IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ プラクスエア・テクノロジー・インコーポレイテッドの特許一覧

<>
  • 特許-炉燃焼制御のための火炎画像分析 図1
  • 特許-炉燃焼制御のための火炎画像分析 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-08
(45)【発行日】2022-07-19
(54)【発明の名称】炉燃焼制御のための火炎画像分析
(51)【国際特許分類】
   F23N 5/08 20060101AFI20220711BHJP
【FI】
F23N5/08 Z
【請求項の数】 12
(21)【出願番号】P 2020544608
(86)(22)【出願日】2018-03-02
(65)【公表番号】
(43)【公表日】2021-06-17
(86)【国際出願番号】 US2018020617
(87)【国際公開番号】W WO2019168542
(87)【国際公開日】2019-09-06
【審査請求日】2020-08-24
(73)【特許権者】
【識別番号】392032409
【氏名又は名称】プラクスエア・テクノロジー・インコーポレイテッド
(74)【代理人】
【識別番号】110000855
【氏名又は名称】特許業務法人浅村特許事務所
(72)【発明者】
【氏名】バルミロ・コレイア・エ・サ・ネト
(72)【発明者】
【氏名】ユアン・ジェイ・エヴェンソン
(72)【発明者】
【氏名】ケヴィン・ダブリュ・アルブレヒト
(72)【発明者】
【氏名】ジェームズ・イー・ケリー
(72)【発明者】
【氏名】ホアキン・デ・ディエゴ・リンコン
(72)【発明者】
【氏名】ジョージ・バイサス・プール
【審査官】河野 俊二
(56)【参考文献】
【文献】特開平06-159641(JP,A)
【文献】特開昭60-159515(JP,A)
【文献】特開2001-004116(JP,A)
【文献】特開平08-121758(JP,A)
【文献】特表2008-531963(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F23N 5/08
(57)【特許請求の範囲】
【請求項1】
炉内で材料を加熱する方法であって、
(A)前記炉内に供給されている燃料及びガス状酸化剤の前記炉内での燃焼により発生する熱を使用して、煙道を有する炉内で炭素質物質を含む材料を加熱し、それにより、前記炭素質物質から派生する一酸化炭素を生成することであって、前記煙道から前記炉の外に延在し得る火炎が前記炉内で形成される、加熱することと、
(B)前記炉の外側に位置するデジタルカメラによって、前記煙道の外側の前記火炎の強度を検出する画像を撮影し、
前記検出された強度に対応する画像をデジタル形式で電子的に表現し、
前記火炎の検出された強度に対応し、かつ前記火炎内の一酸化炭素の濃度に対応する、少なくとも1つのパラメータを電子的に表現することにより、前記炉の外側に位置する前記デジタルカメラによって、前記炉の外側で撮影された前記火炎の前記検出された強度の前記画像から、前記火炎内の一酸化炭素の濃度を特徴付け、かつ
火炎内の一酸化炭素の実際の濃度と前記少なくとも1つのパラメータの表現された値との所定の相関から、前記火炎内の一酸化炭素の前記特徴付けられた濃度を判定することと、
(C)ステップ(B)に従って特徴付けられた前記火炎内の一酸化炭素の前記特徴付けられた濃度を、前記炉内の前記一酸化炭素の濃度に対する事前確立された閾値濃度値と比較することと、
(D)前記火炎内の一酸化炭素の前記特徴付けられた濃度が前記事前確立された閾値濃度値を超過するときに、前記火炎中の一酸化炭素の前記特徴付けられた濃度を所定の時間長の間、前記事前確立された閾値濃度値以下に低下させるために有効である量(1つ又は複数)まで前記炉内で反応させるために利用可能である前記炉内で供給される酸素の量、燃料の量、又は酸素と燃料の両方の量を調節しながら、前記炉の外側の前記デジタルカメラで撮影した前記火炎の画像から、前記火炎内の一酸化炭素の前記濃度を特徴付けることを継続することと、
