(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-11
(45)【発行日】2022-07-20
(54)【発明の名称】半導体ベースの検出を用いた高スループットシーケンシングのためのシステムおよびデバイス
(51)【国際特許分類】
G01N 21/64 20060101AFI20220712BHJP
G01N 37/00 20060101ALI20220712BHJP
C12M 1/00 20060101ALI20220712BHJP
C12N 15/09 20060101ALN20220712BHJP
【FI】
G01N21/64 Z
G01N37/00 102
C12M1/00 A
C12N15/09 200
(21)【出願番号】P 2019567673
(86)(22)【出願日】2019-01-07
(86)【国際出願番号】 US2019012559
(87)【国際公開番号】W WO2019136388
(87)【国際公開日】2019-07-11
【審査請求日】2019-12-24
(32)【優先日】2018-01-08
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-01-08
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-04-12
(33)【優先権主張国・地域又は機関】NL
(73)【特許権者】
【識別番号】500358711
【氏名又は名称】イルミナ インコーポレイテッド
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ディートリヒ・デリンジャー
(72)【発明者】
【氏名】アリ・アガー
(72)【発明者】
【氏名】トレイシー・ヘレン・ファン
(72)【発明者】
【氏名】エムラ・コステム
(72)【発明者】
【氏名】クレイグ・ヘゼリントン
【審査官】伊藤 裕美
(56)【参考文献】
【文献】特表2020-525760(JP,A)
【文献】国際公開第2017/184997(WO,A1)
【文献】国際公開第2012/031234(WO,A2)
【文献】米国特許出願公開第2014/0274746(US,A1)
【文献】米国特許出願公開第2008/0242560(US,A1)
【文献】米国特許出願公開第2014/0001341(US,A1)
【文献】米国特許出願公開第2009/0075838(US,A1)
【文献】米国特許出願公開第2017/0145498(US,A1)
【文献】韓国公開特許第10-2014-0081208(KR,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00-21/83
C12Q 1/00-1/70
C12M 1/00-1/42
G01N 33/48-33/98
G01N 35/00-35/10
G01N 37/00
(57)【特許請求の範囲】
【請求項1】
バイオセンサを保持するように構成された容器であって、前記バイオセンサが、
画素エリアを含み、複数のクラスタが前記画素エリア上で不均一に分布するように試料採取イベントのシーケンス中に前記クラスタを保持する試料表面と、
センサのアレイであって、前記アレイ内の各センサが、試料採取イベント中に画素信号を生成するために前記試料表面の対応する画素エリア内に配置された1つまたは複数のクラスタからの情報を検知し、前記アレイが、前記画素信号の複数のシーケンスを生成するように構成され、前記アレイがN個の能動的センサを有し、前記アレイ内の前記センサが、前記画素信号の複数のシーケンスを生じさせるように前記試料表面のN個の対応する画素エリアから前記試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために前記試料表面に対して配置される、センサのアレイと、
前記画素信号の複数のシーケンスを出力する通信ポートと
を有する、容器と、
前記容器に結合され、前記N個の能動的センサから前記試料表面上のN+M個の個々のクラスタに対応する照射のパターンを検出するために前記画素信号の複数のシーケンスの時系列および空間分析を実行するように、および前記N+M個の個々のクラスタに対する前記試料採取イベントのシーケンスの結果を分類するように構成され、Mが正の整数である、信号プロセッサであって、前記画素信号の複数のシーケンス内の画素信号の少なくとも1つのシーケンスにおける各試料採取イベントに対する前記画素信号が、前記対応する画素エリア内の少なくとも2つのクラスタからの検知された情報を表し、前記画素信号の複数のシーケンスが、前記画素エリア上での不均一な分布から生じる前記少なくとも2つのクラスタ間の差動クロストークを符号化する、信号プロセッサと
を備える、ベースコーリングのためのデバイス。
【請求項2】
前記信号プロセッサが、前記検出された照射のパターンを使用して、前記N個の能動的センサから前記試料表面上の前記N+M個の個々のクラスタを特定する、請求項1に記載のデバイ
ス。
【請求項3】
画素エリアと前記画素エリアの上に重なるウェルのアレイとを含む試料表面を有するバイオセンサであって
、画素エリアあたり
2つのウェルと2つのクラスタとを含み、前記画素エリアあたり2つのウェルが優位ウェルと劣位ウェルとを含み、前記優位ウェルが、前記画素エリア上で前記劣位ウェルよりも大きな断面積を有する、バイオセンサ
を備え、
前記バイオセンサがセンサのアレイを含み、前記アレイ内の各センサは、試料採取イベントにおいて画素信号を生成するために、前記試料表面の対応する画素エリア内に配置された前記2つのクラスタからの情報を検知する、
ベースコーリングのためのデバイス。
【請求項4】
前記バイオセンサが、
画素信号の複数のシーケンスを生成するように構成され、N個の能動的センサを有し、前記アレイ内の前記センサが、前記画素信号の複数のシーケンスを生じさせるように前記試料表面のN個の対応する画素エリアから前記試料採取イベントのシーケンスの間にそれぞれの画素信号を生成するために前記試料表面に対して配置される、前記アレイと、
前記画素信号の複数のシーケンスを出力する通信ポートと
を含む、請求項3に記載のデバイス。
【請求項5】
前記2つのウェルが、前記画素エリアの中心に対する異なるオフセットを有する、請求項3に記載のデバイス。
【請求項6】
試料採取イベント中に、前記画素エリアが、前記2つのウェルから異なる量の照射を受け、
前記画素信号の複数のシーケンスにおける画素信号の少なくとも1つのシーケンス内の各試料採取イベントに対する前記画素信号が、前記対応する画素エリア内の前記2つのクラスタから検知された情報を表す、
請求項5に記載のデバイ
ス。
【請求項7】
前記2つのウェルの各々が、前記試料採取イベント中に少なくとも1つのクラスタを保持する、請求項6に記載のデバイ
ス。
【請求項8】
前記試料採取イベント中に、前記画素エリアが、前記劣位ウェル内の薄暗いクラスタから受けられる照射の量よりも多い量の照射を、前記優位ウェル内の明るいクラスタから受ける、請求項7に記載のデバイ
ス。
【請求項9】
前記バイオセンサが信号プロセッサに結合され、前記信号プロセッサが、前記画素信号の複数のシーケンスを受信し、N個の能動的センサからN+M個のクラスタ内に存在する塩基を識別するために処理するように構成され、前記明るいクラスタと前記薄暗いクラスタに対して、
前記試料採取イベントの第1の照射段階中に前記画素エリアに対応するセンサによって生成された第1の画素信号を少なくとも4つのビンへとマッピングすることと、
前記試料採取イベントの第2の照射段階中に前記センサによって生成された第2の画素信号を少なくとも4つのビンへとマッピングすることと、
前記第1の画素信号および前記第2の画素信号の前記マッピングを論理的に組み合わせて、前記明るいクラスタおよび前記薄暗いクラスタ内に存在する前記塩基を識別することと
を含む、請求項8に記載のデバイス。
【請求項10】
画素エリアと、前記画素エリアの上に重なるウェルのアレイとを含む試料表面を有するバイオセンサであって、画素エリアあたり少なくとも2つの
クラスタをもつ、バイオセンサと、
前記バイオセンサに結合され、試料採取イベントのシーケンス内の試料採取イベントに対して、前記ウェルの各々において非対称的に照射されるウェル領域を生じさせるために軸外し照射を用いて前記ウェルの各々を照射するように構成されることを含めて、前記試料採取イベントのシーケンス中に異なる照射の角度を用いて前記画素エリアを照射する、照射システムと
を備える、ベースコーリングのためのデバイス。
【請求項11】
前記バイオセンサが、
センサのアレイであって、前記アレイ内の各センサが、試料採取イベント中に画素信号を生成するために前記試料表面の対応する画素エリア内に配置された前記少なくとも2つのクラスタからの情報を検知し、前記アレイが、画素信号の複数のシーケンスを生成するように構成され、前記アレイがN個の能動的センサを有し、前記アレイ内の前記センサが、前記画素信号の複数のシーケンスを生じさせるように前記試料表面のN個の対応する画素エリアから前記試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために前記試料表面に対して配置される、センサのアレイと、
前記画素信号の複数のシーケンスを出力する通信ポートと
を含む、請求項10に記載のデバイス。
【請求項12】
ウェルの前記非対称的に照射される領域が、前記試料採取イベント中に、優位ウェル領域が劣位ウェル領域よりも多く照射されるように、少なくとも前記優位ウェル領域と前記劣位ウェル領域とを含む、請求項10に記載のデバイス。
【請求項13】
前記ウェルが、前記試料採取イベント中に複数のクラスタを保持し、前記優位ウェル領域および前記劣位ウェル領域が各々、クラスタを含む、請求項12に記載のデバイス。
【請求項14】
前記試料採取イベント中に、前記ウェルの上に重なる画素エリアが、前記劣位ウェル領域内の薄暗いクラスタから受けられる照射の量よりも多い量の照射を、前記優位ウェル領域内の明るいクラスタから受ける、請求項13に記載のデバイス。
【請求項15】
信号プロセッサをさらに備え、前記バイオセンサが前記信号プロセッサに結合され、前記信号プロセッサが、画素信号の複数のシーケンスを受信し、N個の能動的センサからN+M個のクラスタ内に存在する塩基を識別するために処理するように構成され、前記明るいクラスタと前記薄暗いクラスタに対して、
前記試料採取イベントの第1の照射段階中に前記画素エリアに対応するセンサによって生成された第1の画素信号を少なくとも4つのビンへとマッピングすることと、
前記試料採取イベントの第2の照射段階中に前記センサによって生成された第2の画素信号を少なくとも4つのビンへとマッピングすることと、
前記第1の画素信号および前記第2の画素信号の前記マッピングを論理的に組み合わせて、前記明るいクラスタおよび前記薄暗いクラスタ内に存在する前記塩基を識別することと
を含む、請求項14に記載のデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
優先権出願
本出願は、以下の出願に対する優先権またはその利益を主張するものである。
【0002】
2018年1月8日に出願された「SYSTEMS AND DEVICES FOR HIGH-THROUGHPUT SEQUENCING WITH SEMICONDUCTOR-BASED DETECTION」という名称の米国仮特許出願第62/614,934号(代理人整理番号ILLM 1003-2/IP-1656-PRV)、
【0003】
2018年1月8日に出願された「HIGH-THROUGHPUT SEQUENCING WITH SEMICONDUCTOR-BASED DETECTION」という名称の米国仮特許出願第62/614,930号(代理人整理番号ILLM 1003-1/IP-1653-PRV)、および
【0004】
2018年4月12日に出願された「HIGH-THROUGHPUT SEQUENCING WITH SEMICONDUCTOR-BASED DETECTION」という名称のオランダ出願第2020758号(代理人整理番号ILLM 1003-6/IP-1653-NL)。
【0005】
優先権出願は、すべての目的のために参照により本明細書に組み込まれる。
【0006】
他の出願の相互参照
以下の特許出願は、すべての目的のためにその全体が本明細書に組み込まれる。
【0007】
同時に出願された「HIGH-THROUGHPUT SEQUENCING WITH SEMICONDUCTOR-BASED DETECTION」という名称の米国非仮特許出願(代理人整理番号ILLM 1003-3/IP-1653-US)、
【0008】
2018年1月8日に出願された「MULTIPLEXING OF AN ACTIVE SENSOR DETECTOR US ING STRUCTURED ILLUMINATION」という名称の米国仮特許出願(代理人整理番号IP-1623-PRV)、
【0009】
2013年3月15日に出願された「BIOSENSORS FOR BIOLOGICAL OR CHEMICAL ANALYSIS AND SYSTEMS AND METHODS FOR SAME」という名称の米国非仮特許出願第13/833,619号(代理人整理番号IP-0626-US)、
【0010】
2016年6月7日に出願された「BIOSENSORS FOR BIOLOGICAL OR CHEMICAL ANALYSIS AND METHODS OF MANUFACTURING THE SAME」という名称の米国非仮特許出願第15/175,489号(代理人整理番号IP-0689-US)、
【0011】
2013年4月26日に出願された「MICRODEVICES AND BIOSENSOR CARTRIDGES FOR BIOLOGICAL OR CHEMICAL ANALYSIS AND SYSTEMS AND METHODS FOR THE SAME」という名称の米国非仮特許出願第13/882,088号(代理人整理番号IP-0462-US)、および
【0012】
2012年9月21日に出願された「METHODS AND COMPOSITIONS FOR NUCLEIC ACID SEQUENCING」という名称の米国非仮特許出願第13/624,200号(代理人整理番号IP-0538-US)。
【0013】
開示される技術の実施形態は、一般に、CMOSベースの検出を用いたシーケンシングに関し、より詳細には、CMOSベースの検出を用いたシーケンシングのスループットを増加させるためのシステムおよび方法に関する。
【背景技術】
【0014】
生物学的研究または化学的研究におけるさまざまなプロトコルは、局所的な支持表面上またはあらかじめ定められた反応チャンバ(またはウェル)内で多数の制御された反応を実行することを伴う。その際、所望の反応が観察または検出されることがあり、その後の分析が、反応に関与する化学物質の性質を識別するまたはこれを明らかにする助けとなることがある。たとえば、いくつかの多重アッセイでは、識別可能な標識(たとえば、蛍光標識)を有する未知の検体(たとえば、クローンとして増幅された核酸のクラスタ)は、制御された条件下で数千の既知のプローブに曝露され得る。各既知のプローブは、マイクロプレートまたはフローセルの対応するウェルへと堆積され得る。ウェル内で既知のプローブと未知の検体との間で発生する化学反応を観察することは、検体の性質を識別するまたはこれを明らかにする助けとなり得る。そのようなプロトコルの他の例としては、sequencing-by-synthesis(SBS)またはcyclic-array sequencingなどの、既知のDNAシーケンシングプロセスがある。
【0015】
いくつかの従来の蛍光検出プロトコルでは、光学システムは、励起光を蛍光標識された検体上に向けるために、および検体から放出し得る蛍光信号を検出するためにも使用される。しかしながら、そのような光学システムは、比較的に高価であり、より大きなベンチトップ占有面積を必要とすることができる。たとえば、光学システムは、レンズ、フィルタ、および光源の装置を含むことがある。他の提案される検出システムでは、制御された反応が、蛍光放出を検出するために大きな光学アセンブリを必要としない固体撮像素子(たとえば、電荷結合デバイス(CCD)または相補型金属酸化膜半導体(CMOS)センサ)上で即時に発生する。
【0016】
Khuranaらに対する「SUPER RESOLUTION IMAGING」という名称のUS 2014/274746 A1には、パッドを保持する複数のクラスタが開示されている。
図2においては、4つのパッドが、下にあるピクセルからオフセットされているので、4つのクラスタを有するパッドが、4つのピクセルセンサをおおっている。
【0017】
El Gamalらに対する「BIOLOGICAL ANALYSIS ARRANGEMENT AND APPROACH THEREFOR」という名称のUS 2009/075838 A1には、テスト部位の下の1から9またはそれ以上のセンサの配置が開示されている。
【0018】
Hassibiらに対する「INTEGRATED OPTICAL BIOSENSORARRAY」という名称のUS 2014/001341 A1には、センサの上のウェル当たり1つのビーズを有するビーズアレイが開示されている。
【0019】
Life Technologies Corp.に対する「METHODS, SYSTEMS AND APPARATUS FOR SEQUENCING」という名称のWO 2012/031234 A2にもビーズアレイが開示されている。それは、少なくとも1.45の屈折率を有する基板と、基板の主な表面上に配置されていて、複数の反応量を定義している表面層とを強調している。
【0020】
Eltoukhyらに対する「MICRODEVICES AND BIOSENSOR CARTRIDGES FOR BIOLOGICAL OR CHEMICAL ANALYSIS AND SYSTEMS AND METHODS FOR THE SAME」という名称のUS 2013/210682には、間に伸びているフローチャネルを通してお互いに流体伝達する入口および出口ポートを含むフローセルが開示されている。流体は、ディフューザ領域を通して第1のフロー方向に流れ、かつフィールド領域を通して第2のフロー方向に流れる。第1および第2のフロー方向は実質的に垂直である。
【0021】
Saxenaらに対する「ARRAYS OF OPTICAL DEVICES COMPRISING INTEGRATED BANDPASS FILTERS AND METHODS OF PRODUCTION」という名称のUS 2017/145498 A1には、集積光デバイスのアレイおよび製造方法が提供されている。デバイスは、異なる中心バンドパス波長を有するテスト部位に対して少なくとも2つのマルチキャビティフィルタおよびセンサを有する集積バンドパスフィルタを含む。
【0022】
Topolancikらに対する「PHOTONIC STUCTURE-BASED DEVICES AND COMPOSITIONS FOR USE IN LUMINESCENT IMAGING OF MULTIPLE SITES WITHIN A PIXEL, AND METHODS OF USING THE SAME」という名称のWO 2017/184997には、ルミネセンスイメージングにおける使用のためのデバイスが開示されている。デバイスは、イメージングピクセルのアレイと、イメージングピクセルのアレイ上に配置された光構造とを含み得る。
【0023】
Zhongらに対する「BIOSENSORS FOR BIOLOGICAL OR CHEMICAL ANALYSIS AND METHODS OF MANUFACTURING THE SAME」という名称のUS 2016/356715には、光センサのセンサアレイおよび光ガイドのガイドアレイを有するデバイスベースを含むバイオセンサが開示されている。1つのウェルが1つのセンサをおおっている。
【0024】
しかしながら、提案される固体撮像システムは、いくつかの制限を有することがある。たとえば、固体撮像素子は、センサ(または画素)あたりの1つのクラスタベースコールに限定され、それらのスループットは、画素ピッチの関数である、センサの画素密度に依存する。画素ピッチを著しく減少させることに対する制限があるので、固体撮像素子のスループットを増加させるための他の解決策を探求することが望ましいことになる。
【0025】
センサ(または画素)あたりの複数のクラスタをベースコールさせることによって固体撮像システムのスループットを増加させ、センサ(または画素)あたり複数のクラスタベースコールを容易にするシステムおよびデバイスを提供する機会が生じる。
【0026】
本開示の実施形態は、一般に、生物学的分析または化学分析に関し、より詳細には、生物学的分析または化学分析に検出デバイスを使用するシステムおよび方法に関する。
【0027】
生物学的研究または化学的研究におけるさまざまなプロトコルは、局所的な支持表面上またはあらかじめ定められた反応チャンバ内で多数の制御された反応を実行することを伴う。次いで、所望の反応が観察または検出されることがあり、その後の分析が、反応に関与する化学物質の性質を識別するまたはこれを明らかにする助けとなることがある。たとえば、いくつかの多重アッセイでは、識別可能な標識(たとえば、蛍光標識)を有する未知の検体は、制御された条件下で数千の既知のプローブに曝露され得る。各既知のプローブは、表面上の対応する場所へと堆積され得る。表面上で既知のプローブと未知の検体との間で発生する化学反応を観察することは、検体の性質を識別するまたはこれを明らかにする助けとなり得る。そのようなプロトコルの他の例としては、sequencing-by-synthesis(SBS)またはcyclic-array sequencingなどの、既知のDNAシーケンシングプロセスがある。
【0028】
いくつかの従来の蛍光検出プロトコルでは、光学システムは、励起光を蛍光標識された検体上に向けるために、および検体から放出し得る蛍光信号を検出するためにも使用される。標準的な撮像技法のスループットは、とりわけ、検出デバイス内で利用可能な画素の数によって限定される。したがって、これらの光学システムは、比較的高価であり、検体の大きい集団を有する表面を検出するとき比較的大きいベンチトップ占有面積を必要とする。たとえば、ジェノタイピング、発現、またはシーケンシング解析において使用される核酸アレイは、平方センチメートルあたりアレイ上での数百万の異なる部位の検出を必要とすることができる。スループットにおける限界が、コストを増加させ、これらの分析の精度を減少させる。
【先行技術文献】
【特許文献】
【0029】
【文献】PCT/US 2011/057111
【文献】米国特許公報第US 2011/0059865 A1号
【文献】米国特許第5,641,658号
【文献】WO 2007/010251
【文献】米国特許第6,090,592号
【文献】米国特許公報第2002/0055100 A1号
【文献】米国特許第7,115,400号
【文献】米国特許公報第2004/0096853 A1号
【文献】米国特許公報第2004/0002090 A1号
【文献】米国特許公報第2007/0128624 A1号
【文献】米国特許公報第2008/0009420 A1号
【文献】米国特許公報第2008/0242560 A1号
【文献】米国特許公報第2008/0234136 A1号
【文献】米国特許出願公開第2013/0079232号
【文献】WO 2004/018497
【文献】US 7,057,026
【文献】WO 91/06678
【文献】WO 2007/123744
【文献】US 7,329,492
【文献】US 7,211,414
【文献】US 7,315,019
【文献】US 7,405,281
【文献】US 2008/0108082
【文献】米国特許出願第61/538,294号
【文献】米国特許出願第61/619,878号
【文献】米国出願第13/624,200号
【文献】米国特許出願公報第2007/0166705 A1号
【文献】米国特許出願公報第2006/0188901 A1号
【文献】米国特許出願公報第2006/0240439 A1号
【文献】米国特許出願公報第2006/0281109 A1号
【文献】PCT公報WO 2005/065814
【文献】米国特許出願公報第2005/0100900 A1号
【文献】PCT公報WO 2006/064199
【文献】US 7,541,444
【文献】US 7,414,116
【文献】US 7,427,673
【文献】US 7,566,537
【文献】US 7,592,435
【文献】WO 2007/135368
【文献】米国特許第7,595,883号
【文献】米国特許出願公開第2009/0127589号
【非特許文献】
