IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ウェイモ エルエルシーの特許一覧

特許7104767複数の受信機を有する光検出測距(LIDAR)装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-12
(45)【発行日】2022-07-21
(54)【発明の名称】複数の受信機を有する光検出測距(LIDAR)装置
(51)【国際特許分類】
   G01S 7/481 20060101AFI20220713BHJP
   G01S 17/931 20200101ALI20220713BHJP
   G01C 3/06 20060101ALI20220713BHJP
   G08G 1/16 20060101ALI20220713BHJP
【FI】
G01S7/481 A
G01S17/931
G01C3/06 120Q
G01C3/06 140
G08G1/16 C
【請求項の数】 16
【外国語出願】
(21)【出願番号】P 2020211918
(22)【出願日】2020-12-22
(62)【分割の表示】P 2019520452の分割
【原出願日】2017-10-13
(65)【公開番号】P2021056239
(43)【公開日】2021-04-08
【審査請求日】2021-01-06
(31)【優先権主張番号】15/295,619
(32)【優先日】2016-10-17
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】317015065
【氏名又は名称】ウェイモ エルエルシー
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100126480
【弁理士】
【氏名又は名称】佐藤 睦
(72)【発明者】
【氏名】ドロズ,ピエール-イヴ
(72)【発明者】
【氏名】オナル,ケイナー
(72)【発明者】
【氏名】マッキャン,ウィリアム
(72)【発明者】
【氏名】フィドリク,バーナード
(72)【発明者】
【氏名】ガットニック,ヴァディム
(72)【発明者】
【氏名】マトス,ライラ
(72)【発明者】
【氏名】パダーン,ラヒム
【審査官】渡辺 慶人
(56)【参考文献】
【文献】米国特許出願公開第2014/0111812(US,A1)
【文献】特開2013-205414(JP,A)
【文献】特表2011-519424(JP,A)
【文献】特開2013-019790(JP,A)
【文献】特開2014-190831(JP,A)
【文献】特開2015-081921(JP,A)
【文献】特開2015-021968(JP,A)
【文献】特開2009-156810(JP,A)
【文献】特開2005-221336(JP,A)
【文献】特開平05-191148(JP,A)
【文献】米国特許出願公開第2016/0282468(US,A1)
【文献】小暮和重 塩谷敏昭 太田直哉,最小認識ハードウエアの自律移動ロボット,計測自動制御学会論文集,日本,公益社団法人計測自動制御学会,2013年07月31日,第49巻 第7号,Pages 703-712,ISSN 0453-4654
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48 - 7/51
17/00 - 17/95
G01B 11/00 - 11/30
G01C 3/00 - 3/32
G08G 1/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
垂直方向のビーム幅を有する光を環境内に発するように構成された送信機と、
第1の検出距離まで広がる第1の視野(FOV)で前記環境を走査しながら第1の分解能で光を検出するように構成された第1の受信機と、
第2の検出距離まで広がる第2のFOVで前記環境を走査しながら第2の分解能で光を検出するように構成された第2の受信機であって、前記垂直方向のビーム幅は少なくとも前記第1および第2のFOVの垂直方向の範囲を含む、第2の受信機と
を備えた光検出測距(LIDAR)装置であって、
前記第1の分解能は、前記第2の分解能より高く、前記第1の検出距離は、前記第2の検出距離より大きい、LIDAR装置
【請求項2】
光を発するように構成された前記送信機が、前記垂直方向のビーム幅を有しかつ水平方向のビーム幅を有するレーザビームを発するように構成された前記送信機を含み、前記水平方向のビーム幅は前記垂直方向のビーム幅よりも小さい、請求項1に記載のLIDAR装置。
【請求項3】
乗り物の上面に結合されるように構成されたプラットフォームをさらに備え、前記上面は前記乗り物の1つまたは複数の車輪が位置付けられる底面の反対側である、請求項1に記載のLIDAR装置。
【請求項4】
前記プラットフォームが前記乗り物の前記上面に結合されるとき、(i)前記第1の受信機は前記乗り物の前記上面を基準として実質的に前記プラットフォームより上に位置付けられ、(ii)前記第2の受信機は前記乗り物の前記上面を基準として実質的に前記第1の受信機より上に位置付けられる、請求項に記載のLIDAR装置。
【請求項5】
前記プラットフォームが前記乗り物の前記上面に結合されるとき、前記第1のFOVは前記乗り物を基準として前記環境の第1の部分まで広がり、前記第2のFOVは前記乗り物を基準として前記環境の第2の部分まで広がり、前記環境の前記第2の部分は前記環境の前記第1の部分と比較して前記乗り物に実質的により近い、請求項に記載のLIDAR装置。
【請求項6】
前記第1の分解能が第1の角度分解能であり、前記第2の分解能が第2の角度分解能である、請求項1に記載のLIDAR装置。
【請求項7】
軸を中心に回転するように構成された回転プラットフォームをさらに備え、前記送信機、前記第1の受信機、および前記第2の受信機は、前記回転プラットフォームの回転に基づいて前記環境に対してそれぞれ移動するようにそれぞれ構成される、請求項1に記載のLIDAR装置。
【請求項8】
前記回転プラットフォームに結合されたハウジングをさらに備え、前記ハウジングは前記回転プラットフォームの回転に基づいて前記軸を中心に回転するように構成され、前記送信機、前記第1の受信機、および前記第2の受信機は前記ハウジング内に配置される、請求項に記載のLIDAR装置。
【請求項9】
ハウジングをさらに備え、
前記ハウジングがその上に形成された開口部を有し、
前記環境に光を発するように構成された前記送信機が、前記開口部を介して前記環境に光を発するように構成された前記送信機を備え、
光を検出するように構成された前記第1の受信機が、前記開口部を介して前記環境から前記ハウジングに入る光を検出するように構成された前記第1の受信機を備え、
光を検出するように構成された前記第2の受信機が、前記開口部を介して前記環境から前記ハウジングに入る光を検出するように構成された前記第2の受信機を備える、
請求項1に記載のLIDAR装置。
【請求項10】
少なくとも部分的に非透明材料から構成されたハウジングをさらに備える、請求項1に記載のLIDAR装置。
【請求項11】
光を生成するように構成された光源をさらに備え、前記環境に光を発するように構成された前記送信機は、光を光路に沿って前記光源から前記環境へ方向付ける光学的構成を有する前記送信機を備える、請求項1に記載のLIDAR装置。
【請求項12】
前記光学的構成が、(i)前記光路を提供するように構成された光ファイバと、(ii)前記方向付けられた光を広げるように構成された拡散器とを備える、請求項11に記載のLIDAR装置。
【請求項13】
前記光源がファイバレーザである、請求項11に記載のLIDAR装置。
【請求項14】
乗り物であって、
前記乗り物の底面に位置付けられた1つまたは複数の車輪と、
前記底面と反対側の前記乗り物の上面に位置付けられた光検出測距(LIDAR)装置であって、送信機と第1および第2の受信機とを備え、前記送信機は、垂直方向のビーム幅を有する光を前記乗り物の周囲の環境に発するように構成され、前記第1の受信機は、第1の検出距離まで広がる第1の視野(FOV)で前記環境を走査しながら第1の分解能で光を検出するように構成され、前記第2の受信機は、第2の検出距離まで広がる第2のFOVで前記環境を走査しながら第2の分解能で光を検出するように構成され、前記垂直方向のビーム幅は少なくとも前記第1および第2のFOVの垂直方向の範囲を含み、前記第1の分解能は、前記第2の分解能より高く、前記第1の検出距離は、前記第2の検出距離より大きい、光検出測距(LIDAR)装置と、
前記LIDAR装置の前記第1および第2の受信機による前記環境の走査に少なくとも基づいて前記乗り物を操作するように構成されたコントローラと
を備えた乗り物。
【請求項15】
前記LIDAR装置が、前記乗り物の前記上面に対して実質的に垂直な垂直軸を中心に回転するように構成された回転プラットフォームをさらに備え、前記送信機、前記第1の受信機および前記第2の受信機は、前記回転プラットフォームの回転に基づいて前記環境に対してそれぞれ移動するようにそれぞれ構成される、請求項14に記載の乗り物。
【請求項16】
送信機と第1および第2の受信機とを備えた光検出測距(LIDAR)装置からコントローラによって、乗り物の周囲の環境の走査を受信することであって、前記送信機は垂直方向のビーム幅を有する光を前記乗り物の周囲の環境に発するように構成され、前記第1の受信機は、第1の検出距離まで広がる第1の視野(FOV)で前記環境を走査しながら第1の分解能で光を検出するように構成され、前記第2の受信機は、第2の検出距離まで広がる第2のFOVで前記環境を走査しながら第2の分解能で光を検出するように構成され、前記垂直方向のビーム幅は、少なくとも前記第1および第2のFOVの垂直方向の範囲を含前記第1の分解能は、前記第2の分解能より高く、前記第1の検出距離は、前記第2の検出距離より大きい、受信すること、および
前記LIDAR装置から受信した前記環境の前記走査に少なくとも基づいて、前記コントローラによって前記乗り物を操作すること
を含む方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001] 本出願は、2016年10月17日に出願され、「複数の受信機を有する光検出測距(LIDAR)装置」と題された米国特許出願第15/295,619号に付与された優先権を主張する。前出の特許出願は参照により完全な形でここに組み込まれる。
【背景技術】
【0002】
[0002] 乗り物は、運転者からの入力がほとんどまたは全くない状態で乗り物が環境を通行する自律モードで動作するように構成することができる。そのような自律型乗り物は、乗り物が動作する環境に関する情報を検出するように構成されている1つまたは複数のセンサを含むことができる。そのようなセンサの1つは、光検出測距(LIDAR:light detection and ranging)装置である。
【0003】
[0003] LIDAR装置は、環境内の反射面を示す「点群」を組み立てるためにある光景を走査する間に環境的特徴までの距離を推定することができる。点群内の個々の点は、レーザパルスを送信し、環境内の物体から反射された戻りパルスがある場合はそれを検出し、送信パルスと反射パルスの受信との間の時間遅延に従って物体までの距離を決定することによって決定できる。
