IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニック株式会社の特許一覧

<>
  • 特許-歩行訓練ロボット 図1
  • 特許-歩行訓練ロボット 図2
  • 特許-歩行訓練ロボット 図3
  • 特許-歩行訓練ロボット 図4
  • 特許-歩行訓練ロボット 図5
  • 特許-歩行訓練ロボット 図6
  • 特許-歩行訓練ロボット 図7
  • 特許-歩行訓練ロボット 図8A
  • 特許-歩行訓練ロボット 図8B
  • 特許-歩行訓練ロボット 図9
  • 特許-歩行訓練ロボット 図10
  • 特許-歩行訓練ロボット 図11
  • 特許-歩行訓練ロボット 図12
  • 特許-歩行訓練ロボット 図13
  • 特許-歩行訓練ロボット 図14
  • 特許-歩行訓練ロボット 図15
  • 特許-歩行訓練ロボット 図16
  • 特許-歩行訓練ロボット 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-12
(45)【発行日】2022-07-21
(54)【発明の名称】歩行訓練ロボット
(51)【国際特許分類】
   A61H 1/02 20060101AFI20220713BHJP
   A61H 3/04 20060101ALI20220713BHJP
【FI】
A61H1/02 R
A61H3/04
【請求項の数】 19
(21)【出願番号】P 2019005498
(22)【出願日】2019-01-16
(65)【公開番号】P2019205817
(43)【公開日】2019-12-05
【審査請求日】2021-08-20
(31)【優先権主張番号】P 2018100619
(32)【優先日】2018-05-25
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成30年度、国立研究開発法人科学技術振興機構 研究成果展開事業センター・オブ・イノベーションプログラム『人がつながる“移動”イノベーション拠点』委託研究開発、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000005821
【氏名又は名称】パナソニックホールディングス株式会社
(74)【代理人】
【識別番号】100106518
【弁理士】
【氏名又は名称】松谷 道子
(74)【代理人】
【識別番号】100132241
【弁理士】
【氏名又は名称】岡部 博史
(72)【発明者】
【氏名】山田 和範
(72)【発明者】
【氏名】渡部 真悠
【審査官】菊地 牧子
(56)【参考文献】
【文献】米国特許出願公開第2016/0253890(US,A1)
【文献】特開2009-119014(JP,A)
【文献】特開2018-008019(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61H 1/02
A61H 3/04
(57)【特許請求の範囲】
【請求項1】
ユーザの身体能力を向上させる歩行訓練ロボットであって、
本体部と、
前記本体部に設けられ、前記ユーザが把持可能なハンドル部と、
前記ハンドル部にかかるハンドル荷重を検知する検知部と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの歩行運動に対して当該歩行訓練ロボットが与える負荷を決定する歩行支援部と、
回転体を有し、前記歩行支援部で決定された当該歩行訓練ロボットの前記負荷に基づいて、前記回転体を制御して当該歩行訓練ロボットを移動させる移動装置と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの足上げ姿勢を推定する姿勢推定部と、
前記足上げ姿勢に基づいて、前記ユーザに足上げ運動を行わせる訓練シナリオを補正する訓練シナリオ生成部と、
前記訓練シナリオに基づく前記ユーザへの指示を提示する提示部と、
を備え
前記姿勢推定部は、前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが立ち止まった状態で足上げ体操をしているときの体操姿勢を推定する体操姿勢推定部を有し、
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザの歩行中の足運びを変化させる歩行訓練シナリオを生成する歩行訓練シナリオ生成部を有し、
前記歩行訓練シナリオ生成部は、前記体操姿勢に基づいて前記歩行訓練シナリオを補正する、歩行訓練ロボット。
【請求項2】
前記負荷は、前記歩行訓練ロボットの移動速度及び移動方向である、請求項1に記載の歩行訓練ロボット。
【請求項3】
前記負荷は、前記ユーザの移動方向へ前記歩行訓練ロボットを押すために必要な力である、請求項1又は2に記載の歩行訓練ロボット。
【請求項4】
前記歩行訓練ロボットは、前記ユーザの歩行速度及び歩行方向を推定する歩行状態推定部を備え、
前記歩行支援部は、前記歩行状態推定部で推定された前記ユーザの前記歩行速度及び前記歩行方向に基づいて、当該歩行訓練ロボットの前記負荷を決定する、
請求項1~3のいずれか一項に記載の歩行訓練ロボット。
【請求項5】
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザが立ち止まった状態で足上げ体操を行う体操訓練シナリオを生成する体操訓練シナリオ生成部を有し、
前記体操訓練シナリオ生成部は、前記体操姿勢に基づいて前記体操訓練シナリオを補正する、
請求項1~4のいずれか一項に記載の歩行訓練ロボット。
【請求項6】
前記歩行支援部は、前記歩行訓練シナリオに基づいて、当該歩行訓練ロボットの前記負荷を補正する、請求項1~5のいずれか一項に記載の歩行訓練ロボット。
【請求項7】
前記体操姿勢推定部は、当該歩行訓練ロボットの前後方向に延在する軸の軸回りのモーメントに基づいて前記体操姿勢を推定し、
前記体操姿勢は、前記ユーザが足上げ体操をしているときの足上げ量、足を上げている時間及び揺らぎのうち少なくとも1つを含む、
請求項1~6のいずれか一項に記載の歩行訓練ロボット。
【請求項8】
前記歩行訓練シナリオは、前記ユーザが歩行しているときの前記ユーザの現在地から目的地までの歩行ルートへの誘導及び足上げ指示のうち少なくとも1つを含む、
請求項1~7のいずれか一項に記載の歩行訓練ロボット。
【請求項9】
ユーザの身体能力を向上させる歩行訓練ロボットであって、
本体部と、
前記本体部に設けられ、前記ユーザが把持可能なハンドル部と、
前記ハンドル部にかかるハンドル荷重を検知する検知部と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの歩行運動に対して当該歩行訓練ロボットが与える負荷を決定する歩行支援部と、
回転体を有し、前記歩行支援部で決定された当該歩行訓練ロボットの前記負荷に基づいて、前記回転体を制御して当該歩行訓練ロボットを移動させる移動装置と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの足上げ姿勢を推定する姿勢推定部と、
前記足上げ姿勢に基づいて、前記ユーザに足上げ運動を行わせる訓練シナリオを補正する訓練シナリオ生成部と、
前記訓練シナリオに基づく前記ユーザへの指示を提示する提示部と、
を備え、
前記姿勢推定部は、前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが歩行しているときの歩行姿勢を推定する歩行姿勢推定部を有し、
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザが立ち止まった状態で足上げ体操を行う体操訓練シナリオを生成する体操訓練シナリオ生成部を有し、
前記体操訓練シナリオ生成部は、前記歩行姿勢に基づいて前記体操訓練シナリオを補正する、歩行訓練ロボット。
【請求項10】
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザの歩行中の足運びを変化させる歩行訓練シナリオを生成する歩行訓練シナリオ生成部を有し、
前記歩行訓練シナリオ生成部は、前記歩行姿勢に基づいて前記歩行訓練シナリオを補正する、
請求項に記載の歩行訓練ロボット。
【請求項11】
前記歩行支援部は、前記歩行訓練シナリオに基づいて、当該歩行訓練ロボットの移動速度及び移動方向を補正する、請求項10に記載の歩行訓練ロボット。
【請求項12】
前記歩行姿勢推定部は、当該歩行訓練ロボットの前後方向に延在する軸の軸回りのモーメントに基づいて前記歩行姿勢を推定し、
前記歩行姿勢は、前記ユーザが歩行しているときの足上げ量、足を上げている時間、揺らぎ、歩幅、歩行速度及び歩行ピッチのうち少なくとも1つを含む、
請求項9~11のいずれか一項に記載の歩行訓練ロボット。
【請求項13】
前記体操訓練シナリオは、前記ユーザが足上げ体操をするときの足上げ量及び足上げ回数のうち少なくとも1つを含む、
請求項9~12のいずれか一項に記載の歩行訓練ロボット。
【請求項14】
ユーザの身体能力を向上させる歩行訓練ロボットであって、
本体部と、
前記本体部に設けられ、前記ユーザが把持可能なハンドル部と、
前記ハンドル部にかかるハンドル荷重を検知する検知部と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの歩行運動に対して当該歩行訓練ロボットが与える負荷を決定する歩行支援部と、
回転体を有し、前記歩行支援部で決定された当該歩行訓練ロボットの前記負荷に基づいて、前記回転体を制御して当該歩行訓練ロボットを移動させる移動装置と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの足上げ姿勢を推定する姿勢推定部と、
前記足上げ姿勢に基づいて、前記ユーザに足上げ運動を行わせる訓練シナリオを補正する訓練シナリオ生成部と、
前記訓練シナリオに基づく前記ユーザへの指示を提示する提示部と、
を備え、
前記姿勢推定部は、
前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが立ち止まった状態で足上げ体操をしているときの体操姿勢を推定する体操姿勢推定部と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが歩行しているときの歩行姿勢を推定する歩行姿勢推定部と、
を有し、
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザの歩行中の足運びを変化させる歩行訓練シナリオを生成する歩行訓練シナリオ生成部を有し、
前記歩行訓練シナリオ生成部は、前記体操姿勢と前記歩行姿勢とに基づいて、前記歩行訓練シナリオを補正する、歩行訓練ロボット。
【請求項15】
ユーザの身体能力を向上させる歩行訓練ロボットであって、
本体部と、
前記本体部に設けられ、前記ユーザが把持可能なハンドル部と、
前記ハンドル部にかかるハンドル荷重を検知する検知部と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの歩行運動に対して当該歩行訓練ロボットが与える負荷を決定する歩行支援部と、
回転体を有し、前記歩行支援部で決定された当該歩行訓練ロボットの前記負荷に基づいて、前記回転体を制御して当該歩行訓練ロボットを移動させる移動装置と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの足上げ姿勢を推定する姿勢推定部と、
前記足上げ姿勢に基づいて、前記ユーザに足上げ運動を行わせる訓練シナリオを補正する訓練シナリオ生成部と、
前記訓練シナリオに基づく前記ユーザへの指示を提示する提示部と、
を備え、
前記姿勢推定部は、
前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが立ち止まった状態で足上げ体操をしているときの体操姿勢を推定する体操姿勢推定部と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが歩行しているときの歩行姿勢を推定する歩行姿勢推定部と、
を有し、
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザが立ち止まった状態で足上げ体操を行う体操訓練シナリオを生成する体操訓練シナリオ生成部を有し、
前記体操訓練シナリオ生成部は、前記体操姿勢と前記歩行姿勢とに基づいて、前記体操訓練シナリオを補正する、歩行訓練ロボット。
【請求項16】
更に、
前記回転体の回転量及び回転方向に基づいて、前記ユーザが歩行した歩行ルートの複雑さを判定する判定部を備え、
前記訓練シナリオ生成部は、前記歩行ルートの複雑さに基づいて、前記訓練シナリオを補正する、
請求項1~15のいずれか一項に記載の歩行訓練ロボット。
【請求項17】
更に、前記判定部は、前記検知部で検知されたハンドル荷重に基づいて、前記ユーザの足上げの左右の偏りを判定し、
前記訓練シナリオ生成部は、前記足上げの左右の偏りに基づいて前記訓練シナリオを補正する、
請求項16に記載の歩行訓練ロボット。
【請求項18】
前記提示部は、前記訓練シナリオに基づく前記ユーザへの指示を当該歩行訓練ロボットの周辺環境に光によって提示する、請求項1~17のいずれか一項に記載の歩行訓練ロボット。
【請求項19】
前記提示部は、前記ユーザの前記足上げ姿勢の情報を提示する、請求項1~18のいずれか一項に記載の歩行訓練ロボット。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ユーザの身体能力を向上させる歩行訓練ロボットに関する。
【背景技術】
【0002】