【0030】
【文献】Bentleyら、Nature 456:53~59(2008年)
【発明の概要】
【発明が解決しようとする課題】
【0031】
したがって、たとえば、核酸アレイを検出するために、スループットのより高い装置および方法が必要である。本開示は、この必要性に対処し、他の利点も提供する。
【課題を解決するための手段】
【0032】
一実施形態によれば、バイオセンサを保持するように構成された容器を備える、ベースコーリングのためのデバイスが提供される。バイオセンサは、(a)試料採取イベントのシーケンス中に複数のクラスタを保持する試料表面と、(b)画素信号の複数のシーケンスを生成するように構成されたセンサのアレイと、(c)画素信号の複数のシーケンスを出力する通信ポートとを有する。アレイはN個の能動的センサを有し、アレイ内のセンサは、画素信号の複数のシーケンスを生じさせるように、試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために、試料表面に対して配置される。デバイスは、容器に結合された信号プロセッサをさらに備える。この信号プロセッサは、画素信号の複数のシーケンスを受信し、この画素信号の複数のシーケンスを使用して、N個の能動的センサから複数のクラスタ内のN+M個のクラスタに対する試料採取イベントのシーケンスの結果を分類することを含めて、複数のクラスタ内のクラスタ上での試料採取イベントのシーケンスの結果を分類するために処理するように構成され、Mは正の整数である。
【0033】
試料採取イベントのシーケンスの結果は、クラスタ内のヌクレオチド塩基に対応することができる。
【0034】
試料採取イベントは、時系列で2つの照射段階を備えることができ、画素信号の複数のシーケンス内の画素信号のシーケンスは、各試料採取イベントに対する信号試料のセットを含むことができ、このセットは、2つの照射段階の各々からの少なくとも1つの画素信号を含む。
【0035】
信号プロセッサは、センサのアレイ内の単一のセンサからの画素信号のシーケンスからの2つのクラスタに対する結果を分類する論理を含むことができる。2つのクラスタに対する結果を分類する論理は、特定のセンサからの試料採取イベントに対する信号試料のセットの第1の画素信号を少なくとも4つのビンにマッピングすることと、試料採取イベントに対する信号試料のセットの第2の画素信号を少なくとも4つのビンへとマッピングすることと、第1の画素信号および第2の画素信号のマッピングを論理的に組み合わせて、2つのクラスタに対する結果を分類することとを含むことができる。
【0036】
センサのアレイ内のセンサは、光検出器を備えることができる。
【0037】
試料採取イベントは、時系列で2つの照射段階を備えることができ、画素信号の複数のシーケンス内の画素信号のシーケンスは、各試料採取イベントに対する信号試料のセットを含むことができ、このセットは、2つの照射段階の各々からの少なくとも1つの画素信号を含む。第1の照射段階は、ヌクレオチド塩基AおよびTを示す所与のクラスタから照射を誘発することができ、第2の照射段階は、ヌクレオチド塩基CおよびTを示す所与のクラスタから照射を誘発することができ、前記結果を分類することは、ヌクレオチド塩基A、C、T、またはGのうちの1つをコールすることを含むことができる。
【0038】
クラスタは、試料表面の画素エリア上で不均一に分布可能であり、信号プロセッサは、試料表面上の個々のクラスタに対応する照射のパターンを検出するため、および個々のクラスタに対する試料採取イベントの結果を分類するために、画素信号の複数のシーケンスの時系列および空間分析を実行することができる。画素信号の複数のシーケンスは、画素エリア上でのそれらの不均一な分布から生じる少なくとも2つのクラスタ間の差動クロストークを符号化する。
【0039】
試料表面は、画素エリアあたり2つのウェルを含む、画素エリアの上に重なるウェルのアレイを備えることができ、画素エリアあたり2つのウェルは、優位(dominant)ウェルと劣位(subordinate)ウェルとを含むことができ、優位ウェルは、画素エリア上で劣位ウェルよりも大きな断面積を有することができる。
【0040】
試料表面は、画素エリアの上に重なるウェルのアレイを備えることができ、試料採取イベントは、K個の照射段階をもつ少なくとも1つの化学的段階を含むことができ、Kは正の整数である。K個の照射段階の各照射段階は、異なる照射の角度を用いて画素エリアを照射することができ、画素信号のシーケンスは、各試料採取イベントに対する信号試料のセットを含むことができ、このセットは、試料採取イベントの少なくとも1つの化学的段階に対するK個の画素信号を含む。
【0041】
試料表面は、画素エリアの上に重なるウェルのアレイを備えることができ、試料採取イベントは、K個の照射段階をもつ第1の化学的段階を含むことができ、Kは正の整数である。K個の照射段階の各照射段階は、異なる照射の角度を用いて画素エリアを照射することができ、第2の化学的段階はJ個の照射段階をもち、Jは正の整数である。第1の化学的段階におけるK個の照射段階および第2の化学的段階におけるJ個の照射段階の各照射段階は、異なる照射の角度を用いてウェルのアレイ内のウェルを照射することができ、画素信号のシーケンスは、各試料採取イベントに対する信号試料のセットを含むことができ、このセットは、試料採取イベントの第1の化学的段階に対するK個の画素信号と第2の化学的段階に対するJ個の画素信号を含む。
【0042】
別の実施形態では、ベースコーリングのためのバイオセンサが提供される。このバイオセンサは、試料採取デバイスを備える。この試料採取デバイスは、画素エリアのアレイを有する試料表面と、センサのアレイを有する固体撮像素子とを含む。各センサは、各ベースコーリングサイクル内で画素信号を生成する。各画素信号は、試料表面の対応する画素エリアから集められた光を表す。バイオセンサは、試料採取デバイスへの接続のために構成された信号プロセッサをさらに備える。この信号プロセッサは、ベースコーリングサイクルにおいてベースコーリングのためにセンサからの画素信号を受信および処理し、ベースコーリングサイクル内でベースコールが行われるいくつかのクラスタよりも少ないセンサからの画素信号を使用する。
【0043】
画素エリアは、試料表面上のウェルから光を受けることができ、ウェルは、ベースコーリングサイクル中に複数のクラスタを保持することができる。
【0044】
クラスタは、同一の核酸配列を有する複数の一本鎖デオキシリボ核酸(略してDNA)断片を備えることができる。
【0045】
別の実施形態では、ベースコーリングする方法が提供される。sequencing by synthesis(略してSBS)実行のベースコーリングサイクルに対して、方法は、(1)ベースコーリングサイクルの第1の照射段階中に第1の画素エリアから集められた光を表す第1の画素信号と、(2)ベースコーリングサイクルの第2の照射段階中に第1の画素エリアから集められた光を表す第2の画素信号とを検出することとを含む。第1の画素エリアは、第1の画素エリアを共有する複数のクラスタの下にある。方法は、第1の画素信号および第2の画素信号の組み合わせを使用して、ベースコーリングサイクル中に複数のクラスタのうちの各クラスタ上に組み込まれたヌクレオチド塩基を識別することを含む。
【0046】
方法は、第1の画素信号を少なくとも4つのビンへとマッピングし、第2の画素信号を少なくとも4つのビンへとマッピングすることと、第1の画素信号および第2の画素信号のマッピングを組み合わせて、組み込まれたヌクレオチド塩基を識別することも含むことができる。
【0047】
方法は、ベースコーリングサイクル中に複数の画素エリアにおいて複数のクラスタ上に組み込まれたヌクレオチド塩基を識別するために方法を適用することも含むことができる。
【0048】
方法は、ベースコーリングサイクルの各々において複数の画素エリア内の複数のクラスタ上に組み込まれたヌクレオチド塩基を識別するために、連続したベースコーリングサイクルにわたって方法を繰り返すことも含むことができる。
【0049】
ベースコーリングサイクルの各々に対して、方法は、複数の画素エリアにおいて複数のクラスタによって放出された第1の画素信号および第2の画素信号を検出および記憶することと、ベースコーリングサイクルの後に、第1の画素信号および第2の画素信号の組み合わせを使用して、以前のベースコーリングサイクルの各々の間に複数の画素エリアにおいて複数のクラスタ上に組み込まれたヌクレオチド塩基を識別することも含むことができる。
【0050】
第1の画素エリアは、試料表面上の関連づけられたウェルから光を受けることができる。第1の画素エリアは、試料表面上の複数の関連づけられたウェルから光を受けることができる。第1の画素信号および第2の画素信号は、第1の画素エリアから第1のセンサによって集められ得る。第1の画素信号および第2の画素信号は、第1のセンサによって集められた画素信号を処理するために構成された信号プロセッサによって検出可能である。第1の照射段階は、標識されたヌクレオチド塩基AおよびTから放出を生じさせるために第1のクラスタおよび第2のクラスタから照射を誘発することができ、第2の照射段階は、標識されたヌクレオチド塩基CおよびTから放出を生じさせるために第1のクラスタおよび第2のクラスタから照射を誘発することができる。
【0051】
別の実施形態では、バイオセンサの試料表面上の複数のクラスタをもつ画素エリアを識別し、この識別された画素エリアにおいてクラスタをベースコーリングする方法が提供される。この方法は、複数のベースコーリングサイクルを実行することであって、各ベースコーリングサイクルが、第1の照射段階と、第2の照射段階とを有する、実行することを含む。この方法は、試料表面の画素エリアに関連づけられたセンサにおいて、(1)ベースコーリングサイクルの第1の照射段階中に生成される強度値の第1のセットと、(2)ベースコーリングサイクルの第2の照射段階中に生成される強度値の第2のセットをキャプチャすることを含む。方法は、信号プロセッサを使用して16の分布を強度値の第1のセットおよび第2のセットに適合させ、この適合に基づいて、複数のクラスタを有するように画素エリアを分類することを含む。連続したベースコーリングサイクルに対して、方法は、信号プロセッサを使用して画素エリアにおけるクラスタグループに対する強度値の第1のセットおよび第2のセットを検出することと、クラスタグループに対する分布を選択することとを含む。この分布は、クラスタグループの各クラスタ内に存在するヌクレオチド塩基を識別する。
【0052】
方法は、k平均クラスタリングアルゴリズム、k平均に似たクラスタリングアルゴリズム、期待値最大化アルゴリズム、およびヒストグラムベースのアルゴリズムを含む、1つまたは複数のアルゴリズムを使用することを含む適合を含むことができる。
【0053】
方法は、強度値を正規化することを含むことができる。
【0054】
画素エリアは、試料表面上の関連づけられたウェルから光を受けることができる。
【0055】
別の実施形態では、ベースコーリングのためのデバイスが提供される。このデバイスは、バイオセンサを保持するように構成された容器を備える。このバイオセンサは、試料表面を有する。この試料表面は、クラスタが画素エリア上で不均一に分布されるように試料採取イベントのシーケンス中に複数のクラスタの下にある画素エリアを含む。バイオセンサは、画素信号の複数のシーケンスを生成するように構成されたセンサのアレイも有する。このアレイは、N個の能動的センサを有する。アレイ内のセンサは、画素信号の複数のシーケンスを生じさせるように、試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために、試料表面に対して配置される。バイオセンサは、画素信号の複数のシーケンスを出力する通信ポートも有する。デバイスは、容器に結合された信号プロセッサをさらに備える。信号プロセッサは、N個の能動的センサから試料表面上のN+M個の個々のクラスタに対応する照射のパターンを検出するため、ここでMは正の整数であり、およびN+M個の個々のクラスタに対する試料採取イベントのシーケンスの結果を分類するために、画素信号の複数のシーケンスの時系列および空間分析を実行するように構成される。画素信号の複数のシーケンスは、画素エリア上でのそれらの不均一な分布から生じる少なくとも2つのクラスタ間の差動クロストークを符号化する。
【0056】
信号プロセッサは、検出された照射のパターンを使用して、N個の能動的センサから試料表面上のN+M個の個々のクラスタを特定することができる。
【0057】
別の実施形態では、ベースコーリングのためのデバイスが提供される。このデバイスは、バイオセンサを備える。このバイオセンサは、試料表面を有する。この試料表面は、画素エリアと、画素エリアあたり2つのウェルを含む、画素エリアの上に重なるウェルのアレイとを含む。画素エリアあたり2つのウェルは、優位ウェルと、劣位ウェルとを含む。優位ウェルは、画素エリア上で劣位ウェルよりも大きな断面積を有する。
【0058】
2つのウェルは、画素エリアの中心に対する異なるオフセットを有することができる。試料採取イベント中に、画素エリアは、2つのウェルから異なる量の照射を受けることができる。2つのウェルの各々は、試料採取イベント中に少なくとも1つのクラスタを保持することができる。試料採取イベント中に、画素エリアは、劣位ウェル内の薄暗いクラスタから受けられる照射の量よりも多い量の照射を、優位ウェル内の明るいクラスタから受けることができる。
【0059】
バイオセンサは、信号プロセッサに結合可能である。この信号プロセッサは、画素信号の複数のシーケンスを受信し、N個の能動的センサからN+M個のクラスタ内に存在するヌクレオチド塩基を識別するために処理するように構成可能である。明るいクラスタおよび薄暗いクラスタに対して、これは、試料採取イベントの第1の照射段階中に画素エリアに対応するセンサによって生成された第1の画素信号を少なくとも4つのビンへとマッピングすることと、試料採取イベントの第2の照射段階中にセンサによって生成された第2の画素信号を少なくとも4つのビンへとマッピングすることと、第1の画素信号および第2の画素信号のマッピングを論理的に組み合わせて、明るいクラスタおよび薄暗いクラスタ内に存在するヌクレオチド塩基を識別することとを含むことができる。
【0060】
バイオセンサは、画素信号の複数のシーケンスを生成するように構成されたセンサのアレイも有する。このアレイは、N個の能動的センサを有する。アレイ内のセンサは、画素信号の複数のシーケンスを生じさせるように、試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために、試料表面に対して配置される。バイオセンサは、画素信号の複数のシーケンスを出力する通信ポートも有する。
【0061】
さらに別の実施形態では、ベースコーリングのためのデバイスが提供される。このデバイスは、バイオセンサを備える。このバイオセンサは、試料表面を有する。この試料表面は、画素エリアと、画素エリアの上に重なるウェルのアレイとを含む。デバイスは、照射システムをさらに備える。照射システムは、試料採取イベントのシーケンス内の試料採取イベントに対して、ウェルの各々において非対称的に照射されるウェル領域を生じさせるために軸外し(off-axis)照射を用いてウェルの各々を照射することを含めて、試料採取イベントのシーケンス中に異なる照射の角度を用いて画素エリアを照射する。
【0062】
ウェルの非対称的に照射される領域は、試料採取イベント中に、優位ウェル領域が劣位ウェル領域よりも多く照射されるように、少なくとも優位ウェル領域と劣位ウェル領域とを含むことができる。ウェルは、試料採取イベント中に複数のクラスタを保持することができ、優位ウェル領域および劣位ウェル領域は各々、クラスタを含む。試料採取イベント中に、ウェルの上に重なる画素エリアは、劣位ウェル領域内の薄暗いクラスタから受けられる照射の量よりも多い量の照射を、優位ウェル領域内の明るいクラスタから受けることができる。
【0063】
軸外し照射は、45度の角度とすることができる。いくつかの実施形態では、画素エリアあたり1つのウェルが上に重なる。他の実施形態では、画素エリアあたり2つのウェルが上に重なる。
【0064】
バイオセンサは、信号プロセッサに結合可能である。この信号プロセッサは、画素信号の複数のシーケンスを受信し、N個の能動的センサからN+M個のクラスタ内に存在するヌクレオチド塩基を識別するために処理するように構成可能である。明るいクラスタおよび薄暗いクラスタに対して、これは、試料採取イベントの第1の照射段階中に画素エリアに対応するセンサによって生成された第1の画素信号を少なくとも4つのビンへとマッピングすることと、試料採取イベントの第2の照射段階中にセンサによって生成された第2の画素信号を少なくとも4つのビンへとマッピングすることと、第1の画素信号および第2の画素信号のマッピングを論理的に組み合わせて、明るいクラスタおよび薄暗いクラスタ内に存在するヌクレオチド塩基を識別することとを含むことができる。
【0065】
バイオセンサは、画素信号の複数のシーケンスを生成するように構成されたセンサのアレイも有する。このアレイは、N個の能動的センサを有する。アレイ内のセンサは、画素信号の複数のシーケンスを生じさせるように、試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために、試料表面に対して配置される。バイオセンサは、画素信号の複数のシーケンスを出力する通信ポートも有する。
【0066】
別の実施形態によれば、バイオセンサを保持するように構成された容器を備える、ベースコーリングのためのデバイスが提供される。バイオセンサは、(a)試料採取イベントのシーケンス中に複数のクラスタを保持する試料表面と、(b)画素信号の複数のシーケンスを生成するように構成されたセンサのアレイと、(c)画素信号の複数のシーケンスを出力する通信ポートとを有する。アレイ内の各センサは、試料採取イベントにおいて画素信号を生成するために、試料表面の対応する画素エリア内に配置された1つまたは複数のクラスタからの情報を検知する。アレイはN個の能動的センサを有し、アレイ内のセンサは、画素信号の複数のシーケンスを生じさせるように、試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために、試料表面に対して配置される。デバイスは、容器に結合された信号プロセッサをさらに備える。この信号プロセッサは、画素信号の複数のシーケンスを受信し、複数のクラスタ内のクラスタに対する試料採取イベントのシーケンスの結果を分類するために処理するように構成される。画素信号の複数のシーケンスにおける画素信号の少なくとも1つのシーケンス内の各試料採取イベントに対する画素信号は、対応する画素エリア内の少なくとも2つのクラスタから検知された情報を表す。信号プロセッサは、画素信号の複数のシーケンスを使用して、N個の能動的センサから複数のクラスタ内のN+M個のクラスタに対する試料採取イベントのシーケンスの結果を分類し、Mは正の整数である。
【0067】
試料採取イベントのシーケンスの結果は、クラスタ内のヌクレオチド塩基に対応することができる。
【0068】
試料採取イベントは、時系列で2つの照射段階を備えることができ、画素信号の複数のシーケンス内の前記画素信号の少なくとも1つのシーケンスは、2つの照射段階の各々からの対応する画素エリア内の少なくとも2つのクラスタからの情報を含む1つの画素信号を含むことができる。
【0069】
信号プロセッサは、前記画素信号の少なくとも1つのシーケンスからの画素信号のシーケンスからの2つのクラスタに対する結果を分類する論理を含むことができる。2つのクラスタに対する結果を分類する論理は、特定のセンサからの前記画素信号の少なくとも1つのシーケンス内の第1の画素信号を少なくとも4つのビンへとマッピングすることと、前記画素信号の少なくとも1つのシーケンス内の第2の画素信号を少なくとも4つのビンへとマッピングすることと、第1の画素信号および第2の画素信号のマッピングを論理的に組み合わせて、2つのクラスタに対する結果を分類することとを含むことができる。
【0070】
センサのアレイ内のセンサは、光検出器を備えることができる。
【0071】
試料採取イベントは、時系列で2つの照射段階を備えることができ、画素信号の複数のシーケンス内の画素信号のシーケンスは、2つの照射段階の各々からの少なくとも1つの画素信号を含む。第1の照射段階は、ヌクレオチド塩基AおよびTを示すセンサの画素エリア内の1つまたは複数のクラスタから照射を誘発することができ、第2の照射段階は、ヌクレオチド塩基CおよびTを示すセンサの画素エリア内の1つまたは複数のクラスタから照射を誘発し、前記結果を分類することは、前記少なくとも1つのシーケンスを使用して少なくとも2つのクラスタに対してヌクレオチド塩基A、C、T、またはGのうちの1つをコールすることを備える。
【0072】
クラスタは、試料表面の画素エリア上で不均一に分布可能であり、信号プロセッサは、試料表面上の個々のクラスタに対応する照射のパターンを検出するため、および個々のクラスタに対する試料採取イベントの結果を分類するために、画素信号の複数のシーケンスの時系列および空間分析を実行することができる。画素信号の複数のシーケンスは、画素エリア上でのそれらの不均一な分布から生じる少なくとも2つのクラスタ間の差動クロストークを符号化する。
【0073】
試料表面は、画素エリアあたり2つのウェルを含む、画素エリアの上に重なるウェルのアレイを備えることができ、画素エリアあたり2つのウェルは、優位ウェルと、劣位ウェルとを含むことができ、優位ウェルは、画素エリア上で劣位ウェルよりも大きな断面積を有することができる。
【0074】
試料表面は、画素エリアの上に重なるウェルのアレイを備えることができ、試料採取イベントは、K個の照射段階をもつ少なくとも1つの化学的段階を含むことができ、Kは正の整数である。K個の照射段階の各照射段階は、異なる照射の角度を用いて画素エリアを照射することができ、画素信号のシーケンスは、試料採取イベントの少なくとも1つの化学的段階に対するK個の画素信号を含むことができる。
【0075】
試料表面は、画素エリアの上に重なるウェルのアレイを備えることができ、試料採取イベントは、K個の照射段階をもつ第1の化学的段階を含むことができ、Kは正の整数である。K個の照射段階の各照射段階は、異なる照射の角度を用いて画素エリアを照射することができ、第2の化学的段階はJ個の照射段階をもち、Jは正の整数である。第1の化学的段階におけるK個の照射段階および第2の化学的段階におけるJ個の照射段階の各照射段階は、異なる照射の角度を用いてウェルのアレイ内のウェルを照射することができ、画素信号のシーケンスは、試料採取イベントの第1の化学的段階に対するK個の画素信号と第2の化学的段階に対するJ個の画素信号を含むことができる。
【0076】
さらに別の実施形態では、ベースコーリングのためのバイオセンサが提供される。このバイオセンサは、試料採取デバイスを備える。この試料採取デバイスは、画素エリアのアレイを有する試料表面と、センサのアレイを有する固体撮像素子とを含む。各センサは、各ベースコーリングサイクル内で画素信号を生成する。各画素信号は、試料表面の対応する画素エリア内の1つまたは複数のクラスタから1つのベースコーリングサイクル内で集められた光を表す。バイオセンサは、試料採取デバイスへの接続のために構成された信号プロセッサをさらに備える。この信号プロセッサは、ベースコーリングサイクルにおいてベースコーリングのためにセンサからの画素信号を受信および処理し、ベースコーリングサイクル内でベースコールが行われるいくつかのクラスタよりも少ないセンサからの画素信号を使用する。少ないセンサからの画素信号は、対応する画素エリア内の少なくとも2つのクラスタから集められた光を表す少なくとも1つの画素信号を含む。
【0077】
画素エリアは、試料表面上のウェルから光を受けることができ、ウェルは、ベースコーリングサイクル中に複数のクラスタを保持することができる。
【0078】
クラスタは、同一の塩基配列を有する複数の一本鎖断片を備えることができる。
【0079】
さらなる実施形態では、ベースコーリングする方法が提供される。sequencing by synthesis(略してSBS)実行のベースコーリングサイクルに対して、この方法は、(1)ベースコーリングサイクルの第1の照射段階中に第1の画素エリア内の少なくとも2つのクラスタから集められた光を表す第1の画素信号と、(2)ベースコーリングサイクルの第2の照射段階中に第1の画素エリア内の前記少なくとも2つのクラスタから集められた光を表す第2の画素信号とを検出することを含む。第1の画素エリアは、第1の画素エリアを共有する複数のクラスタの下にある。方法は、第1の画素信号および第2の画素信号の組み合わせを使用して、ベースコーリングサイクル中に少なくとも2つのクラスタの各クラスタ上に組み込まれたヌクレオチド塩基を識別することを含む。