を含み、
前記方法は、前記火炎の温度を測定せず、また火炎温度の差を測定することに基づかない、方法。
【請求項2】
前記材料が、金属を含む、請求項1に記載の方法。
【請求項3】
ステップ(A)において、加熱される前記材料の少なくとも一部分が、燃焼される、請求項1に記載の方法。
【請求項4】
ステップ(A)において、加熱される前記材料の少なくとも一部分が、溶融される、請求項1に記載の方法。
【請求項5】
ステップ(D)において、前記炉内で反応させるために利用可能な前記炉内の前記酸素の量を調節することが、前記炉内に供給される前記燃料の前記量に対して前記炉内に供給される前記酸素の量を増加させることを含む、請求項1に記載の方法。
【請求項6】
ステップ(D)において、前記炉内で反応させるために利用可能な前記炉内の前記酸素の量を調節することが、前記炉内に供給される前記酸素の量に対して、前記炉内に供給される前記燃料の量を減少させることを含む、請求項1に記載の方法。
【請求項7】
前記火炎内の一酸化炭素の前記特徴付けられた濃度が前記事前確立された濃度値を超過するときに、前記炉内に供給される前記酸素の量を調節することを含む、請求項1に記載の方法。
【請求項8】
前記火炎内の一酸化炭素の前記特徴付けられた濃度が前記事前確立された濃度値を超過するときに、前記炉内に供給される前記燃料の量を調節することを含む、請求項1に記載の方法。
【請求項9】
前記火炎内の一酸化炭素の前記特徴付けられた濃度が前記事前確立された濃度値を超過するときに、前記炉内に供給される前記酸素の量及び前記燃料の量を調節することを含む、請求項1に記載の方法。
【請求項10】
炉内の材料を加熱する方法であって、
(A)前記炉内に供給されている燃料及びガス状酸化剤が前記炉内での燃焼により発生する熱を使用して、煙道を有する炉内で炭素質物質を含む材料を加熱し、それにより、前記炭素質物質から派生する一酸化炭素を生成することであって、前記煙道から前記炉の外に延在し得る火炎が前記炉内で形成される、加熱することと、
(B)前記炉の外側に位置するデジタルカメラによって、前記煙道の外側の前記火炎の強度を検出する画像を撮影し、
前記検出された強度に対応する画像をデジタル形式で電子的に表現し、
前記火炎の検出された強度に対応し、かつ前記火炎内の一酸化炭素の濃度に対応する、少なくとも1つのパラメータを電子的に表現することにより、前記炉の外側に位置する前記デジタルカメラによって、前記炉の外側で撮影された前記火炎の前記検出された強度の前記画像から、前記火炎内の一酸化炭素の濃度を特徴付け、かつ
火炎内の一酸化炭素の実際の濃度と前記少なくとも1つのパラメータの表現された値との所定の相関から、前記火炎内の一酸化炭素の前記特徴付けられた濃度を判定することと、
(C)ステップ(B)に従って特徴付けられた前記火炎内の一酸化炭素の前記特徴付けられた濃度を、前記炉内の前記一酸化炭素の濃度に対する事前確立された閾値濃度値と比較することと、
(D)前記火炎内の一酸化炭素の前記特徴付けられた濃度が前記事前確立された値濃度値を超過するときに、前記火炎内の一酸化炭素の前記特徴付けられた濃度を所定の時間長の間、前記事前確立された閾値濃度値以下に低下させるために有効である量まで前記炉内で一酸化炭素と反応するために利用可能である前記炉内に供給される前記酸素の量を調節しながら、前記炉の外側の前記デジタルカメラで撮影した前記火炎の画像から、前記火炎内の一酸化炭素の前記濃度を特徴付けることを継続することと、
を含み、
前記方法は、前記火炎の温度を測定せず、また火炎温度の差を測定することに基づかない、方法。
【請求項11】
ステップ(D)において、前記炉内で一酸化炭素と反応するために利用可能である前記炉内の前記酸素の量を調節することが、前記炉内に供給される前記燃料の量に対して、前記炉内に供給される前記酸素の量を増加させることを含む、請求項10に記載の方法。
