(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-14
(45)【発行日】2022-07-25
(54)【発明の名称】ナノファイバー集積体
(51)【国際特許分類】
D04H 3/16 20060101AFI20220715BHJP
D01D 5/08 20060101ALI20220715BHJP
【FI】
D04H3/16
D01D5/08 C
(21)【出願番号】P 2021010985
(22)【出願日】2021-01-27
(62)【分割の表示】P 2019051961の分割
【原出願日】2019-03-19
【審査請求日】2021-02-22
(73)【特許権者】
【識別番号】516067601
【氏名又は名称】エム・テックス株式会社
(74)【代理人】
【識別番号】110000213
【氏名又は名称】弁理士法人プロスペック特許事務所
(72)【発明者】
【氏名】曽田 浩義
(72)【発明者】
【氏名】滝川 裕弘
【審査官】川口 裕美子
(56)【参考文献】
【文献】特許第6349019(JP,B2)
【文献】国際公開第2019/004407(WO,A1)
【文献】国際公開第2017/142021(WO,A1)
【文献】特表2017-515010(JP,A)
【文献】国際公開第2019/049866(WO,A1)
【文献】Wei WU, et al. ,Study onproduction of flocculating nanofiber and its application for ultra-precisionabrasive machining.,Taylor & Francis-Journal of Advances in Materials &Processing Technologies.,2018年04月03日,416-430
【文献】呉 魏ら,ポリプロピレンナノファイバー不織布の空気フィルター特性の予測,精密工学会学術講演会講演論文集(2019年度精密工学会春季大会),2019年03月01日,2019S 巻,p. 333-334
(58)【調査した分野】(Int.Cl.,DB名)
D04H 3/16
D01D 5/08
(57)【特許請求の範囲】
【請求項1】
以下の構成要件を備えたことを特徴とするナノファイバー集積体。
(1)捕集されたナノファイバー集積体の繊維径の数量分布において最も多く含まれる繊維径である中心繊維径dが、1000≦d≦2500(単位:nm)であり、
(2)「かさ密度」ρが、ρ≦0.020(単位g/cm
3)であり、
(3)
JISに定められている粘度グレードISOVG22の20℃の油に対する油吸着能力OARが、OAR≧40(単位:倍)であり、
(4)
JISに定められている粘度グレードISOVG22の20℃の油に対する油吸着保持能力OKRが、OKR≧40(単位:倍)であり、
(5)ナノファイバー集積体の中心繊維径dより太い径の繊維分布量が、中心繊維径dより細い径の繊維分布量より多い。
【請求項2】
請求項1に記載されたナノファイバー集積体であって、
原料がポリプロピレンであることを特徴とするナノファイバー集積体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タンカー等からの廃油や、レストラン等での使用済廃棄油等の廃油の捕集に適したナノファイバー集積体に関する。特に、本発明は、溶液吐出口から吐出される加熱ポリマー溶融液又は溶剤に溶解したポリマー溶解液(以下、「原料溶液」と称することもある)に対して、ガス吐出口から高温高圧ガスを吐出して、原料溶液を微細径繊維状に延伸し、ナノファイバー集積体として捕集するナノファイバー集積体の製造方法により製造されたナノファイバー集積体に関する。
【0002】
本明細書において、夫々の用語は、以下の通りの意味として用いている。
【0003】
そもそも、「ナノ」は度量衡の物理単位で、1n=10-9であり、1000nm以上はミクロンメータ(μm)の領域であるので、線径が1000nmの繊維をナノファイバーとすることは正確ではない。しかし、本明細書においては、中心繊維径が1000nmを超える繊維であっても、本発明に係るナノファイバー集積体を構成するファイバーの呼称として「ナノファイバー」なる用語を用いる。
【0004】
従って、本発明においては、溶液吐出口から吐出される加熱ポリマー溶融液又は溶剤に溶解したポリマー溶解液に対して、ガス吐出口から高温高圧ガスを吐出して微細径繊維状に延伸することにより得られる微細繊維群の繊維径は数10nm~数1000nmに亘っており、中心繊維径が1000nm~2500nmであっても「ナノファイバー」として用語を用いている。本発明では、例えば中心繊維径1500nmのナノファイバーと、定量的に数値を限定した「ナノファイバー」として使用している。
【0005】
本明細書において「ナノファイバー集積体」との用語は、溶液吐出口から吐出される加熱ポリマー溶融液又は溶剤に溶解したポリマー溶解液に対して、ガス吐出口から高温高圧ガスを吐出して線状の繊維流(以降この繊維流をナノファイバー流と呼ぶ)とし生成・延伸された微細径繊維を捕集して得られる集積集合体を意味する。
【0006】
本明細書において、ナノファイバーの「生成・延伸中」との用語は、溶液吐出口から吐出された液状溶液(原料溶液)が、吐出された高温高圧ガスの風力で吹き飛ばされ、高温高圧ガスの風力により溶液状態から線状に生成され、高温高圧ガスの風力により更に微細径繊維に延伸されナノファイバー微細径繊維として生成されている領域中にあることを意味するものとして用いる。高温高圧ガスはその吐出口から遠ざかるに従い、空間に広がるため吐出口から遠ざかるに従い延伸する力が下がり、温度も下がるので細径化の延伸作用がなくなる。この細径化の延伸作用が及ぶ領域をナノファイバーの「生成・延伸中」という領域を指すものとして用いる。
【0007】
本明細書において「立体的に攪拌」とは、高温高圧ガス吐出口と原料溶液の吐出口からなるナノファイバー吐出装置により吐出されて生成・延伸中のナノファイバー流に対して2次的な高圧エアを吐出することにより、延伸中の繊維の延伸を抑制してナノファイバー集積体の中心繊維径より太い繊維径のナノファイバーの生成を増やし、同時にナノファイバー流に乱流を生じさせて、ナノファイバー繊維間を3次元方向で立体的に攪拌させる動作を意味する。
【0008】
本明細書において、ナノファイバー集積体の「中心繊維径」とは、捕集されたナノファイバー集積体の繊維径の数量分布において、中心的に分布する繊維の繊維径であり、そのナノファイバー集積体に最も多く含まれる繊維径を指す。生成されるナノファイバー集積体の「中心繊維径」は、原料溶液の温度、吐出量、吐出速度やガスの温度・圧力等の条件で調整することができる。