【0080】
方法は、第1の画素信号を少なくとも4つのビンへとマッピングすることと、第2の画素信号を少なくとも4つのビンへとマッピングすることと、第1の画素信号および第2の画素信号のマッピングを組み合わせて、組み込まれたヌクレオチド塩基を識別することも含むことができる。
【0081】
方法は、ベースコーリングサイクル中に複数の画素エリアにおいて複数のクラスタ上に組み込まれたヌクレオチド塩基を識別するために方法を適用することも含むことができる。
【0082】
方法は、ベースコーリングサイクルの各々において複数の画素エリア内の複数のクラスタ上に組み込まれたヌクレオチド塩基を識別するために、連続したベースコーリングサイクルにわたって方法を繰り返すことも含むことができる。
【0083】
ベースコーリングサイクルの各々に対して、方法は、複数の画素エリアにおいて複数のクラスタによって放出された第1の画素信号および第2の画素信号を検出および記憶することと、ベースコーリングサイクルの後に、第1の画素信号および第2の画素信号の組み合わせを使用して、以前のベースコーリングサイクルの各々の間に複数の画素エリアにおいて複数のクラスタ上に組み込まれたヌクレオチド塩基を識別することも含むことができる。
【0084】
第1の画素エリアは、試料表面上の関連づけられたウェルから光を受けることができる。第1の画素エリアは、試料表面上の複数の関連づけられたウェルから光を受けることができる。第1の画素信号および第2の画素信号は、第1の画素エリアから第1のセンサによって集められ得る。第1の画素信号および第2の画素信号は、第1のセンサによって集められた画素信号を処理するために構成された信号プロセッサによって検出可能である。第1の照射段階は、標識されたヌクレオチド塩基AおよびTから放出を生じさせるために第1のクラスタおよび第2のクラスタから照射を誘発することができ、第2の照射段階は、標識されたヌクレオチド塩基CおよびTから放出を生じさせるために第1のクラスタおよび第2のクラスタから照射を誘発することができる。
【0085】
別の実施形態では、バイオセンサの試料表面上の複数のクラスタをもつ画素エリアを識別し、この識別された画素エリアにおいてクラスタをベースコーリングする方法が提供される。この方法は、複数のベースコーリングサイクルを実行することであって、各ベースコーリングサイクルは、第1の照射段階と、第2の照射段階とを有する、実行することを含む。方法は、試料表面の画素エリアに関連づけられたセンサにおいて、(1)ベースコーリングサイクルの第1の照射段階中に生成される強度値の第1のセットと、(2)ベースコーリングサイクルの第2の照射段階中に生成される強度値の第2のセットをキャプチャすることを含む。方法は、信号プロセッサを使用して強度値の第1のセットおよび第2のセットを分布のセットに適合させ、この適合に基づいて、複数のクラスタを有するように画素エリアを分類することを含む。連続したベースコーリングサイクルに対して、方法は、信号プロセッサを使用して画素エリアにおけるクラスタグループに対する強度値の第1のセットおよび第2のセットを検出することと、クラスタグループに対する分布を選択することとを含む。この分布は、クラスタグループの各クラスタ内に存在するヌクレオチド塩基を識別する。
【0086】
方法は、k平均クラスタリングアルゴリズム、k平均に似たクラスタリングアルゴリズム、期待値最大化アルゴリズム、およびヒストグラムベースのアルゴリズムを含む、1つまたは複数のアルゴリズムを使用することを含む適合を含むことができる。
【0087】
方法は、強度値を正規化することを含むことができる。
【0088】
画素エリアは、試料表面上の関連づけられたウェルから光を受けることができる。
【0089】
別の実施形態では、ベースコーリングのためのデバイスが提供される。このデバイスは、バイオセンサを保持するように構成された容器を備える。このバイオセンサは、試料表面を有する。この試料表面は、クラスタが画素エリア上で不均一に分布されるように試料採取イベントのシーケンス中に複数のクラスタの下にある画素エリアを含む。バイオセンサは、画素信号の複数のシーケンスを生成するように構成されたセンサのアレイも有する。アレイ内の各センサは、試料採取イベントにおいて画素信号を生成するために、試料表面の対応する画素エリア内に配置された1つまたは複数のクラスタからの情報を検知する。このアレイは、N個の能動的センサを有する。アレイ内のセンサは、画素信号の複数のシーケンスを生じさせるように、試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために、試料表面に対して配置される。バイオセンサは、画素信号の複数のシーケンスを出力する通信ポートも有する。デバイスは、容器に結合された信号プロセッサをさらに備える。信号プロセッサは、N個の能動的センサから試料表面上のN+M個の個々のクラスタに対応する照射のパターンを検出するため、ここでMは正の整数であり、およびN+M個の個々のクラスタに対する試料採取イベントのシーケンスの結果を分類するために、画素信号の複数のシーケンスの時系列および空間分析を実行するように構成される。画素信号の複数のシーケンスにおける画素信号の少なくとも1つのシーケンス内の各試料採取イベントに対する画素信号は、対応する画素エリア内の少なくとも2つのクラスタから検知された情報を表し、画素信号の複数のシーケンスは、画素エリア上でのそれらの不均一な分布から生じる少なくとも2つのクラスタ間の差動クロストークを符号化する。
【0090】
信号プロセッサは、検出された照射のパターンを使用して、N個の能動的センサから試料表面上のN+M個の個々のクラスタを特定することができる。
【0091】
別の実施形態では、ベースコーリングのためのデバイスが提供される。このデバイスは、バイオセンサを備える。このバイオセンサは、試料表面を有する。この試料表面は、画素エリアと、この画素エリアの上に重なるウェルのアレイとを含み、バイオセンサは、2つのウェルと、画素エリアあたり2つのクラスタとを含む。画素エリアあたり2つのウェルは、優位ウェルと、劣位ウェルとを含む。優位ウェルは、画素エリア上で劣位ウェルよりも大きな断面積を有する。
【0092】
バイオセンサは、画素信号の複数のシーケンスを生成するように構成されたセンサのアレイも有する。アレイ内の各センサは、試料採取イベントにおいて画素信号を生成するために、試料表面の対応する画素エリア内に配置された2つのクラスタからの情報を検知する。アレイは、N個の能動的センサを有する。アレイ内のセンサは、画素信号の複数のシーケンスを生じさせるように、試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために、試料表面に対して配置される。バイオセンサは、画素信号の複数のシーケンスを出力する通信ポートも有する。
【0093】
2つのウェルは、画素エリアの中心に対する異なるオフセットを有することができる。試料採取イベント中に、画素エリアは、2つのウェルから異なる量の照射を受けることができる。画素信号の複数のシーケンスにおける画素信号の少なくとも1つのシーケンス内の各試料採取イベントに対する画素信号は、対応する画素エリア内の2つのクラスタから検知された情報を表す。2つのウェルの各々は、試料採取イベント中に少なくとも1つのクラスタを保持することができる。試料採取イベント中に、画素エリアは、劣位ウェル内の薄暗いクラスタから受けられる照射の量よりも多い量の照射を、優位ウェル内の明るいクラスタから受けることができる。
【0094】
バイオセンサは、信号プロセッサに結合可能である。この信号プロセッサは、画素信号の複数のシーケンスを受信し、N個の能動的センサからN+M個のクラスタ内に存在するヌクレオチド塩基を識別するために処理するように構成可能である。明るいクラスタおよび薄暗いクラスタに対して、これは、試料採取イベントの第1の照射段階中に画素エリアに対応するセンサによって生成された第1の画素信号を少なくとも4つのビンへとマッピングすることと、試料採取イベントの第2の照射段階中にセンサによって生成された第2の画素信号を少なくとも4つのビンへとマッピングすることと、第1の画素信号および第2の画素信号のマッピングを論理的に組み合わせて、明るいクラスタおよび薄暗いクラスタ内に存在するヌクレオチド塩基を識別することとを含むことができる。
【0095】
さらに別の実施形態では、ベースコーリングのためのデバイスが提供される。このデバイスは、バイオセンサを備える。このバイオセンサは、試料表面を有する。この試料表面は、画素エリアと、画素エリアあたり少なくとも2つのクラスタをもつ、画素エリアの上に重なるウェルのアレイとを含む。デバイスは、照射システムをさらに備える。照射システムは、試料採取イベントのシーケンス内の試料採取イベントに対して、ウェルの各々において非対称的に照射されるウェル領域を生じさせるために軸外し照射を用いてウェルの各々を照射することを含めて、試料採取イベントのシーケンス中に異なる照射の角度を用いて画素エリアを照射する。
【0096】
ウェルの非対称的に照射される領域は、試料採取イベント中に、優位ウェル領域が劣位ウェル領域よりも多く照射されるように、少なくとも優位ウェル領域と劣位ウェル領域とを含むことができる。ウェルは、試料採取イベント中に複数のクラスタを保持することができ、優位ウェル領域および劣位ウェル領域は各々、クラスタを含む。試料採取イベント中に、ウェルの上に重なる画素エリアは、劣位ウェル領域内の薄暗いクラスタから受けられる照射の量よりも多い量の照射を、優位ウェル領域内の明るいクラスタから受けることができる。
【0097】
軸外し照射は、45度の角度とすることができる。いくつかの実施形態では、画素エリアあたり1つのウェルが上に重なる。他の実施形態では、画素エリアあたり2つのウェルが上に重なる。
【0098】
バイオセンサは、画素信号の複数のシーケンスを生成するように構成されたセンサのアレイも有する。アレイ内の各センサは、試料採取イベントにおいて画素信号を生成するために、試料表面の対応する画素エリア内に配置された少なくとも2つのクラスタからの情報を検知する。アレイは、N個の能動的センサを有する。アレイ内のセンサは、画素信号の複数のシーケンスを生じさせるように、試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために、試料表面に対して配置される。バイオセンサは、画素信号の複数のシーケンスを出力する通信ポートも有する。
【0099】
バイオセンサは、信号プロセッサに結合可能である。この信号プロセッサは、画素信号の複数のシーケンスを受信し、N個の能動的センサからN+M個のクラスタ内に存在するヌクレオチド塩基を識別するために処理するように構成可能である。明るいクラスタおよび薄暗いクラスタに対して、これは、試料採取イベントの第1の照射段階中に画素エリアに対応するセンサによって生成された第1の画素信号を少なくとも4つのビンへとマッピングすることと、試料採取イベントの第2の照射段階中にセンサによって生成された第2の画素信号を少なくとも4つのビンへとマッピングすることと、第1の画素信号および第2の画素信号のマッピングを論理的に組み合わせて、明るいクラスタおよび薄暗いクラスタ内に存在するヌクレオチド塩基を識別することとを含むことができる。
【0100】
開示される技術の他の特徴および態様は、添付の図面と併せて取り上げられる、以下の詳細な説明から明らかになるであろう。添付の図面は、例として、開示される技術の実施形態による特徴を示す。この短い説明は、本明細書において説明されるいかなる発明の範囲をも制限することを意図したものではない。
【0101】
本開示は、1つまたは複数の実施形態によれば、以下の図を参照しながら詳細に説明される。図は、ただ例示の目的で提供されており、例示的な実施形態を示すに過ぎない。そのうえ、例示の明細さおよび容易さのために、図中の要素は、必ずしも一定の縮尺で描かれているとは限らないことが留意されるべきである。
【0102】
本明細書において含まれる図のうちのいくつかは、開示される技術のさまざまな実施形態を異なる視角から示す。添付の説明文が、そのような図を「上面」図、「底面」図、または「側面」図と呼ぶことがあるが、そのような参照は説明に過ぎず、別段明示的に述べられない限り、開示される技術が特定の空間的方向で実施または使用されることを暗示または必要としない。
【図面の簡単な説明】
【0103】
【
図1】一実施形態によるベースコーリングシステムのブロック図である。
【
図2】
図1のシステムにおいて使用可能であるシステムコントローラのブロック図である。
【
図3】さまざまな実施形態において使用可能であるバイオセンサの断面を例示する図である。
図3は、ベースコーリングサイクル中に各々が複数のクラスタ(たとえば、画素エリアあたり2つのクラスタ)を保持することができる画素エリアを有するバイオセンサである。
【
図4】さまざまな実施形態において使用可能であるバイオセンサの断面を示す図である。
図4は、ベースコーリングサイクル中に各々が複数のクラスタ(たとえば、ウェルあたり2つのクラスタ)を保持することができるウェルを有するバイオセンサである。
【
図5A】一実施形態による、共有センサ(または画素)によって検出されたそれらのそれぞれの画素信号を使用するクラスタペアの明るいクラスタのベースコーリングを示す散布図である。
【
図5B】一実施形態による、共有センサ(または画素)によって検出されたそれらのそれぞれの画素信号を使用するクラスタペアの薄暗いクラスタのベースコーリングを示す散布図である。
【
図6】一実施形態による、クラスタペアの明るいクラスタおよび薄暗いクラスタから強度値によって生じられた16の分布を示す散布図である。
【
図7A】一実施形態による、1つの染料および2つの照射段階シーケンシングプロトコルに対するベースコーリングスキームを例示する検出表である。
【
図7B】一実施形態による、クラスタペアの明るいクラスタおよび薄暗いクラスタからの組み合わされた画素信号を16のビンのうちの1つへと分類するための分類スキームを示すベースコーリング表である。
【
図8】一実施形態による、画素エリアを共有する複数のクラスタによって放出された画素信号を分析することによるベースコーリングの方法を示す図である。
【
図9】一実施形態による、バイオセンサの試料表面上の複数のクラスタをもつ画素エリアを識別し、識別された画素エリアにおいてクラスタをベースコーリングする方法を示す図である。
【
図10】一実施形態による、複数のクラスタが不均一に分布される画素エリアを有する試料表面の上面平面図である。
【
図11A】一実施形態による、優位ウェルと劣位ウェルとを含む、画素エリアあたり2つのウェルを有する試料表面の側面図である。
【
図12】(A)および(B)は、試料表面の画素エリアの上に重なるウェルの軸外し照射を示す図であり、(C)は、一実施形態による、(A)および(B)の軸外し照射によって生じられた、非対称的に照射されたウェル領域を例示する図である。
【発明を実施するための形態】
【0104】
本明細書において説明される実施形態は、学術研究的分析または商業用分析のためのさまざまな生物学的または化学的プロセスおよびシステムにおいて使用されてよい。より詳細には、本明細書において説明される実施形態は、所望の反応を示すイベント、性質、品質、または特性を検出することが望ましいさまざまなプロセスおよびシステムにおいて使用されてよい。たとえば、本明細書において説明される実施形態は、カートリッジ、バイオセンサ、およびそれらの構成要素、ならびにカートリッジおよびバイオセンサとともに動作するバイオアッセイシステムを含む。特定の実施形態では、カートリッジおよびバイオセンサは、フローセルと、実質的に一体的な構造において互いに結合された1つまたは複数のセンサ、画素、光検出器、またはフォトダイオードとを含む。
【0105】
バイオアッセイシステムは、個別にまたは集合的に検出され得る複数の所望の反応を実行するように構成され得る。バイオセンサおよびバイオアッセイシステムは、複数の所望の反応が並行して発生する多数のサイクルを実行するように構成され得る。たとえば、バイオアッセイシステムは、酵素操作およびデータ収集の反復的サイクルを通してDNA特徴の高密度アレイをシーケンシングするために使用され得る。したがって、カートリッジおよびバイオセンサは、試薬または他の反応成分を反応部位に送達する1つまたは複数のマイクロ流体チャネルを含むことがある。いくつかの実施形態では、反応部位は、実質的に平坦な表面上で不均一に分布される。他の実施形態では、反応部位は、実質的に平坦な表面上で所定の様式でパターン化される。反応部位の各々は、関連づけられた反応部位から光を検出する1つまたは複数のセンサ、画素、光検出器、またはフォトダイオードに関連づけられ得る。しかも、他の実施形態では、反応部位は、その中で所望の反応を区分化する反応チャンバ(またはウェル)内に設置される。
【0106】
いくつかの実施形態の以下の詳細な説明は、添付の図面と併せ読めば、さらによく理解されるであろう。図面がさまざまな実施形態の機能ブロック図を例示する限りにおいて、その機能ブロックは、必ずしもハードウェア回路間の区分を示すわけではない。したがって、たとえば、機能ブロック(たとえば、プロセッサまたはメモリ)のうちの1つまたは複数は、1つのハードウェア(たとえば、汎用信号プロセッサまたはランダムアクセスメモリ、ハードディスクなど)で実施されてよい。同様に、プログラムは、スタンドアロンプログラムであってもよいし、オペレーティングシステムにサブルーチンとして組み込まれていてもよいし、インストールされているソフトウェアパッケージの機能などであってもよい。さまざまな実施形態は、図面に示された構成および手段に限定されないことが理解されるべきである。
【0107】
本明細書で使用されるとき、単数形で列挙され、単語「a」または「an」が前に付された要素またはステップは、そのような排除が明示的に述べられない限り、複数の前記要素またはステップの形を除外しないものとして理解されるべきである。そのうえ、「一実施形態」の言及は、列挙した特徴も組み込む追加の実施形態の存在を除外すると解釈されることを意図したものではない。さらに、それとは反対に明示的に述べられない限り、特定の性質を有する要素または複数の要素を「comprising(備える)」または「having(有する)」または「含む(including)」実施形態は、その性質を有するにせよ有さないにせよ、追加の要素をさらに含むことがある。
【0108】
本明細書で使用されるとき、「所望の反応」は、対象の検体の化学的性質、電気的な性質、物理的な性質、または光学的な性質(または品質)のうちの少なくとも1つにおける変化を含む。特定の実施形態では、所望の反応は、肯定的な(positive)結合イベント(たとえば、対象の検体との蛍光標識された生体分子の組み込み)である。より一般的には、所望の反応は、化学的トランスフォーメーションであってもよいし、化学変化であってもよいし、化学的相互作用であってもよい。所望の反応はまた、電気的な性質における変化であってもよい。たとえば、所望の反応は、溶液中のイオン濃度における変化であってもよい。例示的な反応としては、限定するものではないが、還元、酸化、付加、脱離、転位、エステル化、アミド化、エーテル化、環化、または置換などの化学反応;第1の化学物質が第2の化学物質に結合する結合相互作用;2つ以上の化学物質が互いから分離する解離反応;蛍光;ルミネセンス;バイオルミネセンス;化学ルミネセンス;および核酸複製、核酸増幅、核酸ハイブリダイゼーション、核酸ライゲーション、リン酸化、酵素触媒作用、レセプター結合、またはリガンド結合などの生物学的反応がある。所望の反応は、たとえば、周囲溶液または環境のpHの変化として検出可能である、陽子の付加または除去とすることもできる。追加の所望の反応は、膜(たとえば、天然二分子膜または合成二分子膜)を越えるイオンの流れを検出することとすることができ、たとえば、イオンが膜を流れるとき、電流が途絶され、途絶が検出可能である。
【0109】
特定の実施形態では、所望の反応としては、蛍光標識された分子の、検体への組み込みがある。検体はオリゴヌクレオチドであってよく、蛍光標識された分子はヌクレオチドであってよい。所望の反応は、励起光が、標識されたヌクレオチドを有するオリゴヌクレオチドの方へ向けられ、フルオロフォアが、検出可能な蛍光信号を放出するとき、検出され得る。代替実施形態では、検出される蛍光は、化学ルミネセンスまたはバイオルミネセンスの結果である。所望の反応は、たとえば、ドナーフルオロフォアをアクセプタフルオロフォアの近傍にもってくることによって、蛍光(またはForster)共鳴エネルギー伝達(FRET)を増加させてもよいし、ドナーフルオロフォアとアクセプタフルオロフォアを分離することによってFRETを減少させてもよいし、クエンチャーをフルオロフォアから分離することによって蛍光を増加させてもよいし、クエンチャーとフルオロフォアを同じ場所に設置することによって蛍光を減少させてもよい。
【0110】
本明細書で使用されるとき、「反応成分」または「反応物」は、所望の反応を取得するために使用され得る任意の物質を含む。たとえば、反応成分としては、試薬、酵素、試料、他の生体分子、および緩衝液がある。反応成分は、一般的には、溶液中の反応部位に送達されるおよび/または反応部位において固定化される。反応成分は、対象の検体などの別の物質と直接的または間接的に相互作用してよい。
【0111】
本明細書で使用されるとき、「反応部位」という用語は、所望の反応が発生し得る局所的な領域である。反応部位は、物質がその上に固定化され得る基板の支持表面を含むことがある。たとえば、反応部位は、その上に核酸のコロニーを有するフローセルのチャネル内の実質的に平坦な表面を含むことがある。一般的には、常にではないが、コロニー内の核酸は、たとえば、一本鎖または二本鎖のテンプレートのクローンコピーである、同じ配列を有する。しかしながら、いくつかの実施形態では、反応部位は、たとえば、一本鎖または二本鎖の形をとる、単一の核酸分子のみを含むことがある。そのうえ、複数の反応部位は、支持表面に沿って不均一に分布されてもよいし、所定の様式で(たとえば、マイクロアレイ内など、マトリックス内で並んで)配設されてもよい。反応部位は、所望の反応を区分化するように構成された空間的な領域またはボリュームを少なくとも部分的に画定する反応チャンバ(またはウェル)も含むことができる。
【0112】
本出願は、「反応チャンバ」および「ウェル」という用語を互換的に使用する。本明細書で使用されるとき、「反応チャンバ」または「ウェル」という用語は、フローチャネルと流体連通する空間的な領域を含む。反応チャンバは、周囲環境または他の空間的な領域から少なくとも部分的に分離され得る。たとえば、複数の反応チャンバは、共有壁によって互いから分離され得る。より具体的な例として、反応チャンバは、ウェルの内側表面によって画定された空洞を含み、この空洞がフローチャネルと流体連通し得るように開口またはアパーチャを有することがある。そのような反応チャンバを含むバイオセンサは、2011年10月20日に出願された国際出願第PCT/US 2011/057111号においてより詳細に記載されており、この出願は、参照によりその全体が本明細書に組み込まれる。
【0113】
いくつかの実施形態では、反応チャンバは、固体がその中に完全または部分的に挿入され得るように、固体(半固体を含む)に対するサイズおよび形状にされる。たとえば、反応チャンバは、1つのキャプチャ(capture)ビーズのみを収容するようなサイズおよび形状にされ得る。キャプチャビーズは、クローンとして増幅されたDNAまたは他の物質をその上に有することがある。あるいは、反応チャンバは、概数のビーズまたは固体基板を受け入れるようなサイズおよび形状にされ得る。別の例として、反応チャンバは、拡散を制御するまたは反応チャンバへと流れ込み得る流体を濾過するように構成された多孔性ゲルまたは物質で満たされることもある。
【0114】
いくつかの実施形態では、センサ(たとえば、光検出器、フォトダイオード)は、バイオセンサの試料表面の対応する画素エリアに関連づけられる。したがって、画素エリアは、1つのセンサ(または画素)に対するバイオセンサの試料表面上のエリアを表す幾何学的構成体である。画素エリアに関連づけられたセンサは、関連づけられた画素エリアの上に重なる反応部位または反応チャンバにおいて所望の反応が発生したとき、関連づけられた画素エリアから集められた光放出を検出する。平らな表面の実施形態では、画素エリアは重複することができる。いくつかの場合では、複数のセンサは、単一の反応部位または単一の反応チャンバに関連づけられ得る。他の場合では、単一のセンサは、反応部位のグループまたは反応チャンバのグループに関連づけられ得る。
【0115】