【請求項12】
ステップ(D)において、前記炉内で一酸化炭素と反応するために利用可能である前記炉内の前記酸素の量を調節することが、前記炉内に供給される前記酸素の量に対して、前記炉内に供給される前記燃料の量を減少させることを含む、請求項10に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炉からの一酸化炭素の排出を制御及び/又は低減するために、材料が加熱され、その加熱が一酸化炭素の形成を引き起こし得る炉(これは、燃料及びガス状酸化剤が燃焼される燃焼室などの閉鎖空間を意味する)の燃焼制御システムの運転に関する。
【背景技術】
【0002】
炉内で材料を加熱する運転は、炉内で一酸化炭素の形成をもたらす場合がある。一酸化炭素が形成され得る機構としては、炉内の燃料の不完全燃焼、炉内で加熱される材料を燃焼させる際の可燃性材料の不完全燃焼、及び/又は加熱される材料中又はその上にある炭素質材料の変換、炭素質材料の熱分解又は不完全燃焼を含む変換が挙げられる。このような変換の例としては、炭素質材料の熱分解及び/又は不完全燃焼が挙げられる。
【0003】
炉内に一酸化炭素が形成されるとき、炉外の一酸化炭素の放出は、通常望ましくない。一酸化炭素の吸収剤上への吸収、又は一酸化炭素と反応するオフガスへの反応物質の添加など、炉を出るガス状のオフガスから一酸化炭素を除去するための様々な技術が存在する。このような技術は、実装及び制御の費用及び難しさなどの欠点を呈する。
【0004】
本発明は、炉からの一酸化炭素の放出を回避するための効率的な方法を提供する。また、改善された効率及び生産速度を得るために、炉の運転を制御するための効率的な方法も提供する。
【発明の概要】
【0005】
本発明の一態様は、炉内で材料を加熱する方法であって、
(A)炉内に供給されている燃料及びガス状酸化剤の炉内での燃焼により発生する熱を使用して、煙道を有する炉内で炭素質物質を含む材料を加熱し、それにより、炭素質物質から派生する一酸化炭素を生成することであって、煙道から炉の外に延在し得る火炎が炉内で形成される、加熱することと、
(B)火炎の強度に対応し、かつ火炎内の一酸化炭素の濃度に対応する、少なくとも1つのパラメータを電子的に表現することにより、炉の外側に位置するデジタルカメラによって、炉の内側又は炉の外側で撮影された火炎の画像から、火炎内の一酸化炭素の濃度を特徴付け、火炎内の一酸化炭素の実際の濃度と少なくとも1つのパラメータの表現された値との所定の相関から、火炎内の一酸化炭素の特徴付けられた濃度を判定することと、
(C)ステップ(B)に従って特徴付けられた火炎内の一酸化炭素の特徴付けられた濃度を、当該濃度に対する事前確立された閾値濃度値と比較することと、
(D)火炎内の一酸化炭素の特徴付けられた濃度が当該事前確立された閾値濃度値を超過するときに、火炎内の一酸化炭素の特徴付けられた濃度を所定の時間長の間、事前確立された閾値濃度値以下に低下させるために有効である量(1つ又は複数)まで炉内で反応させるために利用可能である炉内で供給される酸素の量、燃料の量、又は酸素と燃料の両方の量を調節しながら、炉の外側のデジタルカメラで撮影した火炎の画像から、火炎内の一酸化炭素の濃度を特徴付けることを継続することと、を含む、方法である。
【0006】
本発明の別の態様は、溶融ガラスを製造する方法であって、
(A)炉内に供給されている燃料及びガス状酸化剤の炉内での燃焼により発生する熱を使用して、煙道を有する炉内で炭素質物質を含む材料を加熱し、それにより、炭素質物質から派生する一酸化炭素を生成することであって、煙道から炉の外に延在し得る火炎が炉内で形成される、加熱することと、
(B)火炎の強度に対応し、かつ火炎内の一酸化炭素の濃度に対応する、少なくとも1つのパラメータを電子的に表現することにより、炉の外側に位置するデジタルカメラによって、炉の内側又は炉の外側で撮影された火炎の画像から、火炎内の一酸化炭素の濃度を特徴付け、火炎内の一酸化炭素の実際の濃度と少なくとも1つのパラメータの表現された値との所定の相関から、火炎内の一酸化炭素の特徴付けられた濃度を判定することと、