高齢者向けの施設などでは、高齢者の身体能力を向上させるために、様々なトレーニングシステムが用いられている(例えば、特許文献1参照。)。
【0003】
特許文献1では、置荷重測定や足の挙動測定を可能として、歩行の現状を認識するとともに、足腰の回復度を確認しながら歩行訓練を行うことができる歩行器が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2002-263152号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
近年、ユーザの身体能力を効率良く向上させることが可能な歩行訓練ロボットが求められている。
【0006】
本開示は、前記課題を解決するもので、ユーザの身体能力を効率良く向上させることができる歩行訓練ロボットを提供する。
【課題を解決するための手段】
【0007】
本開示の一態様に係る歩行訓練ロボットは、
ユーザの身体能力を向上させる歩行訓練ロボットであって、
本体部と、
前記本体部に設けられ、前記ユーザが把持可能なハンドル部と、
前記ハンドル部にかかるハンドル荷重を検知する検知部と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの歩行運動に対して当該歩行訓練ロボットが与える負荷を決定する歩行支援部と、
回転体を有し、前記歩行支援部で決定された当該歩行訓練ロボットの前記負荷に基づいて、前記回転体を制御して当該歩行訓練ロボットを移動させる移動装置と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの足上げ姿勢を推定する姿勢推定部と、
前記足上げ姿勢に基づいて、前記ユーザに足上げ運動を行わせる訓練シナリオを補正する訓練シナリオ生成部と、
前記訓練シナリオに基づく前記ユーザへの指示を提示する提示部と、
を備える。
【発明の効果】
【0008】
本開示の歩行訓練ロボットによれば、ユーザの身体能力を効率良く向上させることができる。
【図面の簡単な説明】
【0009】
図1図1は、本開示の実施の形態1に係る歩行訓練ロボットの外観図である。
図2図2は、本開示の実施の形態1に係る歩行訓練ロボットを使用して訓練を行っている様子を示す図である。
図3図3は、本開示の実施の形態1における検知部で検知するハンドル荷重の検知方向を示す図である。
図4図4は、本開示の実施の形態1に係る歩行訓練ロボットの制御構成の一例を示す制御ブロック図である。
図5図5は、本開示の実施の形態1に係る歩行訓練ロボットの主要な制御構成の一例を示す制御ブロック図である。
図6図6は、ユーザがハンドル部を把持したまま右足を上げた状態の一例を示す図である。
図7】ハンドル荷重と足上げ姿勢との関係の一例を示す図である。
図8A図8Aは、歩行ルートの一例を示す図である。
図8B図8Bは、歩行ルートの別例を示す図である。
図9図9は、本開示の実施の形態1に係る歩行訓練ロボットの主要な制御の例示的なフローチャートを示す図である。
図10図10は、本開示の実施の形態1に係る歩行訓練ロボットにおいて、体操訓練結果に基づいて歩行訓練シナリオを補正する制御の例示的なフローチャートを示す図である。
図11図11は、本開示の実施の形態1に係る歩行訓練ロボットにおいて、体操訓練結果に基づいて体操訓練シナリオを補正する制御の例示的なフローチャートを示す図である。
図12図12は、本開示の実施の形態1に係る歩行訓練ロボットにおいて、歩行訓練結果に基づいて体操訓練シナリオ及び歩行訓練シナリオを補正する制御の例示的なフローチャートを示す図である。
図13図13は、本開示の実施の形態1に係る歩行訓練ロボットにおいて、体操訓練結果と歩行訓練結果とに基づいて体操訓練シナリオ及び歩行訓練シナリオを補正する制御の例示的なフローチャートを示す図である。
図14図14は、本開示の実施の形態1に係る歩行訓練ロボットの変形例の主要な制御構成の一例を示す制御ブロック図である。
図15図15は、本開示の実施の形態2に係る歩行訓練ロボットの制御構成の一例を示す制御ブロック図である。
図16図16は、本開示の実施の形態2に係る歩行訓練ロボットの主要な制御構成の一例を示す制御ブロック図である。
図17図17は、本開示の実施の形態2に係る歩行訓練ロボットにおいて、体操訓練結果、歩行訓練結果、歩行ルートの複雑さ、及び左右の足上げの偏りに基づいて歩行訓練シナリオを補正する制御の例示的なフローチャートを示す図である。
【発明を実施するための形態】
【0010】
(本開示に至った経緯)
先進国における少子高齢化が進む近年、高齢者の見守りや生活支援の必要性が増している。特に、高齢者においては、加齢に伴う身体能力の低下から日常生活のQOL(Quality of Life)を維持することが難しくなる傾向にある。このような背景の下、高齢者などのユーザの身体能力を効率良く向上させることができる歩行訓練ロボットが求められている。
【0011】
本発明者らは、研究の過程で足上げ運動を歩行に関連して行うことによって、転倒の予防を行い、且つ歩行に関する身体能力を効率良く向上させることができることを見出した。そこで、本発明者らは、ユーザに意識的に足上げ運動を行わせる歩行訓練ロボットを検討した。具体的には、本発明者らは、ユーザが立ち止まった状態で足上げ体操を行う体操訓練と、歩行中のユーザの足運びを変化させる歩行訓練とを行うことが可能な歩行訓練ロボットを検討した。
【0012】
また、本発明者らは、ハンドル部にかかるハンドル荷重に基づいて、ユーザの足上げ姿勢を推定することができることを見出した。そこで、本発明者らは、ハンドル荷重に基づいて推定された足上げ姿勢から訓練内容を補正することが可能な歩行訓練ロボットを検討し、以下の発明に至った。
【0013】
本開示の一態様に係る歩行訓練ロボットは、
ユーザの身体能力を向上させる歩行訓練ロボットであって、
本体部と、
前記本体部に設けられ、前記ユーザが把持可能なハンドル部と、
前記ハンドル部にかかるハンドル荷重を検知する検知部と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの歩行運動に対して当該歩行訓練ロボットが与える負荷を決定する歩行支援部と、
回転体を有し、前記歩行支援部で決定された当該歩行訓練ロボットの前記負荷に基づいて、前記回転体を制御して当該歩行訓練ロボットを移動させる移動装置と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記ユーザの足上げ姿勢を推定する姿勢推定部と、
前記足上げ姿勢に基づいて、前記ユーザに足上げ運動を行わせる訓練シナリオを補正する訓練シナリオ生成部と、
前記訓練シナリオに基づく前記ユーザへの指示を提示する提示部と、
を備える。
【0014】
このような構成により、ユーザの身体能力を効率良く向上させることができる。
【0015】
前記負荷は、前記歩行訓練ロボットの移動速度及び移動方向であってもよい。
【0016】
このような構成により、ユーザの身体能力をより効率良く向上させることができる。
【0017】
前記負荷は、前記ユーザの移動方向へ前記歩行訓練ロボットを押すために必要な力であってもよい。
【0018】
このような構成により、ユーザの身体能力をより効率良く向上させることができる。
【0019】
前記歩行訓練ロボットは、前記ユーザの歩行速度及び歩行方向を推定する歩行状態推定部を備え、
前記歩行支援部は、前記歩行状態推定部で推定された前記ユーザの前記歩行速度及び前記歩行方向に基づいて、当該歩行訓練ロボットの前記負荷を決定してもよい。
【0020】
このような構成により、ユーザの身体能力をより効率良く向上させることができる。
【0021】
前記姿勢推定部は、前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが立ち止まった状態で足上げ体操をしているときの体操姿勢を推定する体操姿勢推定部を有し、
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザの歩行中の足運びを変化させる歩行訓練シナリオを生成する歩行訓練シナリオ生成部を有し、
前記歩行訓練シナリオ生成部は、前記体操姿勢に基づいて前記歩行訓練シナリオを補正してもよい。
【0022】
このような構成により、体操姿勢に基づいて歩行訓練シナリオを補正することができるため、ユーザにより適した歩行訓練を提供することができる。これにより、ユーザの身体能力をより効率良く向上させることができる。
【0023】
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザが立ち止まった状態で足上げ体操を行う体操訓練シナリオを生成する体操訓練シナリオ生成部を有し、
前記体操訓練シナリオ生成部は、前記体操姿勢に基づいて前記体操訓練シナリオを補正してもよい。
【0024】
このような構成により、体操姿勢に基づいて体操訓練シナリオを補正することができるため、ユーザにより適した体操訓練を提供することができる。これにより、ユーザの身体能力をより効率良く向上させることができる。
【0025】
前記歩行支援部は、前記歩行訓練シナリオに基づいて、当該歩行訓練ロボットの前記負荷を補正してもよい。
【0026】
このような構成により、歩行訓練ロボットの負荷を補正することによって、ユーザの歩行中の足運びを変化させることができる。これにより、ユーザの身体能力をより効率良く向上させることができる。
【0027】
前記体操姿勢推定部は、当該歩行訓練ロボットの前後方向に延在する軸の軸回りのモーメントに基づいて前記体操姿勢を推定し、
前記体操姿勢は、前記ユーザが足上げ体操をしているときの足上げ量、足を上げている時間及び揺らぎのうち少なくとも1つを含んでもよい。
【0028】
このような構成により、ユーザの体操姿勢を容易に推定することができる。
【0029】
前記歩行訓練シナリオは、前記ユーザが歩行しているときの前記ユーザの現在地から目的地までの歩行ルートへの誘導及び足上げ指示のうち少なくとも1つを含んでもよい。
【0030】
このような構成により、ユーザにより適した歩行訓練をユーザに提供することができるため、ユーザの身体能力をより効率良く向上させることができる。
【0031】
前記姿勢推定部は、前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが歩行しているときの歩行姿勢を推定する歩行姿勢推定部を有し、
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザが立ち止まった状態で足上げ体操を行う体操訓練シナリオを生成する体操訓練シナリオ生成部を有し、
前記体操訓練シナリオ生成部は、前記歩行姿勢に基づいて前記体操訓練シナリオを補正してもよい。
【0032】
このような構成により、歩行姿勢に基づいて体操訓練シナリオを補正することができるため、ユーザにより適した体操訓練を提供することができる。これにより、ユーザの身体能力をより効率良く向上させることができる。
【0033】
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザの歩行中の足運びを変化させる歩行訓練シナリオを生成する歩行訓練シナリオ生成部を有し、
前記歩行訓練シナリオ生成部は、前記歩行姿勢に基づいて前記歩行訓練シナリオを補正してもよい。
【0034】
このような構成により、歩行姿勢に基づいて歩行訓練シナリオを補正することができるため、ユーザにより適した歩行訓練を提供することができる。これにより、ユーザの身体能力をより効率良く向上させることができる。
【0035】
前記歩行支援部は、前記歩行訓練シナリオに基づいて、当該歩行訓練ロボットの移動速度及び移動方向を補正してもよい。
【0036】
このような構成により、歩行訓練ロボットの移動速度及び移動方向を補正することによって、ユーザの歩行中の足運びを変化させることができる。これにより、ユーザの身体能力をより効率良く向上させることができる。
【0037】
前記歩行姿勢推定部は、当該歩行訓練ロボットの前後方向に延在する軸の軸回りのモーメントに基づいて前記歩行姿勢を推定し、
前記歩行姿勢は、前記ユーザが歩行しているときの足上げ量、足を上げている時間、揺らぎ、歩幅、歩行速度及び歩行ピッチのうち少なくとも1つを含んでもよい。
【0038】
このような構成により、ユーザの歩行姿勢を容易に推定することができる。
【0039】
前記体操訓練シナリオは、前記ユーザが足上げ体操をするときの足上げ量及び足上げ回数のうち少なくとも1つを含んでもよい。
【0040】
このような構成により、ユーザにより適した訓練をユーザに提供することができるため、ユーザの身体能力をより効率良く向上させることができる。
【0041】
前記姿勢推定部は、
前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが立ち止まった状態で足上げ体操をしているときの体操姿勢を推定する体操姿勢推定部と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが歩行しているときの歩行姿勢を推定する歩行姿勢推定部と、
を有し、
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザの歩行中の足運びを変化させる歩行訓練シナリオを生成する歩行訓練シナリオ生成部を有し、
前記歩行訓練シナリオ生成部は、前記体操姿勢と前記歩行姿勢とに基づいて、前記歩行訓練シナリオを補正してもよい。
【0042】
このような構成により、体操姿勢と歩行姿勢とに基づいて歩行訓練シナリオを補正することができるため、ユーザにより適した歩行訓練を提供することができる。これにより、ユーザの身体能力をより効率良く向上させることができる。
