IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東洋紡株式会社の特許一覧

特許7102706海水淡水化方法および海水淡水化システム
<>
  • 特許-海水淡水化方法および海水淡水化システム 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-11
(45)【発行日】2022-07-20
(54)【発明の名称】海水淡水化方法および海水淡水化システム
(51)【国際特許分類】
   C02F 1/44 20060101AFI20220712BHJP
   B01D 61/00 20060101ALI20220712BHJP
   B01D 61/04 20060101ALI20220712BHJP
   B01D 61/58 20060101ALI20220712BHJP
   B01D 63/02 20060101ALI20220712BHJP
【FI】
C02F1/44 G
B01D61/00 500
B01D61/04
B01D61/58
B01D63/02
【請求項の数】 5
(21)【出願番号】P 2017209524
(22)【出願日】2017-10-30
(65)【公開番号】P2019081134
(43)【公開日】2019-05-30
【審査請求日】2020-08-26
【前置審査】
(73)【特許権者】
【識別番号】000003160
【氏名又は名称】東洋紡株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
(72)【発明者】
【氏名】中尾 崇人
(72)【発明者】
【氏名】韓 周美
(72)【発明者】
【氏名】櫻井 秀彦
【審査官】池田 周士郎
(56)【参考文献】
【文献】特開2013-202456(JP,A)
【文献】韓国公開特許第10-2014-0073312(KR,A)
【文献】韓国公開特許第10-2013-0103996(KR,A)
【文献】韓国公開特許第10-2017-0100864(KR,A)
【文献】米国特許出願公開第2006/0144789(US,A1)
【文献】韓国公開特許第10-2017-0069614(KR,A)
【文献】特開2015-150553(JP,A)
【文献】特開2010-188344(JP,A)
【文献】特開2007-152265(JP,A)
【文献】特許第4518435(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
C02F 1/44
B01D 61/00-71/82
(57)【特許請求の範囲】
【請求項1】
海水から淡水を得る海水淡水化方法であって、
海水タンクから供給される海水を、半透膜を介して低浸透圧水と接触させて、前記海水が希釈された希釈塩水を得る、正浸透工程と、
前記正浸透工程で得られた前記希釈塩水から、逆浸透膜を用いて、前記逆浸透膜を透過した生産水と、濃縮された前記希釈塩水である濃縮塩水とを得る、逆浸透工程と、
を含み、
前記半透膜および前記逆浸透膜の形状は、中空糸膜であり、
前記逆浸透工程で得られた前記濃縮塩水を前記海水タンクに戻して、前記正浸透工程に再利用し、
前記正浸透工程において、前記低浸透圧水は第1ポンプを介して、前記海水は第2ポンプを介して、それぞれ供給され、
前記逆浸透工程において、前記希釈塩水は、昇圧ポンプを介して供給され、
前記希釈塩水の濃度、浸透圧または流量を測定するための測定装置によって計測された値に基づいて、前記第1ポンプ、前記第2ポンプおよび前記昇圧ポンプの出力を一体的に制御し、
前記海水には、スケール防止剤、塩素系殺菌剤およびpH調整剤からなる群より選ばれる少なくともひとつを投入する、海水淡水化方法。
【請求項2】
前記低浸透圧水は、排水である、請求項1に記載の海水淡水化方法。
【請求項3】
前記海水は、前処理された海水である、請求項1または2に記載の海水淡水化方法。
【請求項4】
前記濃縮塩水の塩濃度が2w/v%以上である、請求項1~3のいずれか1項に記載の海水淡水化方法。