【0004】
[0004] この構成では、LIDAR装置は、光景内の反射物体までの距離に関する連続的なリアルタイム情報を提供するために光景全体にわたって迅速かつ繰り返し走査することができるレーザまたはレーザのセットを含むことができる。各距離を測定しながら測定された距離とレーザの向きとを組み合わせることにより、3次元位置を各戻りパルスと関連付けることが可能になる。このようにして、環境内の反射特徴物の位置を示す点の三次元マップを走査ゾーン全体について生成することができる。
【発明の概要】
【0005】
[0005] 実装形態の例は、少なくとも送信機と、第1および第2の受信機と、回転プラットフォームとを含むLIDAR装置に関連し得る。送信機は、垂直方向のビーム幅を有しかつある波長範囲内の波長を有する光を環境に発するように構成されてもよく、第1および第2の受信機はそれぞれ、その波長範囲内の波長を有する光をそれぞれ検出するように構成されてもよい。回転プラットフォームは、送信機、第1の受信機、および第2の受信機がそれぞれ回転プラットフォームの回転に基づいて環境に対してそれぞれ移動するように、軸を中心に回転するように構成されてもよい。
【0006】
[0006] 本開示によれば、第1および第2の受信機は、互いに異なる分解能で、および/または互いに異なる視野(FOV)で、環境を走査するように構成されてもよい。いくつかの例では、第1の受信機は、第1の視野(FOV)で環境を走査しながら第1の分解能で光を検出するように構成されてもよく、第2の受信機は第2の異なるFOVで環境を走査しながら第2の異なる分解能で光を検出するように構成されてもよい。さらに、LIDAR装置は、放射光の垂直方向のビーム幅が少なくとも第1および第2のFOVの垂直方向の範囲を含むように構成することができる。
【0007】
[0007] 開示されたLIDAR装置は、様々な構成で様々な目的に使用することができる。例えば、開示されたLIDAR装置は、乗り物の1つまたは複数の車輪が位置付けられている底面とは反対側の乗り物の上面に位置付けられてもよい。この構成では、コントローラは、少なくともLIDAR装置から受信した環境の走査に基づいて乗り物を操作し得る。他の例も可能である。
【0008】
[0008] 一態様において、LIDAR装置が提供される。LIDAR装置は送信機を含むことができ、送信機は垂直方向のビーム幅を有する光を環境内に発するように構成され、放射光はある波長範囲内の波長を有する。LIDAR装置はまた、第1の受信機を含むことができ、第1の受信機は第1のFOVで環境を走査しながら第1の分解能で光を検出するように構成され、および第1の受信機は前記波長範囲内の波長を有する光を検出するように構成される。LIDAR装置はさらに第2の受信機を含むことができ、第2の受信機は第2のFOVで環境を走査しながら第2の分解能で光を検出するように構成され、および第2の受信機は前記波長範囲内の波長を有する光を検出するように構成され、第1の分解能は第2の分解能よりも高く、第1のFOVは第2のFOVと少なくとも部分的に異なり、垂直方向のビーム幅は少なくとも第1および第2のFOVの垂直方向の範囲を含む。LIDAR装置は、回転プラットフォームをさらに含むことができ、回転プラットフォームは、軸を中心に回転するように構成され、送信機、第1の受信機、および第2の受信機は、回転プラットフォームの回転に基づいて環境に対してそれぞれ移動するようにそれぞれ構成される。
【0009】
[0009] 他の態様において、乗り物が提供される。乗り物は、乗り物の底面に位置付けられた1つまたは複数の車輪と、底面と反対側の乗り物の上面に位置付けられたLIDAR装置とを含むことができる。LIDAR装置は、送信機と第1および第2の受信機とを含むことができ、送信機は、垂直方向のビーム幅を有する光を乗り物の周囲の環境に発するように構成され、放射光はある波長範囲内の波長を有し、第1の受信機は、第1のFOVで環境を走査しながら第1の分解能で光を検出するように構成され、検出された光は前記波長範囲内の波長を有し、第2の受信機は、第2のFOVで環境を走査しながら第2の分解能で光を検出するように構成され、検出された光は前記波長範囲内の波長を有し、第1の分解能は第2の分解能よりも高く、第1のFOVは第2のFOVと少なくとも部分的に異なり、垂直方向のビーム幅は少なくとも第1および第2のFOVの垂直方向の範囲を含む。さらに、乗り物は、LIDAR装置の第1および第2の受信機による環境の走査に少なくとも基づいて乗り物を操作するように構成されたコントローラを含むことができる。
【0010】
[0010] さらに別の態様において、方法が提供される。方法は、送信機と第1および第2の受信機とを含むLIDAR装置からコントローラによって、乗り物の周囲の環境の走査を受信することを含むことができ、送信機は垂直方向のビーム幅を有する光を環境に発するように構成され、放射光はある波長範囲内の波長を有し、第1の受信機は、第1のFOVで環境を走査しながら第1の分解能で光を検出するように構成され、検出された光は前記波長範囲内の波長を有し、第2の受信機は、第2のFOVで環境を走査しながら第2の分解能で光を検出するように構成され、検出された光は前記波長範囲内の波長を有し、第1の分解能は第2の分解能よりも高く、第1のFOVは第2のFOVと少なくとも部分的に異なり、垂直方向のビーム幅は、少なくとも第1および第2のFOVの垂直方向の範囲を含む。方法はまた、LIDAR装置から受信した環境の走査に少なくとも基づいて、コントローラによって乗り物を操作することを含み得る。
【0011】
[0011] さらに別の態様において、システムが提供される。システムは、送信機と第1および第2の受信機とを含むLIDAR装置から、乗り物の周囲の環境の走査を受信するための手段を含むことができ、送信機は垂直方向のビーム幅を有する光を環境へ発するように構成され、放射光はある波長範囲内の波長を有し、第1の受信機は、第1のFOVで環境を走査しながら第1の分解能で光を検出するように構成され、検出された光は前記波長範囲内の波長を有し、第2の受信機は、第2のFOVで環境を走査しながら第2の分解能で光を検出するように構成され、検出された光は前記波長範囲内の波長を有し、第1の分解能は第2の分解能より高く、第1のFOVは第2のFOVと少なくとも部分的に異なり、垂直方向のビーム幅は、少なくとも第1および第2のFOVの垂直方向の範囲を包む。システムはまた、LIDAR装置から受信した環境の走査に少なくとも基づいて乗り物を操作するための手段を含むことができる。
【0012】
[0012] これらのならびに他の態様、利点、および代替形態は、添付の図面を適宜参照しながら以下の詳細な記載を読むことによって当業者には明らかになるであろう。さらに、この概要セクションおよびこの文書の他の場所に提供されている記載は特許請求された主題を限定としてではなく例として説明することを意図していることを理解されたい。
【図面の簡単な説明】
【0013】
図1】[0013]実施形態例による、LIDAR装置の簡略ブロック図である。
図2A】[0014]実施形態例による、LIDAR装置の上面図の断面図を示す。
図2B】[0015]実施形態例による、LIDAR装置の側面図の断面図を示す。
図2C】[0016]実施形態例による、LIDAR装置の異なる側面図の断面図を示す。
図3A】[0017]実施形態例による、LIDAR装置の上面図の別の断面図を示す。
図3B】[0018]実施形態例による、LIDAR装置の側面図の別の断面図を示す。
図3C】[0019]実施形態例による、LIDAR装置の異なる側面図の別の断面図を示す。
図4A】[0020]実施形態例による、乗り物の上面に位置付けられたLIDAR装置のいくつかの図を示す。
図4B】[0021]実施形態例による、乗り物の上面に位置付けられたLIDAR装置による発光を示す。
図4C】[0022]実施形態例による、乗り物の上面に位置付けられたLIDAR装置による反射光の検出を示す。
図4D】[0023]実施形態例による、乗り物の上面に位置付けられたLIDAR装置による反射光の別の検出を示す。
図4E】[0024]実施形態例による、乗り物の上面に位置付けられたLIDAR装置の走査範囲を示す。
図5】[0025]実施形態例による、LIDAR装置から受信した走査に基づいて乗り物を操作するための方法を示すフローチャートである。
図6】[0026]実施形態例による、LIDAR装置から受信した環境の走査に基づく乗り物の操作を示す。
図7】[0027]実施形態例による、乗り物の簡略ブロック図である。
【発明を実施するための形態】
【0014】
[0028] 例示的な方法およびシステムが本明細書に記載されている。「例示的」という用語は、「例、事例または説明として提供する」を意味すべく本明細書で用いられることを理解されたい。「例示的」または「説明に役立つ」として本明細書に記載されるいずれの実践形態または特徴も、他の実践形態または特徴よりも好ましいまたは有利であると必ずしも解釈されるべきではない。図中、文脈上別段の指示がない限り、類似の記号は通常類似の構成要素を識別する。本明細書に記載の実践形態の例は限定的であることを意味しない。一般的に本明細書に記載されまた図に示されるような本開示の態様は、多様な異なる構成で配置、置換え、組合せ、分離および設計可能であり、その全ては本明細書中で考えられていることは容易に理解されよう。
【0015】
I.概要
[0029] 事故回避システムおよびリモートセンシング機能を備えた乗り物の開発を含む、乗り物の安全性および/または自律運転を改善するための努力が続けられている。LIDAR装置などの多様なセンサが、乗り物の環境内の障害物または物体を検出し、それによって、他の選択肢の中でもとりわけ事故回避および/または自律運転を促すために、乗り物に含まれ得る。
【0016】
[0030] いくつかの事例では、LIDAR装置の取り付け位置および/または構成は、いくつかの物体検出/識別シナリオにとって、および/または他の理由のために、望ましくない場合がある。例えば、乗り物の上面に位置付けられたLIDAR装置は(例えば、LIDAR装置を回転させることによって)360°の水平FOVを有することができるが、乗り物の上面に位置付けられたLIDAR装置の幾何学的形状のために乗り物の近くの物体を検出しない可能性がある。別の事例では、広いFOVを走査期間にわたって走査しているLIDAR装置は、同じ走査期間にわたってより狭いFOVを走査している同様のLIDAR装置よりも低い角度分解能の環境3Dマップを提供し得る。より低い分解能は、例えば、中距離物体(例えば、乗り物までの閾値距離内)を識別するのに十分であり得るが、遠距離物体(例えば、閾値距離外)を識別するのに不十分であり得る。さらに、走査期間を調整することは、LIDAR装置のリフレッシュレート(すなわち、LIDAR装置がFOV全体を走査するレート)に影響を及ぼし得る。一方では、高いリフレッシュレートは、LIDAR装置がFOVにおける変化(例えば、動いている物体等)を迅速に検出することを可能にし得る。他方、低いリフレッシュレートは、LIDAR装置がより高い分解能のデータを提供することを可能にし得る。
【0017】