本明細書で使用されるとき、「バイオセンサ」は、複数の反応部位および/または反応チャンバ(またはウェル)を有する構造を含む。バイオセンサは、固体撮像デバイス(たとえば、CCDまたはCMOS撮像素子)と、任意選択で、それに取り付けられたフローセルとを含むことがある。フローセルは、反応部位および/または反応チャンバと流体連通する少なくとも1つのフローチャネルを含むことがある。1つの具体的な例として、バイオセンサは、バイオアッセイシステムに流体的および電気的に結合するように構成される。バイオアッセイシステムは、所定のプロトコル(たとえば、sequencing-by-synthesis)に従って反応部位および/または反応チャンバに反応物を送達し、複数の撮像イベントを実行することがある。たとえば、バイオアッセイシステムは、反応部位および/または反応チャンバに沿って流れるように溶液を向けることがある。溶液のうちの少なくとも1つは、同じ蛍光標識または異なる蛍光標識を有する4つのタイプのヌクレオチドを含むことがある。ヌクレオチドは、反応部位および/または反応チャンバにおいて設置された対応するオリゴヌクレオチドに結合することがある。次いで、バイオアッセイシステムが、励起光源(たとえば、発光ダイオードまたはLEDなどの固体光源)を使用して反応部位および/または反応チャンバを照射することがある。励起光は、波長の範囲を含む、所定の1つまたは複数の波長を有することがある。励起された蛍光標識は、センサによってキャプチャされ得る放出信号を提供する。
【0116】
代替実施形態では、バイオセンサは、電極、または他の識別可能な性質を検出するように構成された他のタイプのセンサを含むことがある。たとえば、センサは、イオン濃度の変化を検出するように構成され得る。別の例では、センサは、膜を越えるイオン電流の流れを検出するように構成され得る。
【0117】
本明細書で使用されるとき、「カートリッジ」は、バイオセンサを保持するように構成された構造を含む。いくつかの実施形態では、カートリッジは、反応部位および/またはバイオセンサの反応チャンバに励起光を提供するように構成された光源(たとえば、LED)などの追加の特徴を含むことがある。カートリッジは、流体貯蔵システム(たとえば、試薬、試料、および緩衝液のための貯蔵)と、反応成分、試料などを反応部位および/または反応チャンバに流体的に輸送するための流体制御システム(たとえば、ポンプ、弁など)も含むことがある。たとえば、バイオセンサが準備または製造された後、バイオセンサは、カートリッジのハウジングまたは容器に結合され得る。いくつかの実施形態では、バイオセンサおよびカートリッジは、内蔵型使い捨てユニットであってよい。しかしながら、他の実施形態は、ユーザが構成要素または試料のメンテナンスまたは交換のためにバイオセンサまたはカートリッジの内側にアクセスすることを可能にする取り外し可能な部分をもつアセンブリを含むことがある。バイオセンサおよびカートリッジは、制御された反応をその中で行う、シーケンシングシステムなどのより大きなバイオアッセイシステムに取り外し可能に結合または係合され得る。
【0118】
本明細書で使用されるとき、「取り外し可能に」および「結合される」(または「係合される」)という用語が、バイオセンサ(またはカートリッジ)とバイオアッセイシステムのシステム容器またはインタフェースとの間の関係を説明するために一緒に使用されるとき、その用語は、バイオセンサ(またはカートリッジ)とシステム容器との間の接続が、システム容器および/またはバイオセンサ(またはカートリッジ)を破壊または損傷することなく容易に分離可能であることを意味することを意図したものである。構成要素が、構成要素の分離に費やされる過度の労力またはかなりの量の時間なしに互いから分離され得るとき、構成要素は容易に分離可能である。たとえば、バイオセンサ(またはカートリッジ)は、バイオアッセイシステムの両(mating)接触点が破壊または損傷されないように、電気的な様式でシステム容器に取り外し可能に結合または係合され得る。バイオセンサ(またはカートリッジ)は、バイオセンサ(またはカートリッジ)を保持する機構が破壊または損傷されないように、機械的な様式でシステム容器に取り外し可能に結合または係合されることもある。バイオセンサ(またはカートリッジ)は、システム容器のポートが破壊または損傷されないように、流体工学的な様式でシステム容器に取り外し可能に結合または係合されることもある。システム容器または構成要素は、たとえば、構成要素に対する単純な調整(たとえば、再アライメント)または単純な交換(たとえば、ノズルを交換すること)が必要とされる場合、破壊または損傷されると考えられない。
【0119】
本明細書で使用されるとき、「クラスタ」は、類似または同一の分子またはヌクレオチド配列またはDNA鎖のコロニーである。たとえば、クラスタは、増幅されたオリゴヌクレオチド、または同じまたは類似の配列をもつポリヌクレオチドもしくはポリペプチドの他の任意のグループとすることができる。他の実施形態では、クラスタは、試料表面上の物理的なエリアを占有する任意の要素または要素のグループとすることができる。実施形態では、クラスタは、ベースコーリングサイクル中に反応部位および/または反応チャンバに固定化される。
【0120】
本明細書で使用されるとき、「固定化される」という用語は、生体分子または生物学的物質または化学的物質に関して使用されるとき、分子レベルにおける生体分子または生物学的物質または化学的物質を表面に実質的に付着させることを含む。たとえば、生体分子または生物学的物質または化学的物質は、非共有相互作用(たとえば、静電力、ファンデルワールス、および疎水性界面の脱水)および生体分子を表面に付着させることを官能基またはリンカーが容易にする共有結合性技法を含む吸着技法を使用して、基板材料の表面に固定化され得る。生体分子または生物学的物質または化学的物質を基板材料の表面に固定化することは、基板表面の性質、生体分子または生物学的物質または化学的物質を運ぶ液状媒体、および生体分子または生物学的物質または化学的物質そのものの性質に基づくことがある。いくつかの場合では、基板表面は、生体分子(または生物学的物質または化学的物質)を基板表面に固定化することを容易にするために官能性をもたされ(たとえば、化学的または物理的に修飾され)得る。基板表面は、官能基を表面に結合させるように最初に修飾され得る。次いで、官能基は、生体分子または生物学的物質または化学的物質をその上に固定化するために、それらに結合し得る。物質は、たとえば、参照により本明細書に組み込まれる米国特許公報第US 2011/0059865 A1号に記載されたようなゲルを介して表面に固定化可能である。
【0121】
いくつかの実施形態では、核酸は、表面に付着させられ、ブリッジ増幅を使用して増幅されることが可能である。有用なブリッジ増幅方法は、たとえば、米国特許第5,641,658号;WO 2007/010251、米国特許第6,090,592号;米国特許公報第2002/0055100 A1号;米国特許第7,115,400号;米国特許公報第2004/0096853 A1号;米国特許公報第2004/0002090 A1号;米国特許公報第2007/0128624 A1号;および米国特許公報第2008/0009420 A1号に記載されており、これらの各々は、その全体が本明細書に組み込まれる。表面上で核酸を増幅するための別の有用な方法は、たとえば、以下でさらに詳細に説明される方法を使用する、ローリングサークル増幅(RCA)である。いくつかの実施形態では、核酸は、表面に付着させられ、1つまたは複数のプライマーペアを使用して増幅されることが可能である。たとえば、プライマーのうちの1つは溶液中にあることができ、他のプライマーは、表面上に固定化可能である(たとえば、5'に付着させられる)。例として、核酸分子は、表面上のプライマーのうちの1つにハイブリダイズして、それに続いて、核酸の第1のコピーを生じさせるために固定化されたプライマーの延長を行うことができる。次いで、溶液中のプライマーが核酸の第1のコピーにハイブリダイズし、核酸の第1のコピーが、核酸の第1のコピーをテンプレートとして使用して延長可能である。任意選択で、核酸の第1のコピーが生じられた後、元の核酸分子は、表面上の第2の固定化されたプライマーにハイブリダイズすることができ、溶液中のプライマーが延長されるのと同時に、またはその後で、延長可能である。任意の実施形態では、固定化されたプライマーおよび溶液中のプライマーを使用した延長(たとえば、増幅)の繰り返された巡回(round)は、核酸の複数のコピーを提供する。
【0122】
特定の実施形態では、本明細書において説明されるシステムおよび方法によって実行されるアッセイプロトコルは、天然ヌクレオチドの使用と、天然ヌクレオチドと相互作用するように構成された酵素の使用も含む。天然ヌクレオチドとしては、たとえば、リボヌクレオチド(RNA)またはデオキシリボヌクレオチド(DNA)がある。天然ヌクレオチドは、一リン酸塩、二リン酸塩、または三リン酸塩の形式をとることができ、アデニン(A)、チミン(T)、ウラシル(U)、グアニン(G)、またはシトシン(C)から選択された塩基を有することができる。しかしながら、非天然ヌクレオチド、修飾されたヌクレオチド、または上述のヌクレオチドの類似物が使用可能であることが理解されるであろう。有用な非天然ヌクレオチドのいくつかの例が、可逆的ターミネータベースのsequencing by synthesis方法に関して、以下に記載される。
【0123】
反応チャンバを含む実施形態では、部材または固体物質(半固体物質を含む)が、反応チャンバ内に配置され得る。配置されるとき、部材または固体は、締りばめ、接着、または閉じ込めを通して、反応チャンバ内で物理的に保持または固定化され得る。反応チャンバ内に配置され得る例示的な部材または固体としては、ポリマービーズ、ペレット、アガロースゲル、粉末、量子ドット、または反応チャンバ内で圧縮および/もしくは保持され得る他の固体がある。特定の実施形態では、DNA球などの核酸スーパー構造は、たとえば、反応チャンバの内側表面への付着によって、または反応チャンバ内の液体中の滞留によって、反応チャンバ内またはそこに配置可能である。DNA球または他の核酸スーパー構造が、予備成形され、次いで反応チャンバ内またはそこに配置可能である。あるいは、DNA球は、反応チャンバにおいて原位置で合成可能である。DNA球は、特定の核酸配列のコンカテマーを生じさせるためにローリングサークル増幅によって合成可能であり、コンカテマーは、比較的コンパクトな球を形成する条件で処置可能である。DNA球およびその合成のための方法は、たとえば、米国特許公報第2008/0242560 A1号または第2008/0234136 A1号に記載されており、その各々は、その全体が本明細書に組み込まれる。反応チャンバ内で保持または配置される物質は、固体状態、液体状態、または気体状態であることができる。
【0124】
本明細書で使用されるとき、「ベースコーリング」は、核酸配列内のヌクレオチド塩基を識別する。ベースコーリングは、特定のサイクルにおいてあらゆるクラスタに対してベースコール(A、C、G、T)を決定するプロセスを指す。一例として、ベースコーリングは、米国特許出願公開第2013/0079232号の組み込まれた資料に記載された4つのチャネル、2つのチャネル、または1つのチャネルの方法およびシステムを利用して実行可能である。特定の実施形態では、ベースコーリングサイクルは、「試料採取イベント」と呼ばれる。1つの染料および2つのチャネルのシーケンシングプロトコルでは、試料採取イベントは、各段階において画素信号が生成されるように、時系列で2つの照射段階を備える。第1の照射段階は、AT画素信号内でヌクレオチド塩基AおよびTを示す所与のクラスタから照射を誘発し、第2の照射段階は、CT画素信号内でヌクレオチド塩基CおよびTを示す所与のクラスタから照射を誘発する。
【0125】
ベースコーリングシステム
図1は、一実施形態によるベースコーリングシステム100のブロック図である。ベースコーリングシステム100は、生物学的物質または化学的物質のうちの少なくとも1つに関係する任意の情報またはデータを取得するように動作することがある。いくつかの実施形態では、ベースコーリングシステム100は、ベンチトップデバイスまたはデスクトップコンピュータに類似していることがあるワークステーションである。たとえば、所望の反応を行うためのシステムおよび構成要素の大部分(またはすべて)は、共通ハウジング116内にあることができる。
【0126】
特定の実施形態では、ベースコーリングシステム100は、限定するものではないが、新規シーケンシング、ゲノム全体または標的ゲノム領域の再シーケンシング、およびメタゲノム解析を含むさまざまな用途のために構成された核酸シーケンシングシステム(またはシークエンサ)である。シークエンサは、DNA分析またはRNA分析に使用されてもよい。いくつかの実施形態では、ベースコーリングシステム100は、バイオセンサ内で反応部位を生成するように構成されることもある。たとえば、ベースコーリングシステム100は、試料を受け入れ、試料に由来するクローンとして増幅された核酸の表面が付着されたクラスタを生成するように構成され得る。各クラスタは、バイオセンサ内の反応部位を構成してもよいし、その一部であってもよい。
【0127】
例示的なベースコーリングシステム100は、バイオセンサ102内で所望の反応を実行するためにバイオセンサ102と相互作用するように構成されたシステム容器またはインタフェース112を含むことがある。
図1に関する以下の説明では、バイオセンサ102は、システム容器112へとロードされる。しかしながら、バイオセンサ102を含むカートリッジがシステム容器112に挿入されることがあり、いくつかの状態では、カートリッジは、一時的または永久的に取り外し可能であることが理解される。上記で説明されたように、カートリッジは、とりわけ、流体制御および流体貯蔵構成要素を含むことがある。
【0128】
特定の実施形態では、ベースコーリングシステム100は、バイオセンサ102内で多数の並列な反応を実行するように構成される。バイオセンサ102は、所望の反応が発生することができる1つまたは複数の反応部位を含む。反応部位は、たとえば、バイオセンサの固体表面に固定化されてもよいし、バイオセンサの対応する反応チャンバ内に設置されたビーズ(または他の移動可能な基板)に固定化されてもよい。反応部位は、たとえば、クローンとして増幅された核酸のクラスタを含むことができる。バイオセンサ102は、固体撮像デバイス(たとえば、CCDまたはCMOS撮像素子)と、それに取り付けられたフローセルとを含むことがある。フローセルは、ベースコーリングシステム100から溶液を受け、その溶液を反応部位の方へ向ける1つまたは複数のフローチャネルを含むことがある。任意選択で、バイオセンサ102は、熱エネルギーをフローチャネルへとまたはこれから伝達するために熱素子を係合させるように構成可能である。
【0129】
ベースコーリングシステム100は、生物学的分析または化学分析のための所定の方法またはアッセイプロトコルを実行するために互いと相互作用する、さまざま構成要素、アセンブリ、およびシステム(またはサブシステム)を含むことがある。たとえば、ベースコーリングシステム100は、ベースコーリングシステム100のさまざまな構成要素、アセンブリ、およびサブシステムと、ならびにバイオセンサ102とも通信し得るシステムコントローラ104を含む。たとえば、システム容器112に加えて、ベースコーリングシステム100は、ベースコーリングシステム100の流体ネットワークおよびバイオセンサ102の全体にわたって流体の流れを制御するために流体制御システム106と、バイオアッセイシステムによって使用され得るすべての流体(たとえば、気体または液体)を保持するように構成された流体貯蔵システム108と、流体ネットワーク、流体貯蔵システム108、および/またはバイオセンサ102内の流体の温度を調節することがある温度制御システム110と、バイオセンサ102を照射するように構成された照射システム109も含むことがある。上記で説明されたように、バイオセンサ102を有するカートリッジがシステム容器112へとロードされる場合、カートリッジは、流体制御構成要素と流体貯蔵構成要素も含むことがある。
【0130】
同様に示されるのは、ベースコーリングシステム100は、ユーザと対話するユーザインタフェース114を含むことがある。たとえば、ユーザインタフェース114は、情報を表示するまたはユーザに情報を要求するためのディスプレイ113と、ユーザ入力を受け取るためのユーザ入力デバイス115とを含むことがある。いくつかの実施形態では、ディスプレイ113とユーザ入力デバイス115は同じデバイスである。たとえば、ユーザインタフェース114は、個々のタッチの存在を検出し、ディスプレイ上のタッチの場所も識別するように構成されたタッチセンシティブディスプレイを含むことがある。しかしながら、マウス、タッチパッド、キーボード、キーパッド、ハンドヘルドスキャナ、音声認識システム、モーション認識システムなどの他のユーザ入力デバイス115が使用されてよい。以下でより詳細に説明されるように、ベースコーリングシステム100は、所望の反応を実行するために、バイオセンサ102(たとえば、カートリッジの形をした)を含む、さまざまな構成要素と通信することがある。ベースコーリングシステム100は、ユーザに所望の情報を提供するためにバイオセンサから取得されたデータを分析するように構成されることもある。
【0131】
システムコントローラ104は、マイクロコントローラ、縮小命令セットコンピュータ(RISC)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、論理回路、および本明細書において説明される機能を実行することが可能である他の任意の回路またはプロセッサを使用するシステムを含む、任意のプロセッサベースまたはマイクロプロセッサベースのシステムを含んでよい。上記の例は例示的なものに過ぎず、したがって、いかなる形であれシステムコントローラという用語の定義および/または意味を制限することを意図したものではない。例示的な実施形態では、システムコントローラ104は、検出データのうちの少なくとも1つを取得および分析するために1つまたは複数の記憶素子、メモリ、またはモジュール内に記憶される命令のセットを実行する。検出データは、数百万のセンサ(または画素)の各々からの画素信号のシーケンスが多くのベースコーリングサイクルにわたって検出可能であるように、画素信号の複数のシーケンスを含むことができる。記憶素子は、ベースコーリングシステム100内の情報源または物理メモリ素子の形をとってよい。
【0132】
命令のセットは、本明細書において説明されるさまざまな実施形態の方法およびプロセスなどの特定の動作を実行するようにベースコーリングシステム100またはバイオセンサ102に指示するさまざまなコマンドを含むことがある。命令のセットは、ソフトウェアプログラムの形をとることがあり、ソフトウェアプログラムは、1つまたは複数の有形の非一時的なコンピュータ可読媒体の一部を形成することがある。本明細書で使用されるとき、「ソフトウェア」と「ファームウェア」という用語は互換性があり、RAMメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、および不揮発性RAM(NVRAM)メモリを含む、コンピュータによる実行のためにメモリ内に記憶された任意のコンピュータプログラムを含む。上記のメモリタイプは例示的なものに過ぎず、したがって、コンピュータプログラムの記憶に使用可能なメモリのタイプに関して制限していない。
【0133】
ソフトウェアは、システムソフトウェアまたはアプリケーションソフトウェアなどのさまざまな形をとってよい。さらに、ソフトウェアは、別個のプログラムの集まり、またはより大きなプログラム内のプログラムモジュール、またはプログラムモジュールの一部分の形をとってよい。ソフトウェアはまた、オブジェクト指向プログラミングの形をとるモジュラープログラミングを含んでよい。検出データを取得した後、検出データは、ベースコーリングシステム100によって自動的に処理されてもよいし、ユーザ入力に応答して処理されてもよいし、別の処理機械によって行われた要求(たとえば、通信リンクを通したリモート要求)に応答して処理されてもよい。例示される実施形態では、システムコントローラ104は、信号プロセッサ138を含む。他の実施形態では、システムコントローラ104は、信号プロセッサ138を含まず、代わりに、信号プロセッサ138へのアクセス権を有する(たとえば、信号プロセッサ138は、クラウド上で別個にホストされてよい)。
【0134】
システムコントローラ104は、通信リンクを介してバイオセンサ102およびベースコーリングシステム100の他の構成要素に接続されることがある。システムコントローラ104は、オフサイトのシステムまたはサーバにも通信可能に接続されることがある。通信リンクは、ハードワイヤードであってもよいし、紐でくくられても(corded)よいし、またはワイヤレスであってもよい。システムコントローラ104は、ユーザインタフェース114およびユーザ入力デバイス115から、ユーザ入力またはコマンドを受け取ることがある。
【0135】
流体制御システム106は、流体ネットワークを含み、流体ネットワークを通るように1つまたは複数の流体の流れを向け、調節するように構成される。流体ネットワークは、バイオセンサ102および流体貯蔵システム108と流体連通することがある。たとえば、選択流体は、流体貯蔵システム108から吸い込まれ、制御された様式でバイオセンサ102に向けられてもよいし、流体は、バイオセンサ102から吸い込まれ、たとえば、流体貯蔵システム108内の廃棄物リザーバの方へ向けられてもよい。図示されていないが、流体制御システム106は、流体ネットワーク内の流体の流量または圧力を検出するフローセンサを含むことがある。センサは、システムコントローラ104と通信することがある。
【0136】
温度制御システム110は、流体ネットワーク、流体貯蔵システム108、および/またはバイオセンサ102の異なる領域における流体の温度を調節するように構成される。たとえば、温度制御システム110は、バイオセンサ102とインタフェースし、バイオセンサ102内の反応部位に沿って流れる流体の温度を制御するサーモサイクラー(thermocycler)を含むことがある。温度制御システム110は、ベースコーリングシステム100またはバイオセンサ102の固体素子または構成要素の温度も調節することがある。図示されていないが、温度制御システム110は、流体の温度を検出するセンサまたは他の構成要素を含むことがある。センサは、システムコントローラ104と通信することがある。
【0137】
流体貯蔵システム108は、バイオセンサ102と流体連通し、その中で所望の反応を行うために使用されるさまざまな反応成分または反応物を貯蔵することがある。流体貯蔵システム108は、流体ネットワークおよびバイオセンサ102を洗浄または掃除するため、および反応物を希釈するための、流体も貯蔵することがある。たとえば、流体貯蔵システム108は、試料、試薬、酵素、他の生体分子、緩衝液、水溶液、および無極性溶液などを貯蔵するさまざまなリザーバを含むことがある。そのうえ、流体貯蔵システム108は、バイオセンサ102から廃棄物を受け入れるための廃棄物リザーバも含むことがある。カートリッジを含む実施形態では、カートリッジは、流体貯蔵システム、流体制御システム、または温度制御システムのうちの1つまたは複数を含むことがある。したがって、それらのシステムに関して本明細書において記載される構成要素のうちの1つまたは複数は、カートリッジハウジング内に含まれ得る。たとえば、カートリッジは、試料、試薬、酵素、他の生体分子、緩衝液、水溶液、および無極性溶液、廃棄物などを貯蔵するさまざまなリザーバを有することができる。したがって、流体貯蔵システム、流体制御システム、または温度制御システムのうちの1つまたは複数は、カートリッジまたは他のバイオセンサを介してバイオアッセイシステムと取り外し可能に係合可能である。
【0138】
照射システム109は、光源(たとえば、1つまたは複数のLED)と、バイオセンサを照射する複数の光学的構成要素とを含むことがある。光源の例としては、レーザ、アーク灯、LED、またはレーザダイオードがあり得る。光学的構成要素は、たとえば、反射器、ダイクロイック(dichroic)、ビームスプリッタ、コリメータ、レンズ、フィルタ、ウェッジ(wedge)、プリズム、鏡、検出器などであってよい。照射システムを使用する実施形態では、照射システム109は、励起光を反応部位に向けるように構成され得る。一例として、フルオロフォアは、光の緑色波長によって励起されることがあり、したがって、励起光の波長は約532nmであることがある。一実施形態では、照射システム109は、バイオセンサ102の表面の表面法線と平行である照射を生じさせるように構成される。別の実施形態では、照射システム109は、バイオセンサ102の表面の表面法線に対して角度の外れた(off-angle)照射を生じさせるように構成される。さらに別の実施形態では、照射システム109は、いくつかの平行な照射およびいくつかの角度の外れた照射を含む、複数の角度を有する照射を生じさせるように構成される。
