IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社アドヴィックスの特許一覧

<>
  • 特許-車両制御装置 図1
  • 特許-車両制御装置 図2
  • 特許-車両制御装置 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-11
(45)【発行日】2022-07-20
(54)【発明の名称】車両制御装置
(51)【国際特許分類】
   B60W 30/02 20120101AFI20220712BHJP
   B60T 8/00 20060101ALI20220712BHJP
【FI】
B60W30/02
B60T8/00 Z
【請求項の数】 3
(21)【出願番号】P 2018163322
(22)【出願日】2018-08-31
(65)【公開番号】P2020032961
(43)【公開日】2020-03-05
【審査請求日】2021-01-07
(73)【特許権者】
【識別番号】301065892
【氏名又は名称】株式会社アドヴィックス
(74)【代理人】
【識別番号】110000604
【氏名又は名称】弁理士法人 共立特許事務所
(74)【代理人】
【識別番号】100174713
【弁理士】
【氏名又は名称】瀧川 彰人
(72)【発明者】
【氏名】廣田 篤人
【審査官】平井 功
(56)【参考文献】
【文献】特開2010-076468(JP,A)
【文献】特開平11-091538(JP,A)
【文献】特開平10-059149(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60W 10/00-10/30
B60W 30/00-60/00
B60T 7/12- 8/1769
G08G 1/00-99/00
(57)【特許請求の範囲】
【請求項1】
車両に設けられた車輪のグリップ力を摩擦円内に収めるように前記車輪に対する制動力又は駆動力である前後力を制御する車両制御装置であって、
前記前後力と前記車両に作用しているコーナリングフォースとに基づく前記グリップ力が前記摩擦円に近づくほど、前記前後力と前記コーナリングフォースとを比較した比較結果に基づいて前記前後力の目標値に対する前記前後力の実値のオーバーシュートの抑制を強くする抑制制御を実行する制御部を備え
前記制御部は、前記抑制制御として、前記グリップ力が所定の第1閾値を超えると前記目標値の増大勾配を小さくし、
前記第1閾値は、演算された前記摩擦円の半径に基づいて算出され、
前記制御部は、前記摩擦円の変化を推定し、所定時間後の前記摩擦円が大きくなると推定した場合には算出した前記第1閾値を大きくし、所定時間後の前記摩擦円が小さくなると推定した場合には算出した前記第1閾値を小さくする車両制御装置。
【請求項2】
前記制御部は、前記コーナリングフォースが大きいほど、前記抑制制御による前記オーバーシュートの抑制を強くする請求項1に記載の車両制御装置。
【請求項3】
前記制御部は、前記車両に設けられた第1車輪に対する前記抑制制御の実行に際して、前記第1車輪とは別に前記車両に設けられた第2車輪の前記前後力の前記目標値を、前記第1車輪に対する前記抑制制御における前記オーバーシュートの抑制度合いに基づいて設定する請求項1又は2に記載の車両制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両制御装置に関する。
【背景技術】
【0002】
車両制御装置は、車両の挙動を安定させるために、各車輪について算出できる摩擦円に基づいて、各車輪のグリップ力を制御している。摩擦円(摩擦円の半径)は、線形のグリップ力を確保できる限界値を表しており、路面の摩擦係数と車輪に加わる垂直方向の荷重(垂直荷重、輪荷重)とにより算出できる。グリップ力が摩擦円を超えると、車輪にスリップや空転が発生し、車両挙動が不安定になりやすい。摩擦円を利用した制御装置として、例えば特開2012-35698号公報には、各車輪で異なる、摩擦円と現在のグリップ力との差分(余力)を有効利用して車両のアンダーステア又はオーバーステアを抑制する制動制御装置が開示されている。また、従来の車両制御装置では、グリップ力を摩擦円内に収めるために、例えば、制動力又は駆動力に対して上限値を設定する制御が行われていた。また、従来の別の車両制御装置では、4輪に対する独立の操舵角制御を利用し、車両の挙動を安定させていた。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2012-35698号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来の車両制御装置のように、単に制動力又は駆動力に上限値を設けるだけでは、構造上発生する応答遅れやヒステリシス等により、制御目標に反して実際の制動力又は駆動力がオーバーシュートして、グリップ力が摩擦円を超えるおそれがある。また、各車輪に対して操舵角制御ができる車両は限られており、操舵角制御を利用した安定化技術は、ほとんどの車両で適用外となる。