【0009】
本明細書において「溶液」又は「原料溶液」との用語は、メルトブロー法での溶液吐出口から吐出される加熱溶融されたポリマー溶融液、及び、乾式吐出法での溶剤に溶解されたポリマー溶解液の両者を指すものとして用いる。
【0010】
本明細書において「油吸着能力(OAR:Oil Adsorption Ratio)」との用語は、ナノファイバー集積体が廃油等の油を吸着する能力であり、単位はg/gの比で表す。
なお、油吸着能力(OAR)の測定は、非特許文献1「排出油防除資材の性能試験基準」に準じ以下の手順による。
(i)所定サイズの対象ナノファイバー集積体の自重m(g)を測定する。
(ii)対象のナノファイバー集積体を、JISに定められている粘度グレードISOVG22の20℃の油に全体を5分間浸漬する。なお、国交省が定める非特許文献1の基準ではB重油を用いて試験することが定められているが、B重油は粘度のバラツキが多く生産管理上の試験油としては適せず、粘度がB重油と同等のJISに定めるISOVG22を用いる。
(iii)対象の(i)を、直径1mmの針金をふるい目が17mmのメッシュ状に編んだ金属網に5分間放置した後、吸油後の対象の集積体の全重量M(g)を測定する。
(iv)油吸着能力(OAR)をOAR=M/mとする。
【0011】
本明細書において「油保持力(OKR:Oil Keeping Ratio)」との用語は、ナノファイバー集積体により吸着した廃油等の油を吸収したまま保持する能力であり、単位はg/gの比で表す。なお、油吸収後の油保持力(OKR)の測定は、非特許文献1「排出油防除資材の性能試験基準」に準じた下記測定法による。(i)所定サイズの対象ナノファイバー集積体の自重m(g)を測定する。(ii)対象のナノファイバー集積体を、JISに定められている粘度グレードISOVG22の20℃の油に全体を5分間浸漬する。なお、国交省が定める非特許文献1の基準ではB重油を用いて試験することが定められているが、B重油は粘度のバラツキが多く生産管理上の試験油としては適せず、粘度がB重油と同等のJISに定めるISOVG22を用いる。(iii)対象の(ii)を、直径1mmの針金をふるい目が17mmのメッシュ状に編んだ金属網に30分間放置した後、対象となるナノファイバー集積体の全重量M’(g)を測定する。(iv)油保持能力(OKR)をOKR=M’/mとする。
【0012】
本明細書において「かさ密度ρ」との用語は、対象となる単位サイズのナノファイバー集積体の自重m(g)であり、当該ナノファイバー集積体の体積V(cm3)とし、「かさ密度」をρ=m/V(g/cm3)として記載する。
【背景技術】
【0013】
ほぼ連続状の微細繊維の不織ウェブを生成・延伸させる技術としては、特許文献1(特開平7-275293号公報)が知られている。特許文献1には、指向性の液体分配性を示し、かつ望ましい物理的完全性を有する吸収性物品用の液体分配層を提供する技術が開示されている。液体分配層は、不織ウェブの繊維がウェブの1つの平らな面にほぼ沿って配列されている、ほぼ連続状の微細繊維の不織ウェブであり、その繊維は親水性に改質される、かまたは親水性である。加えて、液体分配層はウェブの厚さ方向の繊維配列増加勾配だけでなく繊維太さ減少勾配をも有する。更に、液体分配層を製造するのに好適なプロセスも提供する。
【0014】
さらに、油吸着量に優れる油吸着材で、かつ、安全な油吸着材を提供するものとして、特許文献2(特開2013-184095号公報)の開示がある。特許文献2には、ポリプロピレンの繊維径が100~500nmであるナノファイバー積層体であって、ポリプロピレンを高温加熱して溶融し、溶融した前記ポリプロピレンを加圧して紡糸ノズルから紡糸し、紡糸したポリプロピレン繊維を延伸するようにプロピレン繊維と交差する方向に高速高温の気流を吹き付けるとともに、吹き飛ばされたポリプロピレンのナノファイバーを捕集して積層した油吸着材とその製造方法及び製造装置が開示されている。
【0015】
このように特許文献2には、その製造方法及び製造装置に関し、ナノファイバー積層体を捕集装置(ネット)に吹飛ばして捕集する手法が開示されているが、それによって得られたナノファイバー積層体の積層状態や、その他のナノファイバー積層体の好ましい指標については言及されていない。
【0016】
このようなナノファイバー集積体の製造装置においては、溶液吐出口から吐出された液状の溶液が高温高圧ガス吐出口から吐出される高温高圧ガスに吹き飛ばされ、高温高圧ガスの風力により溶液状態から繊維状に生成され、微細径繊維状のファイバー繊維に生成・延伸して捕集装置で捕集する製造方法や製造装置が一般的に知られているが、当該ナノファイバー繊維は高温高圧ガス吐出口の中心延長線付近に集積し易く集積されるため、周辺部に亘って均一な厚さで捕集することは困難である。そのため商用に利用する場合にはナノファイバー集積体をシート状に加工し、例えば油吸着能力の高い油吸着材としたい場合にはシート状のナノファイバー集積体を複数枚積層し各シート状ナノファイバー集積体が剥がれないよう圧着等の加工処理をしなければならないという課題がある。
【先行技術文献】
【特許文献】
【0017】
【文献】特開平7-275293号公報
【文献】特開2013-184095号公報
【非特許文献】
【0018】
【文献】「排出油防除資材の性能試験基準」(昭和59年2月1日付、運輸省船舶局長通達舶査52号
【発明の概要】
【発明が解決しようとする課題】
【0019】
ナノファイバー集積体は、油吸着材、吸音材・防音材、断熱材・保温材、フィルター材等として利用されており用途は当業者には知られている。ナノファイバー集積体を廃油処理に用いる場合には、油吸着能力(OAR)が高いことが望ましい。油吸着能力(OAR)は分かりやすく言えば、ナノファイバー集積体の単位重量(1g)当たり吸着できる油の総重量(g)を表す。この油吸着能力(OAR)は、大きい程多くの油を吸収することができることから、高い油吸着能力(OAR)が求められる。ただし、廃油処理に用いられるナノファイバー集積体にとっては、油吸着能力(OAR)だけが大きければ良い訳ではではない。特に海洋汚染や廃油処理に用いられるナノファイバー集積体では、回収時にも吸着した油を所定時間保持する油保持能力(OKR)も重要な能力として求められる。
【0020】