【0043】
前記姿勢推定部は、
前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが立ち止まった状態で足上げ体操をしているときの体操姿勢を推定する体操姿勢推定部と、
前記検知部で検知された前記ハンドル荷重に基づいて、前記足上げ姿勢のうち前記ユーザが歩行しているときの歩行姿勢を推定する歩行姿勢推定部と、
を有し、
前記訓練シナリオ生成部は、前記訓練シナリオのうち前記ユーザが立ち止まった状態で足上げ体操を行う体操訓練シナリオを生成する体操訓練シナリオ生成部を有し、
前記体操訓練シナリオ生成部は、前記体操姿勢と前記歩行姿勢とに基づいて、前記体操訓練シナリオを補正してもよい。
【0044】
このような構成により、体操姿勢と歩行姿勢とに基づいて体操訓練シナリオを補正することができるため、ユーザにより適した体操訓練を提供することができる。これにより、ユーザの身体能力をより効率良く向上させることができる。
【0045】
前記歩行訓練ロボットは、更に、前記回転体の回転量及び回転方向に基づいて、前記ユーザが歩行した歩行ルートの複雑さを判定する判定部を備え、
前記訓練シナリオ生成部は、前記歩行ルートの複雑さに基づいて、前記訓練シナリオを補正してもよい。
【0046】
このような構成により、歩行ルートの複雑さに基づいて訓練シナリオを補正することができる。これにより、ユーザの身体能力をより効率良く向上させることができる。
【0047】
更に、前記判定部は、前記検知部で検知されたハンドル荷重に基づいて、前記ユーザの足上げの左右の偏りを判定し、
前記訓練シナリオ生成部は、前記足上げの左右の偏りに基づいて前記訓練シナリオを補正してもよい。
【0048】
このような構成により、ユーザの足上げの左右の偏りに基づいて訓練シナリオを補正することができるため、ユーザにより適した訓練を提供することができる。これにより、ユーザの身体能力をより効率良く向上させることができる。
【0049】
前記提示部は、前記訓練シナリオに基づく前記ユーザへの指示を当該歩行訓練ロボットの周辺環境に光によって提示してもよい。
【0050】
このような構成により、ユーザは訓練シナリオに基づく指示を容易に理解し、訓練することができる。
【0051】
前記提示部は、前記ユーザの前記足上げ姿勢の情報を提示してもよい。
【0052】
このような構成により、ユーザは自身の足上げ姿勢を把握しながら、訓練を行うことができる。
【0053】
以下、本開示の実施形態について、添付の図面を参照しながら説明する。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。
【0054】
(実施の形態1)
[全体構成]
図1は、実施の形態1に係る歩行訓練ロボット1(以下、「ロボット1」と称する)の外観図を示す。図2は、ロボット1を使用してユーザが訓練を行っている様子を示す。
【0055】
図1及び図2に示すように、ロボット1は、本体部11、ハンドル部12、検知部13、歩行状態推定部14、歩行支援部15、移動装置16、姿勢推定部17、訓練シナリオ生成部18、及び提示部19を備える。
【0056】
ロボット1は、ユーザの身体能力を向上させる訓練を行うロボットである。ロボット1は、ユーザが立ち止まった状態で足上げ体操する体操訓練と、歩行中のユーザの足運びを変化させる歩行訓練と、を行うことができる。足上げ体操とは、ユーザが移動せずに足を上げて下げる運動を意味する。言い換えると、足上げ体操とは、ユーザが地面に接地した足を上げた後、その足を下げて再び地面に接地させる運動を意味する。例えば、足上げ体操は、ユーザの左右の足を交互に上げ下げする運動であってもよいし、連続して片方の足を上げ下げする運動であってもよい。足運びとは、足を後方から前方へ移動させる動作を意味する。
【0057】
体操訓練においては、ユーザはハンドル部12を把持し、その場を移動せずに足上げ体操を行う。ロボット1は、例えば、提示部19によって、ユーザに対して足上げ指示、足上げ回数及び/又は足上げ量を提示する。足上げ指示とは、例えば、ユーザに対して左右いずれか一方の足を上げさせる指示などを含む。
【0058】
歩行訓練においては、ユーザはハンドル部12を把持し、ハンドル部12に荷重(ハンドル荷重)をかけながら歩行する。ロボット1は、ハンドル荷重に応じて移動すると共にユーザを歩行ルートに誘導する。また、ロボット1は、歩行中のユーザの足運びを変化させる。例えば、ロボット1は、ロボット1の移動速度の制限及び/又は歩行ルートの変更などによって、歩行中のユーザの足運びを変化させる。本明細書において、歩行ルートとは、現在地から目的地までのユーザが歩行する経路を意味する。
【0059】
以下、ロボット1の構成について詳細に説明する。
【0060】
本体部11は、例えば、他の構成部材を支持するとともにユーザが歩行する際の荷重を支えることができるような剛性を有するフレームにより構成される。
【0061】
ハンドル部12は、本体部11の上部に設けられており、歩行中のユーザの両手により把持しやすい形状及び高さ位置に設けられている。実施の形態1では、ハンドル部12は、棒状に形成されている。ユーザは、ハンドル部12の右端側を右手で把持し、且つハンドル部12の左端側を左手で把持する。
【0062】
検知部13は、ハンドル部12をユーザが把持することにより、ユーザによってハンドル部12にかけられるハンドル荷重を検知する。具体的には、ユーザがハンドル部12を把持して歩行するとき、及びユーザがハンドル部12を把持して立ち止まった状態で足上げ体操を行うときに、ユーザはハンドル部12に荷重をかける。検知部13は、ユーザがハンドル部12にかける荷重(ハンドル荷重)の向き及び大きさを検知する。
【0063】
図3は、検知部13で検知するハンドル荷重の検知方向を示す。図3に示すように、検知部13は、互いに直交する三軸方向にかかる力、及び三軸の軸回りのモーメントをそれぞれ検出可能な六軸力センサである。互いに直交する三軸とは、ロボット1の左右方向に延在するx軸、ロボット1の前後方向に延在するy軸、及びロボット1の高さ方向に延在するz軸である。三軸方向にかかる力とは、x軸方向にかかる力Fx、y軸方向にかかる力Fy、及びz軸方向にかかる力Fzである。実施の形態1では、Fxのうち右方向にかかる力をFxとし、左方向にかかる力をFxとしている。Fyのうち前方向にかかる力をFyとし、後方向にかかる力をFyとしている。Fz方向のうち歩行面に対して鉛直上方向にかかる力をFzとし、歩行面に対して鉛直下方向にかかる力をFzとしている。三軸の軸回りのモーメントとは、x軸の軸回りのモーメントMx、y軸の軸回りのモーメントMy、及びz軸の軸回りのモーメントMzである。なお、本明細書においては、Fx、Fy、Fz、Mx、My、Mzを荷重と称する場合がある。
【0064】
図1及び図2に戻って、歩行状態推定部14は、検知部13で検知されたハンドル荷重に基づいて、歩行中のユーザの歩行速度及び歩行方向を推定する。歩行速度とは、ユーザが歩行しているときのユーザの速度を意味する。歩行方向とは、ユーザが歩行する方向を意味する。歩行状態推定部14は、検知部13で検知されたハンドル荷重(力及びモーメント)の大きさ及び向きに基づいて、歩行中のユーザの歩行速度及び歩行方向を推定する。
【0065】
具体的には、歩行状態推定部14は、検知部13で検知された各移動方向におけるハンドル荷重の値から、歩行中のユーザの歩行速度及び歩行方向を推定する。例えば、歩行状態推定部14は、ハンドル荷重に基づいて、前進動作、後退動作、右旋回動作、及び左旋回動作を推定する。
【0066】
<前進動作>
歩行状態推定部14は、検知部13でFyの力が検知された場合、ユーザが前方向に移動していると推定する。即ち、歩行状態推定部14は、検知部13でFyの力が検知された場合、ユーザが前進動作を行っていると推定する。歩行状態推定部14は、ユーザが前進動作を行っている間、検知部13で検知されるFyの力が大きくなると、ユーザの前方向への歩行速度が速くなっていると推定する。一方、歩行状態推定部14は、ユーザが前進動作を行っている間、検知部13で検知されるFyの力が小さくなると、ユーザの前方向への歩行速度が遅くなっていると推定する。
【0067】
<後退動作>
歩行状態推定部14は、検知部13でFyの力が検知された場合、ユーザが後方向に移動していると推定する。即ち、歩行状態推定部14は、検知部13でFyの力が検知された場合、ユーザが後退動作を行っていると推定する。歩行状態推定部14は、ユーザが後退動作を行っている間、検知部13で検知されるFyの力が大きくなると、ユーザの後方向への歩行速度が速くなっていると推定する。一方、歩行状態推定部14は、ユーザが後退動作を行っている間、検知部13で検知されるFyの力が小さくなると、ユーザの後方向への歩行速度が遅くなっていると推定する。
【0068】
<右旋回動作>
歩行状態推定部14は、検知部13でFyの力とMzのモーメントとが検知された場合、ユーザが右方向に旋回移動していると推定する。即ち、歩行状態推定部14は、検知部13でFyの力とMzのモーメントが検知された場合、ユーザが右旋回動作を行っていると推定する。歩行状態推定部14は、ユーザが右旋回動作を行っている間、検知部13で検知されるMzのモーメントが大きくなると、ユーザの右方向への旋回半径が小さくなっていると推定する。また、歩行状態推定部14は、ユーザが右旋回動作を行っている間、検知部13で検知されるFyの力が大きくなると、旋回速度が速くなっていると推定する。
【0069】
<左旋回動作>
歩行状態推定部14は、検知部13でFyの力とMzのモーメントとが検知された場合、ユーザが左方向に旋回移動していると推定する。即ち、歩行状態推定部14は、検知部13でFyの力とMzのモーメントが検知された場合、ユーザが左旋回動作を行っていると推定する。歩行状態推定部14は、ユーザが左旋回動作を行っている間、検知部13で検知されるMzのモーメントが大きくなると、ユーザの旋回半径が小さくなっていると推定する。また、歩行状態推定部14は、ユーザが左旋回動作を行っている間、検知部13で検知されるFyの力が大きくなると、旋回速度が速くなっていると推定する。
【0070】
なお、歩行状態推定部14は、ハンドル荷重に基づいてユーザの歩行速度及び歩行方向を推定できればよく、上述した例に限定されない。例えば、歩行状態推定部14は、Fy及びFzの力に基づいて、ユーザの前進動作及び後退動作を推定してもよい。また、歩行状態推定部14は、例えば、Mx又はMyのモーメントに基づいて、ユーザの旋回動作を推定してもよい。
【0071】
例えば、検知部13で検知されるFyの力が所定の第1閾値以上の値であり、Myの力が所定の第2閾値未満の値である場合、歩行状態推定部14は、ユーザが前方向への歩行、即ち前進動作をしていると推定してもよい。また、歩行状態推定部14は、Fz方向におけるハンドル荷重の値に基づいて、歩行速度を推定してもよい。一方、検知部13で検知されるFyの力が所定の第3閾値以上の値であり、Myの力が所定の第2閾値以上の値である場合、歩行状態推定部14は、ユーザが右方向へ旋回する歩行、即ち右旋回動作をしていると推定してもよい。また、歩行状態推定部14は、Fz方向におけるハンドル荷重の値に基づいて旋回速度を推定し、My方向におけるハンドル荷重の値に基づいて旋回半径を推定してもよい。
【0072】
また、歩行速度を推定するために用いるハンドル荷重は、前方向のFyの荷重、又は下方向のFzの荷重であってもよいし、前方向のFyの荷重と下方向のFzの荷重とを組み合わせであってもよい。
【0073】
歩行支援部15は、検知部13で検知されたハンドル荷重に基づいて、ユーザの歩行運動に対してロボット1が与える負荷を決定する。実施の形態1では、歩行支援部15は、歩行状態推定部14で推定されたユーザの歩行速度及び歩行方向に基づいて、ロボット1の負荷としてロボット1の移動速度及び移動方向を決定する。例えば、歩行支援部15は、ロボット1の移動速度及び移動方向をユーザの歩行速度及び歩行方向と同じとなるように決定してもよい。あるいは、歩行支援部15は、ロボット1の移動速度及び移動方向をユーザの歩行速度及び歩行方向より遅くなるように決定してもよい。
【0074】
また、歩行支援部15は、ロボット1の移動速度及び移動方向を補正することによって、ユーザの歩行中の足運びを変化させてもよい。具体的には、歩行支援部15は、訓練シナリオ生成部18で生成及び/又は補正された訓練シナリオに基づいて、ロボット1の移動速度及び移動方向を補正してもよい。例えば、歩行支援部15は、ユーザの歩行速度よりもロボット1の移動速度を遅くしてもよい。あるいは、歩行支援部15は、ユーザが旋回動作をするときに旋回半径が大きくなるように移動方向を補正してもよい。
【0075】
なお、歩行支援部15は、ユーザの歩行速度及び歩行方向及び/又は訓練シナリオ生成部18で生成される訓練シナリオの情報に基づいてロボット1の移動速度及び移動方向を決定すればよく、上述した例に限定されない。
【0076】
移動装置16は、本体部11の下部に設けられた回転体20と、回転体20を駆動制御する駆動部21と、を備える。移動装置16は、歩行支援部15で決定されたロボット1の移動速度及び移動方向に基づいて、回転体20を制御してロボット1を移動させる。
【0077】
回転体20は、本体部11を自立させた状態で支持し、駆動部21により回転駆動される車輪である。実施の形態1では、移動装置16は、3つの回転体20を備える。具体的には、移動装置16は、ロボット1の後方側に対向して配置される2つの回転体20と、ロボット1の前方側に配置される1つの回転体20と、を備える。ロボット1の後方側に配置される2つの回転体20は、駆動部21により回転され、ロボット1を移動させる。例えば、ロボット1の後方側に配置される2つの回転体20は、ロボット1を自立させた姿勢を保った状態で、本体部11を図2に示す矢印の方向(前方向または後方向)に移動させる。ロボット1の前方側に配置される1つの回転体20は、自由に回転可能である。