[0031] そのような課題を解決するのを助けるために、本明細書で開示されるのは、LIDAR装置がそれぞれ異なる分解能で環境の異なる部分に関する情報を取得することができるアーキテクチャを有するLIDAR装置である。LIDAR装置は本明細書では乗り物に使用されるという文脈で記載されているが、本明細書に開示されたLIDAR装置は様々な目的に使用することができ、任意の実現可能なシステムまたは構成に組み込むことができる、または別の方法で接続することができる。それにもかかわらず、LIDAR装置は、従来の自動車および自律運転モードを有する自動車を含む任意の種類の乗り物に使用することができる。しかしながら、「乗り物」という用語は、例えば、とりわけ、トラック、バン、セミトレーラトラック、オートバイ、ゴルフカート、オフロード乗り物、倉庫搬送乗り物、または農場乗り物、ならびに、ジェットコースター、トロリー、トラム、または列車など軌道に乗る移動体を含むあらゆる移動物体を網羅するように広く解釈されるべきである。
【0018】
[0032] より具体的には、開示されたLIDAR装置は、光源(例えば、高出力ファイバレーザ)から出、送信レンズを出て環境に向かう光を方向付けるための光路を収容する送信機を含むことができる。一般に、その放射光は、特定の波長範囲(例えば、1525nmから1565nm)内の波長を有することができ、とりわけ、発せられたレーザビームの形態を取り得る。さらに、送信機は、例えば水平軸から+7°離れて水平軸から-18°離れて広がるように、垂直軸に沿って光を広げるための拡散器を含むことができる。この配置は、レーザビームの垂直ビーム幅よりも著しく狭い水平ビーム幅を有するレーザビームをもたらすことができる。実際には、そのような水平方向に狭いレーザビームは、反射物体から反射されたビームと、反射物体に水平に隣接するより反射率の低い物体から反射されたビームとの間の干渉を回避するのに役立ち得、これは最終的にLIDAR装置がそれらの物体を区別する助けとなり得る。
【0019】
[0033] さらに、LIDAR装置は、それぞれが上述の波長範囲内の波長を有する光を検出するようにそれぞれ構成された少なくとも第1および第2の受信機を含むことができる。本開示によれば、第1の受信機は、(例えば、第1の光検出器のアレイを使用して)第1の分解能で光を検出するように構成することができ、第2の受信機は、(例えば、第2の光検出器のアレイを使用して)第2の分解能で光を検出するように構成することができ、ここで第1の分解能は第2の分解能より高い。さらに、そのような各受信機は、異なるFOVで環境を走査するように構成されてもよい。例えば、第1の受信機は、入射光を上記水平軸から+7°離れて上記水平軸から-7°離れる範囲内で集束させるように光学レンズ装置等を含むことができ、第2の受信機は、入射光を上記水平軸から-7°離れて上記水平軸から-18°離れる範囲内に集束させるように光学レンズ装置等を含むことができる。このようにして、放射光の垂直方向のビーム幅は、少なくとも第1および第2のFOVの垂直方向の範囲を包含することができ、それによってLIDAR装置が環境の比較的より大きな部分についてのデータを提供することを可能にする。他の例もまた可能である。
【0020】
[0034] さらに、LIDAR装置は、静止プラットフォームならびに回転プラットフォームも含み得る。特に、回転プラットフォームは、回転リンクを介して静止プラットフォームに結合されてもよく、静止プラットフォームに対して軸を中心に回転するように構成されてもよい。そうすることで、回転プラットフォームはまた、送信機、第1の受信機、および第2の受信機をそれぞれ環境に対して移動させ、それによって、LIDAR装置が環境の様々な部分に関する情報を水平方向に取得することを可能にする。さらに、静止プラットフォームは、(例えば任意の実現可能なコネクタ構成を使用して)乗り物の上面または他のシステムもしくは装置に結合されるように構成されてもよい。
【0021】
[0035] いくつかの実践形態では、開示されたLIDAR装置は、以下のように構成され得る、すなわち、(i)第1の受信機が実質的に静止プラットフォームより上に位置付けられ、(ii)第2の受信機および送信機が両方とも実質的に第1の受信機より上に位置付けられ、(iii)第2の受信機は実質的に水平方向に送信機に隣接して位置付けられる。実際には、この特定の配置は様々な理由で有利であり得る。
【0022】
[0036] 例えば、静止プラットフォームは、乗り物の1つまたは複数の車輪が位置付けられている底面とは反対側の乗り物の上面に結合されてもよく、回転プラットフォームは乗り物の上面に対して実質的に垂直な垂直軸を中心に回転するように構成されてもよい。さらに、上述のように送信機がより高い地点に配置されることにより、送信機は、乗り物自体からの反射を実質的に回避する上述の垂直方向の広がりを有する光を発することが可能であり得る。同様に、上述のように第2の受信機もそのより高い地点に配置されているので、第2の受信機は、乗り物の比較的近くにある環境の一部から反射される光を検出することが可能であり得る。
【0023】
[0037] これに関して、上記の例としてのFOVを考えると、第2の受信機は、乗り物により近い環境の一部のFOVを有し得、第1の受信機は、乗り物から離れた環境の一部のFOVを有し得る。このようにして、第1の受信機は、乗り物からより遠くにある物体から反射された光をより高い分解能で受信し、それによってそれらのより遠くの物体の検出および/または認識を助けるためのより細かい詳細を提供し得る。さらに、第2の受信機は、乗り物により近い物体から反射された光をより低い分解能で(すなわち、第1の受信機の分解能と比較して)受信し、それは、とりわけ、センサコスト、電力消費、および/またはデータ負荷の低減を可能にしながら、それらのより近くの物体の検出および/または認識を助けるのに十分な詳細を提供し得る。
【0024】
II.LIDAR装置の配置例
[0038] ここで図を参照すると、図1は、例示的実施形態による、LIDAR装置100の簡略ブロック図である。図示のように、LIDAR装置100は、電源装置102、電子機器104、光源106、送信機108、第1の受信機110、第2の受信機112、回転プラットフォーム114、アクチュエータ116、静止プラットフォーム118、回転リンク120およびハウジング122を含む。他の実施形態では、LIDAR装置100は、より多くの、より少ない、または異なる構成要素を含んでもよい。さらに、示されている構成要素は、任意の数の方法で組み合わされても分割されてもよい。
【0025】
[0039] 電源装置102は、LIDAR装置100の様々な構成要素に電力を供給するように構成されてもよい。特に、電源装置102は、LIDAR装置100内に配置され、任意の実行可能な方法でLIDAR装置100の様々な構成要素に接続され、それによりそれら構成要素に電力を供給する少なくとも1つの電源を含み得るか、またはその形態を取り得る。追加的または代替的に、電源装置102は、1つまたは複数の外部電源から(例えば、LIDAR装置100が結合された乗り物の中に配置された電源から)電力を受け取り、その受け取った電力を任意の実行可能な方法でLIDAR装置100の様々な構成要素に供給するように構成された電力アダプタまたはそれに類するものを含み得るか、またはその形態を取り得る。いずれの場合も、例えば電池などの任意の種類の電源を使用することができる。
【0026】
[0040] 電子機器104は、それぞれがLIDAR装置100の特定のそれぞれの動作を容易にするのを助けるように構成された1つまたは複数の電子部品および/またはシステムを含み得る。実用においては、これらの電子機器104は任意の実行可能な方法でLIDAR装置100内に配置され得る。例えば、電子機器104の少なくともいくつかは、回転リンク120の中央キャビティ領域内に配置されてもよい。それにもかかわらず、電子機器104は、様々な種類の電子部品および/またはシステムを含んでもよい。
【0027】
[0041] 例えば、電子機器104は、コントローラからLIDAR装置100の様々な構成要素への制御信号の伝送、および/またはLIDAR装置100の様々な構成要素からコントローラへのデータの伝送に使用される様々な配線を含むことができる。一般に、コントローラが受信するデータは、とりわけ、受信機110~112による光の検出に基づくセンサデータを含み得る。さらに、コントローラによって送信される制御信号は、とりわけ、送信機106による発光の制御、受信機110~112による光の検出の制御、および/または、回転プラットフォーム112を回転させるためのアクチュエータ116の制御によってなど、LIDAR装置100の様々な構成要素を動作させることができる。
【0028】
[0042] いくつかの構成では、電子機器104はまた、問題のコントローラを含み得る。このコントローラは、1つまたは複数のプロセッサと、データ記憶装置と、データ記憶装置に記憶され、様々な動作を促すために1つまたは複数のプロセッサによって実行可能なプログラム命令とを有し得る。この構成では、コントローラは、したがって、後述の方法500のオペレーションなど、本明細書に記載のオペレーションを保持するように構成され得る。それに加えてまたはその代わりに、コントローラは、外部コントローラとLIDAR装置100の様々な構成要素との間での制御信号および/またはデータの伝送を容易にするのを助けるために、外部コントローラまたはそれに類するもの(例えば、LIDAR装置100が結合される乗り物に配置されるコンピューティングシステム)と通信し得る。
【0029】
[0043] しかしながら、他の構成では、電子機器104は問題のコントローラを含まなくてもよい。むしろ、上述の配線の少なくともいくつかは、外部コントローラへの接続のために使用され得る。この構成では、配線は、外部コントローラとLIDAR装置100の様々な構成要素との間での制御信号および/またはデータの伝送を容易にするのに役立ち得る。他の構成も可能である。
【0030】
[0044] さらに、1つまたは複数の光源106は、それぞれ、ある波長範囲内の波長を有する複数の光ビームおよび/またはパルスを発するように構成することができる。波長範囲は、例えば、電磁スペクトルの紫外線、可視光線、および/または赤外線部分にあり得る。いくつかの例では、波長範囲は、レーザによって提供されるものなど、狭い波長範囲であり得る。一例では、波長範囲は、およそ1525nmから1565nmの間の波長を含む。この範囲は例示目的でのみ記載されており、限定することを意味しないことに留意されたい。
【0031】
[0045] 本開示によれば、光源106のうちの1つは、光増幅器を含むファイバレーザであり得る。特に、ファイバレーザは、能動利得媒体(すなわち、レーザ内の光学利得の源)が光ファイバ内にあるレーザであり得る。さらに、ファイバレーザは、LIDAR装置100内に様々な方法で配置することができる。例えば、ファイバレーザは、回転プラットフォーム114と第1の受信機110との間に配置することができる。
【0032】