一般的に乾式吐出法、又はメルトブロー法と呼ばれるナノファイバー集積体の製造方法では、原料溶液を吐出する溶液吐出口および高温高圧ガスを吐出するガス吐出口からなるナノファイバー吐出装置から原料溶液が吐出されて線状の繊維流(この繊維流をナノファイバー流と呼ぶ)として生成・延伸されたナノファイバー繊維は捕集装置で集積捕集される。吐出されたナノファイバー状の繊維は、高温高圧ガス吐出口の吐出方向の延長線上の中心付近に集積し易いために、中心部から周辺部に亘ってほぼ均一な厚さで捕集することは困難である。そのために、商用に供する場合には、ナノファイバーの集積体をシート状に加工し、更に油吸着能力を高めるためには、捕集装置で捕集された複数枚の集積体を積層して圧着する等の加工処理をしなければならないことは既に述べたところである。
【0021】
本発明は、上記課題を解決するものであり、油吸着能力(OAR)と油保持能力(OKR)に優れ、後工程でシート状に加工する必要がないナノファイバー集積体の製造方法、ナノファイバー集積体の製造装置及び油吸着能力の高いナノファイバー集積体を提供しようとするものである。
【課題を解決するための手段】
【0022】
本発明のナノファイバー集積体の製造方法は、原料溶液を吐出する溶液吐出口と高温・高圧ガスを吐出する高温高圧ガス吐出口とを備えたナノファイバー吐出装置によって、前記溶液吐出口から吐出される原料溶液に前記高温高圧ガス吐出口から吐出される高温・高圧ガスを吐出することで、原料溶液が吹き飛ばされてナノファイバー流として吐出され延伸されたナノファイバー繊維を捕集装置により捕集するナノファイバー集積体の製造方法であって、前記ナノファイバー吐出装置と前記捕集装置との間に、追加して高圧ガスを吐出するエアブロー吐出口を配置することにより、前記ナノファイバー吐出装置から吐出されて生成・延伸中のナノファイバー流に対して前記エアブロー吐出口から2次的な高圧エアを吐出して得られるナノファイバーを前記捕集装置で集積捕集することを特徴とする。
【0023】
さらに、本発明のナノファイバー集積体の製造方法は、前記ナノファイバー吐出装置により吐出させて生成・延伸中のナノファイバー流に対して2次的な高圧エアを吐出することにより、前記ナノファイバー流に流れを生じさせて延伸作用を抑制してナノファイバー集積体の中心繊維径より太い繊維径のナノファイバーの生成を増やし、同時に前記ナノファイバー吐出流を立体的に攪拌させることでナノファイバー繊維間を絡ませて得られるナノファイバーを前記捕集装置で集積捕集することを特徴とする。
【0024】
本発明のナノファイバー集積体の製造装置は、原料溶液を吐出する溶液吐出口と高温・高圧ガスを吐出する高温高圧ガス吐出口とを備えたナノファイバー吐出装置と、前記高温高圧ガス吐出口から吐出される高温・高圧ガスにより前記溶液吐出口から吐出される原料溶液をナノファイバー流として生成・延伸して得られるナノファイバーを集積捕集する捕集装置とを具備したナノファイバー集積体の製造装置であって、前記ナノファイバー吐出装置と前記捕集装置との間に、追加して高圧ガスを吐出するエアブロー吐出口を具備し、前記ナノファイバー吐出装置から吐出されて生成・延伸中のナノファイバー流に対して前記エアブロー吐出口から2次的な高圧エアを吐出して得られるナノファイバーを前記捕集装置で集積捕集する構成としたことを特徴とする。
【0025】
さらに、本発明のナノファイバー集積体の製造装置は、前記ナノファイバー吐出装置により吐出される生成・延伸中のナノファイバー流に対して2次的な高圧エアを吐出することにより、前記ナノファイバー流に乱流を生じさせて延伸作用を抑制してナノファイバー集積体の中心繊維径より太い繊維径のナノファイバーの生成を増やし、同時に前記ナノファイバー流を立体的に攪拌させることでナノファイバー繊維間を絡ませて得られるナノファイバーを前記捕集装置で集積捕集することを特徴とする。
【0026】
本発明のナノファイバー集積体は、以下の構成要件を備えたことを特徴とする。
(1)中心繊維径dが、1000≦d≦2500(単位:nm)であり、
(2)「かさ密度」ρが、ρ≦0.020(単位g/cm3)であり、
(3)油吸着能力OARが、OAR≧40(単位:倍)であり、
(4)油吸着保持能力OKRが、OKR≧40(単位:倍)であり、
(5)ナノファイバー集積体の中心繊維径dより細い径の繊維分布量に比べ中心繊維径dより太い径の繊維分布量より多い。
【発明の効果】
【0027】
原料溶液を吐出する溶液吐出口と高温・高圧ガスを吐出する高温高圧ガス吐出口とを備えたナノファイバー吐出装置によってナノフィバー流を吐出し生成・延伸すると、その繊維径は均一には分布しない。所望する中心繊維径を中心とするナノファイバー集積体は原料溶液の温度・吐出量・吐出速度やガスの温度・圧力等必要な条件の下で生成される。ナノファイバーの生成・延伸の機能は複雑で、上述のとおり、吐出されるナノファイバー流は均一な径の繊維ではなく、所望する中心繊維径より細い繊維や所望する中心繊維径より太い繊維も含まれる。しかし、このように所望の中心繊維径のファイバーに加えて、中心繊維径より細い繊維のファイバーや、中心繊維径より太い繊維のファイバーが混在することが、油吸着能力(OAR)及び油吸着能力(OKR)に関係していることが本願の発明により知見されたものである。
【0028】
つまり、所望する中心繊維径のナノファイバーを生成する原料溶液の温度・吐出量・吐出速度やガスの温度・圧力等必要な条件の下で、吐出され生成・延伸中のナノファイバー流にエアブロー吐出口から2次的な高圧エアを吹き付けると、高温高圧ガスの風力で繊維が長く伸ばされて径が細くなる延伸作用を抑制して、所望する中心繊維径より太い径の繊維が増える効果を生む。それと同時に、生成・延伸中のナノファイバー流を乱し、ナノファイバー繊維同士を立体的に絡ませる効果を生み、油吸着能力(OAR)及び油保持力(OKR)を向上させることができる。特に、エアブロー吐出口からの高圧エアの温度を高温高圧ガスの温度より低くした場合には、生成・延伸中のナノファイバー繊維の延伸が大きくなり、太い径の繊維が増える効果が大きくなる。このエアブロー吐出口からの2次的な高圧エアは、比較的低温で常温に近いのが好ましい。
【0029】
さらに、この2次的な高圧エアを吐出するエアブロー吐出口を複数設けると、上記した所望の中心繊維径より太い径の繊維量を増やして油吸着能力(OAR)及び油保持能力(OKR)を向上する効果以外に、ナノファイバー集積体の強度を上げて捕集装置で捕集する集積体の形状の保形性を高め、種々の形状の捕集体に成形できる効果がある。従来技術では、ナノファイバーは高温高圧ガス吐出口の延長線を中心に円形状に集積され、後工程でナノファイバー集積体をシート状に加工しなければならなかったが、本発明では複数のエアブロー吐出により、中心繊維径より太い径の繊維量を増やして油吸着能力(OAR)及び油保持力(OKR)を向上させる効果以外に、風量や方向を制御することで所望する形状のシート状ナノファイバー集積体を得ることができる効果を奏する。
