えば、ポンプ360に隣接する床400上に)設置してもよい。そのような実施形態において、好適なホースは、水中の上流モジュールを水上の脱ガスモジュール350に接続し得る。
【0098】
このモジュール350は、粒子濾過モジュール320と同じ外側パッケージングおよびインターフェースを利用し、水中で動作し得る。
【0099】
脱ガスモジュール350は、放射性ガスおよび非放射性ガスを除去する。1つ以上の実施形態によれば、モジュール350内の1つ以上の膜フィルタおよびポンプ360によって生成されたモジュール350内の真空圧を介してガスが除去される。様々な実施形態によれば、膜フィルタはそれぞれ、除去されるガスを透過可能な複数の中空繊維を含む。ただし、本発明の範囲から逸脱することなく、追加的および/または代替的なガス除去装置をモジュール350に組み込んでもよい。
【0100】
燃料集合体底部ノズル洗浄モジュール450
【0101】
PWRおよびBWR燃料集合体(例えば、図15から図16に示す燃料集合体480)は、多くの場合、集合体480の残りの部分の上流の異物、デブリ、および他の物質をトラップ、捕捉、保持、および/または収集する装置、特徴、または他の設備を含む。これらの装置は、多くの場合、燃料集合体480の下部ノズル480aに一体化される。そのような物質(例えば、異物)の通過(すなわち、図15から図16に示すように上向きに)が許容されると、またはそのような物質が燃料集合体480内にトラップされると、フレッティング、衝撃、摩耗による燃料損傷が発生する可能性がある。これらの物質は、グリッド、混合羽根、および他の支持体などの燃料集合体構造体の機能を妨げる恐れもある。これらの物体は、燃料集合体480から放出され、プラント20の原子炉冷却系(RCS)の他の部分に搬送されると、照射量が多くなり、そのために線量の問題を招く恐れがある。それらの放出は、バルブ、ポンプ、制御棒、および計測設備など他のプラント20構成要素の損傷につながる可能性もある。また、そのようなデブリは、特にバルブシートなどの、コバルト含有材料から構成されたプラント構成部品由来のデブリである場合、他のコバルト種(Co-60)に対する放射化の影響が大きいため、放射化金属および腐食生成物の源であり得る。
【0102】
場合によっては、これらの望ましくない物体/デブリは、捕捉(濾過に類似)により、底部ノズル480aに一体化された収集装置によって完全に保持される。他の場合において、これらの物質は、プラントの運転停止中に燃料集合体480を通る上向きの流れが停止すると、重力によって収集装置から剥がれ落ちる。他のデブリは、捕捉装置上にも積もり得る一次系クラッド(CRUD(チョークリバー未確認堆積物))の「接着(cementing)」作用によって、またはデブリと捕捉装置との間の接触中に形成される腐食生成物の堆積物によって所定位置に保持され得る。
【0103】
下部ノズル480aの各デブリ保護装置は、物体を恒久的に捕捉/保持し得ず、これらの物体/デブリは、照射、溶解/腐食(放射化および非放射化金属ならびに腐食生成物の放出)を継続するか、または各集合体480の移動(例えば、燃料補給作業)、シャッフル、もしくはラッキング中にRCSまたは燃料プール30内に剥がれ落ち可能性がある。したがって、第1または第2の燃焼燃料集合体480が再利用される前、または第3の燃焼燃料集合体480がプール30または乾燥キャスク内に保管される前に、燃料集合体480に付着した(例えば、所定位置に「接着した(cemented)」、または装置内に物理的に沈着した)物体/デブリを除去することが望ましい。
【0104】
以下に説明するように、燃料集合体底部ノズル洗浄モジュール450は、下部ノズル480aおよび関連する各収集装置からそのような堆積物/クラッド/デブリ/汚染物質を洗浄し、デブリ/物体/その他をシステム10の各濾過構成要素内に真空引きするように設計される。
【0105】
図15から図17に示すように、そして図16により具体的に示すように、燃料集合体底部ノズル洗浄モジュール450は、プラント10の燃料集合体480の下部ノズル480aを収容できるように成形および構成された開口部470を有するレセプタクル460(または他のチャンバ)を含む。開口部470と下部ノズル480aとの間の係合は、実質的に水密であってもよく、または緩んでいてもよい。様々な非限定的実施形態によれば、集合体480は、重力、プラント20の燃料処理装置、モジュール450の更なるブレース、支持体、またはラッチ、および/または真空吸引によって、レセプタクル460と係合して保持されてもよい。様々な実施形態によれば、集合体480とモジュール450が係合すると、モジュール450は集合体480を支持し得(例えば、モジュール450がプール30の水中床30a上に載っている場合)、またはその逆であり得る(例えば、モジュール450が燃料集合体480に取り付けられる一方、集合体480がプラント20の燃料集合体処理装置によって燃料プール30内で水中に吊るされている場合)。