【0005】
本発明は、このような事情に鑑みて為されたものであり、制動力又は駆動力の制御により、車輪のグリップ力を精度良く摩擦円内に収めることが可能となる車両制御装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の車両制御装置は、車両に設けられた車輪のグリップ力を摩擦円内に収めるように前記車輪に対する制動力又は駆動力である前後力を制御する車両制御装置であって、前記前後力と前記車両に作用しているコーナリングフォースとに基づく前記グリップ力が前記摩擦円に近づくほど、前記前後力と前記コーナリングフォースとを比較した比較結果に基づいて前記前後力の目標値に対する前記前後力の実値のオーバーシュートの抑制を強くする抑制制御を実行する制御部を備え、前記制御部は、前記抑制制御として、前記グリップ力が所定の第1閾値を超えると前記目標値の増大勾配を小さくし、前記第1閾値は、演算された前記摩擦円の半径に基づいて算出され、前記制御部は、前記摩擦円の変化を推定し、所定時間後の前記摩擦円が大きくなると推定した場合には算出した前記第1閾値を大きくし、所定時間後の前記摩擦円が小さくなると推定した場合には算出した前記第1閾値を小さくする。
【発明の効果】
【0007】
本発明によれば、抑制制御が実行されることで、グリップ力が摩擦円に近づくほど、オーバーシュートの抑制の度合いが強くなる。このオーバーシュートが考慮された前後力(制動力又は駆動力の制御により、精度良くオーバーシュートが抑制され、操舵角制御なしで、精度良く車輪のグリップ力を摩擦円内に収めることが可能となる。
【図面の簡単な説明】
【0008】
図1】本実施形態の車両制御装置の構成図である。
図2】本実施形態の摩擦円及び閾値を説明するための説明図である。
図3】本実施形態の抑制制御を説明するためのフローチャートである。
【発明を実施するための形態】
【0009】
以下、本発明の実施形態について図に基づいて説明する。説明に用いる各図は概念図である。本実施形態の車両には、図1に示すように、車両制御装置1、制動力発生装置2、駆動力発生装置3、及び車輪41、42、43、44が設置されている。例えば、車輪41は右前輪であり、車輪42は左前輪であり、車輪43は右後輪であり、車輪44は左後輪である。制動力発生装置2及び駆動力発生装置3は、公知の装置であって、一例を挙げて簡単に説明する。
【0010】
制動力発生装置2は、各車輪41~44に設けられたホイールシリンダ51、52、53、54に液圧(ホイール圧)を発生させることで、車輪41~44に摩擦制動力(液圧制動力)を発生させる装置である。制動力発生装置2は、ドライバのブレーキ操作に応じてマスタ圧を発生させるマスタシリンダ機構21と、マスタ圧が供給されて各ホイール圧を調整するアクチュエータ22と、アクチュエータ22を制御するブレーキECU23と、を備えている。アクチュエータ22は、複数の電磁弁、電動ポンプ、及びリザーバ等で構成され、ブレーキECU23の指令に基づき、加圧制御、減圧制御、又は保持制御等を実行する。また、アクチュエータ22は、ブレーキECU23の指令に基づき、例えば、アンチスキッド制御や横滑り防止制御等を実行することができる。
【0011】
駆動力発生装置3は、車輪41~44に駆動力を発生させる装置であって、駆動源31と、動力配分装置32と、ECU33と、を備えている。駆動源31は、例えばエンジン及び/又はモータである。動力配分装置32は、駆動源31から伝達された動力を、制御された配分で左右の車輪41、42(駆動輪)に伝達する装置である。動力配分装置32は、例えば、各車輪41、42に対応して配置された油圧クラッチ、及びそれらの油圧を制御するモータ等を備えている。ECU33は、CPUやメモリ等を備え、駆動源31及び動力配分装置32を制御する電子制御ユニットである。なお、駆動源31及び動力配分装置32は、各車輪41~44に配置されたインホイールモータであってもよい。また、車両には、横方向の加速度を検出する加速度センサ61、前後方向の加速度を検出する加速度センサ62、操舵角センサ63、及び車輪速度センサ64等の車両挙動を検出する各種センサが設けられている。各センサ61~64は、車両制御装置1及び各ECU23、33に通信可能に接続されている。