【図面の簡単な説明】
【0030】
【
図1】本発明のナノファイバー集積体の製造方法の概念図
【
図2】本発明のナノファイバー集積体の製造装置におけるナノファイバー吐出装置と2次エアブロー吐出口アセンブル装置を示す斜視図
【
図3】本発明のナノファイバー集積体の製造装置におけるナノファイバー吐出装置と2次エアブロー吐出口アセンブル装置をナノファイバーの捕集装置側から見た正面図
【
図4】本発明のナノファイバー集積体の製造装置のナノファイバーを生成し捕集する部分の全体像を示す図
【
図5】本発明のナノファイバー集積体の製造装置のナノファイバー捕集部分の詳細を説明する斜視図
【
図6】本発明のナノファイバー集積体(ナノファイバーシート)の外観写真
【
図7】本発明のナノファイバー集積体の製造装置の他の実施例の概念図
【
図8】発明のナノファイバー集積体の製造方法及び製造装置で製造が可能なナノファイバー集積体の外観形状の具体例を示す図
【
図9】本発明のナノファイバー集積体の製造装置により、高圧エアブローを停止させた場合と高圧エアブローを稼働した場合とで製造したナノファイバー集積体を比較した繊維径分布図(SEMデータ)
【
図10】本発明のナノファイバー集積体の「かさ密度」の実測データ
【
図11】本発明のナノファイバー集積体のOAR及びOKRの実測データ
【
図12】従来のナノファイバー集積体の製造方法の概念図
【
図13】従来のナノファイバー集積体の製造装置(メルトブロー法)の一実施例の概略説明図
【
図14】従来のナノファイバー集積体の製造装置で製造されたナノファイバー集積体の外観写真
【発明を実施するための形態】
【0031】
以下、図面を用いて本発明のナノファイバー集積体の製造方法、ナノファイバー集積体の製造装置、及び、ナノファイバー集積体をより具体的に説明する。しかし、以下の図面を用いた説明は、あくまでも本発明の一実施例の説明であり、本発明がその実施例によって限定されるものではなく、当業者が容易になし得る変更は、本発明の技術的発明思想に反しない限りは、本発明に含まれるものである。
【0032】
本発明のナノファイバー集積体の製造方法は、溶液吐出口及び高温高圧ガス吐出口から成るナノファイバー吐出装置により、高温高圧ガス吐出口から吐出される高圧ガスにより溶液吐出口から吐出される原料溶液を吹き飛ばしてナノファイバー流とし、生成・延伸して得られるナノファイバーをナノファイバー捕集装置により集積捕集してナノファイバー集積体を製造する製造方法であって、ナノファイバー吐出装置とナノファイバー捕集装置との間にエアブロー吐出口を配置することにより、ナノファイバー吐出装置によって吐出され生成・延伸中のナノファイバー流にエアブロー吐出口から2次的な高圧エアを吐出し、ナノファイバー捕集装置により集積して捕集する構成を特徴とする製造方法である。
【0033】
また、本発明のナノファイバー集積体の製造方法は、エアブロー吐出口を複数備えたことを特徴とする前記ナノファイバー集積体の製造方法である。
【0034】
さらに、本発明のナノファイバー集積体の製造方法は、複数のエアブロー吐出口の少なくとも一つから吐出される高圧エアの吐出方向をナノファイバー吐出装置の高温高圧ガス吐出口の軸線方向に対して角度を調整する角度変更手段を備えた前記ナノファイバー集積体の製造方法である。
【0035】
さらに、本発明のナノファイバー集積体の製造方法は、複数のエアブロー吐出口の少なくとも一つから吐出される高圧エアの送風量を調整する送風量変更手段を備えたことを特徴とする前記ナノファイバー集積体の製造方法である。
【0036】
さらに、本発明のナノファイバー集積体の製造方法は、複数のエアブロー吐出口がナノファイバー吐出装置から吐出され生成・延伸中のナノファイバー流を囲んで円周状に配設したことを特徴とするナノファイバー集積体の製造方法である。
【0037】
さらに、本発明のナノファイバー集積体の製造方法は、前記円周状に配設されたエアブロー吐出口の送風動作を時計回り又は反時計回りに連続的に順番に送風を制御する送風制御手段を備えたことを特徴とするナノファイバー集積体の製造方法である。
【0038】
本発明のナノファイバー製造装置は、原料溶液を吐出する溶液吐出口と高温・高圧ガスを吐出する高温高圧ガス吐出口とを備えたナノファイバー吐出装置と、前記高温高圧ガス吐出口から吐出される高温・高圧ガスにより前記溶液吐出口から吐出される原料溶液を吹き飛ばしてナノファイバー流とし、生成・延伸して得られるナノファイバーを集積・捕集する捕集装置とを具備したナノファイバー集積体の製造装置であって、前記ナノファイバー吐出装置と前記捕集装置との間に、追加して高圧ガスを吐出するエアブロー吐出口を具備し、前記ナノファイバー吐出装置から吐出されて生成・延伸中のナノファイバー流に対して前記エアブロー吐出口から2次的な高圧エアを吐出して得られるナノファイバーを前記捕集装置に集積して捕集する構成としたことを特徴とするナノファイバー集積体の製造装置である。
【0039】
また、本発明のナノファイバー集積体の製造装置は、エアブロー吐出口を複数備えたことを特徴とする前記ナノファイバー集積体の製造装置である。
【0040】
さらに、本発明のナノファイバー集積体の製造装置は、前記複数のエアブロー吐出口の少なくとも一つから吐出される高圧エアの吐出方向をナノファイバー吐出装置の高温高圧ガス吐出口の軸線方向に対して角度を調整する角度変更手段を備えたことを特徴とする前記ナノファイバー集積体の製造装置である。
【0041】
さらに、本発明のナノファイバー集積体の製造装置においては、前記複数のエアブロー吐出口の少なくとも一つから吐出される高圧エアの送風量を調整する送風量変更手段を備えたことを特徴とする前記ナノファイバー集積体の製造装置である。
【0042】
さらに、本発明のナノファイバー集積体の製造装置は、前記複数のエアブロー吐出口をナノファイバー吐出装置から吐出される延伸中のナノファイバー流を囲んで円周状に配設したことを特徴とする前記ナノファイバー集積体の製造装置である。
【0043】
さらに、本発明のナノファイバー集積体の製造装置は、前記複数のエアブロー吐出口をナノファイバー吐出装置から吐出されるナノファイバー流に対して同心円状に配設したことを特徴とする前記ナノファイバー集積体の製造装置である。
【0044】
さらに、本発明のナノファイバー集積体の製造装置は、前記円周状に配設されたエアブロー吐出口の送風動作を時計回り又は反時計回りに連続的に順番に送風を制御する送風制御手段を備えたことを特徴とする前記ナノファイバー集積体の製造装置である。
【0045】