【0078】
なお、実施の形態1において、移動装置16は、回転体20として3つの車輪を備える例を説明したが、これに限定されない。例えば、回転体20は、2つ以上の車輪で構成されていてもよい。あるいは、回転体20は、走行ベルト、又はローラなどであってもよい。
【0079】
駆動部21は、歩行支援部15で決定されたユーザの歩行速度及び歩行方向に基づいて、回転体20を駆動する。
【0080】
姿勢推定部17は、検知部13で検知されたハンドル荷重に基づいて、ユーザの足上げ姿勢を推定する。足上げ姿勢とは、ユーザが足を上げている動作をしているときの姿勢を意味し、足が地面を離れてから接地するまでの足上げ運動の姿勢を意味する。
【0081】
実施の形態1では、姿勢推定部17は、検知部13で検知されたMy方向のモーメントに基づいて、ユーザの足上げ姿勢を推定する。
【0082】
足上げ姿勢は、足が上がっているときの地面からの足の高さ(足上げ量)、足が地面から離れて接地するまでの時間(足上げ時間)、及び揺らぎのうち少なくとも1つを含む。揺らぎとは、足上げをしているときのユーザのふらつきを意味する。
【0083】
なお、足上げ姿勢は、足上げ量、足上げ時間及び揺らぎに限定されない。例えば、足上げ姿勢は、歩幅、歩行速度及び歩行ピッチを含んでもよい。
【0084】
足上げ姿勢は、ユーザが立ち止まった状態で足上げ体操をしているときの体操姿勢と、ユーザが歩行しているときの歩行姿勢と、を含む。
【0085】
体操姿勢とは、ユーザがハンドル部12を把持した状態でその場から移動せずに、足上げ体操をしているときの足上げ姿勢を意味する。歩行姿勢とは、歩行しているユーザの左右の足が交互に上げ下げしているときの足上げ姿勢を意味する。即ち、歩行姿勢は、ユーザの足を後方から前方へ移動させる遊脚期間にあるときのユーザの足の姿勢を意味する。遊脚期間とは、足が地面から離れている期間を意味する。
【0086】
姿勢推定部17は、ユーザの左右の足のそれぞれについて、足上げ姿勢を推定する。
【0087】
訓練シナリオ生成部18は、姿勢推定部17で推定された足上げ姿勢に基づいてユーザに足上げ運動を行わせる訓練シナリオを補正する。訓練シナリオとは、ユーザの身体能力を向上させるためにユーザに行わせる訓練のシナリオである。訓練シナリオは、例えば、右足の筋肉を鍛える運動、左足の筋肉を鍛える運動、及び/又は両足の筋肉を鍛える運動をユーザに行わせるシナリオであってもよい。
【0088】
訓練シナリオは、ユーザが立ち止まった状態で足上げ体操を行う体操訓練シナリオと、ユーザの歩行中の足運びを変化させる歩行訓練シナリオと、を含む。
【0089】
体操訓練シナリオは、体操訓練を行うときのシナリオであり、ユーザが立ち止まった状態でその場で足上げ体操を行うシナリオを含む。体操訓練シナリオは、例えば、片足を上げる運動、ロボット1が回転することによるツイスト運動、片足を上げた状態でのツイスト運動を含んでもよい。
【0090】
一例では、体操訓練シナリオは、右足の筋肉を優先して鍛えるために、右足の足上げ回数を30回、左足の足上げ回数を10回に設定した足上げ体操を含むシナリオを含んでもよい。あるいは、体操訓練シナリオは、右足を上げている時間を30秒、左足を上げている時間を10秒に設定した足上げ体操を含むシナリオを含んでもよい。
【0091】
歩行訓練シナリオは、歩行訓練を行うときのシナリオであり、歩行中のユーザの足運びを変化させるシナリオを含む。例えば、歩行訓練シナリオは、ロボット1の移動速度を制限しつつ、ユーザに足上げ指示を行うシナリオを含んでもよい。あるいは、歩行訓練シナリオは、鍛えたい足の筋肉を使う頻度が高い歩行ルートにユーザを誘導するシナリオを含んでもよい。鍛えたい足の筋肉を使う頻度が高い歩行ルートとは、例えば、鍛えたい足と反対側に旋回する動作を多く含むルート、及び/又は旋回半径を大きくしたルートなどであってもよい。例えば、右足の筋肉を鍛えたい場合、歩行ルートは、右方向よりも左方向に旋回するコーナーを多く含んでいてもよい。あるいは、歩行ルートは、左方向への旋回動作において旋回半径を大きくするようなルートであってもよい。
【0092】
訓練シナリオ生成部18は、体操訓練時の足上げ姿勢及び/又は歩行訓練時の足上げ姿勢の情報に基づいて、体操訓練シナリオ及び/又は歩行訓練シナリオを補正する。訓練シナリオ生成部18は、例えば、体操訓練時及び/又は歩行訓練時における左右の足上げ姿勢の差異などに基づいて、体操訓練シナリオ及び/又は歩行訓練シナリオを補正する。
【0093】
例えば、右足の足上げ量が左足の足上げ量よりも小さい場合、訓練シナリオ生成部18は、左足よりも右足の筋力を使用する訓練シナリオに補正する。一例では、訓練シナリオ生成部18は、右足の足上げ回数を左足の足上げ回数よりも多い体操訓練シナリオに補正する。また、訓練シナリオ生成部18は、左方向への旋回動作を多くしつつ、左方向への旋回半径を大きくした歩行ルートに誘導する歩行訓練シナリオに補正する。
【0094】
このように、訓練シナリオ生成部18は、体操訓練結果及び/又は歩行訓練結果に基づいて、訓練シナリオを補正する。
【0095】
また、補正前の訓練シナリオは、例えば、予め定められた足上げ運動を含むシナリオであってもよいし、ユーザ毎にカスタマイズされた運動を含むシナリオであってもよい。補正前の訓練シナリオとは、例えば、訓練を開始するときに設定されているシナリオ、又は訓練を開始するときにユーザが設定するシナリオを意味する。
【0096】
なお、上述した訓練シナリオは例示であり、訓練シナリオは、これらの例に限定されない。
【0097】
提示部19は、訓練シナリオに基づくユーザへの指示を提示する。提示部19は、例えば、音声、画像及び/又は映像によってユーザへの指示を提示する。提示部19は、例えば、スピーカー及び/又はディスプレイなどを含んでいてもよい。
【0098】
ロボット1においては、ロボット1自身の位置を推定する自己位置推定部を有していてもよい。自己位置推定部は、例えば、GPS(Global Positioning System)などであって、ロボット1のいる位置を推定する。これにより、ロボット1は、自身の位置、即ち現在地を推定し、ユーザを現在地から目的地までの歩行ルートへ正確に誘導することができる。また、カメラやデプスセンサを用い、周辺環境を認識することで自己位置推定を行ってもよい。
【0099】
[歩行訓練ロボットの制御構成]
このような構成を有する歩行訓練ロボット1の制御構成について説明する。図4は、ロボット1の制御構成の一例を示す制御ブロック図である。また、図4の制御ブロック図では、それぞれの制御構成と取り扱われる情報との関係についても示している。図5は、ロボット1の主要な制御構成の一例を示す制御ブロック図である。
【0100】
まず、ロボット1の移動の制御構成について説明する。図4及び図5に示すように、検知部13は、ハンドル部12にかかるハンドル荷重を検知する。検知部13で検知されたハンドル荷重の情報は、歩行状態推定部14に送信される。
【0101】
歩行状態推定部14は、検知部13で検知されたハンドル荷重に基づいて、ユーザの歩行速度及び歩行方向を推定する。歩行状態推定部14は、推定したユーザの歩行速度及び歩行方向の情報を、歩行支援部15に送信する。
【0102】
歩行支援部15は、ユーザの歩行速度及び歩行方向に基づいて、ロボット1の移動速度及び移動方向を決定する。歩行支援部15は、決定したロボット1の移動速度及び移動方向の情報を駆動部21に送信する。
【0103】
駆動部21は、駆動力算出部22と、アクチュエータ制御部23と、アクチュエータ24と、を備える。
【0104】
駆動力算出部22は、歩行支援部15で決定されたロボット1の移動速度及び移動方向に基づいて、駆動力を算出する。例えば、駆動力算出部22は、ロボット1の移動動作が前進動作又は後退動作である場合、ロボット1の後方側に配置される2つの車輪(回転体)20の回転量が均等になるように駆動力を算出する。駆動力算出部22は、ロボット1の移動動作が右旋回動作である場合、ロボット1の後方側に配置される2つの車輪20のうち右側の車輪20の回転量を左側の車輪20の回転量よりも大きくなるように駆動力を算出する。また、駆動力算出部22は、ロボット1の移動速度に応じて、駆動力の大きさを算出する。
【0105】
アクチュエータ制御部23は、駆動力算出部22で算出された駆動力に基づいて、アクチュエータ24の駆動制御を行う。また、アクチュエータ制御部23は、アクチュエータ24から車輪20の回転量の情報を取得し、駆動力算出部22に車輪20の回転量の情報を送信することができる。
【0106】
アクチュエータ24は、例えば、車輪20を回転駆動させるモータ等である。アクチュエータ24は、歯車機構又はプーリー機構等を介して車輪20と接続されている。アクチュエータ24は、アクチュエータ制御部23によって駆動制御されることによって、車輪20を回転駆動している。
【0107】
このように、ロボット1は、ハンドル部12にかかるハンドル荷重に基づいて移動を制御している。
【0108】
次に、ロボット1の訓練内容を補正するための制御構成について説明する。
【0109】
姿勢推定部17は、検知部13で検知されたハンドル荷重に基づいて、ユーザの足上げ姿勢を推定する。実施の形態1では、姿勢推定部17は、検知部13で検知されるハンドル荷重のうちMyのモーメントに基づいて、ユーザの足上げ姿勢、即ち体操姿勢及び歩行姿勢を推定する。なお、体操姿勢及び歩行姿勢の判別は、例えば、Fyの荷重に基づいて行われてもよいし、回転体20の回転量に基づいて行われてもよい。
【0110】
図6は、ユーザがハンドル部12を把持したまま右足を上げた状態の一例を示す図である。図6に示すように、ユーザがハンドル部12を把持した状態で右足を上げると、ハンドル部12の右端に鉛直方向下向きの荷重がかかると共に、ハンドル部12の左端に鉛直方向上向きの荷重がかかる。即ち、ユーザが右足を上げた足上げ姿勢においては、ハンドル部12にはロボット1の前後方向に延在するy軸の軸回りのMyのモーメントが発生する。
【0111】
一方、ユーザがハンドル部12を把持した状態で左足を上げると、ハンドル部12の左端に鉛直方向下向きの荷重がかかると共に、ハンドル部12の右端に鉛直方向上向きの荷重がかかる。即ち、ユーザが左足を上げた足上げ姿勢においては、ハンドル部12にはロボット1の前後方向に延在するy軸の軸回りのMyのモーメントが発生する。
【0112】
図7は、ハンドル荷重と足上げ姿勢との関係の一例を示す図である。図7は、右足を上げた後に左足を上げた場合の足上げ体操のMyのモーメントの波形を示す。
【0113】
図7に示すように、ユーザが右足を上げている期間、即ち右足遊脚期間においては、Myのモーメントが生じる。右足遊脚期間とは、右足が地面から離れて接地するまでの期間であり、右足の足上げ時間に相当する。一方、ユーザが左足を上げている期間、即ち左足遊脚期間においては、Myのモーメントが生じる。左足遊脚期間とは、左足が地面から離れて接地するまでの期間であり、左足の足上げ時間に相当する。
【0114】
右足遊脚期間及び左足遊脚期間は、Myのモーメントの値の変化から算出することができる。即ち、右足の足上げ時間及び左足の足上げ時間は、Myのモーメントの値の変化から算出することができる。
【0115】
右足遊脚期間の算出の一例について説明する。姿勢推定部17は、ユーザがハンドル部12を把持し、且つ両足を地面に接地している状態(以下、「定常状態」と称する)のMyのモーメントP1を算出する。定常状態のMyのモーメントP1は、ユーザ毎に異なっていてもよい。なお、図7に示すMyのモーメントは、右寄りに傾いた足上げ姿勢のユーザの波形である。このため、定常状態のモーメントP1においては、My-方向寄りのモーメントが生じている。
【0116】
姿勢推定部17は、検知部13で検知されるMy方向のモーメントが定常状態のモーメントP1から大きくなると、右足遊脚期間が開始したと決定してもよい。また、姿勢推定部17は、右足遊脚期間が開始した後、検知部13で検知されるMy方向のモーメントが定常状態のモーメントP1に戻ると、右足遊脚期間が終了したと決定してもよい。
【0117】
左足遊脚期間の算出の一例について説明する。右足遊脚期間の算出の一例と同様に、姿勢推定部17は、検知部13で検知されるMy方向のモーメントが定常状態のモーメントP1から大きくなると、左足遊脚期間が開始したと決定してもよい。また、姿勢推定部17は、左足遊脚期間が開始した後、検知部13で検知されるMy方向のモーメントが定常状態のモーメントP1に戻ると、左足遊脚期間が終了したと決定してもよい。
【0118】
なお、上述した右足遊脚期間及び左足遊脚期間の算出は一例であって、これに限定されない。例えば、ユーザが歩行している場合の右足遊脚期間及び左足遊脚期間の算出は、Fz方向のハンドル荷重から算出してもよい。
【0119】
次に、ハンドル荷重に基づく足上げ量の算出の一例について説明する。
【0120】
姿勢推定部17は、右足遊脚期間初期ts1におけるMy方向のモーメントの変化する速度v1(以下、「第1変化速度v1」と称する)に基づいて、右足の足上げ量を算出する。姿勢推定部17は、My方向のモーメントの第1変化速度v1が大きいほど、右足を勢いよく上げていると決定し、右足の足上げ量が高くなっていると決定する。
【0121】
具体的には、右足の足上げ量の算出式として、「(右足の足上げ量)=(My方向のモーメントの第1変化速度v1)×(係数K)」を用いてもよい。係数Kは、ユーザ毎に適した値が設定される。例えば、係数Kは、ユーザ毎に個人差があるため、事前にユーザの足上げ姿勢を確認し、目視で係数を設定してもよい。
