(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-11
(45)【発行日】2022-07-20
(54)【発明の名称】電力供給システム
(51)【国際特許分類】
H02J 3/00 20060101AFI20220712BHJP
H02J 3/32 20060101ALI20220712BHJP
H02J 3/38 20060101ALI20220712BHJP
H02J 7/35 20060101ALI20220712BHJP
H02J 3/14 20060101ALI20220712BHJP
H02J 7/04 20060101ALI20220712BHJP
【FI】
H02J3/00 180
H02J3/32
H02J3/38 170
H02J7/35 K
H02J3/38 130
H02J3/00 170
H02J3/14 160
H02J7/04 H
(21)【出願番号】P 2018057252
(22)【出願日】2018-03-23
【審査請求日】2021-03-01
(73)【特許権者】
【識別番号】390037154
【氏名又は名称】大和ハウス工業株式会社
(74)【代理人】
【識別番号】100162031
【氏名又は名称】長田 豊彦
(74)【代理人】
【識別番号】100175721
【氏名又は名称】高木 秀文
(72)【発明者】
【氏名】藤本 卓也
(72)【発明者】
【氏名】七岡 寛
(72)【発明者】
【氏名】黒木 洋
(72)【発明者】
【氏名】田中 宏典
(72)【発明者】
【氏名】藤堂 香織
(72)【発明者】
【氏名】熊埜御堂 令
【審査官】高野 誠治
(56)【参考文献】
【文献】特開2015-177717(JP,A)
【文献】国際公開第2017/022077(WO,A1)
【文献】国際公開第2017/077716(WO,A1)
【文献】国際公開第2015/075772(WO,A1)
【文献】特開2013-207932(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 3/00 - 5/00
H02J 7/00 - 7/12
H02J 7/34 - 7/36
H01M 10/42 -10/48
(57)【特許請求の範囲】
【請求項1】
自然エネルギーを利用して発電可能であると共に当該発電された電力を商用電源へと売電可能な発電部と、
前記商用電源からの商用電力及び前記発電部からの発電電力を充放電可能な蓄電装置と、
前記蓄電装置の充放電を制御する制御部と、
を具備し、
前記制御部は、
前記商用電力を前記蓄電装置に充電した時の前記商用電力の買電単価である充電時買電単価、及び前記発電電力を前記蓄電装置に充電した時の前記発電電力の売電単価である充電時売電単価に基づいて、充電した電力の平均単価である充電単価を算出し、算出した前記充電単価に基づいて前記蓄電装置の充放電を制御
し、
前記蓄電装置に充電可能な時間帯である充電タイミングを決定する計画処理を実行可能であり、
前記計画処理において、
電力需要に対して前記発電電力の余剰が発生する第一の時間帯、前記商用電力の買電単価が最少となる第二の時間帯、又は前記商用電力の買電単価が前記発電電力の売電単価未満となる第三の時間帯を予測し、予測した当該第一の時間帯、当該第二の時間帯及び当該第三の時間帯を前記充電タイミングとし、
前記充電タイミングそれぞれにおいて前記蓄電装置に充電すべき充電量である目標充電量を決定可能であり、
前記充電タイミングの一つである第一充電タイミングから当該第一充電タイミングの次の充電タイミングである第二充電タイミングまでの電力需要及び前記発電部の発電量を予測し、予測した当該電力需要及び当該発電量に基づいて、前記第一充電タイミングにおける前記目標充電量を決定し、
前記第一の時間帯における前記充電時売電単価、前記第二の時間帯における前記充電時買電単価、及び前記第三の時間帯における前記充電時買電単価に対して、単価が低い順に優先順位を設定し、
前記優先順位が最も上位の前記充電タイミングにおける前記目標充電量を、前記蓄電装置の最大容量に修正する、
電力供給システム。
【請求項2】
前記制御部は、
前記計画処理において、
前記優先順位が最も上位の前記充電タイミングにおいて前記蓄電装置の最大能力で充電しても前記最大容量に到達しない場合、前記優先順位が2番目に上位の前記充電タイミングにおける前記目標充電量に不足分を加算する、
請求項1に記載の電力供給システム。
【請求項3】
前記制御部は、
前記充電単価が現在の前記商用電力の買電単価よりも低い場合、電力需要に応じて前記蓄電装置を放電させる、
請求項1又は請求項2に記載の電力供給システム。
【請求項4】
燃料を利用して発電可能な燃料電池を具備し、
前記制御部は、
前記燃料電池の発電単価が前記充電単価及び現在の前記商用電力の買電単価よりも低い場合、前記燃料電池を発電させる、
請求項1から請求項3までのいずれか一項に記載の電力供給システム。
【請求項5】
前記制御部は、
前記充電単価が前記燃料電池の前記発電単価及び現在の前記商用電力の買電単価よりも低い場合、前記蓄電装置を放電させる、
請求項4に記載の電力供給システム。
【請求項6】
前記制御部は、
前記充電単価が前記燃料電池の前記発電単価及び現在の前記商用電力の買電単価よりも低く、かつ、前記燃料電池の前記発電単価が現在の前記商用電力の買電単価よりも低い場合において、
各時間における前記蓄電装置の放電量が平均化するように前記蓄電装置を放電させ、
平均化された前記放電量では予測される電力需要の全部又は一部を賄えない場合、前記燃料電池を発電させる、
請求項5に記載の電力供給システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発電部からの電力を充放電可能な蓄電装置を具備する電力供給システムの技術に関する。