【請求項5】
請求項1~4のいずれか1項に記載の海水淡水化方法に用いられる海水淡水化システムであって、
半透膜を有し、海水タンクから供給される海水を、前記半透膜を介して低浸透圧水と接触させて、前記海水が希釈された希釈塩水を排出する、正浸透処理装置と、
逆浸透膜を有し、前記正浸透処理装置から排出された前記希釈塩水から、前記逆浸透膜を透過した生産水と、濃縮された前記希釈塩水である濃縮塩水とを排出する、逆浸透処理装置と、
を備える、海水淡水化システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、海水淡水化方法および海水淡水化システムに関する。
【背景技術】
【0002】
正浸透(FO:forward osmosis)とは、正浸透膜を介して、低濃度(低浸透圧)の被処理水(フィード溶液)側の水が高濃度(高浸透圧)の溶液(ドロー溶液)に向かって移動する現象のことである。一方、水処理分野においては、逆浸透(RO:reverse osmosis)工程を用いる水処理方法が従来から知られている。逆浸透工程は、人為的に強い圧力を加えることにより、正浸透とは逆に、高濃度の被処理水から低濃度の溶液側に水を移動させる工程である。
【0003】
海水から淡水を生産する造水システム(海水淡水化システム)では、昇圧ポンプによって所定の圧力に昇圧された海水をRO膜モジュールに供給し、RO膜を透過させることで、海水中の塩分等を除去して淡水(生産水)を取り出す逆浸透工程が実施される。このとき、RO膜を透過しなかった残りの塩水は、濃縮塩水(ブライン)としてRO膜モジュールから排出される(特許文献1:特開2004-97911号公報)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2004-97911号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、海水の塩濃度は約3.5w/v%であり、その浸透圧は2.5~3MPaと非常に高い。このため、海水淡水化装置における逆浸透工程は、海水の浸透圧以上の強い圧力(好ましくは6~8MPa)が必要であり、エネルギー消費量が極めて多いため、エネルギー効率が低い。
【0006】
そこで、本発明は、逆浸透工程のエネルギー消費量を低減することのできる海水淡水化方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
[1] 海水から淡水を得る海水淡水化方法であって、
海水タンクから供給される海水を、半透膜を介して低浸透圧水と接触させて、前記海水が希釈された希釈塩水を得る、正浸透工程と、
前記正浸透工程で得られた前記希釈塩水から、逆浸透膜を用いて、前記逆浸透膜を透過した生産水と、濃縮された前記希釈塩水である濃縮塩水とを得る、逆浸透工程と、
を含む、海水淡水化方法。
【0008】
[2] 前記低浸透圧水は、排水である、[1]に記載の海水淡水化方法。
[3] 前記逆浸透工程で得られた前記濃縮塩水を前記海水タンクに戻して、前記正浸透工程に再利用する、[1]または[2]に記載の海水淡水化方法。
【0009】
[4] 前記海水は、前処理された海水である、[1]~[3]のいずれかに記載の海水淡水化方法。
【0010】
[5] 前記濃縮塩水の塩濃度が2w/v%以上である、[1]~[4]のいずれかに記載の海水淡水化方法。
【0011】
[6] [1]~[5]のいずれかに記載の海水淡水化方法に用いられる海水淡水化システムであって、
半透膜を有し、海水タンクから供給される海水を、前記半透膜を介して低浸透圧水と接触させて、前記海水が希釈された希釈塩水を排出する、正浸透処理装置と、
逆浸透膜を有し、前記正浸透処理装置から排出された前記希釈塩水から、前記逆浸透膜を透過した生産水と、濃縮された前記希釈塩水である濃縮塩水とを排出する、逆浸透処理装置と、
を備える、海水淡水化システム。
【発明の効果】
【0012】
本発明によれば、海水淡水化方法における、逆浸透工程のエネルギー消費量を低減することができる。