【0122】
姿勢推定部17は、左足遊脚期間初期ts2におけるMy方向のモーメントの変化する速度v2(以下、「第2変化速度v2」と称する)に基づいて、左足の足上げ量を算出する。姿勢推定部17は、My方向のモーメントの第2変化速度v2が大きいほど、左足を勢いよく上げていると決定し、左足の足上げ量が高くなっていると決定する。
【0123】
具体的には、左足の足上げ量の算出式として、「(左足の足上げ量)=(My方向のモーメントの第2変化速度v2)×(係数K)」を用いてもよい。
【0124】
なお、上述した足上げ量の算出は一例であって、これに限定されない。例えば、Myのモーメントの変化する速度と遊脚期間とに基づいて、足上げの軌道を推定してもよい。具体的には、足上げの軌道の算出式として、「(足上げの軌道)=(Myのモーメントの変化する速度)×(遊脚期間)」を用いてもよい。足上げの軌道とは、足が地面から離れて接地するまでの足位置の軌道である。
【0125】
また、姿勢推定部17は、Myのモーメントの揺らぎに基づいて、ユーザのふらつきを推定してもよい。
【0126】
図4及び図5に戻って、姿勢推定部17は、足上げ姿勢のうち体操姿勢を推定する体操姿勢推定部25と、足上げ姿勢のうち歩行姿勢を推定する歩行姿勢推定部26と、を有する。
【0127】
体操姿勢推定部25は、検知部13で検知されたハンドル荷重に基づいて、足上げ姿勢のうちユーザが立ち止まった状態で足上げ体操をしているときの体操姿勢を推定する。体操姿勢推定部25は、体操姿勢の情報を体操姿勢情報データベース27に送信する。
【0128】
体操姿勢は、例えば、ユーザが足上げ体操をしているときの足上げ量、足を上げている時間(足上げ時間)及び揺らぎのうち少なくとも1つを含む。
【0129】
歩行姿勢推定部26は、検知部13で検知されたハンドル荷重に基づいて、足上げ姿勢のうちユーザが歩行しているときの歩行姿勢を推定する。歩行姿勢推定部26は、歩行姿勢の情報を歩行姿勢情報データベース28に送信する。
【0130】
歩行姿勢は、例えば、ユーザが歩行しているときの足上げ量、足上げ時間、揺らぎ、歩幅、歩行速度及び歩行ピッチのうち少なくとも1つを含む。
【0131】
歩幅、歩行速度及び歩行ピッチについても検知部13で検知されるハンドル荷重に基づいて推定可能である。例えば、アクチュエータ制御部23は、回転体20の回転量からロボット1の移動距離を推定する。アクチュエータ制御部23は、歩行姿勢推定部26に回転体20の回転量の情報を送信する。歩行姿勢推定部26は、回転体20の回転量の情報と、ハンドル荷重から推定される足上げ時間とに基づいて、歩幅、歩行速度及び歩行ピッチを推定してもよい。
【0132】
本明細書では、体操姿勢情報データベース27と歩行姿勢情報データベース28とをまとめて姿勢情報データベース29と称する場合がある。
【0133】
実施の形態1では、ロボット1が、姿勢情報データベース29を備える。なお、ロボット1は、姿勢情報データベース29を備えていなくてもよい。姿勢情報データベース29は、ロボット1の外部にあってもよい。例えば、姿勢情報データベース29は、ロボット1の外部にあるサーバなどで構成されていてもよい。この場合、ロボット1は、無線及び/又は有線通信手段によって、姿勢情報データベース29にアクセスして、姿勢情報をダウンロードしてもよい。
【0134】
訓練シナリオ生成部18は、足上げ姿勢に基づいて訓練シナリオを補正する。具体的には、訓練シナリオ生成部18は、姿勢情報データベース29から足上げ姿勢の情報を受信し、足上げ姿勢の情報に基づいて訓練シナリオを補正する。
【0135】
訓練シナリオ生成部18は、訓練シナリオのうちユーザが立ち止まった状態で足上げ体操を行う体操訓練シナリオを生成する体操訓練シナリオ生成部30と、訓練シナリオのうちユーザの歩行中の足運びを変化させる歩行訓練シナリオを生成する歩行訓練シナリオ生成部31と、を有する。
【0136】
体操訓練シナリオ生成部30は、体操訓練シナリオを補正する。具体的には、体操訓練シナリオ生成部30は、姿勢情報データベース29から体操姿勢及び/又は歩行姿勢の情報を受信し、体操姿勢及び/又は歩行姿勢の情報に基づいて体操訓練シナリオを補正する。
【0137】
例えば、体操姿勢及び/又は歩行姿勢の情報において、足上げ量が小さい場合、体操訓練シナリオ生成部30は、足上げ回数を多くするように、体操訓練シナリオを補正してもよい。提示部19は、足上げ指示及び足上げ回数をユーザに提示してもよい。
【0138】
体操姿勢及び/又は歩行姿勢の情報において、足上げ時間が短い場合、体操訓練シナリオ生成部30は、足上げ時間が長くなるように、体操訓練シナリオを補正してもよい。提示部19は、足上げ指示及び足上げ時間をユーザに提示してもよい。
【0139】
体操姿勢及び/又は歩行姿勢の情報において、ユーザがふらついている場合、即ち揺らぎが生じている場合、体操訓練シナリオ生成部30は、ユーザの足上げ姿勢を矯正するように、体操訓練シナリオを補正してもよい。例えば、体操訓練シナリオ生成部30は、提示部19による足上げの指示の間隔を長くしつつ、ユーザの足上げ姿勢を矯正する指示を提示してもよい。
【0140】
体操姿勢及び/又は歩行姿勢の情報において、足上げの速度が遅い場合、足上げの速度を速くするように、体操訓練シナリオを補正してもよい。提示部19は、足上げ指示をユーザに提示してもよい。具体的には、提示部19の足上げの指示の間隔を短くしてもよい。
【0141】
体操姿勢及び/又は歩行姿勢の情報において、左右の足において足上げ量、足上げ時間、及び/又は速度に差異がある場合、体操訓練シナリオ生成部30は、優先的に鍛えたい方の足の筋肉を使用するように、体操訓練シナリオを補正してもよい。例えば、右足の足上げ量が左足の足上げ量と比べて小さい場合、体操訓練シナリオ生成部30は、左足よりも右足の足上げ回数を多くするシナリオに補正してもよい。右足の足上げ時間が左足の足上げ時間と比べて小さい場合、体操訓練シナリオ生成部30は、左足よりも右足の足上げ時間を長くするシナリオに補正してもよい。右足の足上げの速度が左足の足上げの速度と比べて遅い場合、体操訓練シナリオ生成部30は、左足よりも右足の上げる速度を速くするシナリオに補正してもよい。
【0142】
また、体操訓練シナリオ生成部30は、歩行姿勢の情報に含まれる歩幅、歩行速度、歩行ピッチ及び/又はこれらの左右の足の差異などの情報に基づいて、体操訓練シナリオを補正してもよい。
【0143】
歩行訓練シナリオ生成部31は、歩行訓練シナリオを補正する。具体的には、歩行訓練シナリオ生成部31は、姿勢情報データベース29から体操姿勢及び/又は歩行姿勢の情報を受信し、体操姿勢及び/又は歩行姿勢の情報に基づいて歩行訓練シナリオを補正する。
【0144】
例えば、体操姿勢及び/又は歩行姿勢の情報において、足上げ量、足上げ時間及び/又は足上げの速度が小さい場合、歩行訓練シナリオ生成部31は、ロボット1の移動速度を遅くして歩行中のユーザの足運びを変化させるように歩行訓練シナリオを補正してもよい。あるいは、歩行訓練シナリオ生成部31は、歩行ルートを複雑にして歩行中のユーザの足運びを変化させるように歩行訓練シナリオを補正してもよい。歩行ルートを複雑にするとは、例えば、出発地から目的地までのルートにおいて、コーナーを増やすことなどを含む。
【0145】
体操姿勢及び/又は歩行姿勢の情報において、ユーザがふらついている場合、即ち揺らぎが生じている場合、歩行訓練シナリオ生成部31は、ユーザの足上げ姿勢を矯正するように、歩行訓練シナリオを補正してもよい。例えば、歩行訓練シナリオ生成部31は、歩行ルートを単調なルートに補正しつつ、提示部19によってユーザの足上げ姿勢を矯正する指示を提示するように歩行訓練シナリオを補正してもよい。
【0146】
体操姿勢及び/又は歩行姿勢の情報において、左右の足に、足上げ量、足上げ時間、及び/又は足上げの速度に差異がある場合、歩行訓練シナリオ生成部31は、優先的に鍛えたい方の足の筋肉を使用するように、歩行訓練シナリオを補正してもよい。例えば、歩行訓練シナリオ生成部31は、優先的に鍛えたい足を上げている期間(遊脚期間)において、ロボット1の移動速度を遅くして優先的に鍛えたい足の筋肉を使用するように歩行訓練シナリオを補正してもよい。あるいは、歩行訓練シナリオ生成部31は、優先的に鍛えたい足と反対側に旋回動作を行うように歩行ルートを変更するように歩行訓練シナリオを補正してもよい。
【0147】
図8Aは、歩行ルートの一例を示す図である。図8Aは、一例として、単調なルートに設定された出発地S1から目的地S2までの第1歩行ルートR1を示す。図8Aに示すように、第1歩行ルートR1は、コーナーの数を少なくしている。また、第1歩行ルートR1においては、コーナーの角度が緩やかになっている。
【0148】
図8Bは、歩行ルートの別例を示す図である。図8Bは、一例として、複雑なルートに設定された出発地S1から目的地S2までの第2歩行ルートR2を示す。図8Bに示すように、第2歩行ルートR2は、コーナーの数を多くしている。また、第2歩行ルートR2においては、右方向に曲がるコーナーの角度が、左方向に曲がるコーナーの角度よりも鋭くなっている。これにより、第2歩行ルートR2を歩行するユーザにおいて、右足に比べて左足を上げている時間が長くなり、右足よりも左足の筋肉を使用する。その結果、ユーザは、右足に比べて左足を優先して鍛えることができる。
【0149】
なお、上述した体操訓練シナリオ及び歩行訓練シナリオの補正は例示であって、体操訓練シナリオ及び歩行訓練シナリオの補正は、これらの例に限定されない。体操訓練シナリオ生成部30及び歩行訓練シナリオ生成部31は、歩行姿勢の情報に含まれる歩幅、歩行速度、歩行ピッチ及び/又はこれらの左右の足の差異などの情報に基づいて、体操訓練シナリオ及び歩行訓練シナリオをそれぞれ補正してもよい。
【0150】
また、訓練シナリオ生成部18は、生成又は補正された訓練シナリオに基づくユーザへの指示を生成する。訓練シナリオに基づくユーザへの指示とは、例えば、足上げ指示、足上げ姿勢の矯正指示、及び/又は歩行ルートの誘導指示などを含む。提示部19は、訓練シナリオに基づくユーザへの指示の情報に基づいて、音声、画像及び/又は映像によって、ユーザに指示を提示する。これにより、ユーザは提示部19に提示された指示に従って足上げ運動を行うことができる。
【0151】
訓練シナリオ生成部18によって生成又は補正された訓練シナリオは、例えば、訓練シナリオ情報データベースに記憶されてもよい。訓練シナリオ情報データベースは、ロボット1が有していてもよい。あるいは、訓練シナリオ情報データベースは、ロボット1の外部に設けられたサーバなどであってもよい。訓練シナリオ生成部18は、訓練シナリオ情報データベースから過去のユーザの訓練シナリオを取得してもよい。
【0152】
歩行支援部15は、訓練シナリオ情報データベースから歩行訓練シナリオの情報を取得し、歩行訓練シナリオの情報に基づいて、ロボット1の移動速度及び移動方向を補正してもよい。例えば、歩行訓練シナリオにおいて、右足の足運びを変化させる場合、歩行支援部15は、右足が上がっているときのロボット1の移動速度を遅くしてもよい。
【0153】
また、歩行支援部15は、姿勢情報データベース29から足上げ姿勢の情報を取得し、ユーザの足上げ姿勢に応じてロボット1の移動速度及び移動方向を補正してもよい。
【0154】
[歩行訓練ロボットの主要な制御]
歩行訓練ロボット1の主要な制御の一例を説明する。図9は、ロボット1の主要な制御の例示的なフローチャートを示す。
【0155】
図9に示すように、ステップST11において、訓練シナリオ生成部18は、訓練シナリオを生成する。具体的には、訓練シナリオ生成部18は、ユーザが訓練を開始する前に、ユーザに足上げ運動を行わせる訓練シナリオを生成する。例えば、ステップST11において、訓練シナリオ生成部18は、提示部19によってユーザに運動メニュー及び/又は質問などを提示する。訓練シナリオ生成部18は、ユーザによって選択された運動メニュー及び/又は質問の回答結果に基づいて、訓練シナリオを生成してもよい。訓練シナリオ生成部18は、生成した訓練シナリオに基づくユーザへの指示を生成する。訓練シナリオに基づくユーザへの指示の情報は、例えば、訓練シナリオ情報データベースに送信され、記憶される。
【0156】
ステップST12において、提示部19は、ステップST11で生成された訓練シナリオに基づくユーザへの指示を提示する。例えば、提示部19は、足上げ指示、足上げ姿勢の矯正指示、及び/又は歩行ルートの誘導指示などをユーザに対して提示する。例えば、ステップST12において、提示部19は、音声、画像及び/又は映像によって、ユーザに指示を提示する。ユーザは、ハンドル部12を把持した状態で、提示部19に提示された指示に従って訓練、即ち足上げ運動を行う。なお、提示部19は、訓練シナリオ情報データベースから訓練シナリオに基づくユーザへの指示情報を取得する。
【0157】
ステップST13において、検知部13は、ハンドル荷重を検知する。具体的には、ユーザが提示部19の指示に従って足上げ運動を行っている間、検知部13は、ハンドル部12にかかるハンドル荷重を検知する。
【0158】
ステップST14において、姿勢推定部17は、ステップST13で検知されたハンドル荷重に基づいて、ユーザの足上げ姿勢を推定する。実施の形態1では、姿勢推定部17は、上述したように、Myのモーメントに基づいて足上げ姿勢を推定する。姿勢推定部17は、推定した足上げ姿勢の情報を姿勢情報データベース29に送信する。
【0159】