【0106】
様々な実施形態によれば、図16に示すように、レセプタクル460は、上部が開いた金属箱からなる。モジュール450は、例えばホース490または他の導管を介して、レセプタクル460の内部容積485に流体接続する水出口450bを含む。出口450bは、以下に説明するように、例えば好適なコネクタを介して、真空ホース270の入口270a(またはシステム10の他のモジュール(例えば、ポンプモジュール100)の入口)に取り付けられるように構成される。
【0107】
図16に示すように、1つ以上の超音波トランスデューサ500がレセプタクル460に取り付けられ、超音波エネルギーを内部容積485内に、かつ下部ノズル480aに向けて導くように配向されている。各超音波トランスデューサは、好適な電気コード(群)510を介して、水上にある床400上に配置され得る電源520に接続される。
【0108】
以下、燃料集合体底部ノズル洗浄モジュール450の使用について、図15から図17に関連付けて説明する。図16に示すように、モジュール450は、例えば、レセプタクル460が燃料プール30の水中床30a上にある、またはレセプタクル460が水中にあるように燃料集合体480によって支持されるように好適な場所に配置される。様々な実施形態によれば、レセプタクル460は、プール30内の水中の場所に(例えば、適切な支持構造体を介して)しっかりと取り付けられてもよい。出口450bは、ホース270の入口(またはシステム10の任意の他のモジュールの任意の他の入口)に接続される。次に、燃料集合体480がモジュール450の上部の開口部470と係合して、下部ノズル480aが開口部470に挿入されるか、さもなければ係合する。ポンプモジュール100がオンされて、燃料集合体480を通ってレセプタクル460内に流れ、出口450bから出てシステム10の適切な濾過モジュール(群)(例えば、FOSARモジュール250、ポンプモジュール100、粒子濾過モジュール320)上に流れる水流を提供し、燃料集合体480から収集されたデブリの収集および/または検査を促進する。燃料集合体480を通るこの流れは、プラント20の通常運転中にオンライン燃料集合体480を通る流れとは反対方向である逆洗/逆流方向(すなわち、図16に示すように下向き)の流れである。電源520がオンされて、超音波トランスデューサ500に通電し、これによりレセプタクル485、下部ノズル480a、および/または燃料集合体480内に超音波エネルギーが導かれる。逆洗流および/または超音波エネルギーは、デブリ装置に沈着した物質/デブリ/物体、クラッド(より大きな物体をデブリ装置に「接着している(cementing)」可能性がある)、および/または下部ノズル480aもしくは燃料集合体480の他の各構成要素内または周囲の他の汚染物質/デブリを取り除く。
【0109】
様々な実施形態によれば、図16に示すように、デブリ/物体はまた、重力沈降により、下部ノズル480aと出口450bとの間の流路に配置された第1の粗ストレーナ530内に収集されてもよい。ストレーナ530によって収集されたデブリ/物体は、燃料集合体480がレセプタクル460から取り外された後(例えばカメラ600を介して)、または図16に示すように、レセプタクル460からホースまたは他の導管490に流れを導き、カメラ検知光透過性(すなわち、カメラによって検知される光波長を透過させる)材料で作られた漏斗495を通して直接調べられてもよい。追加的および/または代替的に、FOSARモジュール250を使用してデブリを収集および調べてもよい。
【0110】