【図面の簡単な説明】
【0013】
図1】実施形態に係る海水淡水化方法(海水淡水化システム)の構成を示す模式図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態の海水淡水化方法および海水淡水化システムについて、図1を参照して説明する。なお、図面において、同一の参照符号は、同一部分または相当部分を示す。
【0015】
(正浸透工程)
本工程では、図1を参照して、海水タンク6から供給される海水を、半透膜1aを介して低浸透圧水と接触させて、海水が希釈された希釈塩水を得る。
【0016】
本発明の正浸透工程に用いられる正浸透処理装置は、半透膜1aを有し、海水タンク6から供給される海水を、正浸透膜1aを介して低浸透圧水と接触させて、海水が希釈された希釈塩水を排出する。
【0017】
具体的には、正浸透処理装置は、正浸透(FO)膜モジュール1を備える。FO膜モジュール1は、正浸透処理に用いられる半透膜であるFO膜1a、ならびに、フィード溶液(FS)が供給される第1室11、および、ドロー溶液(DS)が供給される第2室12を有し、第1室21と第2室12とはFO膜1aで仕切られている。また、正浸透処理装置は、FO膜モジュール1の第1室11にFSを供給するポンプ31と、海水タンク6から、FO膜モジュール1の第2室12にDSを供給するポンプ32と、を備える。
【0018】
本実施形態において、DSは海水である。FSは、DSよりも低い浸透圧を有する液体(低浸透圧水)であれば特に限定されないが、例えば、淡水(例えば、河川水、排水(工業排水、下水処理水など))、海水よりも塩濃度の低い塩水(例えば、かん水、汽水)などが用いられる。低浸透圧水は、好ましくは排水である。低浸透圧水として排水を用いた場合、産業廃棄物として廃棄する排水の量を減らすことができる。
【0019】
正浸透工程では、ポンプ31を介して低浸透圧水をFO膜モジュール1の第1室11に供給し、低浸透圧水を半透膜1aの一方の面に接触させるとともに、ポンプ32を介して海水タンク6からくみ上げられた海水をFO膜モジュール1の第2室12に供給し、半透膜1aの反対側の面に接触させる。
【0020】
半透膜を介して接触した海水と低浸透圧水の間には浸透圧差が生じているため、正浸透現象により、低浸透圧水に含まれる水が半透膜1aを透過し、海水中に移動する。希釈されて塩濃度が低下した海水(希釈塩水)は、FO膜モジュール1から排出され、昇圧ポンプ33を介してRO膜モジュール2に供給される。
【0021】
(逆浸透工程)
本工程では、図1を参照して、正浸透工程で得られた希釈塩水から、逆浸透膜2aを用いて、逆浸透膜2aを透過した生産水と、濃縮された希釈塩水である濃縮塩水とを得る。
【0022】
本発明の逆浸透工程に用いられる逆浸透処理装置は、逆浸透膜2aを有し、正浸透処理装置から排出された希釈塩水から、逆浸透膜を透過した生産水と、濃縮された希釈塩水である濃縮塩水を排出する。
【0023】
具体的には、逆浸透処理装置は、逆浸透(RO)膜2aを有する、逆浸透(RO)膜モジュール2、および、RO膜モジュール2に希釈された海水(希釈塩水)を供給する昇圧ポンプ33を備える。
【0024】
本発明において、FO膜1aおよびRO膜2aの形状としては、特に限定されないが、例えば、平膜、スパイラル膜または中空糸膜が挙げられる。なお、図1では、FO膜およびRO膜として平膜を簡略化して描いているが、特にこのような形状に限定されるものではない。なお、中空糸膜(中空糸型半透膜)は、スパイラル型半透膜などに比べて、モジュール当たりの膜面積を大きくすることができ、逆浸透および正浸透の効率を高めることができる点で有利である。
【0025】
FO膜およびRO膜の材質としては、特に限定されないが、例えば、酢酸セルロース、ポリアミドまたはスルホン化ポリスルホンが挙げられる。FO膜1aおよびRO膜2aの素材は、同一であっても異なっていてもよい。酢酸セルロースは耐塩素性に優れるため、酢酸セルロースを用いた場合、各モジュールへの供給水に殺菌剤として塩素系殺菌剤を添加することができる。