[0046] したがって、本開示は、ファイバレーザが一次光源106として使用される文脈において本明細書中で一般的に記載される。しかしながら、いくつかの構成では、1つまたは複数の光源106は、追加的にまたは代替的に、レーザダイオード、発光ダイオード(LED)、垂直共振器面発光レーザ(VCSEL)、有機発光ダイオード(OLED)、ポリマー発光ダイオード(PLED)、発光ポリマー(LEP)、液晶ディスプレイ(LCD)、微小電気機械システム(MEMS)および/または複数の放射光ビームおよび/またはパルスを提供するために光を選択的に送信、反射、および/または発するように構成された他の任意の装置を含み得る。
【0033】
[0047] 本開示によれば、送信機108は、環境内に光を発するように構成され得る。特に、送信機108は、光を光源106から環境に向けるように構成されている光学的配置を含むことができる。この光学的配置は、光学部品の中でもとりわけ、物理的空間全体に光の伝播を案内するために使用されるミラーおよび/または特定の光の特性を調整するために使用されるレンズの任意の実現可能な組み合わせを含み得る。例えば、光学的配置は、光をコリメートするように配置された送信レンズを含むことができ、それによって、互いに実質的に平行な光線を有する光をもたらす。
【0034】
[0048] いくつかの実践形態では、光学的配置はまた、垂直軸に沿って光を広げるように配置された拡散器を含み得る。実用においては、拡散器は、ガラスまたは他の材料から形成されてもよく、特定の方法で光を広げるまたは別の方法で散乱させるような形状(例えば、非球面形状)であってもよい。例えば、垂直方向の広がりは、水平軸から+7°離れて水平軸から-18°離れる広がりであり得る(例えば、水平軸は理想的には環境内の地面に平行である)。さらに、拡散器は、例えばファイバレーザの出力端に融着させることによるなど、任意の直接的または間接的な方法で光源106に結合することができる。
【0035】
[0049] したがって、この実践態様は、レーザビームの垂直ビーム幅よりも著しく狭い水平ビーム幅(例えば1mm)を有するレーザビームまたはそれに類するものをもたらし得る。上述のように、このような水平方向に狭いレーザビームは、反射物体から反射されたビームと、反射物体に水平方向に隣接するより反射率の低い物体から反射されたビームとの間の干渉を回避する一助となり得、これは最終的にLIDAR装置100がそれらの物体を区別する一助となり得る。他の利点もあり得る。
【0036】
[0050] なおもさらに、いくつかの実践形態では、光学的配置はまた、例えばサーモパイルの形態を取り得る、LIDAR装置100の熱エネルギー測定装置(図示せず)に向けて拡散光の少なくとも一部を反射するように配置されたダイクロイックミラーを含み得る。この実践形態では、熱エネルギー測定装置は、環境に向かって発せられる光のエネルギーを測定するように構成することができる。そして、そのエネルギー測定値に関連するデータは、コントローラによって受信され、次いで、例えば放射光の強度に対する調整などのさらなる動作を容易にするための基礎としてコントローラによって使用され得る。他の実践形態も可能である。
【0037】
[0051] 上述のように、LIDAR装置100は、第1の受信機110および第2の受信機112を含むことができる。そのような各受信機は、送信機108から発せられる光のうちの1つと同じ波長範囲(例えば、1525nmから1565nm)の波長を有する光をそれぞれ検出するように構成することができる。このようにして、LIDAR装置100は、LIDAR装置100で発生した反射光パルスを環境内の他の光と区別することができる。
【0038】
[0052] 本開示によれば、第1の受信機110は第1の分解能で光を検出するように構成することができ、第2の受信機112は第1の分解能より低い第2の分解能で光を検出するように構成することができる。例えば、第1の受信機110は、0.036°(水平)×0.067°(垂直)の角度分解能で光を検出するように構成することができ、第2の受信機112は、0.036°(水平)×0.23°(垂直)の角度分解能で光を検出するように構成することができる。
【0039】
[0053] さらに、第1の受信機110は第1のFOVで環境を走査するように構成することができ、第2の受信機112は第1のFOVと少なくとも部分的に異なる第2のFOVで環境を走査するように構成することができる。一般に、この構成は、LIDAR装置100が、環境の異なる部分をそれぞれ異なる分解能で走査することを可能にし得、これは以下でさらに考察するように様々な状況に適用可能であり得る。
【0040】
[0054] さらに、LIDAR装置100は、発せられた光の垂直方向のビーム幅が少なくとも第1および第2のFOVの垂直方向の範囲を含むように構成されてもよい。例えば、問題となっている受信機の異なるFOVは、放射光の上述の垂直方向の広がりと同じ角度範囲に実質的に沿った光の検出を集合的に可能にする少なくとも部分的に異なる垂直FOVであり得る。この構成では、コントローラは、垂直方向のビーム幅を有する光(例えば、レーザビーム)を発するようにLIDAR装置100を動作させることができ、次にLIDAR装置100は、受信機のFOVの垂直方向の範囲に沿って第1および第2の受信機110~112の両方で反射光を検出することができる。このようにして、LIDAR装置100は、環境の比較的より大きな部分に関するデータを提供し、比較的より速い速度でそれを行うことができる。
【0041】
[0055] 特定の例では、第1の受信機110は、入射光を上述の水平軸から+7°離れ水平軸から-7°離れた範囲内に集束するように構成されてもよく、第2の受信機112は、入射光を水平軸から-7°離れ水平軸から-18°離れた範囲内に集束するように構成されてもよい。このようにして、第1および第2の受信機110~112は、+7°~-18°の範囲に沿って光を検出することを集合的に可能にし、これは送信機108が提供する放射光の上述の例示的な垂直方向の広がりに一致する。これらの分解能およびFOVは例示目的のためにのみ記載されており、限定することを意味しないことに留意されたい。
【0042】
[0056] 実践形態の例において、第1および第2の受信機110~112はそれぞれ、上述のように受信機がそれぞれの分解能およびFOVを提供することを可能にするそれぞれの光学的配置を有することができる。一般に、そのような各光学的配置は、少なくとも1つの光学レンズと光検出器アレイとの間に光路をそれぞれ提供するように構成することができる。
【0043】
[0057] 一実施形態において、第1の受信機110は、LIDAR装置100の環境内の1つまたは複数の物体から反射された光を第1の受信機110の検出器上に集束するように構成された光学レンズを含み得る。そうするために、光学レンズは、例えば、約10cm×5cmの寸法および約35cmの焦点距離を有し得る。さらに、光学レンズは、上述のように入射光を特定の垂直FOVに沿って集束するように(例えば、+7°~-7°)形成されてもよい。本開示の範囲から逸脱することなく、第1の受信機の光学レンズのそのような形状は、様々な形態のうちの1つ(例えば、球面形状)を取り得る。
【0044】
[0058] この実施形態では、第1の受信機110は、少なくとも1つの光学レンズと光検出器アレイとの間の光路を折り曲げるように配置された少なくとも1つのミラーも含むことができる。そのような各ミラーは、任意の実現可能な方法で第1の受信機110内に固定することができる。また、光路を折り曲げるために任意の実現可能な数のミラーを配置することができる。例えば、第1の受信機110はまた、光学レンズと光検出器アレイとの間で光路を2回以上折り曲げるように配置された2つ以上のミラーを含み得る。実用においては、このような光路の折り曲げは、結果の中でもとりわけ、第1の受信機のサイズを縮小するのを助け得る。
【0045】
[0059] 別の実施形態では、第1の受信機110は2つ以上の光学レンズを含み得る。例えば、第1の受信機110は、環境に面する外側の球面形状のレンズと、内側の円筒形状のレンズとを含み得る。この例では、したがって、入射光は焦点面の線上に集束され得る。他の例および実践形態も可能である。
【0046】
[0060] さらに、上述のように、第1の受信機は、(例えば、上述の波長範囲の)検出光を、その検出光を示す電気信号に変換するようにそれぞれ構成された2つ以上の検出器を含み得る光検出器アレイを有し得る。実用においては、そのような光検出器アレイは様々な方法のうちの1つで配置することができる。例えば、検出器は、1つまたは複数の基板(例えば、プリント回路基板(PCB)、フレキシブルPCB等)上に配置され、光学レンズから光路に沿って進む入射光を検出するように配置され得る。また、そのような光検出器アレイは、任意の実行可能な方法で整列された任意の実行可能な数の検出器を含み得る。例えば、光検出器アレイは13×16アレイの検出器を含み得る。この光検出器アレイは例示目的のためだけに記載されており、限定することを意味しないことに留意されたい。
【0047】
[0061] 一般に、アレイの検出器は様々な形態を取り得る。例えば、検出器は、フォトダイオード、アバランシェフォトダイオード(例えば、ガイガーモードおよび/またはリニアモードアバランシェフォトダイオード)、フォトトランジスタ、カメラ、アクティブピクセルセンサ(APS)、電荷結合素子(CCD)、極低温検出器および/または放射光の波長範囲内の波長を有する集束光を受け取るように構成された光の任意の他のセンサの形態を取り得る。他の例も可能である。
【0048】
[0062] 第2の受信機112に関して、第2の受信機112はまた、LIDAR装置100の環境内の1つまたは複数の物体から反射された光を第1の受信機110の検出器に集束させるように構成された少なくとも1つの光学レンズを含み得る。そうするために、光学レンズは、上述のように特定の垂直FOV(例えば、-7°~-18°)に沿って入射光を集束させるのに役立ついずれかの寸法、焦点距離、および形状を有し得る。いくつかの実践形態では、第2の受信機112は、第2の受信機の光学レンズと第2の受信機の光検出器アレイとの間の光路を折り曲げるように配置された1つまたは複数のミラーを含み得る。さらに、第2の受信機の光検出器アレイは、第1の受信機110の文脈において上述した方法のいずれかで配置された任意の実行可能な数の検出器を含み得る。他の実践形態も可能である。
【0049】
[0063] さらに、上述のように、LIDAR装置100は、軸を中心に回転するように構成されている回転プラットフォーム114を含むことができる。このように回転するために、1つまたは複数のアクチュエータ116が回転プラットフォーム114を作動させることができる。実用においては、これらのアクチュエータ116は、とりわけ、モータ、空気圧アクチュエータ、油圧ピストン、および/または圧電アクチュエータを含むことができる。
【0050】
[0064] 本開示によれば、送信機108ならびに第1および第2の受信機110~112は、これらの構成要素のそれぞれが回転プラットフォーム114の回転に基づいて環境に対して動くように回転プラットフォーム上に配置されてもよい。特に、これらの構成要素のそれぞれは、LIDAR装置100が様々な方向から情報を取得できるように軸に対して回転させることができる。このように、LIDAR装置100は、回転プラットフォーム114を異なる方向に作動させることによって調整することができる水平方向の視線方向を有することができる。