【背景技術】
【0002】
従来、発電部からの電力を充放電可能な蓄電装置を具備する電力供給システムの技術は公知となっている。例えば、特許文献1に記載の如くである。
【0003】
特許文献1には、太陽光発電部及び当該太陽光発電部からの電力を充放電可能な蓄電装置を具備する電力供給システムが記載されている。当該電力供給システムは、太陽光発電部からの余剰電力を商用電源へと逆潮流(売電)させることが可能であり、また電力単価の低い深夜電力を蓄電装置に充電するように構成されている。これにより、光熱費の低減を図ることができる。
【0004】
しかしながら、太陽光発電の売電単価は近年低下しており、例えば、昼間の電力価格よりも低くなる場合がある。このため、特許文献1に記載の電力供給システムにおいては、このような電力単価の変動があった場合、光熱費を最小化することができない場合があった。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は以上の如き状況に鑑みてなされたものであり、その解決しようとする課題は、電力単価の変動に応じて光熱費の低減を図ることができる電力供給システムを提供することである。
【課題を解決するための手段】
【0007】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
【0008】
即ち、請求項1においては、自然エネルギーを利用して発電可能であると共に当該発電された電力を商用電源へと売電可能な発電部と、前記商用電源からの商用電力及び前記発電部からの発電電力を充放電可能な蓄電装置と、前記蓄電装置の充放電を制御する制御部と、を具備し、前記制御部は、前記商用電力を前記蓄電装置に充電した時の前記商用電力の買電単価である充電時買電単価、及び前記発電電力を前記蓄電装置に充電した時の前記発電電力の売電単価である充電時売電単価に基づいて、充電した電力の平均単価である充電単価を算出し、算出した前記充電単価に基づいて前記蓄電装置の充放電を制御し、前記蓄電装置に充電可能な時間帯である充電タイミングを決定する計画処理を実行可能であり、前記計画処理において、電力需要に対して前記発電電力の余剰が発生する第一の時間帯、前記商用電力の買電単価が最少となる第二の時間帯、又は前記商用電力の買電単価が前記発電電力の売電単価未満となる第三の時間帯を予測し、予測した当該第一の時間帯、当該第二の時間帯及び当該第三の時間帯を前記充電タイミングとし、前記充電タイミングそれぞれにおいて前記蓄電装置に充電すべき充電量である目標充電量を決定可能であり、前記充電タイミングの一つである第一充電タイミングから当該第一充電タイミングの次の充電タイミングである第二充電タイミングまでの電力需要及び前記発電部の発電量を予測し、予測した当該電力需要及び当該発電量に基づいて、前記第一充電タイミングにおける前記目標充電量を決定し、前記第一の時間帯における前記充電時売電単価、前記第二の時間帯における前記充電時買電単価、及び前記第三の時間帯における前記充電時買電単価に対して、単価が低い順に優先順位を設定し、前記優先順位が最も上位の前記充電タイミングにおける前記目標充電量を、前記蓄電装置の最大容量に修正するものである。
【0012】
請求項2においては、前記制御部は、前記計画処理において、前記優先順位が最も上位の前記充電タイミングにおいて前記蓄電装置の最大能力で充電しても前記最大容量に到達しない場合、前記優先順位が2番目に上位の前記充電タイミングにおける前記目標充電量に不足分を加算するものである。
【0013】
請求項3においては、前記制御部は、前記充電単価が現在の前記商用電力の買電単価よりも低い場合、電力需要に応じて前記蓄電装置を放電させるものである。
【0014】
請求項4においては、燃料を利用して発電可能な燃料電池を具備し、前記制御部は、前記燃料電池の発電単価が前記充電単価及び現在の前記商用電力の買電単価よりも低い場合、前記燃料電池を発電させるものである
【0015】
請求項5においては、前記制御部は、前記充電単価が前記燃料電池の前記発電単価及び現在の前記商用電力の買電単価よりも低い場合、前記蓄電装置を放電させるものである。
【0016】
請求項6においては、前記制御部は、前記充電単価が前記燃料電池の前記発電単価及び現在の前記商用電力の買電単価よりも低く、かつ、前記燃料電池の前記発電単価が現在の前記商用電力の買電単価よりも低い場合において、各時間における前記蓄電装置の放電量が平均化するように前記蓄電装置を放電させ、平均化された前記放電量では予測される電力需要の全部又は一部を賄えない場合、前記燃料電池を発電させるものである。
【発明の効果】
【0017】
本発明の効果として、以下に示すような効果を奏する。
【0018】
請求項1においては、電力単価の変動に応じて光熱費の低減を図ることができる。また、請求項1においては、余剰電力が生じるタイミング又は充電する電力の電力単価の低いタイミングで蓄電装置に充電することができる。また、請求項1においては、次の充電タイミング(第二充電タイミング)までの電力需要を、蓄電装置から放電される電力によって賄うことができる。また、請求項1においては、電力単価が低い電力を多く充電できるため、光熱費の低減を図ることができる。
【0022】
請求項2においては、電力単価が最も低い充電タイミングで充電した電力だけでは電力需要を賄えない場合であっても、電力単価が2番目に低い充電タイミングで充電した電力で電力需要を賄うことができるため、光熱費を抑えつつ電力需要を賄うことができる。
【0023】
請求項3においては、電力単価の低い蓄電装置からの電力を電力需要に充てることができるため、光熱費の低減を図ることができる。
【0024】
請求項4においては、電力単価の低い燃料電池からの電力を電力需要に充てることができるため、光熱費の低減を図ることができる。