(C)ステップ(B)に従って特徴付けられた火炎内の一酸化炭素の特徴付けられた濃度を、当該濃度に対して事前確立された閾値濃度値と比較することと、
(D)火炎内の一酸化炭素の特徴付けられた濃度が当該事前確立された閾値濃度値を超過するときに、火炎内の一酸化炭素の特徴付けられた濃度を所定の時間長の間、事前確立された閾値濃度値以下に低下させるために有効である量まで炉内で一酸化炭素と反応するために利用可能である炉内で供給される酸素の量を調節しながら、炉の外側のデジタルカメラで撮影した火炎の画像から、火炎内の一酸化炭素の濃度を特徴付けることを継続することと、を含む、方法である。
【図面の簡単な説明】
【0007】
図1】本発明が炉装置上にどのように実装され得るかを示す概略図である。
図2】本発明のステップの順序を示す図である。
【発明を実施するための形態】
【0008】
本発明は、炉内で加熱することができるいかなる材料の加熱にも有用である。このような材料の例としては、鉄及び鋼などの鉄金属が挙げられ、最終製品、並びにスクラップ、並びに鉄鋼及び他の化合物が挙げられる。更なる例としては、アルミニウム及び銅などの、最終製品並びにスクラップ、及び鉱石及びこれらの他の化合物を含む、アルミニウム及び銅などの非鉄金属が挙げられる。任意のこのような材料の加熱を用いて、更なる化学的及び/又は物理的処理のためにそれらを調製する。
【0009】
本発明はまた、材料の一部分又は全部が溶融される材料の加熱にも有用である。このような運転では、材料は、前述の金属、金属酸化物、及び他の金属化合物のいずれかを含んでもよい。他の例としては、ガラス作製炉内で一緒に溶融されて溶融ガラスを形成する生成物が挙げられ、このような材料としては、カレットとして知られるリサイクルガラス片、並びにガラスを作製するために一緒に溶融されるバッチとして知られる原材料、例えば、酸化ナトリウム、酸化カリウム、並びにナトリウム及びカリウムのケイ酸塩を含む材料が挙げられる。このような運転の別の例は、石灰又は石灰岩を典型的に含む原材料、並びにシリカ及び/又はアルミノケイ酸塩(粘土)及び他の所望の添加剤を含む原材料が、互いに溶融及び反応してセメントを構成する化合物を形成するように共に加熱されるセメントキルンである。
【0010】
本発明はまた、材料の一部分又は全部が焼却される材料、例えば焼却機の加熱にも有用である。本発明のこの態様の実施において加熱され得る材料としては、炭素質燃料、固形廃棄物等の全ての可燃性製品が含まれる。
【0011】
本発明に従って処理された材料はいずれも、それらがいくらかの炭素質物質を含むという特徴を有し、その結果、材料を加熱すると、炉内で炭素質物質から一酸化炭素が形成され得る。存在する炭素質物質は、加熱されている材料中に存在する有機化合物であってもよく、及び/又は加熱されてから炉内で燃焼されている材料の一部分若しくは全部を含んでもよい。例えば、アルミニウム、銅、鉄及び/又は鋼を含むスクラップは、塗料又は他の有機コーティング、有機食品及び/又はし尿などの炭素質物質を担持してもよい。ガラス作製材料中に存在するカレットは、カレットとしてリサイクルされる前にカレット上に存在していた食品生成物又は他の有機物の残留物である有機物質を担持し得る。
【0012】
炉内に形成される一酸化炭素は、炉内の燃料の不完全燃焼など、いくつかの可能な機構のうちの任意の1つ以上によって生成されてもよく、炉内で加熱される材料を燃焼させる際の可燃性材料の不完全な燃焼、及び/又は加熱される材料中又はその上にある炭素質材料の変換、炭素質材料の熱分解又は不完全燃焼を含むそのような変換の例がまた意図される。一酸化炭素の供給源に関係なく、炉からの一酸化炭素の放出が望ましくないのと同様に、本発明は、炉から放出される危険がある一酸化炭素が形成される供給源又は機構に関係なく有用である。