【0012】
ここで、本実施形態の車両制御装置1は、車両に設けられた車輪41~44のグリップ力を摩擦円内に収めるように車輪41~44に対する制動力又は駆動力を制御する装置である。車両制御装置1は、CPUやメモリ等を備えるECUであって、制動力発生装置2及び駆動力発生装置3に対して抑制制御を実行するように構成されている。抑制制御については後述する。
【0013】
車両制御装置1は、機能として、情報取得部11と、摩擦円演算部12と、グリップ力演算部13と、制御部14と、を備えている。情報取得部11は、各ECU23、33から、各車輪41~44について、駆動力の目標値である目標駆動力、駆動力の実値(現在値)である実駆動力、制動力の目標値である目標制動力、及び制動力の実値である実制動力等の各種情報を取得する。
【0014】
摩擦円演算部12は、ECUやセンサからの各種情報に基づいて、現在の摩擦円の半径を演算する。図2に示すように、摩擦円は、車輪41~44(タイヤ)が線形のグリップ力を確保できる限界値を示すものである。図2は、図の上下方向が前後力Fyを表し、図の左右方向がコーナリングフォース(横力)Fxを表している。前後力Fyの上方(加速側)が駆動力であり、前後力Fyの下方(減速側)が制動力である。各車輪41~44の摩擦円の半径は、各車輪41~44における、路面の摩擦係数μと垂直荷重(輪荷重)Fzとの乗算により算出できる(摩擦円の半径=μ×Fz)。
【0015】
各車輪41~44の摩擦係数μ及び垂直荷重Fzは、公知の演算方法で算出できる。例えば、摩擦係数μは、前後方向の加速度と車輪速度と車速に基づき算出でき、垂直荷重Fzは、横方向の加速度と前後方向の加速度と車両の諸元に基づき算出できる。なお、実駆動力は、タイヤスリップ率(車輪速度と車速から算出)と垂直荷重Fzとから推定可能である。また、実制動力は、各ホイールシリンダ51~54のホイール圧から推定可能である。ホイール圧は、圧力センサ又は推定により取得できる。
【0016】
グリップ力演算部13は、情報取得部11が取得した各種情報に基づいて、各車輪41~44の現在のグリップ力を演算する。グリップ力演算部13は、実駆動力又は実制動力である前後力Fyと、コーナリングフォースFxとに基づいて、グリップ力を演算する。グリップ力は、例えば計算式(Fx+Fy1/2で算出できる。コーナリングフォースFxは、横方向の加速度と車両の諸元に基づいて算出できる。このように、摩擦円演算部12及びグリップ力演算部13は、ECUやセンサから得た各種情報に基づいて各種演算を実行する。
【0017】
制御部14は、制動力又は駆動力(すなわち前後力Fy)と車両に作用しているコーナリングフォースFxとに基づくグリップ力が摩擦円に近づくほど、制動力又は駆動力の目標値に対する制動力又は駆動力の実値のオーバーシュートの抑制を強くする抑制制御を実行する。抑制制御は、グリップ力演算部13で演算された現在のグリップ力が摩擦円演算部12で演算された現在の摩擦円(摩擦円の半径)に近いほど、前後力Fyのオーバーシュートの抑制(抑制の度合い)を強くするように設定された制御である。
【0018】
制御部14には、グリップ力に対して、摩擦円の半径未満に設定された複数の閾値、具体的に第1閾値と第2閾値が設定されている。図2に示すように、第1閾値は、第2閾値よりも小さい(第1閾値<第2閾値<摩擦円の半径)。各閾値は、演算された摩擦円の半径に対して、閾値毎に設定された割合(係数)を乗算した値又は閾値毎に設定された余力値(余裕度)を減算した値に設定される。
【0019】
制御部14は、抑制制御において、グリップ力が第1閾値を超えると、現在発生している制動力又は駆動力に対応する前後力Fyの目標値(目標制動力又は目標駆動力)の増大勾配を小さくする。換言すると、制御部14は、抑制制御として、ドライバの前後力操作(ブレーキ操作又はアクセル操作)の増大にかかわらず、前後力Fyの目標値の増大勾配を操作に応じた増大勾配よりも小さくする。制御部14は、例えば、ECU23、33に対して、前後力Fyの目標値の増加分に制限係数α(0<α<1)を乗算するように指令する。このように、制御部14は、グリップ力が摩擦円に近づくと、前後力Fyの目標値の変化量を制限し、増大勾配に制限をかける。