【0025】
請求項5においては、電力単価の低い蓄電装置からの電力を電力需要に充てることができるため、光熱費の低減を図ることができる。
【0026】
請求項6においては、蓄電装置からの電力と燃料電池からの電力とで電力需要を賄えるにもかかわらず商用電力を買電してしまうのを防ぐことができる。
【図面の簡単な説明】
【0027】
【
図1】本発明の一実施形態に係る電力供給システムの構成を示したブロック図。
【
図2】計画処理に係る制御のフローチャートを示した図。
【
図3】PV電力及び電力需要の時間ごとの推移を示した図。
【
図4】購入電力単価、PV電力単価及びFC発電単価の時間ごとの推移を示した図。
【
図5】各充電タイミングの目標充電量の設定方法を示す図。
【
図6】(a)満充電時間の設定方法を示す図。(b)目標充電量の修正方法を示す図。
【
図7】実行処理に係る制御のフローチャートを示した図。
【発明を実施するための形態】
【0028】
以下では、
図1を用いて、本発明の一実施形態に係る電力供給システム1について説明する。
【0029】
電力供給システム1は、住宅等に設けられ、商用電源Sや後述する燃料電池20等からの電力を図示せぬ負荷へと供給するものである。電力供給システム1は、主として太陽光発電部10、燃料電池20、蓄電装置30、分電盤40及び制御装置50を具備する。
【0030】
太陽光発電部10は、太陽光(自然エネルギー)を利用して発電する装置である。太陽光発電部10は、太陽電池パネル(PV)等により構成される。太陽光発電部10は、例えば住宅の屋根の上等の日当たりの良い場所に設置される。太陽光発電部10は、発電した電力を出力可能に構成される。
【0031】
燃料電池20は、固体酸化物形燃料電池(SOFC : Solid Oxide Fuel Cell)等により構成され、住宅に設置される燃料電池である。燃料電池20は、供給される燃料(例えば、水素等)を用いて発電することができる。また、燃料電池20は図示せぬ貯湯ユニットを備え、発電時に発生する熱を用いて当該貯湯ユニット内で湯を沸かすことができる。
【0032】
蓄電装置30は、商用電源Sや太陽光発電部10からの電力を充放電可能に構成される装置である。蓄電装置30は、電力を充放電可能なリチウムイオン電池やニッケル水素電池等からなる蓄電池や、供給されてくる交流電力を整流して前記蓄電池に充電させる充電器や、前記蓄電池からの直流電力を交流電力に変換して出力するインバータ等を具備する。
【0033】
分電盤40は、負荷の消費電力に応じて電力の供給元から供給された電力を、当該負荷に分配するものである。分電盤40は、図示せぬ漏電遮断器や、配線遮断器、制御ユニット等により構成される。分電盤40は、電力の供給元としての商用電源Sや、太陽光発電部10、燃料電池20及び蓄電装置30と接続され、これらからの電力が適宜供給される。
【0034】
なお、本実施形態において負荷とは、住宅において電力が消費される電化製品等に接続される回路である。負荷は、例えば部屋ごとや、エアコンのように大きな電力を消費する機器専用のコンセントごとに設けられ、それぞれ分電盤40に接続される(不図示)。
【0035】
制御装置50は、電力供給システム1内の情報を管理すると共に、当該電力供給システム1における電力の供給態様、例えば、燃料電池20の発電や蓄電装置30の充放電等を制御するものである。制御装置50は、RAMやROM等の記憶部や、CPU等の演算処理部等により構成される。
【0036】
制御装置50は、前記記憶部に、電力単価に係る情報を記憶する。具体的には、制御装置50は、電力単価に係る情報として、商用電源Sから購入する電力(以下、「購入電力」という)の買電単価(以下、「購入電力単価」という)、太陽光発電部10によって発電された電力(以下、「PV電力」という)の売電単価(以下、「PV電力単価」という)、燃料電池20の発電単価(燃料電池20の発電に要する燃料の購入単価。以下、「FC発電単価」という)を記憶する。
【0037】
制御装置50は、購入電力を蓄電装置30に充電した時の購入電力単価を記憶する。また、制御装置50は、PV電力を蓄電装置30に充電した時のPV電力単価を記憶する。
【0038】
制御装置50は、前記記憶部に、時間ごとの負荷の消費電力(電力需要)のデータ(実績)を蓄積する。また、制御装置50は、時間ごとのPV電力のデータ(実績)を蓄積する。制御装置50は、これら蓄積したデータに基づいて、将来の電力需要及びPV電力量を予測する。
【0039】
制御装置50は、このような電力単価に係る情報や、予測した将来の電力需要及びPV電力に基づいて、蓄電装置30に充電を行う時間帯(以下、「充電タイミング」という)、及び充電タイミング終了時に蓄電装置30に蓄えておくべき電力量(以下、「目標充電量」という)を計画する計画処理を行う。また、制御装置50は、電力需要に対してどの電力源(商用電源S、燃料電池20又は蓄電装置30)から負荷に電力を供給するかを決定し、実際に電力の供給を行う実行処理を行う。
【0040】
なお、本発明に係る「制御装置」の構成は、制御装置50の構成に限定するものではない。例えば、本発明に係る「制御装置」は、蓄電装置30の制御部や、燃料電池20の制御部により構成されるものであってもよい。
【0041】
以下では、
図2から
図6を用いて、制御装置50による計画処理に係る制御について説明する。なお、
図3に示すPV電力及び電力需要の時間ごとの推移、及び
図4に示す購入電力単価及びPV電力単価の時間ごとの推移は、過去の実績等に基づいて制御装置50によって予測されたものである。
【0042】
また、
図4においては、便宜上電力単価を折れ線で示しているが、時刻t(例えば6時)の位置に示された電力単価は、t時台(例えば6時台)の電力単価である。
【0043】