【0013】
図1を参照すると、炉1は、断面図で示されている。描写された炉は、図1に示される実施形態において水平である軸を中心に回転させることができる炉の典型的な形状を有するが、本発明は、炉の任意の他の種類及び形状と共に実施されてもよい。炉1において、加熱される材料は、2として表される。材料2は、バーナ11で燃料13を酸化剤12と燃焼させることによって炉内に形成される火炎4から熱によって加熱される。好適な燃料13は、任意の可燃性炭素質物質であってもよく、その好ましい例としては、メタン、天然ガス、及び霧化燃料油が挙げられる。12で供給される好適な酸化剤としては、空気、酸素富化空気などの酸素、及び少なくとも50体積%、好ましくは少なくとも90体積%の酸素含有量を有する流れを含有する任意のガス状生成物が挙げられる。このような上昇した酸素含有量を有する流れは、大気ガスのいくつかの供給元のいずれかから市販されている。1つの火炎4が示されているが、本発明を実用化することができる炉は、2つ以上のバーナ11及び2つ以上の火炎4を含んでもよい。
【0014】
炉1は、ガス状生成物が炉1から出ることができる少なくとも1つの煙道6を含む。煙道6を通過するガス状生成物は、酸化剤12と二酸化炭素及び水蒸気などの燃料13、との間の燃焼のガス状生成物を含み、揮発性有機化合物(volatile organic compound、VOC)を含有してもよく、一酸化炭素を含有してもよい。本発明の実用的な用途では、1つの煙道6のみが存在する場合、火炎15は、煙道6の出口7から延在し得る。2つ以上の煙道6が存在する場合、少なくとも1つの煙道6の少なくとも1つの出口7から延在する火炎15が存在し得る。一酸化炭素は火炎15内に存在してもよく、火炎15内で完全に燃焼されてもよく、又は完全に燃焼されなくてもよい。
【0015】
炉1は、炉の壁に、炉1の内部の火炎4が炉1の外側から観察され得る、炉の壁内に覗きポート10を含んでもよい。
【0016】
本発明によれば、カメラ21は、炉1の外側に位置決めされる。カメラ21は、カメラ21が画像を受け取る開口22を含む。本発明の一実施形態では、カメラ21は、カメラ21の開口22が火炎15の方へ向けられるように、炉1に対して位置決めされる。本発明の別の実施形態では、カメラ21は、カメラ21の開口22が覗きポート10と位置合わせされるように、カメラ21が炉1の内側の火炎4の画像を受け取ることができるように、炉1に対して位置決めされる。
【0017】
カメラ21は、デジタルカメラであり、カメラ21が物体の1つ以上の特性を検出する(この場合、検出された特性は、カメラ21が向けられている火炎の強度を少なくとも含む)を検出し、検出された特性に対応する画像をデジタル形式で電子的に表現していることを意味する。この能力を有するデジタルカメラは、市販されている。これらは、独立型ユニットであってもよく、又は追加の機能能力を有する機器の品目の一部とすることができる(電話、タイムキーピングなど)。
【0018】
更に図1を参照すると、制御部25は、酸化剤12及び燃料13の流量をバーナ11(又は2つ以上のバーナ11が存在する場合は複数のバーナに対して)に対して制御する。任意選択的であるが、好ましくは、追加の酸化剤が炉1内に移されるときに、炉1内に補足酸化剤を放出するためにランス27が提供される。ランス27を通る酸化剤の流れは、制御部29によって制御される。炉1内にランス27を通過し得る酸化剤は、少なくとも50体積%、更には少なくとも90体積%の酸素含有量を有する、空気、酸素富化空気、又は高純度の酸化剤であり得る。炉1内にランス27を介して供給される酸化剤の酸素含有量は、炉1に供給される酸化剤12の酸素含有量と同じであっても異なっていてもよい。
【0019】