【0020】
また、制御部14は、グリップ力が第2閾値を超えた場合、前後力Fyの目標値の増大勾配を0にする。本実施形態の制御部14は、グリップ力が第2閾値を超えた場合、ドライバの前後力操作が減少するまで、当該超えた時点の前後力Fyの実値を、前後力Fyの目標値に設定する。制御部14は、グリップ力が第2閾値を超えると、前後力Fyの実値をそれ以上増大させないように目標値を当該実値で一定にする。このように、制御部14は、グリップ力が摩擦円に近づくほど前後力の目標値の増大勾配が小さくなってオーバーシュートの抑制度合いが強くなる抑制制御を実行する。本実施形態では、複数の閾値により、グリップ力の増大に対して段階的にオーバーシュートの抑制度合いを強くしている。なお、制御部14は、グリップ力の増大に対して線形的にオーバーシュートの抑制度合いを強くしてもよい。
【0021】
また、制御部14は、コーナリングフォースFxが大きいほど、抑制制御によるオーバーシュートの抑制を強くするように構成されている。制御部14は、グリップ力が第1閾値を超えた場合、コーナリングフォースFxと摩擦円の半径との差(以下「横方向余力」という)が所定値未満であるか否かを判定する。制御部14は、横方向余力が所定値未満である場合、横方向余力が所定値以上である場合よりも、前後力Fyの目標値の増大勾配に対する勾配減少量を大きくする。例えば、制御部14は、横方向余力が所定値以上である場合には制限係数をα1とし、横方向余力が所定値未満である場合には制限係数をα1より小さいα2とする(0<α2<α1<1)。このように、制御部14は、コーナリングフォースFxが大きいほど、抑制制御によるオーバーシュートの抑制を段階的に強くする。なお、制御部14は、コーナリングフォースFxが大きいほど、抑制制御によるオーバーシュートの抑制を線形的に強くしてもよい。
【0022】
また、上記のようにコーナリングフォースFxの増大に対してオーバーシュートの抑制を段階的に強くする場合、その閾値は、所定値に限らず、例えば摩擦円の半径に対するコーナリングフォースFxの割合であってもよい。この場合、例えば、制御部14は、摩擦円の半径に対するコーナリングフォースFxの大きさの割合が所定割合以上である場合、当該割合が所定割合未満である場合よりも、前後力の目標値の増大勾配に対する勾配減少量を大きくする。当該割合が大きいほど、グリップ力に占めるコーナリングフォースFxの割合が大きくなり、抑制制御により前後力Fyに対するオーバーシュートの抑制が強くなる。
【0023】
また、制御部14は、摩擦円の変化を推定し、推定結果に応じた抑制制御を実行する。制御部14は、操舵角情報などの各種情報に基づいて、所定時間後の摩擦円の半径を演算(推定)する。例えば、操舵角が増大している状況では、車両が旋回していると推定でき、所定時間後に旋回外側の車輪の垂直荷重Fzが大きくなり、当該車輪の摩擦円の半径も大きくなることが推定できる。制御部14は、各種情報に基づいて推定した所定時間後の各車輪41~44の垂直荷重Fzに基づいて、次に変化する場合における摩擦円が大きくなるか小さくなるかを推定(判定)する。
【0024】
制御部14は、摩擦円が大きくなると推定した車輪41~44に対して、現在の摩擦円内において、第1閾値及び第2閾値を大きくする。また、制御部14は、摩擦円が小さくなると推定した車輪41~44に対して、現在の摩擦円内において、第1閾値及び第2閾値を小さくする。このように、制御部14は、推定した摩擦円の変化の向きに応じて、第1閾値及び第2閾値を変化させる。閾値の変化は、例えば、摩擦円の半径に対する割合又は余力値を変化させて実行できる。
【0025】
また、制御部14は、車両に設けられた第1車輪(例えば車輪41)に対する抑制制御の実行に際して、第1車輪とは別に車両に設けられた第2車輪(例えば車輪42)の目標制動力又は目標駆動力を、第1車輪に対する抑制制御におけるオーバーシュートの抑制度合いに基づいて設定するように構成されている。本実施形態の制御部14は、駆動輪である左右一対の車輪41、42の目標駆動力を、当該左右一対の車輪41、42の目標駆動力のうち小さいほうの目標駆動力に合わせるように構成されている。つまり、制御部14は、車輪41の目標駆動力と車輪42の目標駆動力を等しくし、かつ車輪41、42の目標駆動力のうち最小の目標駆動力とする。例えば抑制制御実行時には、制御部14は、抑制制御により車輪41、42のうち一方の目標駆動力を制限する場合、車輪41、42のうち他方の目標駆動力も、一方の目標駆動力と同様に制限することとなる。なお、制御部14は、目標制動力に対しても、上記のように目標値を一方の車輪に対する抑制制御の抑制度合いに基づいて設定してもよい。例えば、制御部14は、目標制動力に対して、目標駆動力同様の制御を実行してもよい。