図2に示すように、ステップS10において、制御装置50は、充電タイミングの設定を行う。このステップにおいて、制御装置50は、PV余剰電力(電力需要に対して余剰するPV電力)が発生する時間帯(第一の時間帯)を、1つ目の充電タイミングに設定する。また、制御装置50は、購入電力単価が最少となる時間帯(第二の時間帯)を、2つ目の充電タイミングに設定する。また、制御装置50は、購入電力単価がPV電力単価未満となる時間帯(第三の時間帯)を、3つ目の充電タイミングに設定する。
【0044】
図3に示す例においては、9~16時台において、PV電力が電力需要を上回っており、PV余剰電力が発生している。よって、制御装置50は、9~16時台(第一の時間帯)を1つ目の充電タイミングとして設定する。
【0045】
また、
図4に示す例においては、3~6時台において、購入電力単価が最少となっている。よって、制御装置50は、3~6時台(第二の時間帯)を2つ目の充電タイミングとして設定する。
【0046】
また、
図4に示す例においては、21~6時台において、購入電力単価がPV電力単価未満となっている。よって、制御装置50は、21~6時台のうち、第二の時間帯(3~6時台)と重複する部分を除く21~2時台(第三の時間帯)を3つ目の充電タイミングとして設定する。
【0047】
制御装置50は、当該ステップS10の処理を行った後、ステップS12に移行する。
【0048】
ステップS12において、制御装置50は、充電タイミングの優先順位の設定を行う。このステップにおいて、制御装置50は、各充電タイミング(第一から第三の各時間帯)のうち、どの充電タイミング(時間帯)に優先的に蓄電装置30に充電を行う(目標充電量を上方修正する(増大させる))のかを決定する。制御装置50は、充電時の電力単価の低い順に、充電タイミングの優先順位を設定する。具体的には、制御装置50は、9~16時台(第一の時間帯)におけるPV電力単価、3~6時台(第二の時間帯)における購入電力単価、及び21~2時台(第三の時間帯)における購入電力単価に対して、単価の低い順に優先順位を設定する。
【0049】
図4に示す例においては、3~6時台(第二の時間帯)の購入電力単価、21~2時台(第三の時間帯)の購入電力単価、9~16時台(第一の時間帯)のPV電力単価、の順で電力単価が低いため、3~6時台(第二の時間帯)を優先順位第1位、21~2時台(第三の時間帯)を優先順位第2位、9~16時台(第一の時間帯)を優先順位第3位とする。
【0050】
制御装置50は、当該ステップS12の処理を行った後、ステップS14に移行する。
【0051】
ステップS14において、制御装置50は、各充電タイミングの目標充電量の設定を行う。このステップにおいて、制御装置50は、各充電タイミング間の購入電力量(すなわち、電力需要量に対してPV電力量で賄えない分)を算出する。そして、制御装置50は、(算出した)各充電タイミング(の終了時点)から次の充電タイミングまでの間の購入電力量を、各充電タイミングの目標充電量とする。この際、制御装置50は、目標充電量が蓄電装置30の蓄電容量(最大容量)を超える場合は、目標充電量を最大容量とする。
【0052】
図5に示すように、3~6時台(第二の時間帯)の目標充電量は、次の充電タイミングである9~16時台(第一の時間帯)までの期間(7~8時台)における購入電力量である1.5kWh(
図3及び
図5においてH1で示される領域に相当する電力量)に設定される。また、9~16時台(第一の時間帯)の目標充電量は、次の充電タイミングである21~2時台(第三の時間帯)までの期間(17~20時台)における購入電力量である7.5kWh(
図3及び
図5においてH2で示される領域に相当する電力量)に設定される。また、21~2時台(第三の時間帯)の目標充電量は、次の充電タイミングである3~6時台(第二の時間帯)までの期間が存在しないため、0kWhに設定される。なお、
図5及び以下で説明する
図6においては、充電タイミングの終了時点における目標充電量を概念的に示しており、例えば3~6時台(第二の時間帯)においては、3~6時台全体で1.5kWh充電することを示しており、1時間ごとに1.5kWhずつ充電することを示すものではない。
【0053】
これにより、次の充電タイミングまでの電力需要を、蓄電装置30から放電される電力によって賄うことができる。制御装置50は、当該ステップS14の処理を行った後、ステップS16に移行する。
【0054】
ステップS16において、制御装置50は、満充電時間(目標充電量を蓄電装置30の蓄電容量とする充電タイミング)の設定を行う。このステップにおいて、制御装置50は、ステップS12で設定した優先順位が第1位(最も上位)の充電タイミングの目標充電量を、蓄電装置30の蓄電容量に修正する。
【0055】
例えば、蓄電装置30の蓄電容量を10kWhとすると、
図6(a)に示すように、制御装置50は、優先順位第1位の充電タイミングである3~6時台(第二の時間帯)における目標充電量を、蓄電装置30の蓄電容量である10kWhに修正する(
図5及び
図6(a)参照)。
【0056】
これにより、電力単価が低い電力を多く充電できるため、光熱費の低減を図ることができる。制御装置50は、当該ステップS16の処理を行った後、ステップS18に移行する。
【0057】
ステップS18において、制御装置50は、充電可能量>目標充電量であるか否かの判定を行う。ここで、充電可能量とは、充電タイミングの時間帯全体において蓄電装置30が最大入力電力(最大能力)で充電したときの電力量である。
【0058】
制御装置50は、充電可能量>目標充電量であると判定した場合(ステップS18で「YES」)、
図2に示す計画処理に係る制御を終了する。一方、制御装置50は、充電可能量>目標充電量でないと判定した場合(ステップS18で「NO」)、ステップS20に移行する。
【0059】