受動的な崩壊熱除去流を可能にするために、追加的な各開口部をレセプタクル460内に形成してもよく、これら開口部は、モジュール450を通る流れが燃料集合体480の流れおよびバイパス流として制御されるように設計されてもよい(例えば、燃料集合体480がレセプタクル460とより完全に係合するにつれて徐々にブロックされる、レセプタクル460内部の各溝付き開口部)。モジュール450は、レセプタクル460内または導管490内の放射線を検出する各放射線検出器540を含んでもよい。モジュール450は、ノズル480aの洗浄の程度を評価するための各圧力検出器(例えば、圧力トランスデューサ(群)、差圧検出器(または複数の圧力検出器の組み合わせ))550を含んでもよい。
【0111】
様々な実施形態によれば、モジュール450の使用によって、さもなければ原子炉内の集合体480の後の使用中に照射され続けるであろう物体/デブリを除去し得る。このような物体は、RCS線量に寄与し得る後の溶解および/または集合体480からの分離を起こしやすい可能性がある。
【0112】
追加的モジュールおよび構成要素
【0113】
モジュール式浄化システム10はまた、システム動作の向上を促進するため、または特定の浄化目的を達成するために、以下の追加的および/または代替的な各構成要素、各モジュール、および各周辺機器のうちの1つ以上を組み込んでもよい。
【0114】
様々な実施形態によれば、システム10は、様々な局所的浄化目的を促進するために真空ホース270の上流入口270aを以下の随意的な各構成要素に流体接続する1つ以上の特定用途向け吸引/排出アダプタを含んでもよい:i)特定の場所から粒子を局所的に破壊/洗浄および除去するための超音波真空ワンド。用途例には、検査を促進するためのBWRガイドチューブの強化された真空引きまたは原子炉容器溶接部の汚染除去が含まれる。ii)各水平面のより効果的な洗浄を促進するための床30a真空引き付属部品。用途例には、キャスクピット、キャビティ、および抑制プールの真空引きが含まれる。iii)各水平面の自動洗浄を促進するための油圧作動式床30a真空引きロボット。用途例には、燃料プール、キャスクピット、キャビティ、トーラス、および抑制ピットの真空引きが含まれる。
【0115】
様々な実施形態によれば、システム10は、上記の他の各モジュールのうちの何れか(例えば、モジュール320)と同じ外観および各コネクタ/各入口/各出口を有し得る電気凝固モジュールを含む。電気凝固モジュールは、システム10内の粒子濾過モジュール320の上流に配置されて、下流の粒子濾過モジュール320内でコロイドがより効果的に除去され得るようにコロイドの凝集を促進することが好ましい。コロイドの凝集を促進するために、他の手法も使用され得る。様々な実施形態によれば、凝集/凝固技術と高容量逆洗可能粒子濾過モジュール320のそれとの組み合わせは、粒子濾過モジュール320の様々な実施形態のミクロン評価をはるかに下回るコロイド粒子の収集および保持を可能にするという点で相乗作用的であり得る。例えば、米国特許第8,052,879号に開示されている逆洗技術は、活性な濾材から厚いフィルタケークを有する大容量保管エリアへの収集された粒子の定期的な移送を伴う。高容量領域におけるケーク濾過は、一旦確立されると、コロイド粒子の改善された収集および保持をもたらす。様々な実施形態によれば、その厚いフィルタケークはモジュール320内の濾材をプレコートし、モジュール320によるコロイド粒子の収集および保持を改善する。
【0116】
様々な実施形態によれば、システム10は、上記の他の各モジュールのうちの何れか(例えば、モジュール320)と同じ外観および各コネクタ/各入口/各出口を有し得る過酸化物監視/注入モジュールを含む。過酸化物監視/注入モジュールは、燃料取り出し/燃料補給作業中の燃料集合体からの腐食生成物の予期しない/長期の放出を防ぎ、シリカ汚染による水の透明度の低下を改善し、生物学的成長を防止する(特に、解体作業中に水プールが長期間停滞する可能性のある廃炉プラントにおける)ために、使用済み燃料プール30または原子炉キャビティ内に適切なレベルの過酸化物残留物を維持してもよい。
【0117】
様々な実施形態によれば、システム10は、システム10内の様々な場所(例えば、モジュール450のレセプタクル460内、粒子濾過モジュール320内、FOSARモジュール250のレセプタクル290内、システム10の各モジュールまたは他の各構成要素のうちの何れかを接続する導管内など)における放射線を検出する1つ以上の放射線検出器を含む。このような各放射線検出器を使用して、特定の場所における過渡および/または集団線量を監視してもよい。高い過渡線量は、照射された物体の除去の可能性を示し得る。
【0118】