【0051】
[0065] この構成では、コントローラは、様々な方法で環境に関する情報を取得するために様々な方法で回転プラットフォーム114を回転させるようにアクチュエータ116に指示することができる。特に、回転プラットフォーム114は、様々な範囲でいずれの方向にも回転することができる。例えば、回転プラットフォーム114は、LIDAR装置100が環境の360°の水平FOVを提供するように全回転を実行することができる。したがって、第1および第2の受信機110~112が両方とも回転プラットフォーム114の回転に基づいて回転できると仮定すると、両方の受信機110~112は同じ水平FOV(例えば360°)を有する一方で上述のように異なる垂直FOVを有することができる。
【0052】
[0066] さらに、回転プラットフォーム114は、LIDAR装置100に様々なリフレッシュレートで環境を走査させるように様々なレートで回転することができる。例えば、LIDAR装置100は、15Hzのリフレッシュレート(例えば、毎秒15回のLIDAR装置100の完全回転)を有するように構成されてもよい。この例では、さらに後述するようにLIDAR装置100が乗り物に結合されていると仮定すると、走査は、毎秒15回、乗り物の周りを360°のFOVで走査することを含む。他の例もまた可能である。
【0053】
[0067] なおもさらに、上述のように、LIDAR装置100は、静止プラットフォーム118を含むことができる。実用においては、静止プラットフォームは、任意の形状または形態をとることができ、例えば乗り物の上面など、様々な構造体に結合するように構成することができる。また、静止プラットフォームの結合は、任意の実現可能なコネクタ装置(例えば、ボルトおよび/またはねじ)を介して実行されてもよい。このように、LIDAR装置100は、本明細書に記載されているものなどの様々な目的に使用されるように構造体に結合することができる。
【0054】
[0068] 本開示によれば、LIDAR装置100はまた、静止プラットフォーム118を回転プラットフォーム114に直接的または間接的に結合する回転リンク120を含み得る。具体的には、回転リンク120は、静止プラットフォーム118に対して軸周りに回転プラットフォーム114を回転させる任意の形状、形態および材料を取り得る。例えば、回転リンク120は、アクチュエータ116からの作動に基づいて回転するシャフトまたはそれに類するものの形態をとることができ、それによってアクチュエータ116からの機械的な力を回転プラットフォーム114へ伝達する。さらに、上述のように、回転リンクは中央キャビティを有してもよく、その中に電子機器104および/またはLIDAR装置100の1つまたは複数の他の構成要素が配置されてもよい。他の配置も同様に可能である。
【0055】
[0069] なおもさらに、上述のように、LIDAR装置100は、ハウジング122を含み得る。実用においては、ハウジング122は、任意の形状、形態、および材料を取り得る。例えば、ハウジング122は、とりわけ、ドーム型ハウジングとすることができる。別の例では、ハウジング122は、少なくとも部分的に非透明材料から構成されてもよく、これは、少なくとも一部の光がハウジング122の内部空間に入るのを阻止することを可能にし得、したがって以下でさらに考察するように熱の影響を緩和する一助となり得る。このハウジングは例示目的のためにのみ記載されており、限定することを意味しないことに留意されたい。
【0056】
[0070] 本開示によれば、ハウジング122は、回転プラットフォーム114の回転に基づいてハウジング122が上述の軸を中心に回転するように構成されるように回転プラットフォーム114に結合されてもよい。この実践形態では、送信機108、第1および第2の受信機110~112、ならびに場合によってはLIDAR装置100の他の構成要素は、それぞれハウジング122内に配置されてもよい。このようにして、送信機108ならびに第1および第2の受信機110~112は、ハウジング122内に配置されながらハウジング122と一緒に回転し得る。
【0057】
[0071] さらに、ハウジング122は、その上に形成された開口部を有することができ、それは任意の実行可能な形状およびサイズをとることができる。この点に関して、送信機108は、開口部を通して環境に光を発するようにハウジング120内に配置することができる。このようにして、送信器108は、ハウジング120の対応する回転により開口部と一緒に回転し、それによって様々な方向への発光を可能にできる。また、第1および第2の受信機110~112はそれぞれ、環境から開口部を通ってハウジング120に入る光をそれぞれ検出するように、ハウジング120内にそれぞれ配置することができる。このようにして、受信器110~112は、ハウジング120の対応する回転により開口部と一緒に回転することができ、それによって水平FOVに沿って様々な方向から入ってくる光の検出を可能にする。
【0058】
[0072] 実用においては、ハウジング122は様々な理由で上述のように配置されてもよい。具体的には、LIDAR装置100の様々な構成要素がハウジング122内に配置されていること、およびハウジング122がそれらの構成要素と一緒に回転することによって、ハウジング122はこれらの構成要素をとりわけ雨および/または雪などの様々な環境上の危険要因から保護するのに役立ち得る。また、LIDAR装置100がハウジング122内で回転するときにハウジング122が静止している場合、ハウジング122は、ハウジング122を通る光の伝播を可能にし、それによってLIDAR装置100による環境の走査を可能にするように、おそらく透明であろう。
【0059】
[0073] しかしながら、本開示によれば、ハウジング122は、LIDAR装置100と一緒に回転する開口部を有することができ、これは、ハウジング122が環境の走査の走査を可能にするために必ずしも完全に透明である必要がないことを意味する。例えば、ハウジング122は、開口部を除いて少なくとも部分的に非透明材料から構成することができ、開口部は透明な材料から構成することができる。結果として、ハウジング122は、LIDAR装置100への熱の影響を緩和する一助となり得る。例えば、ハウジング122は、太陽光線がハウジング122の内部空間に入るのを阻止することができ、これはそれらの太陽光線によるLIDAR装置100の様々な構成要素の過熱を回避する一助となり得る。他の例も可能である。
【0060】
[0074] 上述のようなLIDAR装置100の様々な構成要素を考えると、これらの様々な構成要素は様々な方法で配置することができる。本開示によれば、LIDAR装置100は、静止プラットフォーム118が地面に最も近くなるように空間的に配向されていると仮定すると、LIDAR装置100は以下のように配置され得る、すなわち、(i)第1の受信機110は実質的に静止プラットフォーム118の上に位置付けられ、(ii)第2の受信機112および送信機108は両方とも実質的に第1の受信機110の上に位置付けられ、(iii)第2の受信機112は送信機108に実質的に水平方向に隣接して位置付けられる。以下でさらに考察するように、この特定の配置はさまざまな理由で有利かもしれない。しかしながら、この配置は例示目的のためにのみ記載されており、限定することを意味しないことに留意されたい。
【0061】
III.LIDAR装置の例示的な実践形態
[0075] 次に、図2A~2Cは、本明細書に開示された特徴を有するLIDAR装置の図の例示的な組を示す。具体的には、図2Aは、LIDAR装置200の上面断面図を示し、図2Bは、LIDAR装置200の側面断面図を示し、図2Cは、図2Bに示される側面図とは反対側であるLIDAR装置200の側面断面図(例えば、LIDAR装置200が軸232を中心に半回転した後に示される側面図など)を示す。これらの図は例示目的でのみ示されており、限定することを意味しないことに留意されたい。
【0062】
[0076] より具体的には、図2A~2Cは、LIDAR装置200が上の考察に従って回転プラットフォーム214に結合されたハウジング222を含むことを集合的に示している。回転プラットフォーム214は、やはり上の考察に従って、回転リンク220を介して静止プラットフォーム218に結合されているように示されている。この構成では、回転プラットフォーム214は軸232を中心に回転することができ、それによって、LIDAR装置200のハウジング222、送信機208、第1の受信機210、および第2の受信機212も軸232を中心に回転する。
【0063】
[0077] 実用においては、ハウジング222は、上述のハウジング122の形態をとることができる。また、ハウジング222は開口部230を含むように示されており、開口部230を通して光を環境に発することができ、反射された光が環境から入ることができる。さらに、図2A~2Cは、送信機208、第1の受信機210、および第2の受信機212がそれぞれハウジング222内に配置され、この際、送信機208が第2の受信機212に実質的に隣接し、送信機および第2の受信機212は両方とも第1の受信機210の上に位置付けられていることを集合的に示している。
【0064】
[0078] より具体的には、送信機208は、上述の送信機108の形態を取り得る。図2Aおよび2Bに示されるように、送信機208は、光増幅器として機能するファイバレーザと融合された光学レンズ224(例えば、拡散器)を含み、ファイバレーザは、回転プラットフォーム214と第1の受信機210との間に少なくとも部分的に位置付けられる。また、上の考察によれば、光学レンズ224は、+7°から-18°の特定の垂直方向の広がりに沿って放射光を垂直方向に広げるように構成することができる。
【0065】
[0079] さらに、第1の受信機210は、上述した第1の受信機110の形態をとってもよい。図2Bおよび2Cに示すように、第1の受信機210は、光学レンズ238と光検出器アレイ236との間に光路を提供する光学的配置を含む。具体的には、光学的配置は、光学レンズ238と光検出器アレイ236との間の光路を2度折り曲げ、それにより第1の送信機210のサイズを縮小する一助となるように配置された2つのミラー234を含むように示されている。これに関して、光学レンズ238は、入射光を+7°から-7°の垂直FOV範囲内に集束させるように構成されてもよい。また上の考察によれば、光検出器アレイ236は、0.036°(水平)×0.067°(垂直)の角度分解能で光を検出するように構成されてもよい。
【0066】
[0080] さらに、第2の受信機212は、上述した第2の受信機112の形態をとってもよい。図2Aおよび2Cに示されるように、第2の受信機212は、光学レンズ226と光検出器アレイ228との間に光路を提供する光学的配置を含む。この点に関して、光学レンズ226は入射光を-7°から-18°の垂直FOV範囲内に集束するように構成されるように示されている。そして上の考察によれば、光検出器アレイ228は、0.036°(水平)×0.23°(垂直)の角度分解能で光を検出するように構成することができる。
【0067】