図1では、ブロック23は、図2に31、33及び35として示される一連のステップを実行する完全なシステムを指す。システムは、1つの一体化装置内に存在することができ、又は特定のステップを実行する構成要素は、他の構成要素から物理的に分離され、好適なケーブルによって、又はケーブルレス無線接続によって互いに接続され得る。部品の一部又は全部をカメラ21に含めることができる。しかしながら、機能を容易にするため、及びカメラ21が、高温及び粉塵であり得る環境内に位置し得、したがって、プロセッサなどの構成要素に対して潜在的に苛酷な環境に位置し得る可能性のため、カメラ21が他の構成要素から物理的に分離され、カメラ21が、カメラ21による画像の取得に最初に続くステップ31を実行する少なくとも構成要素にケーブル又は無線接続によって接続されることが好ましい。図1に見られるように、システム23は、カメラ21に接続されてカメラ21から入力を受け取り、システム23は、制御部25に、及び(存在する場合)制御部29に接続されて、制御25及び29に信号を提供する。
【0020】
運転中、炉1内の材料2の存在下で炉1の内側で燃焼を実行する。火炎は、煙道6の開口部7から延出する火炎15として出現し得る炉内に形成される。本発明の一実施形態では、火炎15の画像が開口22を通して受け取られるように、カメラ21は火炎15に向けられている。本発明の別の実施形態では、カメラ21は、炉1の内側の火炎4の画像が覗きポート10を通って開口22に受け取られるように、炉1の方へ向けられている。火炎15又は4は、非常に明るくてもよく、そのため、開口22及び露光は、画像のブルーミングを防止するように調節されるべきである。状況によっては、画像が非常に暗いときに適切な解像度が達成されるように、画像の露光を動的に調節することができることが望ましい場合がある。ほとんどの状況では、このような動的調節は必要ではない。カメラ画像の形態係数及び解像度は、画像サイズが少なくとも50×50画素、好ましくは少なくとも300×300画素であるようなものでなければならない。当業者であれば、火炎15又は4からのカメラ21の所与の距離、及び所与のサイズの火炎15又は4について、適切な画像解像度及び画像形態係数を容易に判定することができる。カメラ21は、火炎15又は火炎4の強度などの火炎の少なくとも1つのパラメータに基づいて、火炎15又は火炎4のデジタル電子画像を生成する。電子画像は、カメラ21によって、ステップ31を実行する装置に電子的に送信される。
【0021】
ステップ31では、火炎15又は4の画像に対応する信号は、火炎の強度又は様々な強度を表す1つ以上の値に変換され、カメラ21の視野内にある火炎の領域にわたる値の範囲を含んでもよい。強度は検出され、デジタル的に表現されて、検出された強度に対応する値のアレイを生成する。検出された強度パラメータはまた、火炎内に存在する一酸化炭素の濃度にも対応する。
【0022】
ステップ33では、検出された強度パラメータは、火炎内の一酸化炭素の実際の濃度に対する強度パラメータの事前確立された相関と比較される。事前確立された相関は、ガスサンプリングプローブを使用したガスサンプリング、続いてサンプリングされたガスの分析、又は連続エミッションモニタリングなどの確立された技術を介して、火炎内の一酸化炭素の濃度を同時に測定しカメラ21によって検出された強度に基づく値から、ステップ31で導出された表現パラメータの値を観察し、コンピュータ又は書面のカタログなど、測定された濃度及びパラメータ値を一緒に読み取ることができる場所に記録することによって、確立することができる。このように、システムで表現される各強度パラメータは、火炎内の一酸化炭素の実際の濃度値に対応する。表現されたパラメータと測定された一酸化炭素濃度との間の既存の相関の判定は、炉におけるシステムの初期設定中に既に実行されていることができ、通常、炉が運転されているたびに所与の炉で繰り返される必要はない。しかしながら、オペレータは、所与の炉を運転する条件が著しく異なる状況において、異なる炉、並びに所与の炉のための新しい相関のセットを確立することが好ましい場合がある。
【0023】