ステップST15において、訓練シナリオ生成部18は、ユーザの訓練が終了したか否かを決定する。訓練シナリオ生成部18は、例えば、訓練シナリオに含まれるすべての足上げ運動が終了したか否かを決定する。
【0160】
ステップST15において、訓練シナリオ生成部18によって訓練が終了したと決定された場合、フローはステップST16に進む。訓練シナリオ生成部18によって訓練が終了していないと決定された場合、フローはST12に戻る。
【0161】
ステップST16において、訓練シナリオ生成部18は、ユーザの足上げ姿勢に基づいて訓練シナリオを補正する。具体的には、訓練シナリオ生成部18は、姿勢情報データベース29から足上げ姿勢の情報を取得する。訓練シナリオ生成部18は、取得した足上げ姿勢の情報に基づいて、訓練シナリオを補正する。
【0162】
このように、ロボット1は、ステップST11~ST16を実行することによって、訓練結果に基づいてユーザに適した訓練シナリオに補正している。これにより、ロボット1は、ユーザの身体能力を効率良く向上させることができる。
【0163】
なお、図9に示すフローチャートにおいて、訓練シナリオを補正するステップST16は、訓練が終了した後に実行される例について説明したが、これに限定されない。ステップST16は、ユーザが訓練を行っている間に実行されてもよい。即ち、訓練シナリオ生成部18は、ユーザが訓練を行っている間に訓練シナリオを補正してもよい。これにより、訓練シナリオ生成部18は、訓練中であっても訓練シナリオをより効率よく訓練を行うことができるシナリオに補正することができる。
【0164】
[歩行訓練ロボットの制御の第1例]
歩行訓練ロボット1の制御の第1例として、体操訓練結果に基づいて歩行訓練シナリオを補正する制御について説明する。具体的には、ユーザが体操訓練を行っている間に取得した体操姿勢情報に基づいて歩行訓練シナリオを補正する制御の一例について説明する。
【0165】
図10は、体操訓練結果に基づいて歩行訓練シナリオを補正する制御の例示的なフローチャートを示す。図10に示すように、ステップST21において、提示部19は、体操訓練シナリオに基づくユーザへの指示を提示する。ステップST21において、体操訓練シナリオは、予め定められたシナリオ、過去のユーザの足上げ姿勢情報に基づいて補正されたシナリオ、又は異なる足上げ運動を含む複数のシナリオからユーザが好みに応じて選択したシナリオなどであってもよい。なお、提示部19は、訓練シナリオ情報データベースから体操訓練シナリオを取得する。
【0166】
これにより、ユーザは、提示部19に提示された指示に従って、ハンドル部12を把持した状態で体操訓練を行う。具体的には、ユーザは、ハンドル部12を把持し、且つ立ち止まった状態で、提示部19により提示される足上げ指示に従って足上げ体操を行う。
【0167】
ステップST22において、検知部13は、ハンドル荷重を検知する。具体的には、ユーザが提示部19の指示に従って体操訓練を行っている間、検知部13は、ハンドル部12にかかるハンドル荷重を検知する。
【0168】
ステップST23において、体操姿勢推定部25は、ステップST22で検知されたハンドル荷重に基づいて、ユーザの体操姿勢を推定する。体操姿勢推定部25は、上述したように、Myのモーメントに基づいて、体操訓練時の足上げ量などの体操姿勢を推定する。体操姿勢推定部25は、推定した体操姿勢の情報を体操姿勢情報データベース27に送信する。
【0169】
ステップST24において、歩行訓練シナリオ生成部31は、ユーザの体操訓練が終了したか否かを決定する。歩行訓練シナリオ生成部31は、例えば、体操訓練シナリオに含まれるすべての足上げ運動が終了したか否かを決定する。
【0170】
ステップST24において、歩行訓練シナリオ生成部31によって体操訓練が終了したと決定された場合、フローはステップST25に進む。歩行訓練シナリオ生成部31によって体操訓練が終了していないと決定された場合、フローはST21に戻る。
【0171】
ステップST25において、歩行訓練シナリオ生成部31は、ユーザの体操姿勢に基づいて歩行訓練シナリオを補正する。具体的には、歩行訓練シナリオ生成部31は、体操姿勢情報データベース27から体操姿勢の情報を取得する。歩行訓練シナリオ生成部31は、取得した体操姿勢の情報に基づいて、歩行訓練シナリオを補正する。
【0172】
実施の形態1では、歩行訓練シナリオ生成部31は、体操姿勢の情報として、足上げ量、足上げ時間、及び揺らぎのうち少なくとも1つの情報に基づいて、歩行訓練シナリオを補正する。具体的には、歩行訓練シナリオ生成部31は、左右の足の体操姿勢の差異を比較し、比較結果に基づいて歩行訓練シナリオを補正する。
【0173】
例えば、歩行訓練シナリオ生成部31は、足上げ体操において、左足に比べて右足の足上げ量が小さい場合、左足に比べて右足の筋肉を鍛える歩行訓練シナリオに補正してもよい。歩行訓練シナリオの補正は、例えば、右足が上がっている間、ロボット1の移動速度を制限すること、及び/又は右方向への旋回動作の回数より左方向への旋回動作の回数が多い歩行ルートに変更することなどであってもよい。
【0174】
このように、ロボット1は、ステップST21~ST25を実行することによって、体操訓練結果に基づいて、歩行訓練シナリオを補正する。これにより、ロボット1は、ユーザに応じて、最適な歩行訓練シナリオを作成することができる。その結果、ロボット1は、ユーザの身体能力を効率良く向上させることができる。また、補正された歩行訓練シナリオは、訓練シナリオ情報データベースに記憶される。
【0175】
[歩行訓練ロボットの制御の第2例]
歩行訓練ロボット1の制御の第2例として、体操訓練結果に基づいて、体操訓練シナリオを補正する制御について説明する。具体的には、ユーザが体操訓練を行っている間に取得した体操姿勢情報に基づいて、体操訓練シナリオを補正する制御について説明する。
【0176】
図11は、体操訓練結果に基づいて体操訓練シナリオを補正する制御の例示的なフローチャートを示す。図10に示すように、ステップST31において、提示部19は、体操訓練シナリオに基づくユーザへの指示を提示する。
【0177】
これにより、ユーザは、提示部19に提示された指示に従って、ハンドル部12を把持した状態で体操訓練を行う。具体的には、ユーザは、ハンドル部12を把持し、且つ立ち止まった状態で、提示部19により提示される足上げ指示に従って足上げ体操を行う。
【0178】
ステップST32において、検知部13は、ハンドル荷重を検知する。具体的には、ユーザが提示部19の指示に従って体操訓練を行っている間、検知部13は、ハンドル部12にかかるハンドル荷重を検知する。
【0179】
ステップST33において、体操姿勢推定部25は、ステップST22で検知されたハンドル荷重に基づいて、ユーザの体操姿勢を推定する。ユーザの体操姿勢の推定については、上述したように、Myのモーメントに基づいて、足上げ量などの体操姿勢を推定する。体操姿勢推定部25は、推定した体操姿勢の情報を体操姿勢情報データベース27に送信する。
【0180】
ステップST34において、体操訓練シナリオ生成部30は、ユーザの体操訓練が終了したか否かを決定する。体操訓練シナリオ生成部30は、例えば、体操訓練シナリオに含まれるすべての足上げ運動が終了したか否かを決定する。
【0181】
ステップST34において、体操訓練シナリオ生成部30によって体操訓練が終了したと決定された場合、フローはステップST35に進む。体操訓練シナリオ生成部30によって体操訓練が終了していないと決定された場合、フローはST31に戻る。
【0182】
ステップST35において、体操訓練シナリオ生成部30は、ユーザの体操姿勢に基づいて体操訓練シナリオを補正する。具体的には、体操訓練シナリオ生成部30は、体操姿勢情報データベース27から体操姿勢の情報を取得する。体操訓練シナリオ生成部30は、取得した体操姿勢の情報に基づいて、ユーザに適した体操訓練シナリオに補正する。
【0183】
実施の形態1では、体操訓練シナリオ生成部30は、体操姿勢の情報として、足上げ量、足上げ時間、及び揺らぎのうち少なくとも1つの情報に基づいて、体操訓練シナリオを補正する。具体的には、体操訓練シナリオ生成部30は、左右の足の体操姿勢の差異を比較し、比較結果に基づいて体操訓練シナリオを補正する。
【0184】
例えば、体操訓練シナリオ生成部30は、足上げ体操において、左足に比べて右足の足上げ量が小さい場合、左足に比べて右足の筋肉を鍛える体操訓練シナリオに補正してもよい。体操訓練シナリオの補正は、例えば、左足に比べて右足の足上げ回数を多く設定すること、及び/又は左足に比べて右足の足上げ時間を長く設定することなどであってもよい。
【0185】
このように、ロボット1は、ステップST31~35を実行することによって、体操訓練結果に基づいて、体操訓練シナリオを補正する。これにより、ユーザの身体能力に応じて、最適な体操訓練シナリオを作成することができる。また、補正された体操訓練シナリオは、訓練シナリオ情報データベースに記憶される。
【0186】
なお、図10及び図11に示すフローチャートでは、体操訓練結果に基づいて、歩行訓練シナリオと体操訓練シナリオとを、それぞれ別々に補正する例について示したが、訓練シナリオの補正は、これらに限定されない。例えば、訓練シナリオの補正においては、体操訓練結果に基づいて、歩行訓練シナリオと体操訓練シナリオとの両方をまとめて補正してもよい。
【0187】
[歩行訓練ロボットの制御の第3例]
歩行訓練ロボット1の制御の第3例として、歩行訓練結果に基づいて体操訓練シナリオ及び歩行訓練シナリオを補正する制御について説明する。第3例においては、第1例で補正された歩行訓練シナリオに基づいてユーザが歩行訓練を行う。また、第3例においては、歩行訓練結果に基づいて体操訓練シナリオ及び歩行訓練シナリオを補正する。
【0188】
図12は、歩行訓練結果に基づいて体操訓練シナリオ及び歩行訓練シナリオを補正する制御の例示的なフローチャートを示す。図12に示すように、ステップST41において、提示部19は、歩行訓練シナリオに基づくユーザへの指示を提示する。例えば、提示部19は、ロボット1の制御の第1例で得られた歩行訓練シナリオ(図10のステップST25参照)に基づくユーザへの指示を提示する。
【0189】
ステップST42において、検知部13は、ハンドル荷重を検知する。具体的には、ユーザが提示部19の指示に従って歩行訓練を行っている間、検知部13は、ハンドル部12にかかるハンドル荷重を検知する。
【0190】
ステップST43において、歩行姿勢推定部26は、ステップST42で検知されたハンドル荷重に基づいて、ユーザの歩行姿勢を推定する。ユーザの歩行姿勢の推定については、上述したように、Myのモーメントに基づいて、足上げ量などの歩行姿勢を推定する。歩行姿勢推定部26は、推定した歩行姿勢の情報を歩行姿勢情報データベース28に送信する。
【0191】
ステップST44において、歩行支援部15は、ステップST43で推定した歩行姿勢に基づいて、ロボット1の移動速度及び/又は移動方向を決定する。具体的には、歩行支援部15は、歩行姿勢情報データベース28から歩行姿勢の情報を受信し、受信した歩行姿勢の情報に基づいて、ロボット1の移動速度及び/又は移動方向を変更する。例えば、歩行支援部15は、ロボット1の移動速度を遅くしたり、歩行ルートを変更することによってユーザに与える負荷を決定する。
【0192】
ステップST45において、歩行支援部15は、歩行訓練シナリオに基づいてロボット1の移動速度及び/又は移動方向を補正する。これにより、ユーザの身体能力に応じて、ユーザに適切な訓練を行うことができる。
【0193】
ステップST46において、歩行訓練シナリオ生成部31は、ユーザの歩行訓練が終了したか否かを決定する。歩行訓練シナリオ生成部31は、例えば、歩行訓練シナリオに含まれるすべての足上げ運動が終了したか否かを決定する。
【0194】
ステップST46において、歩行訓練シナリオ生成部31によって歩行訓練が終了したと決定された場合、フローはステップST47に進む。歩行訓練シナリオ生成部31によって歩行訓練が終了していないと決定された場合、フローはST41に戻る。
【0195】
ステップST47において、体操訓練シナリオ生成部30は、ステップST43で推定した歩行姿勢に基づいて体操訓練シナリオを補正する。具体的には、体操訓練シナリオ生成部30は、歩行姿勢情報データベース28から歩行姿勢の情報を取得する。体操訓練シナリオ生成部30は、取得した歩行姿勢の情報に基づいて、ユーザに適した体操訓練シナリオに補正する。
【0196】
ステップST48において、歩行訓練シナリオ生成部31は、ステップST43で推定した歩行姿勢に基づいて歩行訓練シナリオを補正する。具体的には、歩行訓練シナリオ生成部31は、歩行姿勢情報データベース28から歩行姿勢の情報を取得する。歩行訓練シナリオ生成部31は、取得した歩行姿勢の情報に基づいて、ユーザに適した歩行訓練シナリオに補正する。
【0197】
このように、ロボット1は、ステップST41~48を実行することによって、歩行訓練結果に基づいて、体操訓練シナリオ及び歩行訓練シナリオを補正する。
【0198】
なお、実施の形態1では、ロボット1の制御の第3例においては、歩行訓練結果に基づいて、体操訓練シナリオ及び歩行訓練シナリオを補正する例について説明したが、これに限定されない。ロボット1の制御の第3例においては、歩行訓練結果に基づいて体操訓練シナリオ、又は歩行訓練シナリオを補正してもよい。言い換えると、図12に示すフローチャートにおいて、ステップST47及びステップST48は、少なくともいずれか一方が実行されてもよい。
【0199】