[0081] 次に、図3A~3Cは、本明細書に開示された特徴を有するLIDAR装置の図の別の例示的な組を示す。特に、図3Aは、LIDAR装置300の上面断面図を示し、図3Bは、LIDAR装置300の側面断面図を示し、図3Cは、図3Bに示される側面図とは反対側であるLIDAR装置300の側面断面図(例えば、LIDAR装置300の半回転後に示される側面図など)を示している。これらの図は例示目的でのみ示されており、限定することを意味しないことに留意されたい。
【0068】
[0082] より具体的には、図3A~3Cは、LIDAR装置300が送信機308、第1の受信機310、および第2の受信機312を含むことを集合的に示している。これらの図には示されていないが、これらの様々な構成要素は、上の考察に従って、回転プラットフォームに結合されてもよいハウジング内に配置されてもよい。回転プラットフォームは次に、やはり上の考察に従って、回転リンクを介して静止プラットフォームに結合されてもよい。この構成では、回転プラットフォームは軸を中心に回転することができ、それによって、LIDAR装置300のハウジング、送信機308、第1の受信機310、および第2の受信機312も軸を中心に回転する。さらに、図3A~3Cは、送信機308が第2の受信機312に実質的に隣接していること、および送信機308および第2の受信機312が両方とも第1の受信機310の上に位置することを集合的に示している。
【0069】
[0083] より具体的には、送信機308は、上述の送信機108の形態をとることができる。図3A~3Cに示すように、送信機208は、光増幅器として機能するファイバレーザ306によって生成された光を発することができる。また上の考察に従って、送信機308は、+7°~-18°の特定の垂直方向広がりに沿って放射光を垂直方向に広げるように構成された光学レンズ324(例えば、拡散器)を通して光を発することができる。
【0070】
[0084] さらに、第1の受信機310は、上述の第1の受信機110の形態をとってもよい。図3A~3Cに示されるように、光学的配置が光学レンズ338と第1の受信機310の光検出器アレイ(図示せず)との間に光路340を提供し得る。具体的には、光学的配置は、光学レンズ338と第1の受信機310の光検出器アレイとの間で光路340を2回折り曲げ、それによってLIDAR装置300のサイズを縮小する一助となるように配置された2つのミラー334A~334Bを含むように示される。この点に関して、光学レンズ338は入射光を+7°から-7°の垂直FOV範囲内に集束するように構成され得る。また上の考察に従って、第1の受信機310の光検出器アレイは、0.036°(水平)×0.067°(垂直)の角度分解能で光を検出するように構成されてもよい。
【0071】
[0085] さらに、第2の受信機312は、上述の第2の受信機112の形態をとってもよい。図3A~3Cに示されるように、光学的配置が光学レンズ326と第2の受信機312の光検出器アレイ(図示せず)との間に光路を提供し得る。この点に関して、光学レンズ326は入射光を-7°~-18°の垂直FOV範囲内に集束するように配置されるように示されている。また上の考察に従って、第2の受信機312の光検出器アレイは、0.036°(水平)×0.23°(垂直)の角度分解能で光を検出するように構成されてもよい。LIDAR装置の他の図も可能である。
【0072】
[0086] 次に、図4A~4Eは、乗り物400における開示されたLIDAR装置の実装形態を集合的に示し、特に乗り物400における例のLIDAR装置200の実装形態を示している。乗り物400は上述のように乗用車として示されているが、他の実施形態も可能である。さらに、例の乗り物400は、自律モードで動作するように構成され得る乗り物として示されているが、本明細書に記載の実施形態は、自律的に動作するように構成されていない乗り物にも適用可能である。したがって、例の乗り物400は限定的であることを意味しない。
【0073】
[0087] 特に、図4Aは、乗り物400の右側面図、正面図、後面図、および上面図を示す。図示のように、乗り物400は、乗り物400の車輪402が配置される底面の反対側の乗り物400の上面に位置付けられたLIDAR装置200を含む。LIDAR装置200は乗り物400の上面に位置付けられるように図示および記載されているが、LIDAR装置200は本開示の範囲から逸脱することなく乗り物の任意の部分の実行可能部分に位置付けることができる。
【0074】
[0088] さらに、図4B~4Dは次に、LIDAR装置200が、例えば1つまたは複数の光パルスを発しおよび乗り物400の環境内の物体からの反射光パルスを検出しながら垂直軸232を中心に回転することによって(例えば、15Hzのリフレッシュレートで)乗り物400の周囲の環境を走査するように構成され得ることを示す。
【0075】
[0089] より具体的には、図4Bは、LIDAR装置200が上述の+7°から-18°の垂直方向の広がりで光を発することを示す。そして、送信機208が上述のようにより高い地点(すなわち、第1の受信機210の上)に位置付けられているため、LIDAR装置200は、発光が乗り物400自体から反射しないようにこの垂直方向広がりで光を発することができる。このようにして、乗り物からさらに遠い環境の領域(例えば、乗り物の先の道路標識)に加えて、乗り物に比較的近い環境の領域(例えば、レーンマーカ)に向けて発光を発することができる。
【0076】
[0090] さらに、図4Cは、LIDAR装置200が、+7°~-7°の上述の垂直FOVで反射光を検出し、0.036°×0.067°の分解能で反射光を検出するために第1の受信機210を使用することを示す。また、図4Dは、LIDAR装置200が、-7°~-18°の上述の垂直FOVで反射光を検出し、0.036°×0.23°の分解能で反射光を検出するために第2の受信機212を使用することを示す。また、第2の受信機212も上述のようにそのより高い地点に(すなわち第1の受信機210の上に)位置付けられているため、LIDAR装置200は第2の受信機212を使用して乗り物に比較的近い環境の一部から反射される光を検出することができる。
【0077】
[0091] このようにして、第1の受信機210は、乗り物400からより遠くにある物体から反射された光をより高い分解能で受信することができ、それによってそれらのより遠くの物体の検出および/または認識に役立つより細かい詳細を提供する。第2の受信機212は、乗り物400により近い物体から反射された光をより低い分解能で(すなわち、第1の受信機210の分解能と比較して)受信することができ、これは、とりわけ、センサコスト、電力消費、および/またはデータ負荷の低減を可能にしながら、それらのより近い物体の検出および/または認識に役立つのに十分な詳細を提供し得る。
【0078】
[0092] おおまかにこれらの異なる検出距離は例として図4Eに示されている。特に、図4Eは、乗り物400が周囲の環境を走査するためにLIDAR装置200を使用する上記のシナリオにおける乗り物400の上面図を示す。図4Eに示されるように、LIDAR装置200は、乗り物400までのある距離範囲内の物体の検出および/または識別に適している可能性がある。これらの距離範囲は、輪郭404および406によって示されている。これらの輪郭は原寸に比例していないが説明の便宜上示されるように図示されていることに留意されたい。
【0079】
[0093] より具体的には、輪郭404の外側の、輪郭406によって決定される距離範囲内にある物体は、LIDAR装置200の第1の受信機210からのより高い分解能のデータを使用して適切に検出/識別され得る。輪郭404によって決定される距離範囲内にあるより近い物体は、LIDAR装置200の第2の受信機212からのより低い分解能のデータを使用して適切に検出/識別され得る。いずれの場合も、各受信機210~212の水平FOVは乗り物400の周囲の全方向に360°広がり得る。他の例も可能である。
【0080】
IV.例示的な方法
[0094] 図5は、例の実践形態による方法500を示すフローチャートである。具体的には、方法500は、本明細書に開示されているLIDAR装置から受信した走査に基づいて乗り物を操作するように実施することができる。
【0081】
[0095] 図5に示される方法500(および本明細書に開示される他のプロセスおよび方法)は、例えば、図1のLIDAR装置100を含む構成内で、図4A~4Eに示される乗り物400によって、および/または図7に示され以下でさらに記載される乗り物700によって(またはより詳細には、プロセッサ、および本明細書に記載される機能を装置に実行させるために実行可能な命令を有する非一時的コンピュータ可読媒体によってなど、1つまたは複数の構成要素またはそのサブシステムによって)、実施され得る方法を提示する。追加的または代替的に、方法500は他の任意の構成およびシステム内で実施することができる。
【0082】
[0096] 方法500ならびに本明細書に開示される他のプロセスおよび方法は、ブロック502~504のうちの1つまたは複数によって示されるように、1つまたは複数の操作、機能、または動作を含み得る。ブロックは順番に示されているが、これらのブロックは、並行して、および/または本明細書に記載されているものとは異なる順番で実行されてもよい。また、様々なブロックは、より少ないブロックに結合されても、追加のブロックに分割されても、および/または所望の実践形態に基づいて除去されてもよい。
【0083】
[0097] さらに、方法500ならびに本明細書に開示される他のプロセスおよび方法について、フローチャートは、本実践形態の1つの可能な実践形態の機能および操作を示す。これに関して、各ブロックは、モジュール、セグメント、またはプロセス内の特定の論理機能またはステップを実践するためにプロセッサによって実行可能な1つまたは複数の命令を含むプログラムコードの一部を表すことができる。プログラムコードは、例えばディスクまたはハードドライブを含む記憶装置など、任意の種類のコンピュータ可読媒体に記憶することができる。コンピュータ可読媒体は、例えば、レジスタメモリ、プロセッサキャッシュ、およびランダムアクセスメモリ(RAM)のように短期間データを記憶するコンピュータ可読媒体など、非一時的コンピュータ可読媒体を含むことができる。コンピュータ可読媒体はまた、例えば、読み取り専用メモリ(ROM)、光ディスクまたは磁気ディスク、コンパクトディスク読み取り専用メモリ(CD?ROM)のような、二次的または持続的長期記憶装置などの非一時的媒体を含み得る。コンピュータ可読媒体はまた、他の任意の揮発性または不揮発性記憶システムでもあり得る。コンピュータ可読媒体は、例えばコンピュータ可読記憶媒体、または有形記憶装置と見なすことができる。さらに、方法500ならびに本明細書に開示される他のプロセスおよび方法に関して、図5の各ブロックは、プロセス内の特定の論理機能を実行するように配線されている回路を表すことができる。
【0084】
[0098] ブロック502において、方法500は、送信機と第1および第2の受信機とを含むLIDAR装置(例えば、LIDAR装置100)からコントローラによって、乗り物の周囲の環境の走査を受信することを含む。
【0085】