なお、ステップS18で「NO」の場合とは、優先順位第1位の充電タイミングにおいて蓄電装置30の最大入力電力で充電しても、目標充電量に到達しない場合を示している。例えば、蓄電装置30の最大入力電力を2kWとし、優先順位第1位の充電タイミングである3~6時台(第二の時間帯)の目標充電量を10kWhとすると、優先順位第1位の充電タイミングである3~6時台(第二の時間帯)における蓄電装置30の充電可能量は、2kW×4h=8kWhとなり、目標充電量(10kWh)に2kWhだけ不足する。
【0060】
ステップS20において、制御装置50は、優先順位第1位の3~6時台(第二の時間帯)の目標充電量に対する不足分、すなわち当該目標充電量(10kWh)から充電可能量(8kWh)を減算した値(2kWh)を、優先順位第2位の21~2時台(第三の時間帯)の目標充電量に加算する(振り分ける)。
【0061】
これにより、安価な電力で蓄電装置30を満たすことができ、全体の光熱費を抑えることができる。制御装置50は、当該ステップS20の処理を行った後、
図2に示す計画処理に係る制御を終了する。
【0062】
以上の如く計画処理に係る制御を行うことにより、PV余剰電力を充電するとともに、購入電力量に合わせて、より単価の低い(安価な)電力を蓄電装置30に充電することができるため、光熱費の削減を図ることができる。
【0063】
次に、
図3、
図4及び
図7を用いて、制御装置50による実行処理に係る制御について説明する。
【0064】
図7に示すように、ステップS28において、制御装置50は、現在が充電タイミングであるか否かを判定する。充電タイミングは、
図2に示す計画処理に係る制御で決定されたものである(
図3及び
図4参照)。
【0065】
制御装置50は、現在が充電タイミングであると判定した場合(ステップS28で「YES」)、ステップS30に移行する。
【0066】
ステップS30において、制御装置50は、蓄電残量>目標充電量であるか否かの判定を行う。蓄電残量は、蓄電装置30に蓄電された現在の電力量である。目標充電量は、
図2に示す計画処理に係る制御で決定されたものである(
図6(b)参照)。
【0067】
制御装置50は、蓄電残量>目標充電量でないと判定した場合(ステップS30で「NO」)、ステップS32に移行する。一方、制御装置50は、蓄電残量>目標充電量であると判定した場合(ステップS30で「YES」)、
図7に示す実行処理に係る制御を終了する。
【0068】
なお、ステップS30で「NO」の場合とは、蓄電残量が目標充電量に達しておらず、蓄電装置30の充電が必要であることを示している。一方、ステップS30で「YES」の場合とは、蓄電残量が目標充電量に達しており、蓄電装置30の充電が不要であることを示している。
【0069】
ステップS32において、制御装置50は、FC発電単価<購入電力単価又はPV電力単価であるか否かを判定する。具体的には、制御装置50は、現在が、購入電力単価が最少となる第二の時間帯(3~6時台)、又は購入電力単価がPV電力単価未満となる第三の時間帯(21~2時台)である場合には、FC発電単価<購入電力単価であるか否かを判定する。また、制御装置50は、現在が、PV余剰電力が発生する第一の時間帯(9~16時台)である場合には、FC発電単価<PV電力単価であるか否かを判定する。
【0070】
制御装置50は、FC発電単価<購入電力単価又はPV電力単価であると判定した場合(ステップS32で「YES」)、ステップS34に移行する。一方、制御装置50は、FC発電単価<購入電力単価又はPV電力単価でないと判定した場合(ステップS32で「NO」)、ステップS36に移行する。
【0071】
ステップS34において、制御装置50は、燃料電池20の発電を行う。制御装置50は、電力需要に応じて、燃料電池20を発電させる。
【0072】
図4に示す例においては、制御装置50は、FC発電単価<PV電力単価である9~16時台(第一の時間帯)において、電力需要に応じて燃料電池20を発電させる。また、制御装置50は、FC発電単価<購入電力単価である21~2時台(第三の時間帯)において電力需要に応じて燃料電池20を発電させる。
【0073】
このように、電力単価の低い燃料電池20によって発電された電力(以下、「FC電力」という」を電力需要に充てることにより、購入電力量を減らすことができ、光熱費を低減することができる。
【0074】
制御装置50は、当該ステップS34の処理を行った後、ステップS36に移行する。
【0075】
ステップS36において、制御装置50は、蓄電装置30の充電を行う。制御装置50は、
図2に示す計画処理に係る制御で決定された充電タイミング及び目標充電量で、蓄電装置30を充電させる(
図6(b)参照)。
【0076】
図3及び
図4に示す例においては、制御装置50は、3~6時台(第二の時間帯)において、蓄電装置30の蓄電残量が目標充電量である10kWh(
図6(b)参照)となるように、購入電力によって蓄電装置30の充電を行う。また、制御装置50は、9~16時台(第一の時間帯)において、蓄電装置30の蓄電残量が目標充電量である7.5kWh(
図6(a)及び
図6(b)参照)となるように、PV余剰電力によって蓄電装置30の充電を行う。また、制御装置50は、21~2時台(第三の時間帯)において、蓄電装置30の蓄電残量が目標充電量である2kWh(
図6(b)参照)となるように、購入電力によって蓄電装置30の充電を行う。
【0077】
なお、PV余剰電力が発生する9~16時台(第一の時間帯)において、PV余剰電力の全てを充電しても目標充電量に到達しない場合であっても、制御装置50は、PV余剰電力を超えた充電(購入電力による充電)は行わない。
【0078】
制御装置50は、当該ステップS36の処理を行った後、ステップS38に移行する。