【0139】
システム容器またはインタフェース112は、機械的な様式、電気的な様式、および流体工学的な様式のうちの少なくとも1つでバイオセンサ102を係合するように構成される。システム容器112は、バイオセンサ102を通る流体の流れを容易にするために、所望の方向でバイオセンサ102を保持することがある。システム容器112は、ベースコーリングシステム100がバイオセンサ102と通信するおよび/またはバイオセンサ102に電力を提供することがあるようにバイオセンサ102を係合するように構成された電気的接点も含むことがある。そのうえ、システム容器112は、バイオセンサ102を係合するように構成された流体ポート(たとえば、ノズル)を含むことがある。いくつかの実施形態では、バイオセンサ102は、機械的な様式で、電気的な様式で、および流体工学的な様式でも、システム容器112に取り外し可能に結合される。
【0140】
さらに、ベースコーリングシステム100は、他のシステムもしくはネットワークと、または他のバイオアッセイシステム100と、リモートで通信することがある。バイオアッセイシステム100によって取得される検出データは、リモートデータベース内に貯蔵され得る。
【0141】
図2は、
図1のシステムにおいて使用可能であるシステムコントローラ104のブロック図である。一実施形態では、システムコントローラ104は、互いと通信することができる1つまたは複数のプロセッサまたはモジュールを含む。プロセッサまたはモジュールの各々は、特定のプロセスを実行するためにアルゴリズム(たとえば、有形および/または非一時的なコンピュータ可読記憶媒体上に記憶された命令)またはサブアルゴリズムを含むことがある。システムコントローラ104は、モジュールの集まりとして概念的に例示されているが、専用ハードウェアボード、DSP、プロセッサなどの任意の組み合わせを利用して実施されてよい。あるいは、システムコントローラ104は、単一のプロセッサまたは複数のプロセッサをもつ既製のPCを利用して実施されてよく、機能的動作は、プロセッサ間で分散される。さらなるオプションとして、以下で説明されるモジュールは、いくつかのモジュール式機能はハードウェア専用を利用して実行されるが残りのモジュール式機能は既製のPCなどを利用して実行されるハイブリッド構成を利用して、実施されてよい。モジュールはまた、処理ユニット内のソフトウェアモジュールとして実施されてよい。
【0142】
動作中、通信ポート120は、バイオセンサ102(
図1)および/またはサブシステム106、108、110(
図1)に情報(たとえばコマンド)を送信する、またはこれらから情報(たとえば、データ)を受信することがある。実施形態では、通信ポート120は、画素信号の複数のシーケンスを出力することがある。通信リンク122は、ユーザインタフェース114(
図1)からユーザ入力を受信し、ユーザインタフェース114にデータまたは情報を送信することがある。バイオセンサ102またはサブシステム106、108、110からのデータは、バイオアッセイセッション中にリアルタイムでシステムコントローラ104によって処理されることがある。さらにまたはあるいは、データは、バイオアッセイセッション中にシステムメモリ内に一時的に貯蔵され、リアルタイムまたはオフラインよりも遅い動作中に処理されることがある。
【0143】
図2に示されるように、システムコントローラ104は、主制御モジュール130と通信する複数のモジュール131~139を含むことがある。主制御モジュール130は、ユーザインタフェース114(
図1)と通信することがある。モジュール131~139は、主制御モジュール130と直接的に通信するように示されているが、モジュール131~139は、互いと、ユーザインタフェース114と、およびバイオセンサ102と直接的に通信してもよい。また、モジュール131~139は、他のモジュールを通して主制御モジュール130と通信してよい。
【0144】
複数のモジュール131~139は、サブシステム106、108、110、および111とそれぞれ通信するシステムモジュール131~133、139を含む。流体制御モジュール131は、流体ネットワークを通る1つまたは複数の流体の流れを制御するための流体ネットワークの弁およびフローセンサを制御するために流体制御システム106と通信することがある。流体貯蔵モジュール132は、流体が低いとき、または廃棄物リザーバが一杯であるもしくは一杯に近いとき、ユーザに通知することがある。流体貯蔵モジュール132は、流体が所望の温度で貯蔵され得るように、温度制御モジュール133と通信することもある。照射モジュール139は、所望の反応(たとえば、結合イベント)が発生した後などの、プロトコル中の指定された時間に反応部位を照射するために、照射システム109と通信することがある。いくつかの実施形態では、照射モジュール139は、指定された角度で反応部位を照射するために、照射システム109と通信することがある。
【0145】
複数のモジュール131~139は、バイオセンサ102と通信するデバイスモジュール134と、バイオセンサ102に関係する識別情報を決定する識別モジュール135も含むことがある。デバイスモジュール134は、たとえば、バイオセンサがベースコーリングシステム100と電気的および流体工学的接続を確立したことを確認するために、システム容器112と通信することがある。識別モジュール135は、バイオセンサ102を識別する信号を受信し得る。識別モジュール135は、バイオセンサ102の識別情報を使用して、ユーザに他の情報を提供することがある。たとえば、識別モジュール135は、ロット番号、製造日、またはバイオセンサ102とともに実行することが推奨されるプロトコルを決定し、次いで表示することがある。
【0146】
複数のモジュール131~139は、バイオセンサ102から信号データ(たとえば、画像データ)を受信および分析する信号処理モジュールまたは信号プロセッサ138も含むことがある。信号プロセッサ138は、検出データを貯蔵するためにメモリ140(たとえば、RAMまたはフラッシュ)を含む。検出データは、数百万のセンサ(または画素)の各々からの画素信号のシーケンスが多くのベースコーリングサイクルにわたって検出可能であるように、画素信号の複数のシーケンスを含むことができる。信号データは、その後の分析のために貯蔵されてもよいし、所望の情報をユーザに表示するためにユーザインタフェース114に送信されてもよい。いくつかの実施形態では、信号データは、信号プロセッサ138が信号データを受信する前に固体撮像素子(たとえば、CMOS画像センサ)によって処理されることがある。
【0147】
プロトコルモジュール136および137は、所定のアッセイプロトコルを行うときサブシステム106、108、および110の動作を制御するために主制御モジュール130と通信する。プロトコルモジュール136および137は、所定のプロトコルに従って特定の動作を実行するようにベースコーリングシステム100に指示するための命令のセットを含むことがある。図示されるように、プロトコルモジュールは、sequencing-by-synthesisプロセスを実行するためのさまざまなコマンドを発行するように構成されるsequencing-by-synthesis(SBS)モジュール136であってよい。SBSでは、核酸テンプレートに沿った核酸プライマーの延長は、テンプレート内のヌクレオチドの配列を決定するために監視される。基礎をなす化学的プロセスは、重合(たとえば、ポリメラーゼ酵素によって触媒されるような)またはライゲーション(たとえば、リガーゼ酵素によって触媒される)とすることができる。特定のポリメラーゼベースのSBS実施形態では、蛍光標識されたヌクレオチドが、プライマーに付加されたヌクレオチドの順序およびタイプの検出がテンプレートの配列を決定するために使用され得るように、テンプレートに依存したやり方でプライマーに付加される(それによって、プライマーを延長する)。たとえば、第1のSBSサイクルを開始するために、コマンドが、1つまたは複数の標識されたヌクレオチド、DNAポリメラーゼなどを、核酸テンプレートのアレイを収容するフローセルへと/それを通して送達するために与えられ得る。核酸テンプレートは、対応する反応部位に設置され得る。プライマー延長が、標識されたヌクレオチドを組み込ませる反応部位は、撮像イベントを通して検出可能である。撮像イベント中、照射システム109は、反応部位に励起光を提供することがある。任意選択で、ヌクレオチドは、ヌクレオチドがプライマーに付加されるとさらなるプライマー延長を終結させる可逆的な終結性をさらに含むことができる。たとえば、可逆的な終結部分を有するヌクレオチド類似物は、非ブロック化剤がその部分を除去するために送達されるまで、その後の延長が発生することができないように、プライマーに付加可能である。したがって、可逆的な終結を使用する実施形態の場合、コマンドは、(検出が発
生する前またはその後に)フローセルに非ブロック化試薬を送達するために与えられ得る。1つまたは複数のコマンドは、さまざまな送達ステップ間で洗浄を遂行するために与えられ得る。次いで、サイクルは、n個のヌクレオチドによってプライマーを延長するためにn回繰り返しされ、それによって、長さnの配列を検出することができる。例示的なシーケンシング技法は、たとえば、Bentleyら、Nature 456:53~59(2008年)、WO 2004/018497;US 7,057,026;WO 91/06678;WO 2007/123744;US 7,329,492;US 7,211,414;US 7,315,019;US 7,405,281、およびUS 2008/0108082に記載されており、それらの各々は、参照により本明細書に組み込まれる。
【0148】
SBSサイクルのヌクレオチド送達ステップの場合、単一のタイプのヌクレオチドが一度に送達可能である、または複数の異なるヌクレオチドタイプ(たとえばA、C、T、およびGを一緒に)が送達可能である、のどちらかである。一度に単一のタイプのヌクレオチドのみが存在するヌクレオチド送達構成の場合、異なるヌクレオチドは、個別化された送達に固有の時間的分離に基づいて区別され得るので、異なる標識を有する必要はない。したがって、シーケンシング方法または装置は、単一の色検出を使用することができる。たとえば、励起源は、単一の波長におけるまたは波長の単一の範囲内での励起を提供するだけでよい。送達が、一度に複数の異なるヌクレオチドがフローセル内に存在するという結果になるヌクレオチド送達構成の場合、異なるヌクレオチドタイプを組み込む部位が、混合物内でそれぞれのヌクレオチドタイプに付着させられる異なる蛍光標識に基づいて区別可能である。たとえば、4つの異なるヌクレオチドが使用可能であり、各々が、4つの異なるフルオロフォアのうちの1つを有する。一実施形態では、4つの異なるフルオロフォアは、スペクトルの4つの異なる領域内での励起を使用して区別可能である。たとえば、4つの異なる励起放射源が使用可能である。あるいは、4つよりも少ない異なる励起源が使用可能であるが、単一の源からの励起放射の光学的濾過が、フローセルにおける励起放射の異なる範囲を生じさせるために使用可能である。
【0149】
いくつかの実施形態では、4つよりも少ない異なる色が、4つの異なるヌクレオチドを有する混合物内で検出可能である。たとえば、ヌクレオチドのペアは、同じ波長で検出可能であるが、ペアの1つのメンバに対する他のメンバと比較した強度の違いに基づいて、またはペアの他のメンバに対して検出される信号と比較して、目に見える信号を出現または消滅させるペアの1つのメンバに対する変化に基づいて(たとえば、化学的修飾、光化学的修飾、または物理的修飾を介して)、区別可能である。4つよりも少ない色の検出を使用して4つの異なるヌクレオチドを区別するための例示的な装置および方法は、たとえば、米国特許出願第61/538,294号および第61/619,878号に記載されており、これらの出願は、その全体が参照により本明細書に組み込まれる。2012年9月21日に出願された米国出願第13/624,200号は、この文脈において関連があり、同じく、その全体が参照によって組み込まれる。
【0150】
複数のプロトコルモジュールは、バイオセンサ102内の産物を増幅するために流体制御システム106および温度制御システム110にコマンドを発行するように構成された試料準備(または生成)モジュール137も含むことがある。たとえば、バイオセンサ102は、ベースコーリングシステム100に係合されることがある。増幅モジュール137は、必要な増幅構成要素をバイオセンサ102内の反応チャンバに送達するように流体制御システム106に命令を発行することがある。他の実施形態では、反応部位は、テンプレートDNAおよび/またはプライマーなどの、増幅のためのいくつかの構成要素を既に含むことがある。増幅構成要素を反応チャンバに送達した後、増幅モジュール137は、既知の増幅プロトコルに従って異なる温度段階を繰り返すように温度制御システム110に指示することがある。いくつかの実施形態では、増幅および/またはヌクレオチド組み込みは、等温で実行される。
【0151】
SBSモジュール136は、フローセルのチャネル内の局所的なエリア上でクローンアンプリコンのクラスタが形成される場合、ブリッジPCRを実行するようにコマンドを発行することがある。ブリッジPCRを通してアンプリコンを生成した後、アンプリコンは、一本鎖のテンプレートDNA、または一本鎖のsstDNAを作製するように「線状にされ」てよく、シーケンシングプライマーは、対象となる領域に隣接する汎用配列にハイブリダイズされてよい。たとえば、可逆的なターミネータベースのsequencing by synthesis方法が、上記で説明されたように、または次のように、使用可能である。
【0152】
各ベースコーリングまたはシーケンシングサイクルは、たとえば修飾されたDNAポリメラーゼおよび4つのタイプのヌクレオチドの混合物を使用することによって達成可能である、単一の塩基によってsstDNAを延長することができる。異なるタイプのヌクレオチドは、一意の蛍光標識を有することができ、各ヌクレオチドは、単一塩基組み込みのみが各サイクル内で発生することを可能にする可逆的なターミネータをさらに有することができる。単一の塩基がsstDNAに付加された後、励起光が反応部位に入射することがあり、蛍光放出が検出されることがある。検出後、蛍光標識およびターミネータは、sstDNAから化学的に切断されてよい。別の類似したベースコーリングまたはシーケンシングサイクルが続くことがある。そのようなシーケンシングプロトコルでは、SBSモジュール136が、バイオセンサ102を通るように試薬および酵素溶液の流れを向けるように流体制御システム106に指示することがある。本明細書において記載される装置および方法とともに利用可能である例示的な可逆的なターミネータベースのSBS方法は、米国特許出願公報第2007/0166705 A1号、米国特許出願公報第2006/0188901 A1号、米国特許第7,057,026号、米国特許出願公報第2006/0240439 A1号、米国特許出願公報第2006/0281109 A1号、PCT公報WO 2005/065814、米国特許出願公報第2005/0100900 A1号、PCT公報WO 2006/064199、およびPCT公報WO 2007/010251に記載されており、それらの各々は、その全体が参照により本明細書に組み込まれる。可逆的なターミネータベースのSBSのための例示的な試薬は、US 7,541,444;US 7,057,026;US 7,414,116;US 7,427,673;US 7,566,537;US 7,592,435、およびWO 2007/135368に記載されており、それらの各々は、その全体が参照により本明細書に組み込まれる。
【0153】
いくつかの実施形態では、増幅およびSBSモジュールは、たとえば、テンプレート核酸が同じカートリッジ内で増幅され、その後、シーケンシングされる単一のアッセイプロトコルにおいて、動作することがある。
【0154】
ベースコーリングシステム100は、ユーザがアッセイプロトコルを再構成することを可能にすることもある。たとえば、ベースコーリングシステム100は、決定されたプロトコルを修正するためのユーザインタフェース114を通して、ユーザにオプションを提供することがある。たとえば、バイオセンサ102が増幅に使用可能であることが決定される場合、ベースコーリングシステム100は、アニーリングサイクルのための温度を要求することがある。そのうえ、ベースコーリングシステム100は、ユーザが、一般には選択されたアッセイプロトコルのために許容可能でないユーザ入力を提供した場合、ユーザに警告を発行することがある。
【0155】
実施形態では、バイオセンサ102は数百万のセンサ(または画素)を含み、それらの各々は、連続したベースコーリングサイクルにわたって画素信号の複数のシーケンスを生成する。信号プロセッサ130は、画素信号の複数のシーケンスを検出し、センサのアレイ上のセンサの行方向(row-wise)および/または列方向(column-wise)の場所に従って、画素信号の複数のシーケンスを対応するセンサ(または画素)に属させる。
【0156】
バイオセンサ
図3は、さまざまな実施形態において使用可能であるバイオセンサ300の断面を例示する。バイオセンサ300は、各々がベースコーリングサイクル中に複数のクラスタ(たとえば、画素エリアあたり2つのクラスタ)を保持することができる画素エリア306'、308'、310'、312'、および314'を有する。バイオセンサ300は、上記で説明されたバイオセンサ102(
図1)として類似の特徴を有することがあり、たとえば、カートリッジ内で使用されてよい。図示されように、バイオセンサ300は、試料採取デバイス304上に取り付けられるフローセル302を含むことがある。例示される実施形態では、フローセル302は、試料採取デバイス304に直接的に固定される。しかしながら、代替実施形態では、フローセル302は、試料採取デバイス304に取り外し可能に結合されてよい。試料採取デバイス304は、官能性をもたされ(たとえば、所望の反応を行うのに適切な様式で化学的または物理的に修飾され)得る試料表面334を有する。たとえば、試料表面334は、官能性をもたされてよく、各々がベースコーリングサイクル中に複数のクラスタを保持することができる(たとえば、各々が、対応するクラスタペア306AB、308AB、310AB、312AB、および314ABをそれに固定化させる)複数の画素エリア306'、308'、310'、312'、および314'を含んでよい。各画素エリアは、画素エリアによって受けられる光が、対応するセンサによってキャプチャされるように、対応するセンサ(または画素またはフォトダイオード)306、308、310、312、および314に関連づけられる。画素エリア306'は、反応部位306''から放出された光が画素エリア306'によって受けられ、対応するセンサ306によってキャプチャされるように、クラスタペアを保持する試料表面334上の対応する反応部位306''にも関連づけられてよい。この検知構造の結果として、2つ以上のクラスタがベースコーリングサイクル中に特定のセンサの画素エリア内に存在する(たとえば、各々が、対応するクラスタペアを有する)場合では、そのベースコーリングサイクル内の画素信号は、2つ以上のクラスタのすべてに基づいた情報を運ぶ。その結果、本明細書において説明される信号処理は、特定のベースコーリングサイクルの所与の試料採取イベント内の画素信号よりも多くのクラスタがある場合、各クラスタを区別するために使用される。
【0157】
例示される実施形態では、フローセル302は、側壁338、340と、側壁338、340によって支持されるフローカバー336とを含む。側壁338、340は、試料表面334に結合され、フローカバー336と側壁338、340との間に延在する。いくつかの実施形態では、側壁338、340は、フローカバー336を試料採取デバイス304に接着させる硬化性接着層から形成される。
【0158】
側壁338、340は、フローチャネル344がフローカバー336と試料採取デバイス304との間に存在するようなサイズおよび形状にされる。図示されるように、フローチャネル344は、側壁338、340によって決定される高さH
1を含むことがある。高さH
1は、約50~400μm(マイクロメートル)または、より具体的には、約80~200μmであってよい。例示される実施形態では、高さH
1は約100μmである。フローカバー336は、バイオセンサ300の外側からフローチャネル344へと伝搬する励起光301に透過的な材料を含むことがある。
図3に示されるように、励起光301は、非直交角度でフローカバー336に接近する。しかしながら、励起光301は異なる角度からフローカバー336に接近し得るので、これは、例示的な目的に過ぎない。
【0159】
同様に示されるのは、フローカバー336は、他のポート(図示せず)を流体工学的に係合するように構成された入口ポートおよび出口ポート342、346を含むことがある。たとえば、他のポートは、カートリッジまたはワークステーションからであってよい。フローチャネル344は、流体を試料表面334に沿って向けるようなサイズおよび形状にされる。フローチャネル344の高さH1および他の寸法は、試料表面334に沿って流体の実質的に均一な流れを維持するように構成されてよい。フローチャネル344の寸法は、泡形成を制御するように構成されてもよい。
【0160】
例示的な
図3に示されるように、側壁338、340とフローカバー336は、互いに結合された別個の構成要素である。代替実施形態では、側壁338、340およびフローカバー336は、側壁338、340およびフローカバー336が材料の連続的な部分から形成されるように、一体的に形成されることがある。例として、フローカバー336(またはフローセル302)は、ガラスまたはプラスチックなどの透明な材料を備えることがある。フローカバー336は、フローチャネル344を画定する平坦な外側表面と平坦な内側表面を有する実質的に方形のブロックを構成することがある。ブロックは、側壁338、340上に取り付けられることがある。あるいは、フローセル302は、フローカバー336および側壁338、340を画定するためにエッチングされてよい。たとえば、凹部が、透明な材料にエッチングされてよい。エッチングされた材料が試料採取デバイス304に取り付けられるとき、凹部がフローチャネル344になり得る。
【0161】
試料採取デバイス304は、たとえば、複数の積み重ねられた基板層320~326を備える集積回路に類似していることがある。基板層320~326は、基部基板320と、固体撮像素子322(たとえば、CMOS画像センサ)と、フィルタまたは光管理層324と、パッシベーション層326とを含むことがある。上記は例示的なものに過ぎず、他の実施形態は、より少ない層または追加の層を含むことがあることが留意されるべきである。さらに、基板層320~326の各々が、複数の副層を含むことがある。以下でより詳細に説明されるように、試料採取デバイス304は、CMOS画像センサおよびCCDなどの集積回路を製造する際に使用されるプロセスに類似したプロセスを使用して製造されてよい。たとえば、基板層320~326またはその部分は、試料採取デバイス304を形成するために成長、堆積、エッチングなどがなされてよい。
【0162】
パッシベーション層326は、フローチャネル344の流体環境からフィルタ層324を保護するように構成される。いくつかの場合では、パッシベーション層326は、生体分子または他の対象の検体がその上に固定化されることを可能にする固体表面(すなわち、試料表面334)を提供するようにも構成される。たとえば、反応部位の各々は、試料表面334に固定化される生体分子のクラスタを含むことがある。したがって、パッシベーション層326は、反応部位がそれに固定化されることを可能にする材料から形成され得る。パッシベーション層326は、少なくとも所望の蛍光の光に透過的である材料も備えることがある。例として、パッシベーション層326は、窒化シリコン(Si3N4)および/またはシリカ(SiO2)を含むことがある。しかしながら、他の適切な材料も使用されてよい。例示される実施形態では、パッシベーション層326は、実質的に平坦であってよい。しかしながら、代替実施形態では、パッシベーション層326は、ピット、ウェル、溝などの凹部を含んでよい。例示される実施形態では、パッシベーション層326は、約150~200nm、より具体的には約170nmである、厚さを有する。
【0163】