[0099] より具体的には、上述のように、コントローラは、光を環境に発するようにLIDAR装置100を操作することができる。また、コントローラは、反射光の検出を表すデータをLIDAR装置100から受信することができる。そして、検出された光ビームを、放射光ビームと比較することによって、コントローラは、環境内の1つまたは複数の物体の少なくとも1つの態様を決定することができる。
【0086】
[0100] 例えば、複数の光ビームがLIDAR装置100の送信機によって発せられた時間と、LIDAR装置100の1つまたは複数の受信機が反射光を検出した時間とを比較することによって、LIDAR装置100と環境内の物体との間の距離を決定することができる。他の例では、形状、色、材料等などの態様もまた、放射光と検出光との間の様々な比較に基づいて決定することができる。
【0087】
[0101] この構成では、コントローラは、LIDAR装置100からのデータに基づいて環境の三次元(3D)表現を決定することができる。例えば、三次元表現は、LIDAR装置100からのデータに基づいて3D点群としてコントローラによって生成されてもよい。3D群の各点は、例えば、反射光パルスと関連付けられてもよい。このように、コントローラは、環境またはその一部の3D表現を(例えば、連続的にまたは時々)生成することができる。
【0088】
[0102] ブロック504において、方法500は次に、少なくともLIDAR装置から受信した環境の走査に基づいて、コントローラによって乗り物を操作することを含む。
【0089】
[0103] 例として、乗り物は自律モードで操作されてもよい。この例では、コントローラは、とりわけ障害物を回避することによって安全に乗り物を誘導する(例えば、速度、方向等を調整する)ために3D表現を利用することができる。例えば、障害物または物体は、画像処理アルゴリズムまたは他のコンピューティング方法を使用して3D表現を分析し、さまざまな障害物または物体を検出および/または識別することによって検出および/または識別することができる。別の例として、乗り物は、部分的自律モードまたは手動モードで操作されてもよい。この例では、乗り物は、乗り物内のディスプレイまたはスピーカに環境内の1つまたは複数の物体に関する情報を示させることによってなど、その存在または様々な物体までの距離、あるいは道路状況(例えば、街路灯、道路標識等)の変化について、乗り物の運転者またはオペレータに知らせることができる。他の例も可能である。
【0090】
[0104] 次に図6は、LIDAR装置200から受信した環境600の走査に基づく乗り物400の操作例を示す。本開示によれば、乗り物のコントローラは、例えば道路標識602および乗り物604などの遠方の物体を検出および識別するために、LIDAR装置200の第1の受信機210から受信したデータを使用し得る。これに関して、コントローラは、そのデータに基づいて、道路標識602が、所望の目的地に到着するために乗り物400が理想的に取るべき出口を表していると判断することができる。その判断を下すのに応答して、コントローラは次に、車線1での走行から車線2での走行に切り替えるように乗り物400を操作することができる。
【0091】
[0105] 実用においては、コントローラは、環境600の3D表現内の車線表示を認識することによってこれらの車線を区別することができる。例えば、乗り物のコントローラは、車線1を車線2から分離する近くの車線表示606を検出および識別するために、LIDAR装置200の第2の受信機212から受信したデータを使用し得る。さらに、車線を変更するように乗り物を操作する前に、コントローラは、物体を検出および識別するために環境を走査してもよく、その結果、コントローラはそれらの検出/識別された物体を回避しながら車線を変更するように乗り物400を操作するやり方で乗り物400を操作することができる。
【0092】
[0106] 例えば、コントローラは、近くの乗り物608を検出し識別するためにLIDAR装置200の第2の受信機212から受信したデータを使用することができ、また前述のように、より遠くの乗り物604を検出し識別するためにLIDAR装置200の第1の受信機210から受信したデータを使用することができる。これらの検出/識別に基づいて、コントローラは、乗り物604および608を回避しながら乗り物400を車線1での走行から車線2での走行に切り替えるように操作するやり方で乗り物400を操作することができる。他の説明図も可能である。
【0093】
V.乗り物の構成例
[0107] 最後に、図7は、ある実施形態の例による乗り物700の簡略ブロック図である。乗り物700は乗り物400と同様であり得、LIDAR装置100と同様のLIDAR装置を含み得る。さらに、乗り物700は、方法500などの本明細書中の機能および方法を実行するように構成され得る。図示のように、乗り物700は、推進システム702、センサシステム704、制御システム706(コントローラ706とも呼ばれる)、周辺機器708、およびコンピュータシステム710を含む。他の実施形態では、乗り物700はより多くの、より少ない、または異なるシステムを含み得、各システムはより多くの、より少ない、または異なる構成要素を含み得る。
【0094】
[0108] 加えて、示されているシステムおよび構成要素は、任意の数の方法で組み合わせるまたは分割することができる。例えば、制御システム706およびコンピュータシステム710は、様々な操作に従って乗り物700を操作する単一のシステムに組み合わせることができる。
【0095】
[0109] 推進システム702は、乗り物700に動力運動を提供するように構成することができる。図示のように、推進システム702は、エンジン/モータ718、エネルギー源720、トランスミッション722、および車輪/タイヤ724を含む。
【0096】
[0110] エンジン/モータ718は、内燃機関、電気モータ、蒸気機関、およびスターリングエンジンの任意の組み合わせであり得るかまたはそれらの任意の組み合わせを含み得る。他のモータおよびエンジンも同様に可能である。いくつかの実施形態では、推進システム702は複数の種類のエンジンおよび/またはモータを含み得る。例えば、ガソリン-電気ハイブリッド車は、ガソリンエンジンと電気モータとを含むことができる。他の例も可能である。
【0097】
[0111] エネルギー源720は、エンジン/モータ718に全体的にまたは部分的に動力を供給するエネルギー源であり得る。すなわち、エンジン/モータ918は、エネルギー源720を機械的エネルギーに変換するように構成され得る。エネルギー源720の例には、ガソリン、ディーゼル、プロパン、他の圧縮ガス系燃料、エタノール、太陽電池パネル、電池、および他の電力源が含まれる。エネルギー源720は、追加的または代替的に、燃料タンク、電池、コンデンサ、および/またはフライホイールの任意の組み合わせを含み得る。いくつかの実施形態では、エネルギー源720は、乗り物700の他のシステムにもエネルギーを供給することができる。
【0098】
[0112] トランスミッション722は、エンジン/モータ718から車輪/タイヤ724に機械的動力を伝達するように構成することができる。このために、トランスミッション722は、ギアボックス、クラッチ、差動装置、駆動シャフト、および/または他の要素を含むことができる。トランスミッション722が駆動シャフトを含む実施形態では、駆動シャフトは、車輪/タイヤ724に結合されるように構成されている1つまたは複数のアクスルを含むことができる。
【0099】
[0113] 乗り物700の車輪/タイヤ724は、一輪車、二輪車/オートバイ、三輪車、または車/トラックの四輪形式を含む様々な形式で構成することができる。6つ以上の車輪を含むものなど、他の車輪/タイヤ形式も同様に可能である。いずれの場合も、車輪/タイヤ724は、他の車輪/タイヤ724に対して差動的に回転するように構成されてもよい。いくつかの実施形態では、車輪/タイヤ724は、トランスミッション722に固定的に取り付けられる少なくとも1つの車輪と、駆動面と接触する可能性のある車輪のリムに結合される少なくとも1つのタイヤとを含み得る。車輪/タイヤ724は、金属とゴムの任意の組み合わせ、または他の材料の組み合わせを含み得る。推進システム702は、追加的または代替的に、示されたもの以外の構成要素を含み得る。
【0100】
[0114] センサシステム704は、乗り物700が配置されている環境に関する情報を感知するように構成された多数のセンサ、ならびにセンサの位置および/または向きを修正するように構成された1つまたは複数のアクチュエータ736を含み得る。図示のように、センサシステム704のセンサは、全地球測位システム(GPS)726、慣性測定ユニット(IMU)728、RADARユニット730、レーザ距離計および/またはLIDARユニット732、ならびにカメラ734を含む。センサシステム704は、例えば、乗り物700の内部システム(例えば、Oモニタ、残量計、エンジンオイル温度等)を監視するセンサを含む追加のセンサを同様に含み得る。他のセンサも可能である。
【0101】
[0115] GPS726は、乗り物700の地理的位置を推定するように構成された任意のセンサ(例えば位置センサ)であり得る。この目的のために、GPS726は地球に対する乗り物700の位置を推定するように構成されるトランシーバを含み得る。GPS726は他の形態をとってもよい。
【0102】
[0116] IMU728は、慣性加速度に基づいて乗り物700の位置および向きの変化を感知するように構成されたセンサの任意の組み合わせであり得る。いくつかの実施形態では、センサの組み合わせは、例えば、加速度計およびジャイロスコープを含み得る。他のセンサの組み合わせも可能である。
【0103】
[0117] RADARユニット730は、無線信号を使用して乗り物700が配置されている環境内の物体を感知するように構成された任意のセンサであり得る。いくつかの実施形態では、物体を感知することに加えて、RADARユニット730は、物体の速度および/または進行方向を感知するようにさらに構成されてもよい。
【0104】
[0118] 同様に、レーザ距離計またはLIDARユニット732は、レーザを使用して乗り物700が配置されている環境内の物体を感知するように構成された任意のセンサであり得る。例えば、LIDARユニット732は、1つまたは複数のLIDAR装置を含んでもよく、そのうちの少なくともいくつかは本明細書に開示されたLIDAR装置100の形態をとってもよい。
【0105】
[0119] カメラ734は、乗り物700が位置する環境の画像を取り込むように構成された任意のカメラ(例えば、スチルカメラ、ビデオカメラ等)でよい。この目的のために、カメラは上記のいずれの形態をとってもよい。センサシステム704は、追加的または代替的に、示されたもの以外の構成要素を含み得る。
【0106】
[0120] 制御システム706は、乗り物700および/またはその構成要素の動作を制御するように構成することができる。この目的のために、制御システム706は、操舵ユニット738、スロットル740、制動ユニット742、センサ融合アルゴリズム744、コンピュータビジョンシステム746、ナビゲーションまたは経路設定システム748、および障害物回避システム750を含み得る。