様々な実施形態によれば、システム10は、システム10内の様々な場所(例えば、ポンプモジュール100の上流および下流、各モジュールのうちの何れかを接続する各導管のうちの任意の1つ以上の導管内、濾材が飽和状態になりつつある時を検出する粒子濾過モジュール320内)における圧力を検知する1つ以上の圧力センサを含む。
【0119】
様々な実施形態によれば、システム10は、上記の他の各モジュールのうちの何れか(例えば、モジュール320)と同じ外観および各コネクタ/各入口/各出口を有し得る紫外線浄化モジュールを含む。紫外線浄化モジュールは、生物種の制御を助けるために使用され得るUV灯(例えば、ポンプモジュール100が使用するコード120と同様の電源コードによって電力供給される)を含む。様々な実施形態によれば、代替的に、UV灯をポンプモジュール100に組み込んで、ポンプモジュール100を通って流れる水がUV灯にさらされ、このUV灯がコード120によって電力供給されるようにしてもよい。
【0120】
システム10は、各構成要素/各モジュールの様々な組み合わせを含むものとして説明したが、これらの各モジュール/各構成要素は何れも本発明の範囲から逸脱することなく省略されてもよい。
【0121】
システム10は、様々な導管(例えば、ホース、通路、パイプなど)を含むものとして説明されている。そのような導管は全て、様々な実施形態の範囲から逸脱することなく、任意の好適な形態(例えば、剛性または可撓性のホース、パイプ、または他の通路)を含み得ることが理解されるべきである。
【0122】
各モジュールと例示的な各構成との間の相互接続
【0123】
様々な実施形態によれば、システム10は、標準化されたインターフェースを使用して上記の各モジュール/各ユニット/各構成要素のうちの1つ以上を相互接続するように設計される。例えば、様々な実施形態によれば、各入口(例えば、入口100a、250a、270a、300a、320a、340a、350a)を標準化し、各出口(例えば、出口100b、250b、300b、300d、320b、340b、350b)のうちの何れかに迅速に(必要に応じて遠隔で)接続/切り離しができるコネクタを介して取り付けられるように構成されてもよい。その結果、これらのさまざまなモジュールは、除去されるべき汚染物質(例えば、イオン状、コロイド状、および粒子状腐食生成物、放射性および非放射性ガス、機械加工デブリ、および/または生物種)の特質に応じて、多くのそれぞれ異なる構成で使用され得る。これらの各構成には、直列、並列、および/または直列/並列の混合モジュールの長尺の構成が含まれ得る。プロセス流体流量の向上および/またはデブリ/汚染物質保管容量の向上を促進するために、同じ種類の複数のモジュールを並列に配置してもよい。複数のモジュールを直列に配置して濾過を改善してもよい。
【0124】
様々な実施形態によれば、図18に示すように、エアオペレート式ラジアルシール700は、各モジュール(例えば、モジュール100、250、270、300、320、340、350)のうちの何れか1つ、いくつか、および/または全ての各入口および/または各出口に設けられて、各モジュールが互いから切り離されたときにモジュール内の汚染物質が漏れることを阻止または防止してもよい。
【0125】
様々な実施形態によれば、システム10内の2つ以上のモジュール間の相互接続は、各中間アダプタ(例えば、マニホールド、レシーバ、または同様の構造体)によって達成され得る。このことは図18に示されており、そこでは、ポンプモジュール100およびフィルタモジュール320が、各膨張式ラジアルシール700を組み込んだ中間レシーバ集合体710とインターフェースで連結していることが示されている。この種の中間アダプタ710は、各膨張式ラジアルシール700などの放射線に敏感な品目を、線量率が高く、保守が困難であるか、さもなければ燃料保管ラックの放射線フィールドにおいて劣化するであろう個々のモジュールから分離するのに特に有用であり得る。
【0126】
各入口および各出口における各コネクタは、様々なモジュールがプール30内で水中に留まっている間に、それらのモジュールの接続および切り離しを容易にする、遠隔係合可能なオス/メスコネクタであってもよい。様々な実施形態によれば、モジュールがプール30内で使用され始めると、このモジュールは(例えば、モジュールがキャスク内に、そしてプラント20から移送されるまで、例えば、プラント20の少なくとも2つのダウンタイム(例えば燃料補給のための停止)に及ぶ期間にわたる、モジュールの全有効耐用年数にわたる、システム10の複数の個別の使用を通して)プール内および/または水中に長期間留まってもよい。