本発明のナノファイバー集積体は、以下の構成要件を備えたナノファイバー集積体であることを特徴とする。
(1)中心繊維径dが、1000≦d≦2500(単位:nm)であり、
(2)「かさ密度」ρが、ρ≦0.020(単位g/cm3)であり、
(3)油吸着能力OARが、OAR≧40(単位:倍)であり、
(4)油吸着保持能力OKRが、OKR≧40(単位:倍)であり、
(5)ナノファイバー集積体の中心繊維径dより太い径の繊維分布量が、中心繊維径dより細い径の繊維分布量より多い
【0046】
さらに、本発明のナノファイバー集積体は、原料がポリプロピレンであることを特徴とするナノファイバー集積体である。
【0047】
以下、さらに図面を参照しながら説明する。本発明は、原料溶液吐出口および高温高圧ガス吐出口からなるナノファイバー吐出装置から吐出される生成・延伸中のナノファイバー流に対し、ナノファイバー吐出装置の下流に配置したエアブロー吐出口から高圧エアを吐出して、生成・延伸中のナノファイバー繊維の細径化延伸作用を抑制すると同時にノファイバー流を立体的に攪拌し捕集装置に至るまでの過程でナノファイバー繊維間を絡ませながら捕集装置の捕集面に集積させることで、空隙率を上げて「かさ密度」が低いナノファイバー集積体をシート状或いはマット状或いはブロック状等の所定形状に集積捕集することで解決を図った。
【0048】
本発明は、乾式紡糸法(溶解液を使用)にもメルトブロー法(溶融原料を使用)にも適用できるものであるが、以下、メルトブロー法を代表例として説明する。一般的には、メルトブロー法と呼ばれるナノファイバーの製造は、
図12の概念図に示す方法で行われる。原料溶液吐出口21から吐出される溶融されたポリマー溶液210に、高温高圧ガス吐出口22から高温高圧ガス220を吐出して(この原料溶液吐出吐出口21と高温高圧ガス吐出吐出口22の組み合わせた装置をナノファイバー吐出装置2という)原料ポリマーを液滴状態からナノファイバー流40を吐出し、ナノファイバーの生成・延伸領域を経て捕集装置9で集積捕集して製造する。
図12の概念図を具体化した製造装置の一例を
図13に示す。
【0049】
図13(A)は、ナノファイバー集積体の製造装置の具体的一例を示す斜視図であり、
図13(B)は、
図13(A)の装置の側面断面図である。ナノファイバー集積体の製造装置50は、ホッパー62、加熱シリンダー63、加熱ヒーター64、スクリュー65、モータ66およびナノファイバー吐出装置2を有している。
【0050】
ホッパー62には、ナノファイバー生成の原料となるペレット状の合成樹脂が投入される。加熱シリンダー63、加熱ヒーター64によって加熱され、ホッパー62から供給された樹脂を溶融させる。スクリュー65は、加熱シリンダー63内に収容されている。スクリュー65は、モータ66によって回転され、溶融樹脂を加熱シリンダー63の先端に送る。樹脂吐出口21と高温高圧ガス吐出口22が収納されている円柱状のナノファイバー吐出装置2には、ガス供給管68を介して高圧ガス供給部(この図には図示していない)が接続されている。ガス供給管68はヒーターを備えており、ガス供給管から供給される高圧ガスを高温に加熱する。ナノファイバー吐出装置2は、高温高圧ガス流に乗るように溶融樹脂を排出する、すなわちナノファイバー流を吐出する。当然のこと、吐出原料として溶解液を用いる乾式紡糸法においては、このような樹脂を溶融する構成は不要となる。ナノファイバー吐出装置2の正面には捕集装置9が配置されていて、この捕集装置9でナノファイバーを集積捕集する。
【0051】
こうして製造されたナノファイバー集積体は、
図14に示すように綿状であり
図12に示すナノファイバー流40の中心部の集積量が多い形状となるので、後の工程でナノファイバー集積体を引き延ばしてシート状にし、そのシートを複数枚積層してナノファイバー積層体として一般的に利用されている。
【0052】
本発明のナノファイバー集積体の製造方法の概念図を
図1に示す。なお、ナノファイバーの生成・延伸の過程では、メルトブロー法の場合も乾式紡糸法の場合も同じ概念図となる。ナノファイバー吐出装置2は、原料溶液吐出口21から吐出される溶融された高分子樹脂材料又は溶解された高分子樹脂材料(原料溶液)に、高温高圧ガス吐出口22から高温高圧ガスを吐出して原料溶液をナノファイバー流40として吐出・延伸してナノファイバーを生成する。この概念図は、従来例における
図12と近似していようにも見えるが、本願発明においては、ナノファイバー吐出装置2から吐出される生成・延伸中のナノファイバー流に対し、延伸中のナノファイバー繊維の延伸作用を抑制すると同時にナノファイバー流を乱してナノファイバー繊維を立体的に攪拌するための高圧エアを2次的に吐出するエアブロー吐出口17を備えたことを特徴とする。このようにして、ナノファイバー吐出装置2から吐出されて流れるナノファイバー流40にエアブロー吐出口17から高圧エアを吐出して交差させると、ナノファイバー流は乱されて生成・延伸中のナノファイバー繊維の延伸作用が抑制され、同時にナノファイバー流を立体的に攪拌して繊維同士を複雑に絡ませることができる。さらに、エアブロー吐出口17を、ナノファイバー流の周りに複数個具備させて、これらエアブロー吐出口からのナノファイバー流の全部または一部を個々に制御して捕集することにより、捕集装置9で所望の形状のナノファイバーシートとして成形捕集できることを目的とした。
【0053】
図2乃至
図5は、
図1に示した本発明のナノファイバー集積体の製造方法の概念図を具体化した製造装置の例で、ナノファイバー吐出装置2とエアブロー吐出口17および捕集装置9との関係が分かるように示した示す図である。
【0054】
図2は、ナノファイバー吐出装置2とエアブロー吐出口17の配置関係を示す斜視図である。
図3は、
図2の斜視図をエアブロー吐出口17取り付け側(
図2の右側)正面からナノファイバー吐出装置2を見た図である。
図2および
図3から分るように、複数のエアブロー吐出口17はナノファイバー吐出装置2の吐出口を取り囲むように配置している。この図にはナノファイバー流40を示していないが、ナノファイバー吐出装置2から吐出されるナノファイバー流40を囲む形でエアブロー吐出口17を配置している。エアブロー吐出口17は保持フレーム19に取り付けて固定され、エアブロー吐出口17のエア吐出角度は角度調整プレート(エアノズル送風角度変更手段)18で高温高圧ガス吐出口22の軸線方向に対して角度を調整する構成としている。
図3の複数のエアブロー吐出口17とそれぞれのエアブロー吐出口17の角度調整プレート18を保持フレーム19で一体化したサブアセンブリーしており、以降このサブアセンブリーしたエアブロー吐出口アセンブル装置170として記すこととする。