フィルタ層324は、光の透過に影響を及ぼすさまざまな特徴を含むことがある。いくつかの実施形態では、フィルタ層324は、複数の機能を実行することができる。たとえば、フィルタ層324は、(a)励起光源からの光信号などの、望ましくない光信号をフィルタリングする;(b)放出信号を反応部位から、反応部位からの放出信号を検出するように構成された対応するセンサ306、308、310、312、および314の方へ向ける;または(c)隣接する反応部位からの望ましくない放出信号の検出をブロックまたは防止するように構成され得る。したがって、フィルタ層324は、光管理層と呼ばれることもある。例示される実施形態では、フィルタ層324は、約1~5μm、より具体的には約3~4μmである、厚さを有する。代替実施形態では、フィルタ層324は、マイクロレンズのアレイまたは他の光学的な構成要素を含むことがある。マイクロレンズの各々は、放出信号を関連づけられた反応部位からセンサに向けるように構成されることがある。
【0164】
いくつかの実施形態では、固体撮像素子322および基部基板320が、以前に構築された固体撮像デバイス(たとえば、CMOSチップ)として一緒に提供されることがある。たとえば、基部基板320は、シリコンのウェハであってよく、固体撮像素子322が、その上に取り付けられてよい。固体撮像素子322は、半導体材料(たとえば、シリコン)の層と、センサ306、308、310、312、および314とを含む。例示される実施形態では、センサは、光を検出するように構成されたフォトダイオードである。他の実施形態では、センサは光検出器を備える。固体撮像素子322は、CMOSベースの製作プロセスを通して単一のチップとして製造されてよい。
【0165】
固体撮像素子322は、フローチャネル344内からまたはそれに沿って所望の反応を示す活性を検出するように構成されたセンサ306、308、310、312、および314の高密度アレイを含むことがある。いくつかの実施形態では、各センサは、約1~3平方マイクロメートル(μm2)である画素エリア(または検出エリア)を有する。アレイは、500,000個のセンサ、500万個のセンサ、1000万個のセンサ、または1億3000万個のセンサを含むことができる。センサ306、308、310、312、および314は、所望の反応を示す所定の波長の光を検出するように構成されることがある。
【0166】
いくつかの実施形態では、試料採取デバイス304は、全体が参照により本明細書に組み込まれる米国特許第7,595,883号に記載された超小型回路装置などの、超小型回路装置を含む。より具体的には、試料採取デバイス304は、センサ306、308、310、312、および314の平坦なアレイを有する集積回路を備えることがある。センサ306、308、310、312、および314のアレイは、行デコーダおよび列増幅器または列デコーダに通信可能に結合可能である。列増幅器は、列アナログ-デジタル変換器(Column ADC/Mux)にも通信可能に結合可能である。他の回路が、デジタル信号プロセッサおよびメモリを含む上記の構成要素に結合されてよい。試料採取デバイス304内に形成された回路は、信号増幅、デジタル化、記憶、および処理のうちの少なくとも1つのために構成されてよい。回路は、検出された蛍光の光を収集および分析し、検出データを信号プロセッサ138に通信するために画素信号(または検出信号)を生成することがある。回路は、試料採取デバイス304内で追加のアナログおよび/またはデジタル信号処理を実行することもある。試料採取デバイス304は、信号ルーティングを実行する(たとえば、画素信号を信号プロセッサ138に送信する)導電性バイアス330を含むことがある。画素信号は、試料採取デバイス304の電気的接点332を通して送信されてもよい。
【0167】
しかしながら、試料採取デバイス304は、上記の構造または上記で説明された使用法に限定されない。代替実施形態では、試料採取デバイス304は、他の形式をとってよい。たとえば、試料採取デバイス304は、フローセルに結合されたまたは反応部位をその中に有するフローセルとインタフェースするために移動された、CCDカメラなどのCCDデバイスを備えてよい。他の実施形態では、試料採取デバイス304は、化学感受性電界効果トランジスタ(chemFET)、イオン感受性電界効果トランジスタ(ISFET)、および/または金属酸化物半導体電界効果トランジスタ(MOSFET)を含むCMOS製作センサであってよい。そのような実施形態は、反応チャンバ内の電気的な性質の変化を検出するように構成され得る電界効果トランジスタ(FET)のアレイを含んでよい。たとえば、FETは、さまざまな検体の存在および濃度変化のうちの少なくとも1つを検出してよい。例として、FETのアレイは、水素イオン濃度の変化を監視してよい。そのような試料採取デバイスは、米国特許出願公開第2009/0127589号により詳細に記載されており、これは、そのようなFETアレイを理解する目的のために全体が参照により組み込まれる。
【0168】
図4は、さまざまな実施形態において使用可能であるバイオセンサ400の断面を示す。バイオセンサ400は、各々がベースコーリングサイクル中に複数のクラスタ(たとえば、ウェルあたり2つのクラスタ)を保持することができるウェル406、408、410、412、および414を有する。試料表面334は、
図3に示されるように、実質的に平坦であってよい。しかしながら、代替実施形態では、試料表面334は、各ウェルが1つまたは複数の反応部位を有するウェル(または反応チャンバ)を画定するような形状にされることがある。ウェルは、たとえば、1つのウェルの反応部位を隣接するウェルの反応部位から効果的に分離するウェル壁によって画定されてよい。
【0169】
図4に示されるように、ウェル406、408、410、412、および414は、試料表面334に沿って、あるパターンで分布されることがある。たとえば、ウェル406、408、410、412、および414は、マイクロアレイに類似した様式で試料表面334に沿って行および列として設置されることがある。しかしながら、ウェル406、408、410、412、および414のさまざまなパターンが使用されてよいことが理解される。特定の実施形態では、ウェル406、408、410、412、および414の各々は、試料表面334上に固定化される生体分子(たとえば、オリゴヌクレオチド)の複数のクラスタを含む。たとえば、ウェル406はクラスタペア306ABを保持し、ウェル408はクラスタペア308ABを保持し、ウェル410はクラスタペア310ABを保持し、ウェル412はクラスタペア312ABを保持し、ウェル414はクラスタペア314ABを保持する。
【0170】
センサは、ウェル内から放出された光信号を検出するように構成される。特定の実施形態では、画素エリア306'、308'、310'、312'、および314'も、ウェル406、408、410、412、および414から放出された光が、関連づけられた画素エリア306'、308'、310'、312'、および314'によって受けられ、対応するセンサ306、308、310、312、および314によってキャプチャされるように、試料表面334上の対応するウェル406、408、410、412、および414に関連づけられることがある。
【0171】
実施形態では、試料表面334は、ウェル406、408、410、412、および414が、少なくとも1つの所定のセンサ(または画素)に対して既知の空間的な場所を有するように、試料採取デバイス304に対して固定位置を有する。少なくとも1つの所定のセンサは、上に重なるウェルから所望の反応の活性を検出する。したがって、ウェル406、408、410、412、および414は、センサ306、308、310、312、および314のうちの少なくとも1つに割り当てられ得る。このために、試料採取デバイス304の回路は、所定のセンサ306、308、310、312、および314によって提供される画素信号(または検出信号)を、割り当てられたウェル406、408、410、412、および414と自動的に関連づけるカーネルを含むことがある。例として、画素信号が、
図4に示されるセンサ306によって生成されるとき、画素信号は、
図4に示されるウェル406に自動的に関連づけられるであろう。そのような構成は、検出データを処理および分析することを容易にし得る。たとえば、1つのウェルからの画素信号は、行方向および/または列方向の復号に基づいて、アレイ上のある位置に自動的に設置されることがある。
【0172】
いくつかの実施形態では、センサ(または画素)は、クラスタの下にある、またはクラスタより下にある。他の実施形態では、センサ(または画素)は、クラスタの上に重なる、またはクラスタの上にある。さらに他の実施形態では、センサ(または画素)は、クラスタの側方にある(たとえば、右および/または左にある)。
【0173】
センサ(または画素)あたり複数のクラスタベースコール
実施形態では、開示される技術は、ベースコーリングサイクル内でベースコールされるクラスタの数よりも少ないセンサ(または画素)からの画素信号を使用することによって、バイオセンサ300のスループットを増加させる。特定の実施形態では、バイオセンサ300がN個の能動的センサを有する場合、開示される技術は、N個の能動的センサからの画素信号を使用してN+M個のクラスタをベースコールさせ、ここでMは正の整数である。実施形態では、これは、以下で説明されるように、センサ(または画素)あたり複数のクラスタをベースコーリングすることによって達成される。
【0174】
実施形態では、試料表面334上のセンサ(または画素)は、少なくとも2つのクラスタから光放出を受けるように構成される。いくつかの実施形態では、センサは、同時に、少なくとも2つのクラスタから光放出を受ける。
【0175】
特定の実施形態では、2つのクラスタのそれぞれの光放出の強度は著しく異なり、したがって、2つのクラスタのうちの一方は「明るい」クラスタであり、他方は「薄暗い」クラスタである。実施形態では、強度値はベースコーリングサイクル間で変わり、したがって、明るいおよび薄暗いという分類も、サイクル間で変化し得る。他の実施形態では、明るいクラスタは「メジャー」または「優位」クラスタと呼ばれ、薄暗いクラスタは「マイナー」または「劣位」クラスタと呼ばれる。明るいクラスタと薄暗いクラスタとの間の放出の強度値比のいくつかの例としては、0.55:0.45、0.60:0.40、0.65:0.35、0.70:0.30、0.75:0.25、0.80:0.20、0.85:0.15、0.90:0.10、および0.95:0.05がある。
【0176】
さらに他の実施形態では、少なくとも2つのクラスタは、明るいクラスタおよび薄暗いクラスタでなく、代わりに、異なる強度をもつクラスタまたは異なるタイプの信号を生成するクラスタである。
【0177】
各試料採取イベント(たとえば、各照射段階または各画像獲得段階)中、信号プロセッサ138は、少なくとも2つのクラスタ(たとえば、明るいクラスタと薄暗いクラスタの両方)のための共通する単一の画素信号を受信する。各試料採取イベントにおいて生成される共通する単一の画素は、少なくとも2つのクラスタ(たとえば、明るいクラスタと薄暗いクラスタの両方)のためのまたはそれからの光放出/強度信号/キャプチャされた光/検知された情報を含む/表す/反射する/運ぶ。言い換えれば、少なくとも2つのクラスタ(たとえば、明るいクラスタと薄暗いクラスタの両方)は、各試料採取イベントにおいて生成される共通する単一の画素に寄与する。したがって、少なくとも2つのクラスタ(たとえば、明るいクラスタと薄暗いクラスタの両方)からの光放出は、各試料採取イベントにおいて同時に検出され、共通する単一の画素は、少なくとも2つのクラスタ(たとえば、明るいクラスタと薄暗いクラスタの両方)からの光放出を反射する。
【0178】
たとえば、
図3および
図4では、クラスタペア306ABは、センサ306を共有する2つのクラスタ306Aおよび306Bを含む。したがって、それらのそれぞれの強度値に応じて、クラスタ306Aは薄暗いクラスタとすることができ、クラスタ306Bは明るいクラスタとすることができる。次いで、信号プロセッサ138は、以下で説明されるように、ベースコーリングアルゴリズムを使用して、明るいクラスタおよび薄暗いクラスタからの画素信号を16の分布のうちの1つへと分類する。特定の実施形態では、明るいクラスタと薄暗いクラスタは、ウェル406などのウェルを共同で占有する(co-occupy)。したがって、クラスタペアリングは、共有画素エリアもしくは共有ウェル、または両方に基づいて、定義可能である。
【0179】
図5Aおよび
図5Bは、一実施形態による、共有センサによって検出されたそれらのそれぞれの画素信号を使用した明るいクラスタおよび薄暗いクラスタのベースコーリングを示す散布
図500Aおよび500Bである。散布
図500Aおよび500BのX軸は、ヌクレオチド塩基AおよびTを示す所与のクラスタから照射を誘発する試料採取イベントの第2の照射段階中に検出されるAT画素信号を表す。散布
図500Aおよび500BのY軸は、ヌクレオチド塩基CおよびTを示す所与のクラスタから照射を誘発する試料採取イベントの第1の照射段階中に検出されるCT画素信号を表す。
【0180】
散布
図500Aは、信号プロセッサ138が明るいクラスタからの画素信号を分類する4つの分布502、504、506、および508を示す。例示される実施形態では、分布502は、明るいクラスタ内のヌクレオチド塩基Cを表し、分布504は、明るいクラスタ内のヌクレオチド塩基Tを表し、分布506は、明るいクラスタ内のヌクレオチド塩基Gを表し、分布508は、明るいクラスタ内のヌクレオチド塩基Aを表す。
【0181】
散布
図500Bは、散布
図500Aの4つの分布502、504、506、および508の各々に対する4つの副分布をもつ、16の副分布(または分布)502A~D、504A~D、506A~D、および508A~Dを示し、これに対して、信号プロセッサ138が薄暗いクラスタからの画素信号を分類する。例示される実施形態では、「A」という文字で注釈がつけられた副分布は、薄暗いクラスタ内のヌクレオチド塩基Cを表し、「B」という文字で注釈がつけられた副分布は、薄暗いクラスタ内のヌクレオチド塩基Tを表し、「C」という文字で注釈がつけられた副分布は、薄暗いクラスタ内のヌクレオチド塩基Gを表し、「D」という文字で注釈がつけられた副分布は、薄暗いクラスタ内のヌクレオチド塩基Aを表す。他の実施形態では、塩基の異なる符号化が使用されてよい。信号プロセッサが、薄暗いクラスタからの画素信号を16の副分布のうちの1つに分類するとき、対応する明るいクラスタの分類は、薄暗いクラスタの副分布を含む分布によって決定される。たとえば、薄暗いクラスタが副分布508B(ヌクレオチド塩基T)に分類される場合、対応する明るいクラスタのための分布は508(ヌクレオチド塩基A)である。その結果、信号プロセッサ138は、明るいクラスタをAとして、薄暗いクラスタをTとして、ベースコールさせる。
【0182】
図6は、一実施形態による、クラスタペアの明るいクラスタおよび薄暗いクラスタから強度値によって生じられた16の分布(またはビン)を示す散布
図600である。実施形態では、16のビンは、複数のベースコーリングサイクルにわたって生じられる。信号プロセッサ138は、明るいクラスタおよび薄暗いクラスタからの画素信号を組み合わせ、それらを16のビンのうちの1つへとマッピングする。組み合わされた画素信号が、ベースコーリングサイクルのためのビン612にマッピングされたとき、信号プロセッサ138は、明るいクラスタをCとして、薄暗いクラスタをCとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン614にマッピングされたとき、信号プロセッサ138は、明るいクラスタをCとして、薄暗いクラスタをTとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン616にマッピングされたとき、信号プロセッサ138は、明るいクラスタをCとして、薄暗いクラスタをGとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン618にマッピングされたとき、信号プロセッサ138は、明るいクラスタをCとして、薄暗いクラスタをAとして、ベースコールさせる。
【0183】
組み合わされた画素信号が、ベースコーリングサイクルのためのビン622にマッピングされたとき、信号プロセッサ138は、明るいクラスタをTとして、薄暗いクラスタをCとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン624にマッピングされたとき、信号プロセッサ138は、明るいクラスタをTとして、薄暗いクラスタをTとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン626にマッピングされたとき、信号プロセッサ138は、明るいクラスタをTとして、薄暗いクラスタをGとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン628にマッピングされたとき、信号プロセッサ138は、明るいクラスタをTとして、薄暗いクラスタをAとして、ベースコールさせる。
【0184】
組み合わされた画素信号が、ベースコーリングサイクルのためのビン632にマッピングされたとき、信号プロセッサ138は、明るいクラスタをGとして、薄暗いクラスタをCとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン634にマッピングされたとき、信号プロセッサ138は、明るいクラスタをGとして、薄暗いクラスタをTとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン636にマッピングされたとき、信号プロセッサ138は、明るいクラスタをGとして、薄暗いクラスタをGとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン638にマッピングされたとき、信号プロセッサ138は、明るいクラスタをGとして、薄暗いクラスタをAとして、ベースコールさせる。
【0185】
組み合わされた画素信号が、ベースコーリングサイクルのためのビン642にマッピングされたとき、信号プロセッサ138は、明るいクラスタをAとして、薄暗いクラスタをCとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン644にマッピングされたとき、信号プロセッサ138は、明るいクラスタをAとして、薄暗いクラスタをTとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン646にマッピングされたとき、信号プロセッサ138は、明るいクラスタをAとして、薄暗いクラスタをGとして、ベースコールさせる。組み合わされた画素信号が、ベースコーリングサイクルのためのビン648にマッピングされたとき、信号プロセッサ138は、明るいクラスタをAとして、薄暗いクラスタをAとして、ベースコールさせる。
【0186】
図7Aは、一実施形態による、1つの染料および2つの照射段階シーケンシングプロトコルに対するベースコーリングスキームを例示する検出表700Aである。1つの蛍光染料(または同じもしくは類似の励起/放出スペクトルの2つ以上の染料)を使用してシーケンシング反応においてヌクレオチド組み込みを検出するための異なる戦略を差別化する1つの道は、シーケンシングサイクル中に発生する蛍光遷移の存在もしくは相対的な不在、またはその間のレベルに関して組み込みを特徴づけることによるものである。したがって、シーケンシング戦略は、シーケンシングサイクルのための蛍光プロファイルによって例証可能である。本明細書で開示される戦略の場合、「1」および「0」は、ヌクレオチドが信号状態である(たとえば、蛍光によって検出可能である)蛍光状態、またはヌクレオチドが暗状態である(たとえば、撮像ステップにおいて検出されない、または最小限に検出される)かどうかを表す。「0」状態は、信号の全体的な欠如、すなわち不在を必ずしも参照しない。最小のまたは減弱された蛍光信号(たとえば、バックグラウンド信号)はまた、第1の照射イベントから第2の照射イベントへの(または、その逆の)蛍光の変化が確実に区別可能である限り、「0」状態の範囲内に含まれることが企図されている。一実施形態では、1つの蛍光染料(または同じもしくは類似の励起/放出スペクトルの2つの染料)および2つの照射イベントを使用したシーケンシング反応におけるヌクレオチド組み込みを検出および決定するための例示的な戦略が、検出表700Aによって例証される。
【0187】
例示される実施形態では、第1の照射段階(AT信号)中、ヌクレオチド塩基Aは、標識される、またはオンである(ビット1によって示される)、ヌクレオチド塩基Cは、標識されない、またはオフである(ビット0によって示される)、ヌクレオチド塩基Gは、標識されない、またはオフである(ビット0によって示される)、ヌクレオチド塩基Tは、標識される、またはオンである(ビット1によって示される)。第2の照射段階(CT信号)中、ヌクレオチド塩基Aは、標識されない、またはオフである(ビット0によって示される)、ヌクレオチド塩基Cは、標識される、またはオンである(ビット1によって示される)、ヌクレオチド塩基Gは、標識されない、またはオフである(ビット0によって示される)、ヌクレオチド塩基Tは、標識される、またはオンである(ビット1によって示される)。
【0188】
図7Bは、一実施形態による、各画素信号がクラスタペアの明るいクラスタおよび薄暗いクラスタからの情報を含む、組み合わされた画素信号を16のビンのうちの1つへと分類するための分類スキームを示すベースコーリング表700Bである。
【0189】
開示される技術は、共有センサの画素エリア内の複数のクラスタのすべてから検知された情報を表す画素信号を生成する。次いで、そのようなパンクラスタ画素信号のシーケンスが、すべてのクラスタをベースコールさせるためにビンにマッピングされる。したがって、各クラスタのための別個の異なる画素信号は生成されない。これは、画像獲得における多種多様な減少、およびそれによって、シーケンシング時間を減少させ、配列処理を加速させるという利点を有する。
【0190】
画素エリア内の明るいクラスタおよび薄暗いクラスタのベースコールが行われる
図7Bについて考える。各サイクルにおいて、AT信号およびCT信号という2つの画素信号が試料採取される。第1の試料採取イベント中、蛍光標識されたアデニン(A)およびチミン(T)のための明るいクラスタと薄暗いクラスタの両方からの光放出が、2つの別個のAT信号、すなわち、明るいクラスタのための1つの信号と薄暗いクラスタのための別の信号とは反対に、AT信号内に記録される。同様に、第2の試料採取イベント中、蛍光標識されたシトシン(C)およびチミン(T)のための明るいクラスタと薄暗いクラスタの両方からの光放出が、2つの別個のCT信号、すなわち、明るいクラスタのための1つの信号と薄暗いクラスタのための別の信号とは反対に、CT信号内に記録される。
【0191】
このようにして、両方のクラスタからの光放出が、単一の試料採取イベント中に受けられ、共通する単一の画素信号を産生する。したがって、各試料採取イベントに対して、明るいクラスタと薄暗いクラスタの両方からの放出は、共通する単一の画素信号内に一緒に表される。
【0192】
そのうえ、画素信号の共通する単一のシーケンスは、各サイクルにおいて明るいクラスタと薄暗いクラスタの両方を共同でベースコールさせるために使用される。
図7Bでは、AT信号とCT信号は、画素信号の共通する単一のシーケンスを一緒に形成する。したがって、開示される技術は、画素信号の2つの別個のシーケンス、すなわち、明るいクラスタのための1つと薄暗いクラスタのための別のものを使用して、明るいクラスタと薄暗いクラスタを別個にベースコールさせない。これは、信号処理における多種多様な減少、およびそれによって、シーケンシング時間を減少させ、配列処理を加速させるという利点を有する。
【0193】
開示されるベースコーリングは、画素信号の共通する単一のシーケンスをビンにマッピングすることを伴う。たとえば、
図7Bでは、値1および0を用いて、AT信号およびCT信号のシーケンスがビン1にマッピングされ、明るいクラスタおよび薄暗いクラスタはそれぞれ、割り当てられたベースコールAおよびAである。
【0194】
図7Bに示される例では、0.7:0.3の決定論的な明るい対薄暗いクラスタ強度比が使用される。実施形態では、強度比は決定されず、したがって、強度比は、画素エリアを共有するもしくはウェルを共有する、またはその両方である、検出可能な明るいクラスタおよび薄暗いクラスタを生じさせる。
【0195】