第3例では、歩行訓練シナリオを補正する前において、第1例で補正された歩行訓練シナリオに基づいてユーザが歩行訓練を行う例について説明したが、これに限定されない。補正前の歩行訓練シナリオは、予め定められたシナリオ、過去のユーザの足上げ姿勢情報に基づいて補正されたシナリオ、又は異なる足上げ運動を含む複数のシナリオからユーザが好みに応じて選択したシナリオなどであってもよい。
【0200】
[歩行訓練ロボットの制御の第4例]
歩行訓練ロボット1の制御の第4例として、体操訓練結果と歩行訓練結果とに基づいて体操訓練シナリオ及び歩行訓練シナリオを補正する制御について説明する。第4例においては、第1例で補正された歩行訓練シナリオに基づいてユーザが歩行訓練を行う。また、第4例においては、第1例で取得した体操訓練結果と、歩行訓練結果とに基づいて体操訓練シナリオ及び歩行訓練シナリオを補正する。
【0201】
図13は、体操訓練結果と歩行訓練結果とに基づいて体操訓練シナリオ及び歩行訓練シナリオを補正する制御の例示的なフローチャートを示す。図13に示すように、第4例のステップST51~ST53は、第3例のステップST41~43と同じであるため、説明を省略する。
【0202】
ステップST54において、歩行支援部15は、体操姿勢と歩行姿勢とに基づいてロボット1の移動速度及び/又は移動方向を決定する。具体的には、歩行支援部15は、第1例で取得した体操姿勢の情報(図10のステップST23参照)と、ステップST53で取得した歩行姿勢の情報とに基づいて、ロボット1の移動速度及び/又は移動方向を決定する。
【0203】
ステップST55において、歩行支援部15は、歩行訓練シナリオに基づいてロボット1の移動速度及び/又は移動方向を補正する。これにより、ユーザの身体能力に応じて、ユーザに適切な訓練を行うことができる。
【0204】
ステップST56において、歩行訓練シナリオ生成部31は、ユーザの歩行訓練が終了したか否かを決定する。歩行訓練シナリオ生成部31は、例えば、歩行訓練シナリオに含まれるすべての足上げ運動が終了したか否かを決定する。
【0205】
ステップST56において、歩行訓練シナリオ生成部31によって歩行訓練が終了したと決定された場合、フローはステップST57に進む。歩行訓練シナリオ生成部31によって歩行訓練が終了していないと決定された場合、フローはST51に戻る。
【0206】
ステップST57において、体操訓練シナリオ生成部30は、体操姿勢と歩行姿勢とに基づいて、体操訓練シナリオを補正する。具体的には、体操訓練シナリオ生成部30は、第1例で取得した体操姿勢の情報(図10のステップST23参照)と、ステップST53で取得した歩行姿勢の情報と、に基づいて体操訓練シナリオを補正する。
【0207】
ステップST58において、歩行訓練シナリオ生成部31は、体操姿勢と歩行姿勢とに基づいて、歩行訓練シナリオを補正する。具体的には、体操訓練シナリオ生成部30は、第1例で取得した体操姿勢の情報(図10のステップST23参照)と、ステップST53で取得した歩行姿勢の情報と、に基づいて歩行訓練シナリオを補正する。
【0208】
このように、ロボット1は、ステップST51~58を実行することによって、体操訓練結果と歩行訓練結果とに基づいて、体操訓練シナリオ及び歩行訓練シナリオを補正する。これにより、ユーザにより適した体操訓練シナリオ及び歩行訓練シナリオを作成することができる。
【0209】
なお、実施の形態1では、ロボット1の制御の第4例においては、体操訓練結果と歩行訓練結果とに基づいて、体操訓練シナリオ及び歩行訓練シナリオを補正する例について説明したが、これに限定されない。ロボット1の制御の第4例においては、体操訓練結果と歩行訓練結果とに基づいて体操訓練シナリオ、又は歩行訓練シナリオを補正してもよい。言い換えると、図13に示すフローチャートにおいて、ステップST57及びステップST58は、少なくともいずれか一方が実行されてもよい。
【0210】
第4例では、歩行訓練シナリオを補正する前において、第1例で補正された歩行訓練シナリオに基づいてユーザが歩行訓練を行う例について説明したが、これに限定されない。補正前の歩行訓練シナリオは、予め定められたシナリオ、過去のユーザの足上げ姿勢情報に基づいて補正されたシナリオ、又は異なる足上げ運動を含む複数のシナリオからユーザが好みに応じて選択したシナリオなどであってもよい。
【0211】
[効果]
実施の形態1に係る歩行訓練ロボット1によれば、以下の効果を奏することができる。
【0212】
ロボット1によれば、ハンドル荷重に基づいて足上げ姿勢を推定し、推定した足上げ姿勢に基づいて、訓練シナリオを補正することができる。これにより、ロボット1は、ユーザの身体能力に応じて最適な訓練シナリオを作成することができる。その結果、ロボット1は、ユーザの身体能力を効率良く向上させることができる。
【0213】
ロボット1は、訓練シナリオ生成部18によって、体操訓練しているときの体操姿勢に基づいて歩行訓練シナリオ及び/又は体操訓練シナリオを補正している。これにより、ロボット1は、ユーザの身体能力に応じて、より適した歩行訓練及び/又は体操訓練を提供することができる。その結果、ロボット1は、ユーザの身体能力をより効率良く向上させることができる。
【0214】
ロボット1は、訓練シナリオ生成部18によって、歩行訓練しているときの歩行姿勢に基づいて歩行訓練シナリオ及び/又は体操訓練シナリオを補正している。これにより、ロボット1は、ユーザの身体能力に応じて、より適した歩行訓練及び/又は体操訓練をユーザに提供することができる。その結果、ロボット1は、ユーザの身体能力をより効率良く向上させることができる。
【0215】
ロボット1は、訓練シナリオ生成部18によって、体操訓練しているときの体操姿勢と、歩行訓練しているときの歩行姿勢と、に基づいて歩行訓練シナリオ及び/又は体操訓練シナリオを補正している。これにより、ロボット1は、ユーザの身体能力に応じて、より適した歩行訓練及び/又は体操訓練をユーザに提供することができる。その結果、ロボット1は、ユーザの身体能力をより効率良く向上させることができる。
【0216】
ロボット1は、歩行支援部15によって、歩行訓練シナリオに基づいて、歩行訓練ロボット1の移動速度及び移動方向を補正している。これにより、ロボット1は、ユーザが歩行訓練をしているとき、ユーザの身体能力に応じて適切な訓練を行うことができる。その結果、ロボット1は、ユーザの身体能力をより効率良く向上させることができる。
【0217】
なお、実施の形態1では、ロボット1を構成する要素は、例えば、これらの要素を機能させるプログラムを記憶したメモリ(図示せず)と、CPU(Central Processing Unit)などのプロセッサに対応する処理回路(図示せず)を備え、プロセッサがプログラムを実行することでこれらの要素として機能してもよい。あるいは、ロボット1を構成する要素は、これらの要素を機能させる集積回路を用いて構成してもよい。
【0218】
実施の形態1では、歩行訓練ロボット1の動作を主として説明したが、これらの動作は、歩行訓練方法として実行することもできる。
【0219】
実施の形態1では、検知部13は、六軸力センサである例を説明したが、これに限定されない。検知部13は、例えば、三軸センサ、又は歪みセンサ等を用いてもよい。
【0220】
実施の形態1では、姿勢推定部17は、検知部13で検知されたハンドル荷重のうちMyのモーメントに基づいて、ユーザの足上げ姿勢を推定する例について説明したが、これに限定されない。姿勢推定部17は、Fx,Fy,Fz方向の荷重及びMx,My,Mz方向のモーメント、あるいは回転体20の回転量及び回転方向などに基づいて、ユーザの足上げ姿勢を推定してもよい。
【0221】
実施の形態1では、ロボット1の後方側に配置される2つの車輪(回転体)20の回転量をそれぞれ設定することにより、ロボット1の前進動作、後退動作、右旋回動作、左旋回動作などを制御する例について説明したが、これに限定されない。例えば、ブレーキ機構などによって、車輪20の回転量を制御し、ロボット1の移動動作を制御してもよい。
【0222】
実施の形態1では、提示部19は、スピーカー及び/又はディスプレイを含む例について説明したが、これに限定されない。例えば、提示部19は、プロジェクタを用いて周辺環境にユーザへの指示を提示してもよい。提示部19は、LEDなどを用いて周辺環境に光を提示することによってユーザへの指示を提示してもよい。一例では、歩行訓練において、ユーザを誘導したい方向に向かって光を照射してもよい。
【0223】
また、提示部19は、訓練シナリオに基づくユーザへの指示を提示する例について説明したが、これに限定されない。提示部19は、ユーザの足上げ姿勢の情報を提示してもよい。これにより、ユーザは自身の足上げ姿勢を把握することができるため、意識的に足上げ運動を行うことができる。これにより、ユーザの身体能力を更に効率良く向上させることができる。
【0224】
実施の形態1では、体操訓練及び歩行訓練として、足を上げ下げする運動の例を説明したが、これに限定されない。体操訓練及び歩行訓練は、例えば、ツイスト運動を含んでもよい。ツイスト運動とは、ユーザがハンドル部12を把持した状態で身体を左右方向にひねる運動を意味する。ツイスト運動は、例えば、ユーザが両足を地面に接地した状態で身体を右方向又は左方向にひねる運動、又はユーザが片足を上げた状態で身体を右方向又は左方向にひねる運動を含んでもよい。また、ツイスト運動は、ロボット1が自動で回転せずにユーザが自力で行ってもよい。あるいは、ロボット1が自動で回転して、ユーザのツイスト運動を誘導してもよい。このように、ツイスト運動を行うことによって、ユーザの足の柔軟性を高めることができる。
【0225】
ロボット1が自動で回転せずにユーザが自力でツイスト運動する場合について説明する。この場合、ユーザは、ロボット1のハンドル部12を把持した状態で身体を左右方向にひねる。このとき、ロボット1はユーザのツイスト運動によって回転する。ツイスト運動の回転量は、例えば、ロボット1の後方側に配置される2つの回転体20の回転量によって算出してもよい。訓練シナリオ生成部18は、左方向のツイスト運動の回転量と右方向のツイスト運動の回転量とを比較し、比較結果に基づいて訓練シナリオを補正してもよい。
【0226】
例えば、訓練シナリオ生成部18の歩行訓練シナリオ生成部31は、比較結果に基づいて、歩行ルート上のコーナーの数を変更してもよい。一例では、左方向に比べて右方向へのツイスト運動の回転量が少ない場合、歩行訓練シナリオ生成部31は、左方向へ旋回するコーナーの数と比べて右方向へ旋回するコーナーの数が多くなるように歩行ルートを補正してもよい。
【0227】
ロボット1が自動で回転して、ユーザのツイスト運動を誘導する場合について説明する。この場合、歩行支援部15は、ユーザが片足を上げたときにロボット1の移動方向を補正する。例えば、ユーザが片足を上げたとき、歩行支援部15は、ロボット1の移動方向を、足を上げている方向へ補正し、ロボット1を自動で回転させる。その後、ユーザの片足が下がるときに、歩行支援部15は、ロボット1の移動方向を元に戻して、ロボット1を元の位置に戻す。
【0228】
一例では、ユーザが右足をあげたとき、歩行支援部15は、ロボット1の移動方向を右方向へ補正し、ロボット1を自動で右回転させる。ユーザが右足を下げるとき、歩行支援部15は、ロボット1の移動方向を左方向へ補正し、ロボット1を自動で左回転させる。このようにして、ロボット1は自動で回転することによって、ユーザのツイスト運動を誘導してもよい。
【0229】
歩行支援部15は、検知部13で検知されたハンドル荷重に基づいて、ユーザの足を上げている方向を推定してもよい。例えば、歩行支援部15は、ハンドル部12において右手側の下方向への荷重(Fz)が大きい場合、足が右方向に向いていると推定してもよい。また、歩行支援部15は、ハンドル荷重に基づいて、ユーザの足を下ろす動作を推定してもよい。
【0230】
歩行支援部15は、歩行中に取得した左右の足の歩幅の差異に基づいてツイスト運動の回転量を算出してもよい。左右の足の歩幅は、ハンドル荷重のピーク値間の時間と、回転体20の回転数とに基づいて算出してもよい。また、左右の足の推定は、ハンドル荷重の変化に基づいて行われてもよい。
【0231】
体操訓練及び歩行訓練としては、ツイスト運動の他に、片足踵上げ、片足つま先上げ、両足踵上げ、両足つま先上げ、及び/又はスクワットなどの運動を含んでいてもよい。これらの運動を行うことによって、ユーザの身体能力を更に効率良く向上させることができる。また、これらの運動におけるユーザの姿勢についても、検知部13で検知されたハンドル荷重によって推定可能である。
【0232】
実施の形態1では、ロボット1は、カメラ、距離センサなどを備えてもよい。姿勢推定部17は、カメラ、距離センサ等で取得された情報に基づいて足上げ姿勢を推定してもよい。
【0233】
実施の形態1では、歩行状態推定部14は、検知部13で検知されたハンドル荷重の情報に基づいて、ユーザの歩行速度及び歩行方向を推定する例について説明したが、これに限定されない。また、歩行姿勢推定部26は、検知部13で検知されたハンドル荷重の情報に基づいて、ユーザの歩行速度及び歩行方向を推定する例について説明したが、これに限定されない。
【0234】
図14は、ロボット1の変形例の主要な制御構成の一例を示す制御ブロック図である。図14に示すように、アクチュエータ制御部23は、アクチュエータ24から回転体20の回転量の情報を取得し、回転体20の回転量及び回転方向の情報を歩行状態推定部14及び姿勢推定部17に送信してもよい。
【0235】
歩行状態推定部14は、アクチュエータ制御部23から回転体20の回転量及び回転方向の情報を受信し、回転体20の回転量及び回転方向の情報に基づいてユーザの歩行速度及び歩行方向を推定してもよい。
【0236】