【0026】
ここで、本実施形態の抑制制御の流れの一例について図3を参照して説明する。以下に説明する処理の流れは、1つの車輪41~44に対する処理であり、実際には同様の処理がすべての車輪41~44について並列で実行される。
【0027】
まず、車両制御装置1は、各種情報に基づいて摩擦円、グリップ力、及び2つの閾値を演算する(S101)。第1閾値及び第2閾値は、摩擦円が変化する度に設定される。そして、車両制御装置1は、演算されたグリップ力と第2閾値とを比較する(S102)。グリップ力が第2閾値より大きい場合(S102:No)、車両制御装置1は、前後力Fyの目標値を所定の制限値で一定にする。この例において、所定の制限値は、グリップ力が第2閾値を超えた時点の前後力Fy(実値)に設定されている。つまり、車両制御装置1は、グリップ力が第2閾値を超えた時点の前後力Fyを、前後力Fyの目標値に設定する。例えば、制御部14は、前後力Fyの目標値を、計算式{(第2閾値)-Fx1/2で算出する。
【0028】
一方、グリップ力が第2閾値以下である場合(S102:Yes)、車両制御装置1は、演算されたグリップ力と第1閾値とを比較する(S104)。グリップ力が第1閾値より大きい場合(S104:No)、車両制御装置1は、ドライバの前後力操作の増大にかかわらず、前後力Fyの目標値の増大勾配を小さくする(S105)。より具体的に、制御部14は、前後力Fyの目標値として、前後力Fyの前回の目標値に制限変化量を加えた値を設定する。制限変化量は、例えば、ドライバの操作により本来変化すべき目標値の変化量(通常の変化量)に対して、制限係数αを乗算したものである(0<α<1)。
【0029】
グリップ力が第1閾値以下である場合(S104:Yes)、車両制御装置1は、前後力Fyの目標値に対して制限することなく、ドライバの操作等に応じた通常の制御を実行する(S106)。そして、車両制御装置1は、各ステップS103、S105、S106の後に、現在発生している前後力Fyが駆動力であるか否かを判定する(S107)。前後力Fyが駆動力である場合(S107:Yes)、車両制御装置1は、駆動輪である左右の車輪41、42の前後力Fyの目標値を、左右で最小の目標値で一致させる(S108)。前後力Fyが制動力である場合(S107:No)、処理フローは終了し、スタートに戻る。図3のENDはリターンを意味し、車両制御装置1は、上記の処理フローを所定周期で繰り返す。
【0030】
(効果)
本実施形態によれば、抑制制御が実行されることで、グリップ力が摩擦円に近づくほど、強くオーバーシュートが抑制される。このオーバーシュートが考慮された前後力Fy(制動力又は駆動力)の制御により、オーバーシュートが抑制されて、操舵角制御なしに、精度良くグリップ力を摩擦円内に収めることが可能となる。つまり、状況に応じて前後力Fyに対するオーバーシュートの抑制度合いを変えることで、各車輪41~44に対する操舵角制御なしに、車両の挙動の安定化精度を向上させることができる。
【0031】
また、本実施形態によれば、コーナリングフォースFxが大きいほど、抑制制御による前後力Fyのオーバーシュートの抑制が強くなる構成であるため、車両に大きなコーナリングフォースFxが加わっている状態での挙動の安定化精度を向上させることができる。車両の横方向の挙動の安定化は、車両がコーナーをより安定して曲がる上で重要であり、本実施形態では、この点での精度向上が可能となる。より安全な走行を目指す観点では、前後方向よりも左右方向の挙動安定が重要となる。
【0032】
また、制御部14が抑制制御として前後力Fyの目標値の増大勾配を小さくするため、抑制制御の実行によって極端に前後力Fyが変化することを抑制することができ、ひいてはドライバに違和感を与えることを抑制することができる。
【0033】