強度比が0.7:0.3である(すなわち、明るいクラスタおよび薄暗いクラスタからの光放出の強度値が著しく異なる)結果として、複数のベースコーリングサイクルにわたる2つの照射段階中の共有センサからの画素信号読み出しは、16のビン701(ビン1~16)を生じさせる。各ビンは、画素信号値の一意のペア(たとえば、ビン1のための一意のペア710)を有し、ペアは、第1の照射段階における2つのクラスタのための第1の画素信号値706(AT信号)と、第2の照射段階における2つのクラスタのための第2の画素信号値708(CT信号)とを備える。
【0196】
次に、各画素信号値706または708は、対応する画素信号値706または708を生じさせるために付加的に組み合わされる2つの信号部分706Aおよび706Bまたは708Aおよび708Bから構成される。したがって、共通する単一の画素信号が、明るいクラスタと薄暗いクラスタの両方から生成される。
【0197】
各画素信号値706または708に対して、第1の信号部分706Aまたは708Aは第1のクラスタによって光放出の強度値から決定され、第2の信号部分706Bまたは708Bは第2のクラスタによって光放出の強度値から決定される。ベースコーリング表700Bに示される例では、第1のクラスタは明るいクラスタ702であり、第2のクラスタは薄暗いクラスタ704である。
【0198】
強度比が0.7:0.3であるので、第1の画素信号および第2の画素信号は、4つの可能な値すなわち1、0、0.7、または0.3のうちの1つをとることができる。さらに、明るいクラスタが「オン」ビットを生じさせるとき、その寄与すなわち信号部分(706A、708A)は0.7である。対照的に、薄暗いクラスタが「オン」ビットを生じさせるとき、その寄与すなわち信号部分(706B、708B)は0.3である。「オフ」ビットを表す寄与すなわち信号部分は、両方のクラスタに対して0によって識別される。4つの可能な値1、0、0.7、および0.3の16の一意の組み合わせは、16のビン701を生じさせる。
【0199】
16のビン701が、複数のベースコーリングサイクルにわたって共有センサまたはウェルの上に重なる明るい-薄暗いクラスタペアのための信号プロセッサ138によって識別されると、信号プロセッサ138は、ベースコーリング表700Bを使用して、連続したベースコーリングサイクル内で明るいおよび薄暗いクラスタをベースコールさせる。一実施形態では、識別結果は、複数のクラスタ(すなわち、明るいクラスタおよび薄暗いクラスタ)を保持するとしてのウェルの分類という結果になる。したがって、連続したベースコーリングサイクル内で、信号プロセッサは、第1の照射段階(AT信号)のための共有センサの第1の画素読み出しを実行する。この第1の画素読み出しは、第1の画素信号を生じさせる。同様に、第2の照射段階(CT信号)のための第2の画素読み出しは、第2の画素信号を生じさせる。第1の画素信号および第2の画素信号は、値ペアを形成するために組み合わされる強度値を生じさせる。この値ペアは、ベースコーリング表700Bにおける16の一意の値ペアのうちの1つに対して比較可能である。比較に基づいて、16のビンのうちの1つが選択される。明るいクラスタおよび薄暗いクラスタのためのベースコールは、選択されたビンに割り当てられたヌクレオチド塩基に従って行われる。このプロセスは、明るいおよび薄暗いクラスタのそれぞれのヌクレオチド配列内に存在するヌクレオチド塩基を識別するために、その後のベースコーリングサイクルに対して繰り返される。
【0200】
したがって、開示される技術は、相対的強度には関係なく、すべてのクラスタからの放出をベースコーリングに有用であるとみなす。これは、弱い放出を有するクラスタ(たとえば、薄暗いクラスタ)が別個にベースコールが行われないからである。その代わりに、弱い放出を有するクラスタ(たとえば、薄暗いクラスタ)は、強い放出と弱い放出の両方を運ぶ画素信号の共通する単一のシーケンスを使用して強い放出を有するクラスタ(たとえば、明るいクラスタ)と共同でベースコールが行われる。
【0201】
上記で説明されたように、共有センサは、2つの異なるクラスタ(たとえば、明るいクラスタおよび薄暗いクラスタ)から光子をキャプチャする。いくつかの実施形態では、信号部分は、クラスタの各々によって生成された個々の信号部分を区別するために共有センサからの信号読み取り値をデコンボリューションすることによって検出される。
【0202】
図8は、一実施形態による、画素エリアを共有する複数のクラスタによって放出された画素信号を分析することによるベースコーリングの方法800を示す。アクション802では、ベースコーリングサイクルの第1の照射段階中に第1の画素エリア内の複数のクラスタから集められた光を表す第1の画素信号が検出される。いくつかの実施形態では、第1の画素エリアは、試料表面334上の関連づけられたウェルから光を受ける。他の実施形態では、第1の画素エリアは、試料表面334上の複数の関連づけられたウェルから光を受ける。
【0203】
アクション804では、ベースコーリングサイクルの第2の照射段階中に第1の画素エリア内の複数のクラスタから集められた光を表す第2の画素信号が検出される。
【0204】
実施形態では、第1の画素エリアは、第1の画素エリアを共有する複数のクラスタの下にある。第1の画素信号および第2の画素信号は、第1の画素エリアから第1のセンサによって集められ得る。第1の画素信号および第2の画素信号は、信号プロセッサ138によって検出可能であり、信号プロセッサ138は、第1のセンサによって集められた画素信号を処理するために構成される。
【0205】
いくつかの実施形態では、第1の照射段階は、標識されたヌクレオチド塩基AおよびTから放出を生じさせるために第1のクラスタおよび第2のクラスタから照射を誘発することができ、第2の照射段階は、標識されたヌクレオチド塩基CおよびTから放出を生じさせるために第1のクラスタおよび第2のクラスタから照射を誘発することができる。
【0206】
アクション806では、第1の画素信号および第2の画素信号の組み合わせは、ベースコーリングサイクル中に複数のクラスタの各クラスタ上に組み込まれたヌクレオチド塩基を識別するために使用される。実施形態では、これは、第1の画素信号を少なくとも4つのビンへとマッピングすることと、第2の画素信号を少なくとも4つのビンへとマッピングすることと、ベースコーリングのために第1の画素信号および第2の画素信号のマッピングを組み合わせることとを含む。
【0207】
実施形態では、方法800は、ベースコーリングサイクル中に複数の画素エリアにおいて複数のクラスタ上に組み込まれたヌクレオチド塩基を識別するために適用される。実施形態では、方法800は、ベースコーリングサイクルの各々において複数の画素エリア内の複数のクラスタ上に組み込まれたヌクレオチド塩基を識別するために、連続したベースコーリングサイクルにわたって繰り返される。
【0208】
いくつかの実施形態では、ベースコーリングサイクルの各々に対して、複数の画素エリアにおいて複数のクラスタによって放出される第1の画素信号および第2の画素信号が検出および記憶される。ベースコーリングサイクルの後、第1の画素信号および第2の画素信号の組み合わせは、以前のベースコーリングサイクルの各々の間に複数の画素エリアにおいて複数のクラスタ上へと組み込まれたヌクレオチド塩基を識別するために使用される。
【0209】
図9は、一実施形態による、バイオセンサ300の試料表面334上の複数のクラスタをもつ画素エリアを識別し、識別された画素エリアにおいてクラスタをベースコーリングする方法900を示す。アクション902では、複数のベースコーリングサイクルが実行される。各ベースコーリングサイクルは、第1の照射段階と、第2の照射段階とを有する。
【0210】
アクション904では、試料表面334の画素エリアに関連づけられたセンサが、(a)ベースコーリングサイクルの第1の照射段階中に生成された強度値の第1のセットおよび(b)ベースコーリングサイクルの第2の照射段階中に生成された強度値の第2のセットをキャプチャする。実施形態では、強度値が正規化される。また、いくつかの実施形態では、画素エリアは、試料表面334上の関連づけられたウェルから光を受ける。
【0211】
アクション906では、信号プロセッサ138は、強度値の第1のセットおよび第2のセットを、この例では16の分布を含む、分布のセットのうちの1つ(分布が、
図6の2次元プロット内のエリアである場合)に適合させ(
図6に示される)、この適合に基づいて、複数のクラスタを有すると画素エリアを分類する。実施形態では、信号プロセッサ138は、16の分布を適合させるために1つまたは複数のアルゴリズムを使用する。アルゴリズムの例としては、k平均クラスタリングアルゴリズム、k平均に似たクラスタリングアルゴリズム、期待値最大化アルゴリズム、およびヒストグラムベースのアルゴリズムがある。
【0212】
アクション908では、連続したベースコーリングサイクルの場合、信号プロセッサ138は、画素エリアにおけるクラスタグループに対する強度値の第1のセットおよび第2のセットを検出する。アクション910では、信号プロセッサ138は、16の分布の中からクラスタグループに対する分布を選択する。この分布は、クラスタグループの各クラスタ内に存在するヌクレオチド塩基を識別する。
【0213】
いくつかの実施形態では、強度比は、著しく異なる光放出を生じさせる明るいクラスタおよび薄暗いクラスタの固有の性質である。他の実施形態では、クラスタ間の強度比および著しく異なる光放出は、平らな表面上でのクラスタの不均一な分布、センサ(または画素)あたり2つのウェル、および軸外し照射などの、以下の実施形態によって作動される。
【0214】
不均一に分布したクラスタの平らな表面ベースの空間分析
図10は、一実施形態による、複数のクラスタ(円として示される)が不均一に分布される画素エリア(方形として示される)を有する試料表面334の上面平面
図1000を例示する。表面ウェル334上のクラスタの位置は、センサ(または画素)の場所に対して、ウェルによって限定されなくてよい。試料表面334上でのクラスタのそのような配置は、不均一な分布と呼ばれる。特定の実施形態では、クラスタは、ウェルを含まない試料表面334の「平らな」構成上で不均一に分布される。そのような平らな表面の実施形態では、画素エリアは重複することができる。
【0215】
例示される実施形態では、4つの画素エリアA、B、C、およびDを共有する2つの例示的なクラスタ1002および1004について考える。画素エリアA、B、C、およびDの中心に対するクラスタの相対的な位置に応じて、対応するセンサ(または画素)は、異なる量の光放出を受ける。これは、シーケンシング実行の複数のベースコーリングサイクルにわたってクラスタ1002と1004との間で差動クロストークを作成する照射パターンを生じさせ、これは、以下で説明されるように、試料表面334上でのクラスタ場所のマップを構築するために使用可能である。差動クロストークは、1つの画素信号内の2つ以上のクラスタからの情報として画素信号内で実施される。
【0216】
信号プロセッサ138は、試料表面334上に不均一に分布した個々のクラスタに対応する照射のパターンを検出するために、クラスタに対する画素信号の複数のシーケンスの時系列および空間分析を実行する。画素信号の複数のシーケンスは、画素エリア上でのそれらの不均一な分布から生じる少なくとも2つのクラスタ間の差動クロストークを符号化する。
【0217】
空間分析は、画素エリアのグループから集められた画素信号のシーケンスを使用して、試料表面334上での所与のクラスタの場所を含む、所与のクラスタの空間的な特性を決定することを含む。クラスタ場所およびそれらの照射パターンが複数のベースコーリングサイクルにわたって識別された後、クラスタは、上記で説明されたシーケンシングプロトコルのうちの1つを使用して、信号プロセッサ138によってベースコール可能である。
【0218】
空間分析実施形態では、開示される技術は、N個のセンサ(または画素)を使用して、試料表面334上のN+M個の不均一に分布したクラスタを特定し、ベースコールさせることによってバイオセンサ300のスループットを増加させ、ここでMは正の整数である。いくつかの実施形態では、Mは、Nに等しい、またはNにほとんど等しい。他の実施形態では、画素エリアおよび/またはウェルを共有する(または共同で占有する)2つのクラスタが、強度値の不適切な差により、別個に検出可能でないとき、Mは、Nに等しくない可能性があり、またはNよりも小さい可能性すらある。
【0219】
センサ(または画素)あたり2つのウェル
図11Aは、一実施形態による、優位(またはメジャー)ウェルと劣位(またはマイナー)ウェルとを含む、画素エリアあたり2つのウェルを有する試料表面の側面
図1100Aを例示する。
図11Bは、
図11Aの試料表面の上面平面
図1100Bを示す。
【0220】
例示される実施形態では、共有センサ1106(または画素)は、試料表面334上の2つのウェル1102および1104に対応する。優位ウェルは、画素エリア上で劣位ウェルよりも大きな断面積を有する。ウェル1104は、センサ1106上でより大きい断面積を有するので、ウェル1104は優位ウェルであり、ウェル1102は劣位ウェルである。
【0221】
実施形態では、2つのウェルは、画素エリア1106'の中心に対する異なるオフセットを有する。例示される実施形態では、優位ウェル1104は、劣位ウェル1102よりも画素エリア中心1106Aに近接している(すなわち、優位ウェル1104は、画素エリア中心1106Aに対して、劣位ウェル1102よりも小さいオフセットを有する)。
【0222】
差動断面積カバレッジおよび相対的オフセット結果により、センサ1106は、ベースコーリングサイクル(または試料採取イベント)の照射段階中に2つのウェルから異なる量の照射を受ける。ウェル1102および1104の各々は、対応するクラスタ1102Aおよび1104Aを保持するので、異なる量の照射は、明るい(またはメジャー)としてのクラスタのうちの一方の、および薄暗い(またはマイナー)としての他方の識別を可能にする。例示される実施形態では、優位ウェル1102内のクラスタ1102Aは、明るいクラスタとして識別され、劣位ウェル1104内のクラスタ1104Aは、薄暗いクラスタとして識別される。実施形態では、センサ1106は、劣位ウェル1104内の薄暗いクラスタ1104Aから受けられる照射の量よりも大きい量の照射を、明るいクラスタ1102Aから受ける。
【0223】
明るいクラスタおよび薄暗いクラスタが識別された後、明るいクラスタおよび薄暗いクラスタは、上記で説明されたシーケンシングプロトコルのうちの1つを使用して、信号プロセッサ138によってベースコール可能である。センサ(または画素)あたり2つのウェルのいくつかの実施形態では、開示される技術は、1つの共有センサ1106を使用する2つの対応するウェル1102および1104によって保持される2つのクラスタ1102Aおよび1102Bをベースコールさせることによって、バイオセンサ300のスループットを増加させる。センサ(または画素)あたり2つのウェルの他の実施形態では、開示される技術は、N個のセンサを使用して、試料表面334の対応するN+M個のウェル上のN+M個のクラスタをベースコールさせることによってバイオセンサ300のスループットを増加させ、ここでMは正の整数である。いくつかの実施形態では、Mは、Nに等しい、またはNにほとんど等しい。他の実施形態では、Mは、Nに等しくない可能性があり、またはNよりも小さい可能性すらある。
【0224】
軸外し照射
図12(A)および
図12(B)は、試料表面の画素エリアの上に重なるウェルの軸外し照射1200Aおよび1200Bを示す。照射システム109は、ベースコーリングサイクルの照射段階中に異なる照射の角度信号1201および1211を用いて画素エリア1204'および1214'(センサ1204および1214に関連づけられた)を照射するように構成される。その結果、ウェル1202および1212は、軸外し照射信号または非直交照射信号を用いて照射される。これは、
図12(A)および
図12(B)では各ウェル内の明るい陰影のつけられたエリアおよび暗い陰影のつけられたエリアを用いて示される、ウェル1202および1212の各々において非対称的に照射されるウェル領域を生じさせる。ウェルの非対称的に照射されるウェル領域は、ベースコーリングサイクル中に、優位ウェル領域が、劣位ウェル領域よりも多く照射されるように、少なくとも優位ウェル領域1202B'または1212A'(明るい陰影で示される)と、劣位ウェル領域1202A'または1212B'(暗い陰影で示される)を含む。
【0225】
各ウェルは、ベースコーリングサイクル中に複数のクラスタを保持するように構成され、優位ウェル領域および劣位ウェル領域は各々、クラスタを含む。例示される実施形態では、ウェル1202は、2つのクラスタ1202Aおよび1202Bを保持し、クラスタ1202Aは劣位ウェル領域1202A'内にあり、クラスタ1202Bは優位ウェル領域1202B'内にある。ウェル1212は、2つのクラスタ1212Aおよび1212Bを保持し、クラスタ1212Aは優位ウェル領域1212A'内にあり、クラスタ1212Bは劣位ウェル領域1202B'内にある。
【0226】
軸外し照射により、ウェル1202および1212の画素エリア1204'および1214'は、ウェルの優位領域および劣位領域から異なる量の照射を受ける。その結果、ベースコーリングサイクル中、優位ウェル領域内のクラスタは、劣位ウェル領域内のクラスタよりも多い量の照射を生じさせる。各ウェルに対して、これは、明るい(またはメジャー)としてのクラスタのうちの一方および薄暗い(またはマイナー)としての他方の識別を可能にする。例示される実施形態では、ウェル1202の場合、優位ウェル領域1202B'内のクラスタ1202Bは明るいクラスタとして識別され、劣位ウェル領域1202A'内のクラスタ1202Aは薄暗いクラスタとして識別される。ウェル1212の場合、優位ウェル領域1212A'内のクラスタ1212Aは明るいクラスタとして識別され、劣位ウェル領域1212B'内のクラスタ1212Bは薄暗いクラスタとして識別される。
【0227】
明るいクラスタおよび薄暗いクラスタが各ウェルに対して識別された後、明るいクラスタおよび薄暗いクラスタは、上記で説明されたシーケンシングプロトコルのうちの1つを使用して、信号プロセッサ138によってベースコール可能である。軸外し照射実施形態では、開示される技術は、N個のセンサ(または画素)を使用して、試料表面334上のN個の非直交的に照射されるウェル内のN+M個のクラスタをベースコールさせることによって、バイオセンサ300のスループットを増加させ、ここでMは正の整数である。いくつかの実施形態では、Mは、Nに等しい、またはNにほとんど等しい。他の実施形態では、画素エリアおよび/またはウェルを共有する(または共同で占有する)2つのクラスタが、強度値の不適切な差により、別個に検出可能でないとき、Mは、Nに等しくない可能性があり、またはNよりも小さい可能性すらある。
【0228】
一実施形態では、軸外し照射は、45度の角度である。いくつかの実施形態では、画素エリアあたり1つのウェルが上に重なる。他の実施形態では、画素エリアあたり2つのウェルが上に重なる。
【0229】
図12(C)は、一実施形態による、
図12(A)および
図12(B)の軸外し照射によって生じられた、非対称的に照射されたウェル領域1200Cを例示する。
図12(C)に示されるように、ウェル領域1220は、ウェル領域1230よりも多く照射される。
【0230】
条項
本開示は、以下の条項も含む。
1. 容器およびバイオセンサであって、この容器はバイオセンサを保持し、このバイオセンサは、
試料採取イベントのシーケンス中に複数のクラスタを保持する試料表面と、
画素信号の複数のシーケンスを生成するように構成されたセンサのアレイであって、アレイがN個の能動的センサを有し、アレイ内のセンサが、画素信号の複数のシーケンスを生じさせるように試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために試料表面に対して配置される、センサのアレイと
画素信号の複数のシーケンスを出力する通信ポートと
を有する、容器およびバイオセンサと、
容器に結合され、画素信号の複数のシーケンスを受信し、この画素信号の複数のシーケンスを使用して、N個の能動的センサから複数のクラスタ内のN+M個のクラスタに対する試料採取イベントのシーケンスの結果を分類することを含めて、複数のクラスタ内のクラスタ上での試料採取イベントのシーケンスの結果を分類するために処理するように構成された信号プロセッサであって、Mが正の整数である、信号プロセッサと
を備える、ベースコーリングのためのデバイス。
2.試料採取イベントのシーケンスの結果がクラスタ内のヌクレオチド塩基に対応する、条項1に記載のデバイス。
3.試料採取イベントは、時系列で2つの照射段階を備え、画素信号の複数のシーケンス内の画素信号のシーケンスが、各試料採取イベントに対する信号試料のセットを含み、このセットは、2つの照射段階の各々からの少なくとも1つの画素信号を含む、条項1または条項2に記載のデバイス。
4.信号プロセッサは、センサのアレイ内の単一のセンサからの画素信号のシーケンスからの2つのクラスタに対する結果を分類する論理を含む、条項3に記載のデバイス。
5.2つのクラスタに対する結果を分類する論理は、特定のセンサからの試料採取イベントに対する信号試料のセットの第1の画素信号を少なくとも4つのビンにマッピングすることと、試料採取イベントに対する信号試料のセットの第2の画素信号を少なくとも4つのビンへとマッピングすることと、第1の画素信号および第2の画素信号のマッピングを論理的に組み合わせて、2つのクラスタに対する結果を分類することとを含む、条項4に記載のデバイス。
6.センサのアレイ内のセンサは光検出器を備える、条項1から5のいずれか1つに記載のデバイス。
7.試料採取イベントは、時系列で2つの照射段階を備え、画素信号の複数のシーケンス内の画素信号のシーケンスは、各試料採取イベンに対する信号試料のセットを含み、このセットは、2つの照射段階の各々からの少なくとも1つの画素信号を含み、第1の照射段階は、ヌクレオチド塩基AおよびTを示す所与のクラスタから照射を誘発し、第2の照射段階は、ヌクレオチド塩基CおよびTを示す所与のクラスタからの照射を誘発し、前記結果を分類することは、ヌクレオチド塩基A、C、T、またはGのうちの1つのコーリングを含む、条項1から6のいずれか1つに記載のデバイス。
8.試料表面は、画素エリア上で不均一に分布したクラスタを保持し、信号プロセッサは、試料表面上の個々のクラスタに対応する照射のパターンを検出するため、および個々のクラスタに対する試料採取イベントの結果を分類するために、画素信号の複数のシーケンスの時系列および空間分析を実行し、画素信号の複数のシーケンスは、画素エリア上での不均一な分布から生じる少なくとも2つのクラスタ間の差動クロストークを符号化する、条項1から7のいずれか1つに記載のデバイス。
9.試料表面は、画素エリアあたり2つのウェルを含む、画素エリアの上に重なるウェルのアレイを備え、画素エリアあたり2つのウェルは優位ウェルと劣位ウェルとを含み、優位ウェルは、画素エリア上で劣位ウェルよりも大きな断面積を有する、条項1から8のいずれか1つに記載のデバイス。
10.試料表面は、画素エリアの上に重なるウェルのアレイを備え、試料採取イベントは、K個の照射段階をもつ少なくとも1つの化学的段階を含み、Kは正の整数であり、K個の照射段階の各照射段階は、異なる照射の角度を用いて画素エリアを照射し、画素信号のシーケンスは、各試料採取イベントに対する信号試料のセットを含み、このセットは、試料採取イベントの少なくとも1つの化学的段階に対するK個の画素信号を含む、条項1から9のいずれか1つに記載のデバイス。
11.試料表面は、前記画素エリアの上に重なるウェルのアレイを備え、試料採取イベントは、K個の照射段階をもつ第1の化学的段階であって、Kは正の整数であり、K個の照射段階の各照射段階は、異なる照射の角度を用いて画素エリアを照射し、第1の化学的段階と、J個の照射段階をもつ第2の化学的段階であって、Jは正の整数である、第2の化学的段階とを含み、第1の化学的段階におけるK個の照射段階および第2の化学的段階におけるJ個の照射段階の各照射段階は、異なる照射の角度を用いてウェルのアレイ内のウェルを照射し、画素信号のシーケンスは、各試料採取イベントの信号試料のセットを含み、このセットは、第1の化学的段階に対するK個の画素信号と第2の化学的段階に対するJ個の画素信号を含む、条項1から10のいずれか1つに記載のデバイス。
12. 画素エリアのアレイと、センサのアレイを有する固体撮像素子とを有する試料表面を含み、各センサは、各ベースコーリングサイクル内で画素信号を生成し、各画素信号は、試料表面の対応する画素エリアから集められた光を表す、試料採取デバイスと、
ベースコーリングサイクルにおいてベースコーリングのためにセンサからの画素信号を受信および処理し、ベースコーリングサイクル内でベースコールが行われるクラスタの数よりも少ないセンサからの画素信号を使用する、試料採取デバイスへの接続のために構成された信号プロセッサと