【0055】
図4は、
図1で提示した本発明のナノファイバー集積体の製造方法の概念図を具体化したナノファイバー集積体の製造装置の一例を示す図である。
図4は、ナノファイバー吐出装置2、エアブロー吐出口アセンブル装置170および捕集装置9の相対位置関係を示した図で、装置全体を分かり易くするためにそれぞれの装置のサイズと装置間の距離は実寸とは異なって示してある。
【0056】
図4でナノファイバー吐出装置2から吐出されたナノファイバー流40は、エアブロー吐出口アセンブル装置170の中心部空間を流れる。エアブロー吐出口アセンブル装置170に組み込まれている複数のエアブロー吐出口17から吐出されて、高圧エアが生成・延伸中のナノファイバー流40に交差すると、生成・延伸中のナノファイバー繊維に対する延伸作用が抑制され、同時にナノファイバー流が乱されナノファイバー繊維同士が立体的に絡まって捕集装置9で集積捕集される。
【0057】
特に、エアブロー吐出口17から吐出される高圧エアの温度をナノファイバー吐出装置2内の高温高圧ガス吐出口22から吐出される高温高圧ガス220の温度より低くすると、高圧エアが交差した時点で生成・延伸中のナノファイバー繊維の延伸作用は止まり中心繊維径より太い径の繊維量を増やせる効果が期待できる。エアブロー吐出口17から吐出される高圧エアの温度は比較的低く設定され、常温に近い方が望ましい。
【0058】
図4に示す捕集装置9には、捕集手段回転軸4及び掻取り手段回転軸5、捕集手段回転軸4を回転駆動する捕集手段駆動モータと掻取り手段回転軸5を回転駆動する掻取り手段駆動モータ(図示なし)を設けている。捕集手段回転軸4は、90°回転される毎に停止させられ、当該捕集手段回転軸4が停止された直後に掻取り手段回転軸5を360°回転させる回転制御手段(図示なし)を備える。ナノファイバー吐出装置2から吐出されたナノファイバー流40は、エアブロー吐出口アセンブル装置170の中を通り、エアブロー吐出口アセンブル装置170に取り付けられている複数のエアブロー吐出口17から吐出される高圧エアで立体的に攪拌されながら下方位置に停止状態となっている捕集手段3に集積されて捕集される。捕集手段3により集積・捕集されたナノファイバー集積体Fは、捕集手段3がM方向に45°回転し、掻取り手段回転軸5がN方向に回転することにより、掻取り手段回転軸5に取り付けられたU字型の掻取り棒12により掻き落とされる。なお既に上述したように、前記捕集手段駆動モータ、掻取り手段駆動モータ、及び回転制御手段については、本発明の本質に必須のものでないので図示を省略した。
【0059】
図5にナノファイバーの捕集装置9の内部にある捕集手段3の詳細を示す。捕集手段回転軸4には、当該捕集手段回転軸4の軸線方向に11本配列された平行捕集棒3が設けられている。平行捕集棒3の各々の先端には屈曲延長された脱落防止部10が形成されている。
【0060】
また、本実施例の11本からなるナノファイバー捕集手段たる平行捕集棒3は、
図4、5に示すように、捕集手段回転軸4の外周の4方向に設けられている。
【0061】
11本の平行捕集棒3のうち、左右両端に位置する1本ずつの平行捕集棒3には、
図5に示すように、コ字型の所定形状保持部材11が固着されている。当該所定形状保持部材11と前述した脱落防止部10とは、平行捕集棒3で捕集されたナノファイバー集積体Fが回転に伴う遠心力等により、平行捕集棒3の外側にはみ出したり脱落してしまったりすることを防止する。
【0062】
図4に示すように、掻取り手段回転軸5にはU字型の掻取り棒12の両端部が固定されている。捕集手段回転軸4に設けた平行捕集棒3は11本あり平行棒3の間隔は10スペースあるが、両端はコ字型の所定形状保持部材11で固定されているのでU字型の掻取り棒12が回転できるスペースは8スペースとなる。捕集手段3により集積・捕集されたナノファイバー集積体Fを掻取るために、U字型の掻取り棒12は8スペース全てに備える必要はなく8本以下であっても問題はない。
【0063】
当該掻取り棒12は、回転制御手段により掻取り手段回転軸5が360°回転されるとき、平行捕集棒3間の隙間を通過し、11本の平行捕集棒3に捕集され集積されたナノファイバー集積体Fをはぎ落とす。なお、平行捕集棒3からはぎ落とされるナノファイバー集積体Fの下方には、回収容器13が設置されており、平行捕集棒3からはぎ落とされたナノファイバー集積体Fはその自重により回収容器13に自動的に回収される。
【0064】
本実施例では、捕集手段回転軸4の外周の前後上下に平行捕集棒3が配置されたときに、回転制御手段が捕集手段回転軸4の回転駆動を停止させる(
図4の状態)。そして、ナノファイバー吐出装置2の吐出ノズルからナノファイバー流40が吐出されるのは、捕集手段回転軸4の下方に位置する平行捕集棒3に対してのみであり、当該平行捕集棒3がそこから90°回転され水平に配置された状態にあるときに、掻取り手段回転軸5が360°回転され、それに伴い掻取り棒12が平行捕集棒3に捕集されたナノファイバー集積体Fを剥ぎ落とす。そして、剥ぎ落とされたナノファイバー集積体Fは回収容器13に自動回収される。
【0065】
次に、本発明の実施態様であるエアブロー吐出口17、並びに、ナノファイバー吐出装置2から吐出されたナノファイバー流40に対し、生成・延伸中のナノファイバー繊維の延伸作用を抑制し、同時にナノファイバー流40を乱しナノファイバー繊維を立体的に絡ませるエアブロー吐出口アセンブル装置170について
図2~4に基づき以下に詳しく説明する。なお、本実施例のエアブローアセンブル装置170はナノファイバー吐出装置2と捕集装置9の間に設置することが必要であるが、ナノファイバー吐出装置2に付帯して設置しても、独立に設置しても良い。
【0066】
エアブロー吐出口アセンブル装置170に搭載の複数のエアブロー吐出口17は、ナノファイバー吐出装置2から吐出されるナノファイバー流に、その周囲から高圧エアを当てることによりナノファイバー流に外乱を加えて生成・延伸中のナノファイバー繊維の延伸作用を抑制し、同時にナノファイバー流を立体的に乱し繊維同士を複雑に絡ませるため(本図には図示していない)ナノファイバー流40を囲む形で配置している。本実施例では、ナノファイバー流40(本図には図示していない)を囲む形でエアブロー吐出口17を円周上に配置しているが、ナノファイバー流を囲む形であれば必ずしも円周上である必要はない。
【0067】