また、制御部14が摩擦円の変化を推定し推定結果に応じた抑制制御を実行するため、抑制制御による前後力Fyの制限を状況に応じて実行することができる。例えば、推定された変化後の摩擦円が現在の摩擦円より大きい場合、すなわち摩擦円が大きくなると推定された場合、第1閾値及び第2閾値を現在の摩擦円内で大きくすることで、より前後力Fyが制限されにくくなり、ドライバの操作に近い制御が長く維持される。また、摩擦円が大きくなると推定された場合、各閾値を摩擦円に近づけたとしても、次の摩擦円演算で摩擦円が大きくなり、グリップ力が摩擦円外になることは抑制される。反対に、摩擦円が小さくなると推定された場合、第1閾値及び第2閾値を小さくすることで、摩擦円が変化した後でも、より確実にグリップ力が摩擦円内に収まるようにすることができる。
【0034】
また、制御部14は、駆動輪である車輪41、42の目標駆動力を、車輪41、42の目標駆動力のうち小さいほうに合わせるため、減速時と加速時とのうち挙動安定化の必要度が高い加速時について、挙動の安定化精度を向上させることができる。本実施形態によれば、例えば、抑制制御により一方の車輪41の目標駆動力が低下した場合、他方の車輪42の目標駆動力もそれと同様に低下し、挙動の安定化が図られる。一方、制動力に関しては、各車輪41~44で設定された目標制動力に基づいて、各車輪41~44独立した制御がなされる。なお、制御部14は、目標制動力に関しても目標駆動力同様、抑制制御対象の車輪の目標制動力の変化に応じて、他の車輪の目標制動力を変更してもよい。これによっても、必要度は比較的小さいものの、減速時でも車両挙動の安定化精度を向上させることができる。
【0035】
(その他)
本発明は、上記実施形態に限られない。例えば、制御部14は、抑制制御の対象が、駆動力か制動力かにより、オーバーシュートの抑制度合いを変化させてもよい。例えば、車両構成が駆動力よりも制動力のほうがオーバーシュートしやすい構成である場合、制御部14は、目標制動力に対する抑制度合いを目標駆動力に対する抑制度合いよりも強くしてもよい。例えば、目標制動力の増大勾配に対する制限係数α3を、目標駆動力の増大勾配に対する制限係数α4よりも小さくしてもよい。反対に、車両構成が制動力よりも駆動力のほうがオーバーシュートしやすい構成である場合、制御部14は、目標駆動力に対する抑制度合いを目標制動力に対する抑制度合いよりも強くしてもよい。
【0036】
これにより、より車両の構成上の特徴に応じた抑制制御が実行できる。オーバーシュートは、目標値の増大が停止しているにもかかわらず実値が増大する現象であり、実指令に対する応答遅れが大きいことや構造上のヒステリシスがあることが主な発生要因となっている。一例として、一般的に、応答遅れがある構成を応答遅れが大きい順に記載すると、エンジン(駆動力)、液圧制動装置(制動力)、モータ(駆動力/制動力)の順となる。この装置の特徴を考慮して、車両に搭載される駆動力発生装置3及び制動力発生装置2の構成に応じて、駆動力と制動力とで抑制度合いを変更してもよい。また、駆動力側と制動力側とで、設定する各閾値の大きさを変えてもよい。例えば、比較的オーバーシュートが起きやすい構成側に対しては、閾値を比較的小さくして、早めに目標値の増大勾配を制限してもよい。
【0037】
また、制御部14は、コーナリングフォースFxの大きさに応じて抑制制御を実行するにあたり、前後力FyとコーナリングフォースFxとの大きさを比較してもよい。そして、制御部14は、当該比較の結果、コーナリングフォースFxが前後力Fyより大きい場合、コーナリングフォースFxが前後力Fy以下である場合よりも、前後力の目標値の増大勾配に対する減少量を大きくしてもよい。これによっても、上記同様、横方向の車両挙動の安定化精度を向上させることができる。
【0038】
また、制御部14は、グリップ力が第1閾値(又は第2閾値)を超えた場合、前後力Fyを現在の値から減少させるように目標値を設定してもよい。また、閾値は3つ以上設定されてもよい。また、摩擦円からグリップ力を減算した値を余力値(余裕度)として、当該余力値に対して複数の閾値を設定してもよい。また、四輪駆動の車両において、各車輪41~44の目標駆動力を、四輪の最小の目標駆動力に設定してもよい。
【0039】
また、車両の挙動を検出するセンサとしては、上記に限らず、例えばヨーレートセンサなどの公知のセンサを用いることができる。また、車両制御装置1を構成するECUは、ブレーキECU23等の他のECUとの兼用のECUであってもよい。
【符号の説明】
【0040】
1…車両制御装置、11…情報取得部、12…摩擦円演算部、13…グリップ力演算部、14…制御部、2…制動力発生装置、3…駆動力発生装置、41~44…車輪。

図1
図2
図3