【0079】
ステップS38において、制御装置50は、充電単価更新処理を行う。この処理において、制御装置50は、蓄電装置30に充電した電力の平均単価である充電単価を更新する。制御装置50は、例えば1時間ごとに充電単価を更新する。
【0080】
時刻tの充電単価Pt[円/kWh]は、以下の式1により更新(算出)される。
(式1) Pt=(Pt-1×Eb+Pc×Ec)/(Eb+Ec)
ここで、Pt-1は時刻t-1の時点で更新された充電単価[円/kWh]、Ebは時刻t-1の時点の蓄電残量[kWh]、Pcは時刻t-1から時刻tまでの間の充電電力の単価[円/kWh]、Ecは時刻t-1から時刻tまでの間の充電量[kWh]を示している。
【0081】
例えば、21時の時点で更新された充電単価が20[円/kWh]、21時の時点の蓄電残量が4kWh、21~22時の間の充電電力の単価が40[円/kWh]、21~22時の間の充電量が1kWhとすると、22時の充電単価P22は、以下のように算出される。
P22=(20[円/kWh]×4[kWh]+40[円/kWh]×1[kWh])/(4[kWh]+1[kWh])=24[円/kWh]
【0082】
再びステップS28を参照する。制御装置50は、現在が充電タイミングでないと判定した場合(ステップS28で「NO」)、ステップS40に移行する。
【0083】
ステップS40において、制御装置50は、充電単価<購入電力単価であるか否かを判定する。制御装置50は、直前の充電単価と現在の購入電力単価とを比較してこの判定を行う。
【0084】
制御装置50は、充電単価<購入電力単価であると判定した場合(ステップS40で「YES」)、ステップS46に移行する。一方、制御装置50は、充電単価<購入電力単価でないと判定した場合(ステップS40で「NO」)、ステップS42に移行する。
【0085】
なお、ステップS40で「NO」の場合とは、充電単価が購入電力単価より安くなく、電力需要に応じて蓄電装置30を放電させてもコストメリットが得られないことを示している。よって、ステップS40で「NO」の場合には、以下のステップにおいて、蓄電装置30の放電を行わない。一方、ステップS40で「YES」の場合とは、充電単価が購入電力単価より安く、電力需要に応じて蓄電装置30を放電させることにより、コストメリットが得られることを示している。よって、ステップS40で「YES」の場合には、以下のステップにおいて、蓄電装置30の放電を行うことを検討する。
【0086】
ステップS42において、制御装置50は、FC発電単価<購入電力単価であるか否かを判定する。制御装置50は、現在の時刻におけるFC発電単価と購入電力単価とを比較してこの判定を行う。
【0087】
制御装置50は、FC発電単価<購入電力単価であると判定した場合(ステップS42で「YES」)、ステップS44に移行する。一方、制御装置50は、FC発電単価<購入電力単価でないと判定した場合(ステップS42で「NO」)、
図7に示す実行処理に係る制御を終了する。
【0088】
なお、ステップS42で「NO」の場合とは、FC発電単価が購入電力単価より安くなく、電力需要に応じて燃料電池20を発電させてもコストメリットが得られないことを示している。よって、ステップS42で「NO」の場合には、以下のステップにおいて、燃料電池20の発電を行わない。
【0089】
ステップS44において、制御装置50は、燃料電池20の発電を行う。制御装置50は、電力需要に応じて燃料電池20を発電させる。このように、電力単価の低いFC電力を電力需要に充てることにより、購入電力量を減らすことができ、光熱費を低減することができる。
【0090】
制御装置50は、当該ステップS44の処理を行った後、
図7に示す実行処理に係る制御を終了する。
【0091】
一方、ステップS46において、制御装置50は、FC発電単価<購入電力単価であるか否かを判定する。制御装置50は、現在のFC発電単価と購入電力単価とを比較してこの判定を行う。
【0092】
制御装置50は、FC発電単価<購入電力単価であると判定した場合(ステップS46で「YES」)、ステップS50に移行する。一方、制御装置50は、充電単価<購入電力単価でないと判定した場合(ステップS46で「NO」)、ステップS48に移行する。
【0093】
なお、ステップS46で「NO」の場合とは、FC発電単価が購入電力単価より安くなく、燃料電池20を発電させてもコストメリットが得られないことを示している。よって、ステップS46で「NO」の場合には、以下のステップにおいて、燃料電池20の発電を行わない。一方、ステップS46で「YES」の場合とは、FC発電単価が購入電力単価より安く、燃料電池20を発電させることにより、コストメリットが得られることを示している。よって、ステップS46で「YES」の場合には、以下のステップにおいて、燃料電池20の発電を行うことを検討する。
【0094】
ステップS48において、制御装置50は、蓄電装置30の放電を行う。制御装置50は、電力需要に応じて、蓄電装置30を放電させる。このように、電力単価の低い充電電力を放電することにより、購入電力量を減らすことができ、光熱費を低減することができる。
【0095】
制御装置50は、当該ステップS48の処理を行った後、
図7に示す実行処理に係る制御を終了する。
【0096】
ステップS50において、制御装置50は、FC発電単価<充電単価であるか否かを判定する。制御装置50は、現在のFC発電単価と直前の充電単価とを比較してこの判定を行う。
【0097】
制御装置50は、FC発電単価<充電単価であると判定した場合(ステップS50で「YES」)、ステップS52に移行する。一方、制御装置50は、FC発電単価<充電単価でないと判定した場合(ステップS50で「NO」)、ステップS58に移行する。
【0098】