エアブロー吐出口17は、角度調整プレート18によりエアの吐出角度は高温高圧ガス吐出口の軸線方向に対して角度を調整自在である。角度調整プレート18は、半径方向(ナノファイバー流の吐出流に対して近づく方向或いは遠ざかる方向)にスライド自在に中空円盤型の保持フレーム19に対して装着されている。該エアブロー吐出口17に対しては、高圧エアを供給するための配管等が必要であるが、簡略化のために配管等は図示していない。これらの配管は高圧エアをエア吐出口17まで導けば良いものであり、配管以外にポンプや高圧エア供給のオン/オフ動作を行うソレノイドバルブを設けているが、これも適宜の構成に拠ることが可能であり、本明細書においては詳細の説明は省略する。本発明の実施態様においては、各エアブロー吐出口17の吐出時間の他に各種送風動作を制御する送風制御手段50及びエアノズル17の送風量を電気的に調整する送風量変更手段51を備えている。
【0068】
複数のエアブロー吐出口17を円周状に装着した中空円盤型の保持フレーム19は、ナノファイバー吐出口2の下流側であって、当該吐出口2から吐出されるナノファイバー流40を取り巻くように配置されている。本図には図示しない連結フレームを介してナノファイバー吐出装置2に一体的に構成されている。複数からなるエアブロー吐出口17は、
図2~
図4に示すようにナノファイバー吐出口2の配置を中心にして同心円状に等間隔角度(45°間隔)で8つ配設されているが、勿論、複数のエアブロー吐出口17は、同心円状でなくともよく、45°間隔で8つの配置に限られるものではない。
【0069】
また、保持フレーム19には、各エアブロー吐出口17が角度調整プレート18を介して装着されている。この角度調整プレート18は、ナノファイバー流に対して近づく方向或いは遠ざかる方向、つまり中空円盤型の保持フレーム19上で半径方向にスライド出来る構造としているし、高温高圧ガス吐出口の軸線方向に対してエアブロー吐出口17からの送風方向角度を調整する送風角度変更手段も備えている。本図では、角度調整プレート18の保持フレーム19上で半径方向にスライド機構および送風角度調整手段の調整方法に言及していないが、手動でも制御装置を用い自動で行うことも出来ることは言うまでのない。
【0070】
本発明のナノファイバー集積体の製造方法は、ナノファイバー吐出装置2から吐出されるナノファイバー流40を生成・延伸して捕集装置で集積捕集させてナノファイバー集積体を製造する方法を用いたものであり、ナノファイバー吐出装置2から吐出される生成・延伸中のナノファイバー流40に対し、エアブロー吐出口17から高圧エアを吐出して、生成・延伸中のナノファイバー繊維の延伸作用を抑制し同時にナノファイバー流40を立体的に攪拌させることにより、ナノファイバー繊維間の立体的な絡みを加速させ、ナノファイバー集積体を製造する方法であるが、エアブロー吐出口17からの高圧エアの方向を制御することによりナノファイバー繊維間の立体的な絡みを加速させるだけでなく、ナノファイバーの集積方向を変えて所望の形状のナノファイバー集積体を得ることもできる。
【0071】
図6に本発明の製造装置で製造した正方形シート状のナノファイバー集積体の写真を示す。本図から分るように正方形全面に平均してナノファイバーが集積しており、
図15に示した従来の製造方法で製造した集積体の場合のように中央部に集中していないので、後工程でシート状に成型しなくてもよいことが分かる。
【0072】
エアブロー吐出口17を複数個アセンブリーしたエアブロー吐出口アセンブル装置170のような場合、個々のエアブロー吐出口17もしくはブロック毎または全体で送風動作を時計回り又は反時計回りに連続的に順番に、或いはランダムに送風制御する。この場合の送風制御は、各エアブロー吐出口17の送風のオン・オフ制御でも、送風量の制御でも良い。これにより、複数のエアブロー吐出口17によるエアの制御により、生成・延伸中のナノファイバー繊維の延伸作用を抑制し同時にナノファイバー流40を立体的に攪拌させてナノファイバー繊維間の立体的な絡みを加速させるだけでなく、ナノファイバー流40全体を立体的に攪拌しながら周りから閉じ込めるように回すこともでき、ナノファイバー流を集積したい形状に製造することもできる。これにより、希望する形状のナノファイバー集積体を製造することができる。
【0073】
図7は本発明のナノファイバー製造装置の他の実施例の概念図で、ナノファイバー吐出装置2とナノファイバー集積捕集装置9の間に、ナノファイバー流40を囲んで2組のエアブロー吐出口アセンブル装置171、172を具備した図であり、このようにするとナノファイバー流の立体的な攪拌と集積成形の役割分担をすることができ、ナノファイバー集積形状をさらに自由にコントロールできる。
【0074】
以上のような本実施例のナノファイバー集積体の製造装置によれば、ナノファイバー吐出流40に複数のエアブロー吐出口17より高圧エアを適宜吐出調整することにより、ナノファイバー捕集手段に集積捕集されるナノファイバー集積体Fを
図8に示す正方形、長方形、丸形等の形状に自由に集積捕集することが可能となる。これにより、シート状或いはマット状或いはブロック状の所定形状形成体に成形することが可能である。また、ナノファイバー集積体Fを集積量に関わらず、平行捕集棒3の吹き付け面へ均一に集積させることもできる。
【0075】
図4の本発明の実施例のナノファイバー集積体の製造装置で製造した中心繊維径1500nmのナノファイバー集積体を、走査型電子顕微鏡(SEM)で調べた繊維径の分布データを
図9に示す。この繊維径の測定は、本発明の実施例の製造装置で製造したナノファイバー集積体を約10mm×5mm四方の試験片に切断し、その試験片を構成するナノファイバー集積体の繊維径を測定した。走査型電子顕微鏡(SEM)により、試験片内の異なる300箇所で繊維径の分布を測定し、それらを合計し平均する方法で行った。
【0076】
図9(A)は、比較のために、本発明の実施例の装置を用いて、エアブロー吐出口17の高圧エアの吐出を停止させて製造したナノファイバー集積体の繊維径の分布を示している。
図9(B)は、本発明の実施例として、エアブロー吐出口17の高圧エアを吐出して製造した本発明のナノファイバー集積体の繊維径の分布で、
図9(A)の繊維径分布の違いを対比して示している。
図9(A)、
図9(B)共、1本の棒の横軸の幅はそれぞれ120nm帯域を示し、縦軸は、繊維径1500nmを中心繊維径(一番発生頻度が多い繊維径)として、帯域幅120nm内(1440~1560nm)にある繊維の本数を正規化して1.0とし、他はそれぞれの120nm帯域内にある繊維の発生数(繊維の本数を表すものではなく、当該繊維径の発生の頻度を表す)を比で表した図である。
【0077】
図9(A)と