本明細書に記載されるシステムは、炉運転を制御するいくつかの方法のいずれかを達成するために使用することができる。このような方法の1つは、炉への酸素供給の制御によって一酸化炭素放出を制御することであり、ここで以下に記載される。
【0024】
炉の運転は、その値を上回る一酸化炭素濃度値が許容可能ではなく、必ず下回るように、火炎中の一酸化炭素濃度の事前確立された値を有することになる。過剰な一酸化炭素の典型的な値は、3体積%~30体積%の範囲であり得るが、場所、炉1内で加熱されている材料2の性質、又は他の条件に応じて変化し得る。事前確立された値は、環境危害の過剰な危険性を表す値、又は適用可能な環境規制の違反のリスクを示す値、又は炉内の経済的条件及び熱力学的条件の望ましくない不均衡を示す値などの、オペレータにとって重要である因子又は因子群に基づく。
【0025】
ステップ33では、火炎中の一酸化炭素の濃度(閾値、又は設定点とも呼ばれてもよい)の事前確立された値が記憶され、ある時点における火炎内の一酸化炭素濃度に対応する検出された強度パラメータを事前確立された閾値と比較する。比較は、任意の所望の速度で実施することができるが、好ましくは、比較は、2~5秒毎に1回の速度で実施される。好ましくは、比較は、好適にプログラムされたコントローラによって自動的に実施される。
【0026】
検出され、処理された強度パラメータが、事前確立された閾値を超過する火炎内の実際の一酸化炭素濃度に対応するときに、システムは、炉1内に追加の酸素が提供されるアクションを実施する。図2では、このアクションは、ステップ33において、燃焼制御システム35を起動させて、炉1内に追加の酸素を存在させる信号を生成するものとして表される。追加の酸素は、炉内に存在する一酸化炭素と反応し、それにより、より少ない一酸化炭素は、火炎15中の煙道6を介して、若しくは別の方法で炉1を出る。追加の酸素は、炉1内に提供されて、検出された過剰の一酸化炭素と、いくつかのモードのいずれかによって反応させることができる。例えば、このようなモードの1つは、制御システム35が、燃料13の流量を炉1内に増加させることなく、バーナ11を介して炉1内に供給される酸素12の量を増加させるためのものである。別の可能なモードは、補助供給ライン29(図1に示す)を介して、炉1内への燃料13の流量を増加させることなく、補足的な酸化剤を供給すること、又は補足的な酸素の量を増加させることである。更に別の可能なモードは、炉1に供給される酸素12又は補助酸素27の量を減少させることなく、炉1内に供給される燃料13の量を減少させる。又は、これらのモードの任意の組み合わせを同時に実装することができる。
【0027】
好ましい実施形態は、オペレータが1つ以上のバーナ11を介して供給される酸化剤及び燃料の化学量論比を調節する必要がないように、補助酸素27を提供することである。補助供給ライン27は、好ましくは、比較的多量の一酸化炭素が存在し得る炉内の領域、又は炉1の内部が煙道6の上流端と接続する領域付近など、一酸化炭素が特に望ましくない領域に酸化剤を供給するように、位置決めされるべきである。
【0028】
火炎内の一酸化炭素濃度を表す検出及び処理された値が、前述の事前確立された閾値以下の値に減少するまで継続される。好ましい場合、追加の酸素は、検出され、処理された値が事前確立された閾値未満、例えば、事前確立された閾値を0.5%から2%未満などになるまで、追加の酸素を提供して、追加の酸素の供給が開始され、その後中断される回数を最小化するために提供されるべきである。
【0029】
ステップ31、33、及び35は、好適なケーブルによって、又は無線接続によって互いに接続される、好適にプログラムされたコントローラ内で実行することができる。代わりに、それらは全てハードウェアの1つの部分に存在してもよい。
【0030】