【0107】
[0121] 操舵ユニット738は、乗り物700の進行方向を調整するように構成された機構の任意の組み合わせとすることができる。スロットル740は、エンジン/モータ718の動作速度、ひいては乗り物700の速度を制御するように構成された機構の任意の組み合わせとすることができる。制動ユニット742は乗り物700を減速するように構成された機構の任意の組み合わせとすることができる。例えば、制動ユニット742は、車輪/タイヤ724の速度を落とすために摩擦を使用することができる。別の例として、制動ユニット742は、車輪/タイヤ724の運動エネルギーを電流に変換することができる。制動ユニット742は、他の形態をとってもよい。
【0108】
[0122] センサ融合アルゴリズム744は、センサシステム704からのデータを入力として受け取るように構成されたアルゴリズム(またはアルゴリズムを格納するコンピュータプログラム製品)とすることができる。データは、例えば、センサシステム704のセンサで感知された情報を表すデータを含み得る。センサ融合アルゴリズム744は、例えば、カルマンフィルタ、ベイジアンネットワーク、本明細書の方法の機能のいくつかのためのアルゴリズム、または任意の他のアルゴリズムを含み得る。センサ融合アルゴリズム744はさらに、例えば、乗り物700が配置されている環境内の個々の物体および/または特徴の評価、特定の状況の評価、および/または特定の状況に基づいて考えられる衝突の評価を含む、センサシステム704からのデータに基づいて様々な査定を提供するように構成され得る。他の査定も可能である。
【0109】
[0123] コンピュータビジョンシステム746は、例えば交通信号や障害物を含む、乗り物700が配置されている環境内の物体および/または特徴を識別するために、カメラ734によってキャプチャされた画像を処理および分析するように構成される任意のシステムであり得る。この目的のために、コンピュータビジョンシステム746は、物体認識アルゴリズム、ストラクチャー・フロム・モーション(SFM)アルゴリズム、ビデオトラッキング、または他のコンピュータビジョン技術を使用することができる。いくつかの実施形態では、コンピュータビジョンシステム746はさらに、環境のマッピング、物体の追跡、物体の速度の推定等を行うように構成することができる。
【0110】
[0124] ナビゲーションおよび経路設定システム748は、乗り物700の運転経路を決定するように構成された任意のシステムであり得る。ナビゲーションおよび経路設定システム748は、乗り物700の動作中に運転経路を動的に更新するようにさらに構成され得る。いくつかの実施形態では、ナビゲーションおよび経路設定システム748は、乗り物700の運転経路を決定するために、センサ融合アルゴリズム744、GPS726、LIDARユニット732、および1つまたは複数の所定のマップからのデータを組み込むように構成され得る。
【0111】
[0125] 障害物回避システム750は、乗り物700が配置されている環境内の障害物を識別、評価、および回避または別の方法で上手く通り抜けるように構成された任意のシステムとすることができる。制御システム706は、追加的または代替的に、示されたもの以外の構成要素を含み得る。
【0112】
[0126] 周辺機器708は、乗り物700が外部センサ、他の乗り物、外部コンピューティング装置、および/またはユーザと対話することを可能にするように構成され得る。この目的のために、周辺機器708は、例えば、無線通信システム752、タッチスクリーン754、マイクロフォン756、および/またはスピーカ758を含み得る。
【0113】
[0127] 無線通信システム752は、直接または通信ネットワークを介して、1つまたは複数の他の乗り物、センサ、または他のエンティティに無線式に結合するように構成された任意のシステムであり得る。この目的のために、無線通信システム752は、直接または通信ネットワークを介して、他の乗り物、センサ、サーバ、または他のエンティティと通信するためのアンテナおよびチップセットを含み得る。一般に、チップセットまたは無線通信システム752は、とりわけ、ブルートゥース、IEEE802.11(いずれかのIEEE802.11改訂を含む)に記載の通信プロトコル、セルラー技術(GSM、CDMA、UMTS、EV?DO、WiMAX、またはLTEなど)、Zigbee、専用短距離通信(DSRC)、および無線周波数識別(RFID)通信などの無線通信(たとえば、プロトコル)の1つまたは複数のタイプに従って通信するように配置され得る。無線通信システム752は他の形態も取り得る。
【0114】
[0128] タッチスクリーン754は、乗り物700にコマンドを入力するためにユーザによって使用され得る。この目的のために、タッチスクリーン754は、とりわけ、静電容量感知、抵抗感知、または表面弾性波プロセスを介してユーザの指の位置および動きの少なくとも一方を感知するように構成され得る。タッチスクリーン754は、タッチスクリーン表面に対して平行または平面方向、タッチスクリーン表面に垂直な方向、またはその両方の指の動きを感知することが可能であり得、またタッチスクリーン表面に加えられる圧力のレベルを感知することも可能であり得る。タッチスクリーン754は、1つまたは複数の半透明または透明絶縁層と、1つまたは複数の半透明または透明導電層とから形成されてもよい。タッチスクリーン754は他の形態も取り得る。
【0115】
[0129] マイクロフォン756は、乗り物700のユーザから音声(例えば、ボイスコマンドまたは他の音声入力)を受信するように構成されてもよい。同様に、スピーカ758は、乗り物700のユーザに音声を出力するように構成されてもよい。周辺機器708は、追加的にまたは代替的に、示されたもの以外の構成要素を含んでもよい。
【0116】
[0130] コンピュータシステム710は、推進システム702、センサシステム704、制御システム706、および周辺機器708のうちの1つまたは複数にデータを送信し、からデータを受信し、と対話し、および/または、を制御するように構成され得る。このために、コンピュータシステム710は、システムバス、ネットワーク、および/または他の接続機構(図示せず)によって推進システム702、センサシステム704、制御システム706、および周辺機器708のうちの1つまたは複数に通信可能にリンクされ得る。
【0117】
[0131] 一例では、コンピュータシステム710は、燃料効率を改善するためにトランスミッション722の動作を制御するように構成されてもよい。別の例として、コンピュータシステム710は、カメラ734に環境の画像をキャプチャさせるように構成されてもよい。さらに別の例として、コンピュータシステム710は、センサ融合アルゴリズム744に対応する命令を記憶し実行するように構成されてもよい。さらに別の例として、コンピュータシステム710は、LIDARユニット732を使用して乗り物700の周囲の環境の3D表現を決定するための命令を記憶し実行するように構成されてもよい。他の例も可能である。したがって、コンピュータシステム710は、LIDARユニット732のコントローラとして機能し得る。
【0118】
[0132] 示されるように、コンピュータシステム710は、プロセッサ712およびデータ記憶装置714を含む。プロセッサ712は、1つまたは複数の汎用プロセッサおよび/または1つまたは複数の専用プロセッサを含むことができる。プロセッサ712が2つ以上のプロセッサを含む限り、そのようなプロセッサは別々にまたは組み合わせて動作することができる。データ記憶装置714は、光学式、磁気式、および/または有機式記憶装置などの1つまたは複数の揮発性および/または1つまたは複数の不揮発性記憶構成要素を含み得、データ記憶装置714はプロセッサ712と全体的にまたは部分的に一体化されてもよい。
【0119】
[0133] いくつかの実施形態では、データ記憶装置714は、様々な乗り物機能(例えば方法500等)を実行するためにプロセッサ712によって実行可能な命令216(例えば、プログラム論理)を含み得る。データ記憶装置714は、推進システム702、センサシステム704、制御システム706、および/または周辺機器708のうちの1つまたは複数にデータを送信し、からデータを受信し、と対話し、および/または、を制御するための命令を含む追加の命令も含み得る。コンピュータシステム710は、追加的または代替的に、示されたもの以外の構成要素を含み得る。
【0120】
[0134] 示されるように、乗り物700は電源760をさらに含み、電源760は、乗り物700の構成要素の一部または全部に電力を供給するように構成することができる。この目的のために、電源760は、例えば、充電式リチウムイオン電池または鉛蓄電池を含むことができる。いくつかの実施形態では、電池の1つまたは複数のバンクは電力を供給するように構成されることができる。他の電源材料および構成も同様に可能である。いくつかの実施形態では、電源760およびエネルギー源720は、いくつかの全電気自動車のように、1つの構成要素として一緒に実装され得る。
【0121】
[0135] いくつかの実施形態では、乗り物700は、示されているものに加えてまたはその代わりに1つまたは複数の要素を含むことができる。例えば、乗り物700は、1つまたは複数の追加のインターフェースおよび/または電源を含み得る。他の追加の構成要素も同様に可能である。そのような実施形態では、データ記憶装置714は、追加の構成要素を制御および/またはそれと通信するためにプロセッサ712によって実行可能な命令をさらに含み得る。
【0122】
[0136] さらにまた、構成要素およびシステムのそれぞれは乗り物700に一体化されるように示されているが、いくつかの実施形態において、1つまたは複数の構成要素またはシステムは、有線または無線接続を用いて乗り物700に取り外し可能に取り付けられるかまたは別の方法で(機械的または電気的に)接続することができる。乗り物700は他の形態をとってもよい。
【0123】
VI.結論
[0137] 図に示される特定の構成は限定として見るべきではない。他の実践形態が与えられた図に示される各要素よりも多いまたは少ない要素を含んでもよいことを理解すべきである。さらに、示される要素のいくつかは組み合わせるまたは省略することができる。なおもさらに、例示的な実践形態は、図に示されない要素を含んでもよい。
【0124】
[0138] さらに、本明細書中、様々な態様および実践形態が開示されているが、他の態様および実践形態が当業者には明らかであろう。本明細書に開示された様々な態様および実践形態は例示を目的としており、限定を意図するものではなく、その真の範囲および趣旨は以下の特許請求の範囲によって示される。本明細書に示される主題の趣旨および範囲から逸脱することなく、他の実践形態が使用されてもよく、また他の変更がなされてもよい。一般的に本明細書に記載されまた図に示されるような本開示の態様は、多様な異なる構成で配置、置換え、組合せ、分離および設計可能であり、その全ては本明細書中で考えられていることは容易に理解されよう。
図1
図2A
図2B
図2C
図3A
図3B
図3C
図4A
図4B
図4C
図4D
図4E
図5
図6
図7