【0026】
また、FO膜モジュール1およびRO膜モジュール2の形態としては、特に限定されないが、中空糸膜を用いる場合は、中空糸膜をストレート配置したモジュールや、中空糸膜を芯管に巻きつけたクロスワインド型モジュールなどが挙げられる。平膜を用いる場合は、平膜を積み重ねた積層型モジュールや、平膜を封筒状として芯管に巻きつけたスパイラル型モジュールなどが挙げられる。
【0027】
逆浸透工程では、FO膜モジュール1から排出された希釈塩水は、昇圧ポンプ33によって、希釈塩水が有する浸透圧より高い圧力に昇圧されて、RO膜モジュール2に供給される。RO膜モジュール2に供給された希釈塩水は、RO膜2aを透過することで希釈海水から塩分、不純物等が除去された淡水を得ることができる。RO膜2aを透過しなかった残りの希釈塩水は濃縮され、濃縮塩水としてRO膜モジュール2から排出される。得られた淡水は、必要により次の精製工程等に送られて生産水となる。
【0028】
希釈塩水は海水と比較して、塩濃度が低下し、浸透圧が低くなっている。このため、逆浸透工程において、昇圧ポンプ33で消費するエネルギー量を抑制することができる。希釈塩水の塩濃度は特に限定されないが、例えば、0.5w/v%~2.0w/v%である。希釈塩水の濃度を上記範囲に調整する方法(手段)としては、FO膜モジュール1の第2室12から排出された希釈塩水がRO膜モジュール2に供給されるまでの流路(経路)に希釈塩水の濃度、浸透圧または流量を計測するための測定装置を設置し、測定装置によって計測された値に基づいてポンプ31、32の出力(圧力)を制御する方法や、必要に応じてFO膜モジュール1の第2室12から排出された希釈塩水がRO膜モジュール2に供給されるまでの流路(経路)に設置された流量調整バルブ(図示せず)の開度を調節する方法などが挙げられる。なお、例えば、ポンプ32の出力を下げることで、希釈塩水の塩濃度を下げることができる。また、例えば、ポンプ31の出力を上げることで、希釈塩水の塩濃度を下げることができる。
【0029】
なお、本発明は、逆浸透処理(装置)を用いた既存の海水淡水化システムに対して適用する場合に特に有用性が高い。
【0030】
本発明において、逆浸透工程で濃縮された濃縮塩水を海水タンク6に戻して、正浸透工程に再利用することが好ましい。
【0031】
具体的には、図1において、RO膜モジュール2から排出された濃縮塩水は循環経路4を通り、海水タンク6に供給される。海水タンク6に供給された濃縮塩水は、ポンプ32を介してFO膜モジュール1の第2室12に供給され、DSとして再び用いられる。
【0032】
また、海水は、海水前処理装置5により、前処理された海水であることが好ましい。海水の前処理を行わない場合、懸濁性の濁質、溶解性の有機物、膜表面上に付着する微生物などが発生し、膜汚染が引き起こされる。海水の前処理方法としては、図示しないポンプで取水した海水を砂濾過、凝集濾過、加圧浮上分離、UF膜(Ultrafiltration:限外濾過)、MF膜(Microfiltration:精密濾過)、カートリッジフィルターなどによって処理する方法があり、これにより汚染源を除去し、FO膜モジュール1に適合する水質の海水を得ることができる。
【0033】
これらの前処理には、大型の設備が必要となる。また、取り込まれた海水の水質状況に応じて十分な処理を行うためには、熟練技術者によるきめ細かい運転管理も必要である。濃縮塩水を循環させて再利用する場合は、海水の前処理量を少なくすることができ、前処理設備を小型化することができる。従来では、例えば、3万トン/日の海水の前処理が必要であった場合に、濃縮塩水を循環させることで、その処理量を例えば、500トン/日にまで削減することができる。
【0034】
なお、海水淡水化システムの運転を開始する際、すべてのトレイン(複数のRO膜モジュールを含む、独立に運転・停止を切り替えられる最少単位)を同時に立ち上げるのに必要な海水を一時に前処理する必要はない。海水前処理装置5を用いて、1トレインずつ立ち上げればよく、この場合はさらに前処理装置を小型化することができる。海水の代わりに、前処理が必要でないNaCl水溶液を用いることで部分的に前処理を省略することもできる。