また、歩行姿勢推定部26は、アクチュエータ制御部23から回転体20の回転量及び回転方向の情報を受信し、回転体20の回転量及び回転方向の情報に基づいて、ユーザが歩行しているときの足上げ姿勢を推定してもよい。
【0237】
実施の形態1では、ロボット1を用いて、体操訓練と歩行訓練とを別々に行う例について説明したが、これに限定されない。例えば、ユーザは、歩行中において歩行訓練を行い、歩行中の休憩している間に体操訓練を行ってもよい。言い換えると、歩行訓練中にユーザが立ち止まって休憩するときに体操訓練を行ってもよい。
【0238】
例えば、ロボット1は、回転体20の回転量の情報に基づいてロボット1が移動しているか又は停止しているかを推定し、歩行訓練と体操訓練とを切り替えてもよい。あるいは、ロボット1は、ハンドル荷重の情報に基づいてロボット1が移動しているか又は停止しているかを推定し、歩行訓練と体操訓練とを切り替えてもよい。ハンドル荷重の情報としては、例えば、Fy及びMyの変化の情報を用いてもよい。
【0239】
また、ロボット1を用いて、体操訓練と歩行訓練とのうちいずれか一方を行ってもよい。
【0240】
実施の形態1では、ロボット1は、歩行状態推定部14を備える例について説明したが、これに限定されない。歩行状態推定部14は、ロボット1の必須の構成ではない。ロボット1が歩行状態推定部14を備えない場合、歩行支援部15は、検知部13で検知されたハンドル荷重に基づいて、ロボット1の負荷を決定してもよい。例えば、歩行支援部15は、ハンドル荷重の情報と回転体の回転数の情報とに基づいてロボット1の移動速度及び移動方向を決定してもよい。このような構成であっても、ユーザの身体能力を向上させることができる。
【0241】
実施の形態1では、歩行支援部15は、ユーザの歩行運動に対してロボット1が与える負荷の例として、ロボット1の移動速度及び移動方向を説明したが、これに限定されない。ロボット1が与える負荷は、ユーザの身体能力を向上させる訓練を行うことができる負荷であればよい。例えば、ロボット1が与える負荷は、ユーザの移動方向へロボット1を押すために必要な力であってもよい。具体的には、歩行支援部15は、ハンドル荷重に基づいて、ユーザがハンドルを押す力に対して、移動方向に対して反力となる負荷を与える力を決定してもよい。その結果として、ロボット1の移動速度及び移動方向を決定してもよい。負荷はロボット1を押して歩くときの力を要する運動負荷ともなり得るし、歩行中の支えともなり得る。このような構成により、ユーザの身体能力を向上させることができる。
【0242】
(実施の形態2)
本開示の実施の形態2に係る歩行訓練ロボットについて説明する。なお、実施の形態2では、主に実施の形態1と異なる点について説明する。実施の形態2においては、実施の形態1と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態2では、実施の形態1と重複する記載は省略する。
【0243】
実施の形態2では、ユーザが歩行した歩行ルートの複雑さを判定する判定部を備える点が、実施の形態1と異なる。
【0244】
[歩行訓練ロボットの制御構成]
図15は、実施の形態2に係る歩行訓練ロボット1A(以下、「ロボット1A」と称する)の制御構成の一例を示す制御ブロック図を示す。図16は、ロボット1Aの主要な制御構成の一例を示す制御ブロック図を示す。
【0245】
図15及び図16に示すように、実施の形態2では、ロボット1Aは、ユーザが歩行した歩行ルートの複雑さを判定する判定部32を備える。
【0246】
判定部32は、歩行訓練においてユーザが実際に歩行した歩行ルートの複雑さを判定する。判定部32は、例えば、歩行ルートの距離、コーナー数、歩行時間などの情報に基づいて歩行ルートの複雑さを判定する。歩行ルートの複雑さとは、ユーザが歩行ルートを歩行する難易度を意味する。
【0247】
実施の形態2では、判定部32は、回転体20の回転量及び回転方向に基づいて、歩行ルートの複雑度を算出する。判定部32は、アクチュエータ制御部23から回転体20の回転量及び回転方向の情報を取得する。
【0248】
複雑度とは、歩行ルートの複雑さを数値化した評価値である。例えば、歩行ルートの距離が長く、コーナー数が多くなるほど複雑度の値は大きくなる。
【0249】
例えば、判定部32は、複雑度の算出式として、「(複雑度)=(一定距離あたりの回転角度の積算値)×(回転方向の逆転回数)」を用いて複雑度を算出してもよい。なお、判定部32による複雑度の算出式は例示であって、この算出式に限定されない。
【0250】
判定部32は、算出された複雑度に基づいて、歩行ルートの複雑さを「高」、「中」、「低」に分けて判定してもよい。例えば、判定部32は、複雑度の値が第1閾値より大きい場合、複雑さ「高」と判定し、複雑度の値が第1閾値より小さい第2閾値より小さい場合、複雑さ「低」と判定し、複雑度の値が第1閾値と第2閾値との間にある場合、複雑さ「中」と判定してもよい。
【0251】
一例として、図8Aに示す第1歩行ルートR1は、判定部32によって複雑さ「低」と判定される。また、図8Bに示す第2歩行ルートR2は、判定部32によって複雑さ「高」と判定される。
【0252】
また、判定部32は、体操訓練及び歩行訓練におけるユーザの左右の足上げの偏りを判定する。判定部32は、ハンドル部12にかかるハンドル荷重に基づいて、ユーザの足上げの左右の偏りを判定する。具体的には、判定部32は、検知部13で検知されたハンドル荷重に基づいてユーザの足上げの左右の偏りを判定する。
【0253】
実施の形態2では、判定部32は、例えば、検知部13で検知された足を上げたときのMyのモーメントに基づいて、ユーザの足上げの左右の偏りを判定する。
【0254】
例えば、判定部32は、ユーザの左右の足において、足を上げたときのMyのモーメントの変化量を比較し、ユーザの足上げの左右の偏りを判定する。比較した結果、右足を上げたときのMyのモーメントの変化量と比べて、左足を上げたときのMyのモーメントの変化量が大きい場合、判定部32は、左足の足上げ量が右足の足上げ量よりも大きいと判定する。即ち、判定部32は、左足が右足に比べて上がっていると判定する。
【0255】
また、判定部32は、ユーザの左右の足において、足を上げたときのMyのモーメントの加速度を比較し、ユーザの足上げの左右の偏りを判定してもよい。判定部32は、加速度が大きい方の足が勢いよく上がっていると判定してもよい。
【0256】
また、判定部32は、足を上げたときのMyのモーメントの波形情報からユーザの歩行のリズムを推定し、ユーザの左右の足のそれぞれの足上げ時間を取得してもよい。判定部32は、ユーザの左右の足上げ時間とロボット1の移動距離とに基づいて、左右の足のそれぞれの歩幅を算出してもよい。判定部32は、ユーザの左右の足において、足上げ量及び歩幅に基づいて、左右の足の偏りを判定してもよい。
【0257】
判定部32は、歩行ルートの複雑さ及びユーザの足上げの左右の偏りの情報を、複雑さ及び偏り情報データベース33に送信する。複雑さ及び偏り情報データベース33は、判定部32で判定された歩行ルートの複雑さ及びユーザの足上げの左右の偏りの情報を記憶する。
【0258】
訓練シナリオ生成部18は、判定部32で判定された歩行ルートの複雑さ及びユーザの足上げの左右の偏りに基づいて、訓練シナリオを補正する。実施の形態2では、歩行訓練シナリオ生成部31が、体操姿勢、歩行姿勢、歩行ルートの複雑さ、及びユーザの足上げの左右の偏りに基づいて、歩行訓練シナリオを補正する。
【0259】
訓練シナリオ生成部18は、姿勢情報データベース29から体操姿勢及び歩行姿勢の情報を取得し、複雑さ及び偏り情報データベース33から歩行ルートの複雑さ及びユーザの足上げの左右の偏りの情報を取得する。訓練シナリオ生成部18は、取得した体操姿勢、歩行姿勢、歩行ルートの複雑さ、及びユーザの足上げの左右の偏りに基づいて、歩行訓練シナリオを補正する。
【0260】
例えば、歩行訓練シナリオ生成部31は、ユーザの歩行ルートの複雑さが「高」であった場合、ロボット1を押すときの重さを下げる等のロボット1の制御によってユーザにかかる身体的負荷を下げるように歩行訓練シナリオを補正してもよい。あるいは、歩行訓練シナリオ生成部31は、ユーザの足上げの左右の偏りが生じている場合、ユーザに対して足上げ姿勢を矯正する指示を含む歩行訓練シナリオに補正してもよい。
【0261】
[歩行訓練ロボットの制御の例]
歩行訓練ロボット1Aの制御の例として、体操訓練結果、歩行訓練結果、歩行ルートの複雑さ、及び左右の偏りに基づいて歩行訓練シナリオを補正する制御について説明する。
【0262】
ロボット1Aの制御の例では、実施の形態1の制御の第1例で補正された歩行訓練シナリオに基づいてユーザが歩行訓練を行う。また、体操訓練結果は、実施の形態1の制御の第1例で取得されたものを用いる。
【0263】
図17は、ロボット1Aにおいて、体操訓練結果、歩行訓練結果、歩行ルートの複雑さ、及び左右の偏りに基づいて歩行訓練シナリオを補正する制御の例示的なフローチャートを示す。図17に示すように、ロボット1Aの制御の例のステップST61~ST66は、実施の形態1の制御の第4例のステップST51~ST56と同じであるため、説明を省略する。ステップST66において歩行訓練が終了していると決定された後の制御の例について説明する。
【0264】
ステップST67において、判定部32は、歩行ルートの複雑さを判定する。具体的には、判定部32は、歩行訓練における回転体20の回転量及び回転方向に基づいて、ユーザが実際に歩行した歩行ルートの複雑度を算出する。判定部32は、算出した複雑度の値に基づいて、歩行ルートの複雑さを判定する。判定部32は、歩行ルートの複雑さの情報を複雑さ及び偏り情報データベース33に送信する。
【0265】
ステップST68において、判定部32は、歩行訓練時のユーザの足上げの左右の偏りを判定する。具体的には、判定部32は、検知部13で検知された足を上げたときのMyのモーメントに基づいて、ユーザの足上げの左右の偏りを判定する。判定部32は、ユーザの足上げの左右の偏りの情報を複雑さ及び偏り情報データベース33に送信する。
【0266】
ステップST68において、歩行訓練シナリオ生成部31は、体操姿勢、歩行姿勢、歩行ルートの複雑さ及び左右の偏りに基づいて歩行訓練シナリオを補正する。具体的には、歩行訓練シナリオ生成部31は、実施の形態1の制御の第1例で取得した体操姿勢の情報(図10のステップST23参照)と、ステップST63で取得した歩行姿勢の情報と、ステップST57で取得した歩行ルートの複雑さの情報と、ステップST68で取得したユーザの足上げの左右の偏りの情報と、に基づいて歩行訓練シナリオを補正する。
【0267】
このように、ロボット1Aは、ステップST61~69を実行することによって、体操訓練結果、歩行訓練結果、歩行ルートの複雑さ、及び左右の偏りに基づいて、歩行訓練シナリオを補正する。これにより、ユーザにより適した歩行訓練シナリオを作成することができる。
【0268】
なお、実施の形態2では、体操訓練結果、歩行訓練結果、歩行ルートの複雑さ、及び左右の偏りに基づいて、歩行訓練シナリオを補正する例について説明したが、これに限定されない。
【0269】
例えば、歩行訓練シナリオ生成部31は、歩行ルートの複雑さ及び左右の偏りの少なくともいずれか一方に基づいて、歩行訓練シナリオを補正してもよい。言い換えると、図17に示すフローチャートは、ステップST67とステップST68のうち少なくともいずれか一方を含んでいればよい。この場合、ステップST69において、歩行訓練シナリオ生成部31は、歩行ルートの複雑さ及び/又は左右の偏りの情報に基づいて、歩行訓練シナリオを補正してもよい。
【0270】
ステップST69において、歩行訓練シナリオ生成部31は、体操姿勢の情報を用いずに歩行訓練シナリオを補正してもよい。
【0271】
また、図17に示すフローチャートは、体操訓練結果、歩行訓練結果、歩行ルートの複雑さ、及び左右の偏りに基づいて、体操訓練シナリオを補正するステップを含んでもよい。
【0272】
[効果]
実施の形態2に係る歩行訓練ロボット1Aによれば、以下の効果を奏することができる。
【0273】
歩行訓練ロボット1Aによれば、歩行ルートの複雑さ及びユーザの足上げの左右の偏りに基づいて、訓練シナリオを補正することができる。これにより、ユーザの足上げ姿勢に加えて、歩行ルートの複雑さ及び足上げの左右の偏りに応じて、訓練シナリオを補正することができる。その結果、ユーザの身体能力をより効率良く向上させることができる。
【0274】
本開示をある程度の詳細さをもって各実施形態において説明したが、これらの実施形態の開示内容は構成の細部において変化してしかるべきものである。また、各実施形態における要素の組合せや順序の変化は、本開示の範囲及び思想を逸脱することなく実現し得るものである。
【産業上の利用可能性】
【0275】
本開示は、ユーザの身体能力を向上させる歩行訓練ロボットに適用可能である。
【符号の説明】
【0276】
1、1A 歩行訓練ロボット
11 本体部
12 ハンドル部
13 検知部
14 歩行状態推定部
15 歩行支援部
16 移動装置
17 姿勢推定部
18 訓練シナリオ生成部
19 提示部
20 回転体
21 駆動部
22 駆動力算出部
23 アクチュエータ制御部
24 アクチュエータ
25 体操姿勢推定部
26 歩行姿勢推定部
27 体操姿勢情報データベース
28 歩行姿勢情報データベース
29 姿勢情報データベース
30 体操訓練シナリオ生成部
31 歩行訓練シナリオ生成部
32 判定部
33 複雑さ及び偏り情報データベース
図1
図2
図3
図4
図5
図6
図7
図8A
図8B
図9
図10
図11
図12
図13
図14
図15
図16
図17