【0127】
図1および図11から図14は、様々なモジュールのいくつかの非限定的構成を示す。
【0128】
様々な実施形態によれば、使用されていない各モジュールは、プールの保管ラック410に保管されてもよい。
【0129】
様々な代替的実施形態によれば、各モジュールおよび/または各中間アダプタの一部(または全て)は、標準化された各コネクタ/各インターフェースを省略し、代わりに接続専用の各インターフェースに依存してもよい。
【0130】
モジュール操作
【0131】
様々な実施形態によれば、各モジュール(例えば、モジュール100、250、300、320、340、350)のうちの1つ、いくつか、および/または全ては、(1)プラントの燃料集合体処理装置を使用して、実際の燃料集合体についてプラントの装置を使用して行う場合と同様の方法で各モジュールを保持および移動させてもよく、(2)プラントの燃料集合体処理装置を使用して各モジュールを互いに対して移動させてそれぞれ異なる浄化構成の組み合わせを形成してもよく、(3)プラントの燃料集合体処理装置を使用して、各モジュールを水浄化を必要とするそれぞれ異なる場所(例えば、使用済み燃料プールとWestinghouse PWR内の原子炉キャビティとの間、またはGE BWR-6の上部プールと下部プールとの間)にプラントの既存の燃料移送装置を用いて移動させてもよく、(4)各モジュールを燃料プール30内の使用済み燃料ラック410(図1参照)内に長期間保管してもよく、および/または(5)各モジュールを、最終的に、プラント20において使用される高レベル放射性廃棄物および/または使用済み燃料集合体用に設計された各キャスクまたは他の容器に廃棄してもよい、という点で、プラント20内で使用される核燃料集合体に十分に類似するフォームファクターおよび/または各取り付け表面/特徴を有してもよい。例えば、フィルタモジュール320が収集された粒子/デブリ/汚染物質で満たされると、フィルタモジュール320は燃料ラック410に移動され、長期保管のために燃料集合体キャスクに移送されるまでそこに長時間保管されてもよい。
【0132】
様々な実施形態によれば、これらの設計的特徴のうちの1つ以上により、これらの水処理モジュールのうちの1つ以上が、保管、搬送、および使用中に水中に留まることが可能になり、それによって作業者の放射線被曝が低減される。例えば、図1に示すように、様々な実施形態によれば、モジュール100、250、300、320、340、350は全て保管、搬送、および使用中、水中に留まる。更に、これらの各モジュールを使用済み燃料プール30内に長期間保管することにより、放射性廃棄物処理作業を大幅に延期させることができ、それによって放射性廃棄物管理の経済性が向上し、廃棄物管理のロジスティクスが簡素化される。具体的には、汚染物質は、放射性崩壊のために長期保管期間後に管理が容易になり、フィルタ廃棄作業を、プラントの廃炉措置の一部として完了される他の廃棄物管理作業または放射性廃棄物(例えば使用済み燃料集合体)の乾燥キャスクまたは他の保管コンテナへの移送と組み合わせることができる。
【0133】
様々な実施形態によれば、各モジュールのうちの1つ、一部、または全ては、プラント20で使用される各燃料集合体のフォームファクターと一致しないフォームファクターを有してもよい。例えば、様々な実施形態によれば、ポンプモジュール100は、プラント20で使用される各燃料集合体のものとは著しく異なる形状およびフォームファクターを有してもよい。
【0134】
同様に、各モジュールのうちの1つ、一部、または全ては、プラントの標準的な燃料集合体処理装置を介した把持および/または移動を容易にしない各取り付け面/特徴を有してもよい。そのような各実施形態において、各アダプタを使用して、様々なモジュールを備えたプラントの燃料集合体処理装置の使用を容易にしてもよい。追加的および/または代替的に、システム10は、様々なモジュールに接続してそれらを移動させるように特に成形および構成されたシステム10専用のモジュール操作および移動装置を含んでもよい。そのような装置は、各モジュールを選択的に互いに取り付けおよび/または互いから取り外すためのメカニズムを含んでもよい。
【0135】
システム10の使用
【0136】