示されるように、本明細書に記載のシステムは、酸素(酸化剤)、燃料、又は酸素と燃料の両方の供給を調節することにより、炉内で所望の燃焼特性を達成するか又は起動から炉の運転制御を実行するために使用することもできる。本発明のこの実施形態では、1つの設定点又は1つを超える設定点(典型的には3~10個の設定点)が、炉への燃料流量及び酸素流量に対応するコントローラに事前確立される(炉が複数のバーナを有する場合には、1つのバーナ内又は複数のバーナの各々において)。
【0031】
これらの実施形態では、画像解析パラメータは、ステップ33で受け取られ、バーナ内で使用される流量値及び各レベルの酸化剤ランスを事前設定するユーザによって定義された制御レベル設定点と比較される。この最後の部分は、炉燃焼制御PLCと通信される。ユーザはまた、制御レベルを活性化/非活性化するタイマーなどの他のプロセスパラメータを選択することもできる。ユーザはまた、オペレータが見ることになる制御パネル上に現れる言語を選択してもよく、また制御される他の変数を選択してもよい。コントローラ33は、カメラ及び関連するソフトウェアからデータを収集し、このデータをユーザ入力(限界、酸素流設定点、自然ガス流設定点、遅延時間)と共に処理し、プロセスを動的に調節して、CO排出を低減し、炉の生産を増加させる。
【0032】
ユーザは、制御変数を選択し、開始限界、停止限界、及び「オフ遅延」値(必要な各々の任意の数、典型的には各々1~10、及び「遅延」値の(典型的には1~5)数を設定する。また、ユーザは、対応する限界毎に酸素流設定点及びバーナ自然ガス流設定点を設定する。第1の開始限界がオン遅延時間を超えて超過しているとき、ソフトウェアは、対応する酸素流設定点及び天然ガス流設定点を設定する。設定点は、限界を超過した順序で処理される。制御変数が停止限界を下回り、オフ遅延タイマーが完了すると、前のレベルが設定される。
【0033】
制御変数が全ての停止限界未満に低下し、最終的なオフ遅延が終了すると、酸素設定点は、ゼロに設定され、バーナ燃料設定点は、通常制御に戻される。
【0034】
炉ドアが開放された場合、酸素設定点は、ゼロに設定され、バーナ燃料設定点は、通常制御に戻される。
【0035】
本明細書に記載されるシステム及び方法により、オペレータは、燃料消費及び短縮されたサイクル時間など、より効率的な運転などの、炉の運転における利益を実現することを可能にする。火炎内の一酸化炭素含有量を監視することにより(及びリアルタイムでそうすることにより、これは本発明をどのように利用することができるかである)、オペレータは、一酸化炭素の燃焼熱を炉内に保持し、利用することができるように、炉に酸素及び/又は燃料供給速度を調節することができ、これにより、オペレータは、より短いサイクル時間で炉内の材料の加熱及び/又は溶融の同じ程度を達成することを可能にし、オペレータが加熱及び/又は溶融を、加熱された材料の単位当たりの燃量消費をより少なくすることを可能にする。
【0036】
本発明は、炉からの一酸化炭素排出量を制御し、炉全体の運転を制御するための有利な方法である。1つの理由は、本発明の方法の運転炉への実装は、火炎内の一酸化炭素の濃度の進行中の直接測定を必要としないことである。別の理由は、本発明が、煙道ガス又は排気ガスではなく、火炎内の一酸化炭素を特徴付けるパラメータを検出し、測定値がより可変であり、信頼性が低い傾向があることである。また、本発明の方法は、火炎の温度を測定するものではなく、かつ火炎温度の差を測定することに基づくものではなく、したがってより信頼性が高く、火炎の温度変動に対して脆弱性が低い。代わりに、本発明の方法は、火炎内の一酸化炭素濃度に対応する画像パラメータの相関に基づくものであり、これは、新規かつ効率的な運転モードであると考えられる。
【0037】
他の利点としては、使用される機器のメンテナンスの必要性が低減されること、より低い設置コスト、本発明を実行するシステムを設置するための炉のダウンタイムがほとんどないか、又は全くないこと、並びにシステムが炉に供給される酸素の量及び/又は燃料の量の増加又は他の変化を必要とする状態を検出したとき、酸素供給、燃料供給、又は酸素供給と燃料供給の両方を調節するためのより速い応答時間が挙げられる。
図1
図2