を備える、ベースコーリングのためのバイオセンサ。
13.画素エリアは、前記試料表面上のウェルから光を受け、ウェルは、ベースコーリングサイクル中に複数のクラスタを保持するように構成される、条項12に記載のバイオセンサ。
14.クラスタは、同一の核酸配列を有する複数の一本鎖オキシリボ核酸(略してDNA)断片を備える、条項13に記載のバイオセンサ。
15. sequencing by synthesis(略してSBS)実行のベースコーリングサイクルに対して、通信ポートから、
画素信号の複数のシーケンスであって、この画素信号の複数のシーケンスはセンサのアレイによって生成され、このアレイはN個の能動的センサを有し、アレイ内のセンサは、画素信号の複数のシーケンスを生じさせるように試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するために試料表面に対して配置される、画素信号の複数のシーケンス
を受信することと、
画素信号の複数のシーケンスを使用して、N個の能動的センサから複数のクラスタ内のN+M個のクラスタに対する試料採取イベントのシーケンスの結果を分類することを含めて、複数のクラスタ内のクラスタ上での試料採取イベントのシーケンスの結果を分類するために画素信号の複数のシーケンスを処理することであって、Mは正の整数である、処理することと
を含む、ベースコーリングのコンピュータ実装方法。16. ベースコーリングサイクルの第1の照射段階中に第1の画素エリアから集められた光を表す第1の画素信号を少なくとも4つのビンへとマッピングし、ベースコーリングサイクルの第2の照射段階中に第1の画素エリアから集められた光を表す第2の画素信号を少なくとも4つのビンへとマッピングすることと、
第1の画素信号および第2の画素信号のマッピングを組み合わせて、組み込まれたヌクレオチド塩基を識別することと
をさらに含む、条項15に記載の方法。17.ベースコーリングサイクル中に複数の画素エリアにおいて複数のクラスタ上に組み込まれたヌクレオチド基を識別するために方法を適用することをさらに含む、条項15または条項16に記載の方法。
18.ベースコーリングサイクルの各々において複数の画素エリア内の複数のクラスタ上に組み込まれたヌクレオチド塩基を識別するために、連続したベースコーリングサイクルにわたって方法を繰り返すことをさらに含む、条項17に記載の方法。
19. ベースコーリングサイクルの各々に対して、複数の画素エリアにおいて複数のクラスタによって放出された第1の画素信号および第2の画素信号を検出および記憶することと、
ベースコーリングサイクルの後、第1の画素信号および第2の画素信号の組み合わせを使用して、以前のベースコーリングサイクルの各々の間に複数の画素エリアにおいて複数のクラスタ上へと組み込まれたヌクレオチド塩基を識別することと
をさらに含む、条項18に記載の方法。
20.第1の画素エリアは、試料表面上の関連づけられたウェルから光を受ける、条項16から19のいずれか1つに記載の方法。
21.第1の画素エリアは、試料表面上の複数の関連づけられたウェルから光を受ける、条項20に記載の方法。
22.第1の画素信号および第2の画素信号は、第1の画素エリアから第1のセンサによって集められる、条項16から21のいずれか1つに記載の方法。
23.第1の画素信号および第2の画素信号は、第1のセンサによって集められた画素信号を処理するために構成された信号プロセッサによって検出される、条項22に記載の方法。
24.第1の照射段階は、標識されたヌクレオチド塩基AおよびTから放出を生じさせるために第1のクラスタおよび第2のクラスタから照射を誘発し、第2の照射段階は、標識されたヌクレオチド塩基CおよびTから放出を生じさせるために第1のクラスタおよび第2のクラスタから照射を誘発する、条項15から23のいずれか1つに記載の方法。。
25.前記ベースコーリングは、条項1から11のいずれか1つに定義されたデバイスを使用することを含む、条項15から24のいずれか1つに記載の方法。
26.バイオセンサの試料表面上の複数のクラスタをもつ画素エリアを識別し、前記識別された画素エリアにおいてクラスタをベースコーリングする方法であって、
複数のベースコーリングサイクルを実行することであって、各ベースコーリングサイクルが、第1の照射段階と、第2の照射段階とを有する、実行することと、
試料表面の画素エリアに関連づけられたセンサにおいて、
ベースコーリングサイクルの第1の照射段階中に生成される強度値の第1のセットと、
ベースコーリングサイクルの第2の照射段階中に生成される強度値の第2のセットと
をキャプチャすることと、
信号プロセッサを使用して16の分布を強度値の第1のセットおよび第2のセットに適合させ、この適合に基づいて、複数のクラスタを有するように画素エリアを分類することと、
連続したベースコーリングサイクルに対して、
信号プロセッサを使用して画素エリアにおけるクラスタグループに対する強度値の第1のセットおよび第2のセットを検出することと、
クラスタグループに対する分布を選択することであって、この分布は、クラスタグループの各クラスタ内に存在するヌクレオチド塩基を識別する、選択することと
を含む方法。
27.適合は、k平均クラスタリングアルゴリズム、k平均に似たクラスタリングアルゴリズム、期待値最大化アルゴリズム、およびヒストグラムベースのアルゴリズムを含む、1つまたは複数のアルゴリズムを使用することを含む、条項26に記載の方法。
28.方法は、強度値を正規化することを含む、条項26または27に記載の方法。
29.画素エリアは、試料表面上の関連づけられたウェルから光を受ける、条項26から28のいずれか1つに記載の方法。
30.前記識別することおよび前記ベースコーリングは、条項1から11のいずれか1つに定義されたデバイスまたは条項12から14のいずれか1つに定義されたバイオセンサを使用することを含む、条項26から29のいずれか1つに記載の方法。
31. sequencing by synthesis(略してSBS)実行のベースコーリングサイクルの第1の照射段階中に第1の画素エリアから集められた光を表す第1の画素信号および前記SBS実行の前記ベースコーリングサイクルの第2の照射段階中に前記第1の画素エリアから集められた光を表す第2の画素信号を提供することであって、第1の画素エリアは、第1の画素エリアを共有する第1のクラスタおよび第2のクラスタの下にある、提供することと、
少なくとも前記第1の画素信号および前記第2の画素信号を処理するために構成された信号プロセッサを提供することと、
前記信号プロセッサを使用して、第1の画素信号を少なくとも4つのビンへとマッピングし、第2の画素信号を少なくとも4つのビンへとマッピングすることと、
前記ベースコーリングサイクル中に前記第1のクラスタおよび前記第2のクラスタのうちの各々の上へと組み込まれたヌクレオチド塩基を識別するために、第1の画素信号および第2の画素信号のマッピングを組み合わせることと
を含む、ベースコーリングのコンピュータ実装方法。
32.バイオセンサの試料表面上の複数のクラスタをもつ画素エリアを識別し、この識別された画素エリアにおいてクラスタをベースコーリングするコンピュータ実装方法であって、
ベースコーリングサイクルの第1の照射段階中に生成された強度値の第1のセットおよびベースコーリングサイクルの第2の照射段階中に生成された強度値の第2のセットを提供することであって、この強度値の第1のセットおよび第2のセットは、試料表面の画素エリアに関連づけられたセンサにおいて集められた光の強度を表す、提供することと、
信号プロセッサを使用して16の分布を強度値の第1のセットおよび第2のセットに適合させ、この適合に基づいて、複数のクラスタを有するように画素エリアを分類することと、
連続したベースコーリングサイクルに対して、
信号プロセッサを使用して画素エリアにおけるクラスタグループに対する強度値の第1のセットおよび第2のセットを提供することと、
クラスタグループに対する分布を選択することであって、この分布は、クラスタグループの各クラスタ内に存在するヌクレオチド塩基を識別する、選択することと
を含む方法。
33.適合は、k平均クラスタリングアルゴリズム、k平均に似たクラスタリングアルゴリズム、期待値最大化アルゴリズム、およびヒストグラムベースのアルゴリズムを含む、1つまたは複数のアルゴリズムを使用することを含む、条項32に記載のコンピュータ実装方法。
34. 容器およびバイオセンサであって、この容器はバイオセンサを保持し、このバイオセンサは、
試料採取イベントのシーケンス中に複数のクラスタを保持するように構成された試料表面であって、N個の画素エリアを備え、試料採取イベントは、時系列で2つの照射段階を備える、試料表面と、
各画素エリアおよび各照射段階に対する少なくとも1つの画素信号を含む画素信号の複数のシーケンスを生成するように構成された光検出器を備えるセンサのアレイであって、このアレイは、画素信号の複数のシーケンスを生じさせるように、対応する画素エリアから集められた光放出を表すそれぞれの画素信号を試料採取イベントのシーケンス中に生成するために、各々がN個の画素エリアのうちの対応する画素エリアに関連づけられ、対応する画素エリアから集められた光放射を検出するように構成された、N個の能動的センサを有し、試料表面は、少なくとも1つの能動的センサが、複数のクラスタのクラスタペアを形成する少なくとも2つのクラスタからの光放射を検出するように構成され、2つのクラスタのそれぞれの光放出の強度は著しく異なる、センサのアレイと、
画素信号の複数のシーケンスを出力する通信ポートと
を有する、容器およびバイオセンサと、
容器に結合され、画素信号の複数のシーケンスを受信し、センサのアレイ内の少なくとも1つの能動的センサからの画素信号のシーケンスからのクラスタペアを形成する2つのクラスタに対する結果を分類することによって、画素信号の複数のシーケンスを使用して、N個の能動的センサから複数のクラスタ内のN+M個のクラスタに対する試料採取イベントのシーケンスの結果を分類することを含めて、複数のクラスタ内のクラスタ上での試料採取イベントのシーケンスの結果を分類するために処理するように構成された信号プロセッサであって、Mが正の整数である、信号プロセッサと
を備える、ベースコーリングのためのデバイス。
35.試料採取イベントのシーケンスの結果は、クラスタ内のヌクレオチド塩基に対応し、好ましくは、第1の照射段階は、ヌクレオチド塩基AおよびTを示す所与のクラスタからの照射を誘発し、第2の照射段階は、ヌクレオチド塩基CおよびTを示す所与のクラスタからの照射を誘発し、前記結果を分類することは、ヌクレオチド塩基A、C、T、またはGのうちの1つをコールすることを含む、条項34に記載のデバイス。
36.2つのクラスタに対する結果を分類する論理は、特定のセンサからの試料採取イベントに対する信号試料のセットの第1の画素信号を少なくとも4つのビンにマッピングすることと、試料採取イベントに対する信号試料のセットの第2の画素信号を少なくとも4つのビンへとマッピングすることと、第1の画素信号および第2の画素信号のマッピングを論理的に組み合わせて、2つのクラスタに対する結果を分類することとを含む、条項34から35のいずれかに記載のデバイス。
37.試料表面は、画素エリア上で不均一に分布したクラスタを保持し、信号プロセッサは、試料表面上の個々のクラスタに対応する照射のパターンを検出するため、および個々のクラスタに対する試料採取イベントの結果を分類するために、画素信号の複数のシーケンスの時系列および空間分析を実行し、画素信号の複数のシーケンスは、画素エリア上での不均一な分布から生じる少なくとも2つのクラスタ間の差動クロストークを符号化する、条項34から36のいずれかに記載のデバイス。
38.試料表面は、画素エリアあたり2つのウェルを含む、画素エリアの上に重なるウェルのアレイを備え、画素エリアあたり2つのウェルは優位ウェルと劣位ウェルとを含み、優位ウェルは、画素エリア上で劣位ウェルよりも大きな断面積を有する、条項34から37のいずれかに記載のデバイス。
39.試料表面は、画素エリアの上に重なるウェルのアレイを備え、試料採取イベントは、K個の照射段階をもつ少なくとも1つの化学的段階を含み、Kは正の整数であり、K個の照射段階の各照射段階は、異なる照射の角度を用いて画素エリアを照射し、画素信号のシーケンスは、各試料採取イベントに対する信号試料のセットを含み、このセットは、試料採取イベントの少なくとも1つの化学的段階に対するK個の画素信号を含み、好ましくは、試料採取イベントは、J個の照射段階をもつ第2の化学的段階をさらに含み、Jは正の整数であり、第1の化学的段階におけるK個の照射段階および第2の化学的段階におけるJ個の照射段階の各照射段階は、異なる照射の角度を用いてウェルのアレイ内のウェルを照射することができ、信号試料のセットは、試料採取イベントの第2の化学的段階に対するJ個の画素信号をさらに含む、条項34から38のいずれかに記載のデバイス。
40.センサのアレイは固体撮像素子内に含まれる、条項34から39のいずれかに記載のデバイス。
41.画素エリアは、試料表面上のウェルから光を受け、ウェルは、ベースコーリングサイクル中に複数のクラスタを保持するように構成され、クラスタは、好ましくは、同一の核酸配列を有する複数の一本鎖デオキシリボ核酸(略してDNA)断片を備える、条項34から40のいずれかに記載のデバイス。
42. sequencing by synthesis(略してSBS)実行のベースコーリングサイクルに対して、通信ポートから、
画素信号の複数のシーケンスであって、時系列で2つの照射段階を備える試料採取イベントのシーケンスに対して、光検出器を備えるセンサのアレイによって試料表面のN個の画素エリアによって保持される複数のクラスタによって放出された光に基づいて、生成されており、アレイは、N個の能動的センサを有し、各々がN個の画素エリアの対応する画素エリアに関連づけられ、関連づけられた画素エリアから集められた光放出を検出するように構成され、センサは、画素信号の複数のシーケンスを生じさせるために試料表面のN個の対応する画素エリアから試料採取イベントのシーケンス中にそれぞれの画素信号を生成するように構成され、画素信号のシーケンスは、各画素エリアおよび各照射段階に対する少なくとも1つの画素信号を含み、少なくとも1つの能動的センサは、複数のクラスタのクラスタペアを形成する少なくとも2つのクラスタからの光放出を検出し、2つのクラスタのそれぞれの光放出の強度は著しく異なる、画素信号の複数のシーケンス
を受信することと、
センサのアレイ内の少なくとも1つの能動的センサからの画素信号のシーケンスからのクラスタペアを形成する2つのクラスタに対する結果を分類することによって、画素信号の複数のシーケンスを使用して、N個の能動的センサから複数のクラスタ内のN+M個のクラスタに対する試料採取イベントのシーケンスの結果を分類することを含めて、複数のクラスタ内のクラスタ上での試料採取イベントのシーケンスの結果を分類するために画素信号の複数のシーケンスを処理することであって、Mは正の整数である、処理することと
を含む、ベースコーリングのコンピュータ実装方法。
43. ベースコーリングサイクルの第1の照射段階中に第1の画素エリアから集められた光を表す第1の画素信号を少なくとも4つのビンへとマッピングし、ベースコーリングサイクルの第2の照射段階中に第1の画素エリアから集められた光を表す第2の画素信号を少なくとも4つのビンへとマッピングすることと、
第1の画素信号および第2の画素信号のマッピングを組み合わせて、組み込まれたヌクレオチド塩基を識別することと
をさらに含む、条項42に記載のコンピュータ実装方法。
44.ベースコーリングサイクル中に複数の画素エリアにおいて複数のクラスタ上に組み込まれた塩基を識別するために方法を適用することをさらに含み、好ましくは、ベースコーリングサイクルの各々の間に複数の画素エリアにおける複数のクラスタ上に組み込まれたヌクレオチド塩基を識別するために、連続したベースコーリングサイクルにわたって方法を繰り返すことをさらに含み、より好ましくは、
ベースコーリングサイクルの各々に対して、複数の画素エリアにおいて複数のクラスタによって放出された第1の画素信号および第2の画素信号を検出および記憶することと、
ベースコーリングサイクルの後、第1の画素信号および第2の画素信号の組み合わせを使用して、以前のベースコーリングサイクルの各々の間に複数の画素エリアにおいて複数のクラスタ上へと組み込まれたヌクレオチド塩基を識別することと
をさらに含む、条項42から43のいずれかに記載のコンピュータ実装方法。
45. 第1の画素エリアは、試料表面上の関連づけられたウェルからの光、好ましくは、試料表面上の複数の関連づけられたウェルからの光を受ける、
第1の画素信号および第2の画素信号は、第1の画素エリアから第1のセンサによって集められ、第1の画素信号および第2の画素信号は、好ましくは、第1のセンサによって集められた画素信号を処理するために構成された信号プロセッサによって検出される、
第1の照射段階は、標識されたヌクレオチド塩基AおよびTから放出を生じさせるために第1のクラスタおよび第2のクラスタから照射を誘発し、第2の照射段階は、標識されたヌクレオチド塩基CおよびTから放出を生じさせるために第1のクラスタおよび第2のクラスタから照射を誘発する、
のうちの少なくとも1つが適用される、条項42から44のいずれかに記載のコンピュータ実装方法。
46.前記ベースコーリングは、条項34から41のいずれか1つに定義されたデバイスを使用することを含む、条項42から45のいずれか1つに記載のコンピュータ実装方法。
47.バイオセンサの試料表面上の複数のクラスタをもつ画素エリアを識別し、前記識別された画素エリアにおいてクラスタをベースコーリングする方法であって、好ましくは、条項34から46のいずれかに記載された方法であり、
複数のベースコーリングサイクルを実行することであって、各ベースコーリングサイクルは、第1の照射段階と、第2の照射段階とを有する、実行することと、
試料表面の画素エリアに関連づけられたセンサにおいて、
ベースコーリングサイクルの第1の照射段階中に生成される強度値の第1のセットと、
ベースコーリングサイクルの第2の照射段階中に生成される強度値の第2のセットと
をキャプチャすることと、
信号プロセッサを使用して16の分布を強度値の第1のセットおよび第2のセットに適合させ、この適合に基づいて、複数のクラスタを有するように画素エリアを分類することと、
連続したベースコーリングサイクルに対して、
信号プロセッサを使用して画素エリアにおけるクラスタグループに対する強度値の第1のセットおよび第2のセットを検出することと、
クラスタグループに対する分布を選択することであって、この分布は、クラスタグループの各クラスタ内に存在するヌクレオチド塩基を識別する、選択することと
を含み、
好ましくは、
適合は、k平均クラスタリングアルゴリズム、k平均に似たクラスタリングアルゴリズム、期待値最大化アルゴリズム、およびヒストグラムベースのアルゴリズムを含む、1つまたは複数のアルゴリズムを使用することを含む、
方法は、強度値を正規化することをさらに含む、
画素エリアは、試料表面上の関連づけられたウェルから光を受ける、
前記識別することおよび前記ベースコーリングは、条項34から41のいずれか1つに定義されたデバイスを使用することを含む、
のうちの少なくとも1つが適用される、方法。
48.ベースコーリングのコンピュータ実装方法であって、好ましくは条項42から46のいずれかに記載の方法であり、
sequencing by synthesis(略してSBS)実行のベースコーリングサイクルの第1の照射段階中に第1の画素エリアから集められた光を表す第1の画素信号および前記SBS実行の前記ベースコーリングサイクルの第2の照射段階中に前記第1の画素エリアから集められた光を表す第2の画素信号を提供することであって、第1の画素エリアは、第1の画素エリアを共有する第1のクラスタおよび第2のクラスタの下にある、提供することと、
少なくとも前記第1の画素信号および前記第2の画素信号を処理するために構成された信号プロセッサを提供することと、
前記信号プロセッサを使用して、第1の画素信号を少なくとも4つのビンへとマッピングし、第2の画素信号を少なくとも4つのビンへとマッピングすることと、
ベースコーリングサイクル中に第1のクラスタおよび第2のクラスタのうちの各々の上へと組み込まれたヌクレオチド塩基を識別するために、第1の画素信号および第2の画素信号のマッピングを組み合わせることと
を含む、または、
バイオセンサの試料表面上の複数のクラスタをもつ画素エリアを識別し、この識別された画素エリアにおいてクラスタをベースコーリングする方法であって、
ベースコーリングサイクルの第1の照射段階中に生成された強度値の第1のセットおよびベースコーリングサイクルの第2の照射段階中に生成された強度値の第2のセットを提供することであって、この強度値の第1のセットおよび第2のセットは、試料表面の画素エリアに関連づけられたセンサにおいて集められた光の強度を表す、提供することと、
信号プロセッサを使用して16の分布を強度値の第1のセットおよび第2のセットに適合させ、この適合に基づいて、複数のクラスタを有するように画素エリアを分類することと、
連続したベースコーリングサイクルに対して、
信号プロセッサを使用して画素エリアにおけるクラスタグループに対する強度値の第1のセットおよび第2のセットを提供することと、
クラスタグループに対する分布を選択することであって、この分布は、クラスタグループの各クラスタ内に存在するヌクレオチド塩基を識別し、適合は、k平均クラスタリングアルゴリズム、k平均に似たクラスタリングアルゴリズム、期待値最大化アルゴリズム、およびヒストグラムベースのアルゴリズムを含む、1つまたは複数のアルゴリズムを使用することを含む、選択することと
を含む方法。
【符号の説明】
【0231】
100 バイオアッセイシステム、ベースコーリングシステム
102 バイオセンサ
104 システムコントローラ
106 流体制御システム、サブシステム
108 流体貯蔵システム、サブシステム
109 照射システム
110 温度制御システム、サブシステム
112 システム容器、インタフェース
113 ディスプレイ
114 ユーザインタフェース
115 ユーザ入力デバイス
116 共通ハウジング
120 通信ポート
122 通信リンク
130 主制御モジュール、信号プロセッサ
131 流体制御モジュール、システムモジュール
132 流体貯蔵モジュール、システムモジュール
133 温度制御モジュール、システムモジュール
134 デバイスモジュール
135 識別モジュール
136 プロトコルモジュール、SBSモジュール
137 増幅モジュール
138 信号プロセッサ、モジュール
139 照射モジュール
140 メモリ
300 バイオセンサ
301 励起光
302 フローセル
304 試料採取デバイス
306 センサ
306A クラスタ
306AB クラスタペア
306B クラスタ
308 センサ
308AB クラスタペア
310 センサ
310AB クラスタペア
312 センサ
312AB クラスタペア
314AB クラスタペア
320 基部基板、基板層
321 基板層
322 基板層、固体撮像素子
323 基板層
324 光管理層、フィルタ層、基板層
325 基板層
326 パッシベーション層、基板層
330 導電性バイアス
332 電気的接点
334 試料表面、表面ウェル
336 フローカバー
338 側壁
340 側壁
342 出口ポート
344 フローチャネル
346 出口ポート
400 バイオセンサ
406 ウェル
408 ウェル
410 ウェル
412 ウェル
414 ウェル
500A 散布図
500B 散布図
502 分布
504 分布
506 分布
508 分布
508B 副分布
600 散布図
612 ビン
614 ビン
616 ビン
618 ビン
622 ビン
624 ビン
626 ビン
628 ビン
632 ビン
634 ビン
636 ビン
638 ビン
642 ビン
644 ビン
646 ビン
648 ビン
700A 検出表
700B ベースコーリング表
701 ビン
702 クラスタ
704 クラスタ
706 第1の画素信号値
706A 第1の信号部分
706B 第2の信号部分
708 第2の画素信号値
710 ペア
1000 上面平面図
1002 クラスタ
1100A 側面図
1100B 上面平面図
1102 劣位ウェル、優位ウェル
1102A クラスタ
1104 優位ウェル、劣位ウェル
1104A クラスタ
1106 共有センサ
1106A 画素エリア中心
1200A 軸外し照射
1200C ウェル領域
1201 角度信号
1202 ウェル
1202A クラスタ
1202B クラスタ
1204 センサ、画素エリア
1212 ウェル
1212A 、クラスタ
1212B 、クラスタ
1214 センサ、
1220 ウェル領域
1230 ウェル領域
H1 高さ