様々な非限定的実施形態によれば、システム10は、各使用済み燃料プール30および各原子炉/各原子炉キャビティなどの大量の水から以下の汚染物質のうちの1種類以上を除去するための一般的な高流量、大容量濾過および浄化に使用される:i)放射線学的条件と水の透明度を改善するための粒子状、イオン状、またはコロイド状の腐食生成物、ii)水の透明度を改善し、原子炉水へのシリカの侵入を防ぐためのシリカ、iii)酸化/還元条件を確立するための溶解ガス、iv)さもなければ水の透明度を低下させる可能性のあるナノバブル、および/または、V)さもなければ作業者によって吸入され、内部被曝につながる可能性のある放射性ガス(例えば、燃料漏れ後)。
【0137】
様々な非限定的実施形態によれば、システム10は、高放射能物体/粒子が存在または生成され得る場所を含む特定の場所からの腐食生成物粒子の局所的真空引きに使用される。これには、例えば、BWRガイドチューブ、BWR原子炉容器の底部先端部ドレインノズル、BWRトーラス、BWR抑制プール、使用済み燃料プールの各水平面、原子炉/原子炉キャビティ、キャスク搭載ピット、および/または燃料取り出し/燃料補給作業中の燃料移動経路下からの真空引きが含まれる。
【0138】
様々な非限定的実施形態によれば、システム10は、「異物探索および回収(Foreign Object Search and Retrieval)(FOSAR)」作業または物体の捕捉および調査が望まれる他のデブリ回収作業に関連する局所的真空引きに使用される。
【0139】
様々な非限定的実施形態によれば、システム10を使用して、バルクプール30の水を概ね洗浄および濾過して、水の透明度を改善し、および/またはプール水中の放射能を低減する。
【0140】
様々な非限定的実施形態によれば、システム10は、(1)各局所的キャビティに存在する、または(2)定期的に検査する必要がある原子炉容器溶接部などの各表面の洗浄中に生成される、デブリ/粒子の超音波強化洗浄/真空引きに使用される。
【0141】
図示された各構成において、システム10は、各出口300d、320b、340b、および/または350bから清浄な濾過水を排出して燃料プール30に戻す。ただし、これらの各濾過水出口300d、320b、340b、および/または350bのうちの何れか1つ以上は、二者択一的に、直接または他の介在する各モジュールを介して、線量率を低く保つことが有利である作業エリアに清浄な濾過水を供給するための供給導管または導管群に接続してもよい。したがって、様々な非限定的実施形態によれば、システム10は、清浄かつ浄化された、より放射能の低い水を特定の場所に局所的に送達するための清浄水排出設備として使用される。様々な実施形態によれば、システム10を使用して、(1)プラント20の原子炉に清浄水の排出および正の水圧を提供して、シリカまたは他の汚染物質の侵入を制限し、および/または原子炉水化学制御を改善し、(2)BWR「浴槽」の周囲に清浄水を導いて、作業者付近の各表面上の汚染物質沈降を低減し、放射線学的被曝を制限し(例えば、燃料補給のための停止中に行われる原子炉保守中)、および/または(3)清浄水を燃料プール30の表面に導いて水の透明度を改善し、および/またはプール30の水面付近の作業を介した放射線学的被曝を制限してもよい。
【0142】
様々な非限定的実施形態によれば、システム10は、(1)各プラントシステムからの外来金属排除(FME)を確実にするための、バッフルボルトの修理などの運転中の各プラントでの修理中、および/または(2)水の透明度を維持するための、プラント20の廃炉措置中の各原子炉容器および容器内部の水中セグメンテーション中に生成される機械加工細粒の収集に使用される。
【0143】
様々な非限定的実施形態によれば、システム10を使用して、プラントの廃炉作業中、使用済み燃料プール30内の浮遊植物大増殖を(例えば、UV灯モジュールを介して)防止または阻止する。
【0144】
本明細書で用いられるように、汚染物質、粒子(群)、汚損、デブリという用語とそれらに類似の用語は互換的に用いられる。
【0145】
上記の例示的な各実施形態は、様々な実施形態の構造的および機能的な原理を示すために与えられたものであって、限定することを意図したものではない。むしろ、本発明の原理は、その任意および全ての変更、改変、および/または代替(例えば、以下の特許請求の範囲の趣旨および範囲内にある任意の改変)を含むことを意図している。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18