なお、ステップS50で「NO」の場合とは、FC発電単価が充電単価より安くなく、燃料電池20を発電させるよりも蓄電装置30から放電させた方が、コストメリットが得られることを示している。一方、ステップS50で「YES」の場合とは、FC発電単価が充電単価より安く、蓄電装置30から放電させるよりも燃料電池20を発電させた方が、コストメリットが得られることを示している。
【0099】
ステップS52において、制御装置50は、燃料電池20の発電を行う。制御装置50は、電力需要に応じて燃料電池20を発電させる。制御装置50は、当該ステップS52の処理を行った後、ステップS54に移行する。
【0100】
ステップS54において、制御装置50は、電力需要-FC電力(電力需要からFC電力を減算した値、すなわち購入電力)>αであるか否かを判定する。αは所定の値とすることができ、例えば0.1kWとすることができる。
【0101】
制御装置50は、電力需要-FC電力>αであると判定した場合(ステップS54で「YES」)、ステップS56に移行する。一方、制御装置50は、電力需要-FC電力>αでないと判定した場合(ステップS54で「NO」)、
図7に示す実行処理に係る制御を終了する。
【0102】
なお、ステップS54で「NO」の場合とは、FC電力によって電力需要の大部分を賄えることを示している。一方、ステップS54で「YES」の場合とは、FC電力では電力需要の大部分を賄えないことを示している。
【0103】
ステップS56において、制御装置50は、蓄電装置30の放電を行う。制御装置50は、電力需要に応じて、蓄電装置30を放電させる。
【0104】
このように、まず電力単価の最も低いFC電力を発電し(ステップS52参照)、必要に応じて、次に電力単価の低い充電電力を蓄電装置30から放電することにより(ステップS56参照)、購入電力量を減らすことができ、光熱費を低減することができる。
【0105】
制御装置50は、当該ステップS56の処理を行った後、
図7に示す実行処理に係る制御を終了する。
【0106】
一方、ステップS58において、制御装置50は、次の充電までの電力需要量>蓄電残量であるか否かを判定する。制御装置50は、現在から次の充電タイミングまでの間の予測電力需要量と、現在の蓄電残量とを比較して、この判定を行う。
【0107】
制御装置50は、次の充電までの電力需要量>蓄電残量であると判定した場合(ステップS58で「YES」)、ステップS60に移行する。一方、制御装置50は、次の充電までの電力需要量>蓄電残量でないと判定した場合(ステップS58で「NO」)、ステップS62に移行する。
【0108】
ステップS60において、制御装置50は、放電量調整処理を行う。制御装置50は、次の充電タイミングまでの時間において、各時間における蓄電装置30の放電量を平均化する。
【0109】
具体的には、例えば現在の蓄電残量が3kWhであって、次の充電タイミングまで3時間ある場合、最初の1時間の電力需要量が3kWhであったとしても、制御装置50は、電力需要量を賄おうとして最初の1時間で蓄電残量の全部(3kWh)を放電するのではなく、1時間につき1kWhずつ蓄電装置30から放電させる。
【0110】
制御装置50は、当該ステップS60の処理を行った後、ステップS62に移行する。
【0111】
ステップS62において、制御装置50は、蓄電装置30の放電を行う。制御装置50は、ステップS60で調整した放電量で、蓄電装置30を放電させる。制御装置50は、当該ステップS62の処理を行った後、ステップS64に移行する。
【0112】
ステップS64において、制御装置50は、電力需要-放電電力(電力需要から蓄電装置30の放電電力を減算した値、すなわち購入電力)>βであるか否かを判定する。βは所定の値とすることができ、例えば0.35kWとすることができる。
【0113】
ステップS66において、制御装置50は、燃料電池20の発電を行う。制御装置50は、電力需要に応じて、燃料電池20を発電させる。制御装置50は、当該ステップS66の処理を行った後、
図7に示す実行処理に係る制御を終了する。
【0114】
このように、まず電力単価の最も低い充電電力を蓄電装置30から放電し(ステップS62参照)、必要に応じて、次に電力単価の低いFC電力を発電することにより(ステップS66参照)、購入電力量を減らすことができ、光熱費を低減することができる。
【0115】
以上の如く、本実施形態に係る電力供給システム1においては、PV電力単価、購入電力単価、FC発電単価のあらゆる組み合わせに対して、蓄電装置30及び燃料電池20を最適に運用でき、光熱費の削減を図ることができる。また、PV電力単価、購入電力単価、FC発電単価が季節や時刻で変動がある場合であっても、安価な電力を優先的に負荷に供給することができるため、光熱費の削減が可能となる。
【0116】
以上の如く、本実施形態に係る電力供給システム1は、自然エネルギーを利用して発電可能であると共に当該発電された電力を商用電源Sへと売電可能な太陽光発電部10(発電部)と、購入電力(前記商用電源Sからの商用電力)及びPV電力(前記太陽光発電部10からの発電電力)を充放電可能な蓄電装置30と、前記蓄電装置30の充放電を制御する制御装置50(制御部)と、を具備し、前記制御装置50は、前記購入電力を前記蓄電装置30に充電した時の購入電力単価(前記購入電力の買電単価)である充電時買電単価、及び前記PV電力を前記蓄電装置30に充電した時のPV電力単価(前記PV電力の売電単価)である充電時売電単価に基づいて、充電した電力の平均単価である充電単価を算出し、算出した前記充電単価に基づいて前記蓄電装置30の充放電を制御するものである。
このように構成することにより、電力単価の変動に応じて光熱費の低減を図ることができる。
【0117】