【0035】
濃縮塩水を循環させて再利用する場合、濃縮塩水の塩濃度は、好ましくは、2w/v%以上であり、より好ましくは、2w/v%以上7w/v%以下であり、さらに好ましくは3w/v%以上4w/v%以下である。塩濃度がこの範囲にある場合に、海水タンク6に戻された後の正浸透処理工程において、低浸透圧水との浸透圧差が十分にあるため、正浸透現象が起こりやすい。また、塩濃度がこの範囲より高い場合は、浸透圧が上昇して、昇圧ポンプ33でのエネルギー消費が大きくなるため、好ましくない。
【0036】
濃縮塩水の塩濃度を上記範囲に調整する方法(手段)としては、RO膜モジュール2より濃縮塩水が排出される経路(流路)または循環経路4に、濃縮塩水の濃度(浸透圧)を測定するための測定装置を設置し、測定装置によって計測された値に基づいて昇圧ポンプ33の出力を調整する方法や、必要に応じてRO膜モジュール2より濃縮塩水が排出される流路または循環経路4に設置された流調整バルブ(図示せず)の開度を調節する方法などが挙げられる。なお、例えば、昇圧ポンプ33の出力を上げることで、濃縮塩水の塩濃度を上げることができる。
【0037】
なお、FO膜モジュール1の第2室12から排出された希釈塩水がRO膜モジュール2に供給される流路(経路)に、希釈塩水の濃度、浸透圧または流量を計測するための測定装置を設置し、測定装置によって計測された値に基づいて、ポンプ31、32、昇圧ポンプ33の出力(圧力)(必要に応じて各流路に設けられた流量調整バルブの開度も)を一体的に制御する方法を用いることもできる。
【0038】
ただし、塩はFO膜1aおよびRO膜2aを微かに通過するため、循環する海水中の塩分は少しずつ減少する。このときは、新たに海洋から海水をくみ取り、海水前処理装置5によって前処理した後、海水タンク6に補充すればよい。
【0039】
また、海水には必要により、スケール防止剤、塩素系殺菌剤、pH調整剤などの添加剤を投入することもできる。
【0040】
スケール防止剤としては、特に限定されないが、例えば、カルシウム系スケールを防止するための、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ等の無機ポリリン酸類、アミノメチルホスホン酸、ホスホノブタントリカルボン酸等のホスホン酸類などのリンを含むスケール防止剤や、マレイン酸とイソブチレンのコポリマー、マレイン酸と酢酸ビニルエチルとエチルアクリレートのターポリマー、AA(アクリル酸)-AMPS(2-アクリルアミド-2-メチルプロピルスルホン酸)コポリマーとPMA(ポリマレイン酸)との併用剤などのリンを含まないスケール防止剤等が挙げられる。これらのスケール防止剤の添加により、膜のスケール障害を抑制することができる。
【0041】
塩素系殺菌剤としては、特に限定されないが、例えば、塩素ガス、次亜塩素酸ナトリウム、次亜塩素酸カルシウムなどの遊離塩素、モノクロラミンなどの結合塩素、または、二酸化塩素が挙げられる。これらの塩素系殺菌剤の添加により、バイオファウリングの原因となる微生物の増殖を抑制し、膜性能の劣化を生じにくくすることができる。
【0042】
これらの添加剤はFO膜やRO膜を透過し難いため、RO膜モジュール2から排出された濃縮塩水を循環させて再利用する場合、添加剤の再添加が必要ないか、あるいは、新しい海水を処理する場合に比べて添加剤の添加量を少なくすることができる。
【0043】
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0044】
1 正浸透膜モジュール(FO膜モジュール)、1a 半透膜(FO膜)、11 第1室、12 第2室、2 逆浸透膜モジュール(RO膜モジュール)、2a 逆浸透膜(RO膜)、31,32 ポンプ、33 昇圧ポンプ、4 循環経路、5 海水前処理装置、6 海水タンク。
図1