図9(B)の対比から分るように、エアブロー吐出口17から高圧エアを吐出せずに製造したナノファイバー集積体に比べて、エアブロー吐出口17から高圧エアを吐出して製造した本発明のナノファイバー集積体は繊維径の分布帯域が広がり、特に中心繊維径より太い径の繊維量が多いことが確認された。この比較データは、エアブロー吐出口17から吐出される高圧エアはナノファイバー繊維径の分布帯域を広げ、繊維径が太い径をより多く増やしていることを示唆している。これにより、エアブロー吐出口17から吐出する高圧エアがナノファイバー吐出装置2から吐出されて生成・延伸するナノファイバー繊維の延伸を抑制する作用から得られる効果と考えることができる。つまり延伸細径化の途上で細径化を抑制する2次エア外乱が与えられることにより、延伸による細径化が進まず、太めの繊維径のナノファイバーの生成が増えるのは当然の結果と言える。繊維径が太い繊維が増えるということは、集積体がある意味で骨太になることであり、ナノファイバー繊維間の空間が増えることから集積したナノファイバー集積体が油を吸着する量が増すことに繋がり、本発明のナノファイバー集積体の油吸着能力が高まることが理解できる。
【0078】
本発明のナノファイバー集積体は、中心繊維径よりも太い径の繊維量が増え、且つ太めの繊維同士が立体的に複雑に絡まるので、ナノファイバー繊維間の空間が増えることとなる。このナノファイバー繊維間の空間が増えることは、油を吸収できる空間が増えることに繋がり油吸収能力が増すことと同時に、太い繊維径が増えているので吸収した油を保持する能力の向上も期待できる。つまり、本発明によるナノファイバー製造装置により製造されたナノファイバー集積体は結果的に油吸着能力や油吸着後の油保持能力が向上する効果をもたらす。
【0079】
本発明のナノファイバー集積体は、中心繊維径よりも太い径の繊維の分布量が中心繊維径よりも細い径の繊維の分布量と同等かより多く、ナノファイバー繊維間が立体的に絡まって空隙が増えていることが特徴であるが、量産に際して生産ラインにおいて
図9に示した走査型電子顕微鏡(SEM)で繊維径分布を測定する方法や、ナノファイバー繊維間の空間が増えたことによる空隙率を測定して管理指標とする方法は実用的でないため、本発明においては、その管理指標に変えて「かさ密度」を性能の管理指標として用いることとした。「かさ密度」は重さを体積で割ったもので、繊維径分布や繊維同士の絡まり具合が関係する空隙率はこの「かさ密度」とは反比例の関係があり、「かさ密度」が低いことは空隙率が高いことを示すので、本発明のナノファイバー集積体を表す合理的な管理指標と言える。
【0080】
「かさ密度」は上述したようにナノファイバー集積体の重さm(g)を体積V(cm3)で割ったものであるが、測定方法は定めておく必要があり、本発明では次の測定法により「かさ密度」を定義した。「かさ密度(記号ρとする)」の測定は所定サイズのシート状ナノファイバー集積体で下記により行う。市販されている油吸着材は30cm四方、もしくは50cm四方のシート状が一般的なので、
(i)シート状ナノファイバー集積体を3×3の9四角片に切断分割
(ii)(i)の9片を、1辺の長さプラス1cmの四角底面形状透明ケースに重ねる
(iii)9片のナノファイバー集積体の正味重量W(単位:g)を測定
(iv)(ii)で積み上げた高さH(単位:cm)を測定
(v)1片のナノファイバー面積S(単位:cm2)
(vi)かさ密度ρ=W/(S・H)(単位g/cm3)
【0081】
図10に本発明のナノファイバー集積体の「かさ密度」の測定結果を表にして示す。製造日、製造時間を変え、製造装置を複数用いて、
図7に示す30cm四方のシート状になった中心繊維径1500nmの本発明のナノファイバー集積体を89枚試作し、その全てを測定した結果で、最小値、平均値、最大値および標準偏差を示す。
【0082】
図10を考察すると、中心繊維径1500nmの本発明のナノファイバー集積体は、「かさ密度」が平均値0.012(g/mm
3)、標準偏差が0.002(g/mm
3)と極めて安定して低いことが分かり、本発明のナノファイバー集積体の製造方法、ナノファイバー集積体の製造装置によれば、極めて安定して「かさ密度」が0.020以下の低いナノファイバー集積体を製造できることが分かる。
【0083】
図11は
図10に示した本発明の中心繊維径1500nmの本発明のナノファイバー集積体の油吸着能力(OAR)および油保持能力(OKR)を測定したデータである。本発明のナノファイバー集積体の油吸着能力(OAR)および油保持能力(OKR)は40倍以上で優れ、市販品と比べると格段に高いことが分かる。
【0084】
以上、本発明を詳しく説明したが、本発明のナノファイバー集積体の製造方法および製造装置は、ナノファイバー吐出装置と捕集装置との間に2次的なエアブロー吐出口を備え、ナノファイバー吐出装置から吐出されるナノファイバー流に対し、エアブロー吐出口から高圧エアを吐出して生成・延伸中のナノファイバーの延伸作用を抑制して安定的に「かさ密度」の低いナノファイバー集積体を集積捕集することに特徴がある。また、高圧エアの温度、風量、風力および吐出角度を制御装置で個々またはグループ単位で自動調整することで整形集積捕集できることを特徴とし、本発明のナノファイバー集積体は中心繊維径より太い径の繊維量が多く「かさ密度」が低いことから油吸着能力や油保持能力が高いことが特徴である。
【0085】
本明細書では本発明のナノファイバー集積体の油吸着能力に着目して油吸着材に適用した例で説明したが、本発明のナノファイバー集積体の用途は油吸着材に限られるものではない。本発明のナノファイバー集積体は平均繊維径中心に細い径から太い径に亘り広く分布し特に平均繊維径より太い繊維が広く含まれ、ナノファイバー繊維間が立体的に絡まってナノファイバー繊維間の空間が増えていることが特徴で、本明細書では詳しく説明しなかったが「かさ密度」が低いことや空隙率が高いことは吸音性能や断熱性能にも優れることを意味し、吸音材・防音材、断熱材・保温材はじめ、その他広く知られている極細径繊維の用途に好適な材料であることは言うまでもない。
【符号の説明】
【0086】
2 ナノファイバー吐出装置
3 平行捕集棒(ナノファイバー捕集手段)
4 捕集手段回転軸
5 掻取り手段回転軸
9 ナノファイバー捕集装置
10 脱落防止部
11 所定形状保持部材
12 掻取り棒
13 回収容器
17 エアブロー吐出口
170 エアブロー吐出口アセンブル装置
18 偏向角度調整プレート(エア吐出口の送風角度変更手段)
19 保持フレーム
21 原料溶液吐出口
210 原料溶液
22 高温高圧ガス吐出口
220 高温高圧ガス
40 ナノファイバー吐出装置から吐出されるナノファイバー流
50 送風量変更手段
51 送風制御手段(制御手段)
F ナノファイバー集積体