また、本実施形態に係る電力供給システム1は、前記制御装置50は、前記蓄電装置30に充電可能な時間帯である充電タイミングを決定する計画処理を実行可能であり、前記計画処理において、電力需要に対して前記PV電力の余剰が発生する第一の時間帯、購入電力単価が最少となる第二の時間帯、又は前記購入電力単価がPV電力単価未満となる第三の時間帯を予測し、予測した当該第一の時間帯、当該第二の時間帯及び当該第三の時間帯を前記充電タイミングとするものである。
このように構成することにより、PV余剰電力が生じるタイミング又は充電する電力の電力単価の低いタイミングで蓄電装置30に充電することができる。
【0118】
また、前記制御装置50は、前記計画処理において、前記充電タイミングそれぞれにおいて前記蓄電装置30に充電すべき充電量である目標充電量を決定可能であり、前記充電タイミングの一つである第一充電タイミングから当該第一充電タイミングの次の充電タイミングである第二充電タイミングまでの電力需要及び前記太陽光発電部10の発電量を予測し、予測した当該電力需要及び当該発電量に基づいて、前記第一充電タイミングにおける前記目標充電量を決定するものである。
このように構成することにより、次の充電タイミング(第二充電タイミング)までの電力需要を、蓄電装置30から放電される電力によって賄うことができる。
【0119】
また、前記制御装置50は、前記計画処理において、前記第一の時間帯における前記充電時売電単価、前記第二の時間帯における前記充電時買電単価、及び前記第三の時間帯における前記充電時買電単価に対して、単価が低い順に優先順位を設定し、前記優先順位が最も上位の前記充電タイミングにおける前記目標充電量を、前記蓄電装置30の最大容量に修正するものである。
このように構成することにより、電力単価が低い電力を多く充電できるため、光熱費の低減を図ることができる。
【0120】
また、前記制御装置50は、前記計画処理において、前記優先順位が最も上位の前記充電タイミングにおいて前記蓄電装置30の最大能力で充電しても前記最大容量に到達しない場合、前記優先順位が2番目に上位の前記充電タイミングにおける前記目標充電量に不足分を加算するものである。
このように構成することにより、電力単価が最も低い充電タイミングで充電した電力だけでは次の充電タイミングまでの電力需要を賄えない場合であっても、電力単価が2番目に低い充電タイミングで充電した電力で電力需要を賄うことができるため、光熱費を抑えつつ電力需要を賄うことができる。
【0121】
また、前記制御装置50は、前記充電単価が現在の前記購入電力単価よりも低い場合、電力需要に応じて前記蓄電装置30を放電させるものである。
このように構成することにより、電力単価の低い蓄電装置30からの電力を電力需要に充てることができるため、光熱費の低減を図ることができる。
【0122】
また、燃料を利用して発電可能な燃料電池20を具備し、前記制御装置50は、前記燃料電池20の発電単価が前記充電単価及び現在の前記購入電力単価よりも低い場合、前記燃料電池20を発電させるものである。
このように構成することにより、電力単価の低い燃料電池20からの電力を電力需要に充てることができるため、光熱費の低減を図ることができる。
【0123】
また、前記制御装置50は、前記充電単価が前記燃料電池20の前記発電単価及び現在の前記購入電力単価よりも低い場合、前記蓄電装置30を放電させるものである。
このように構成することにより、電力単価の低い蓄電装置30からの電力を電力需要に充てることができるため、光熱費の低減を図ることができる。
【0124】
また、前記制御装置50は、前記充電単価が前記燃料電池20の前記発電単価及び現在の前記購入電力単価よりも低く、かつ、前記燃料電池20の前記発電単価が現在の前記購入電力単価よりも低い場合において、各時間における前記蓄電装置30の放電量が平均化するように前記蓄電装置30を放電させ、平均化された前記放電量では予測される電力需要の全部又は一部を賄えない場合、前記燃料電池20を発電させるものである。
このように構成することにより、蓄電装置30からの電力(放電電力)と燃料電池20からの電力(FC電力)とで電力需要を賄えるにもかかわらず商用電力を買電してしまうのを防ぐことができる。
【0125】
なお、本実施形態に係る太陽光発電部10は、発電部の実施の一形態である。
また、本実施形態に係る制御装置50は、制御部の実施の一形態である。
【0126】
以上、本発明の一実施形態を説明したが、本発明は上記構成に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能である。
【0127】
例えば、本実施形態においては、電力供給システム1は燃料電池20を具備するものとしたが、燃料電池20を必ずしも具備していなくてもよい。
【0128】
また、
図2に示すステップS14において、制御装置50は、FC発電単価が購入電力単価よりも低い場合には、FC電力を考慮して、購入電力量からFC電力量を減算した量を目標充電量に設定してもよい。
【0129】
また、本実施形態においては、
図7に示すステップS54の判定で用いる閾値αは、0.1kWであるものとしたが、任意の値とすることができ、例えば0kWであってもよい。但し、売電単価が減額されてしまう場合等の理由によりFC電力を売電したくない場合、αは本実施形態のように0より大きい値とすることが望ましい。
【0130】
また、本実施形態においては、
図7に示すステップS64の判定で用いる閾値βは、0.35kWであるものとしたが、任意の値とすることができ、例えば0kWであってもよい。但し、僅かな電力を賄うために燃料電池20を稼動させることに伴う効率低下を考慮すると、βは本実施形態のように0より大きい値とすることが望ましい。
【符号の説明】
【0131】
1 電力供給システム
10 太陽光発電部
20 燃料電池
30 蓄電装置
50 制御装置