(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-14
(45)【発行日】2022-07-25
(54)【発明の名称】撮像装置、及び、撮像装置の制御方法
(51)【国際特許分類】
H04N 5/369 20110101AFI20220715BHJP
H04N 5/232 20060101ALI20220715BHJP
H04N 5/374 20110101ALI20220715BHJP
H04N 5/225 20060101ALI20220715BHJP
【FI】
H04N5/369
H04N5/232 290
H04N5/374
H04N5/225 300
H04N5/232 300
(21)【出願番号】P 2019223950
(22)【出願日】2019-12-11
(62)【分割の表示】P 2018539628の分割
【原出願日】2017-09-01
【審査請求日】2020-08-24
(31)【優先権主張番号】P 2016181194
(32)【優先日】2016-09-16
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】特許業務法人酒井国際特許事務所
(72)【発明者】
【氏名】浴 良仁
【審査官】花田 尚樹
(56)【参考文献】
【文献】特開2004-146816(JP,A)
【文献】特開2009-246803(JP,A)
【文献】特開2016-110232(JP,A)
【文献】特開平10-336519(JP,A)
【文献】特開2014-143667(JP,A)
【文献】特表2011-508293(JP,A)
【文献】特開2016-010125(JP,A)
【文献】米国特許出願公開第2016/0165100(US,A1)
【文献】特開2010-283787(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 5/30 - 5/378
H04N 5/222- 5/257
(57)【特許請求の範囲】
【請求項1】
複数の画素が2次元に並んだ撮像画像を出力する撮像部と、
前記撮像画像に基づく画像を用いた所定の処理を実行する処理部と、
前記処理部による処理結果又は前記処理の途中で得られる中間データと、前記撮像画像とを外部へ出力可能な出力部と、
前記処理結果又は前記中間データ、及び、前記撮像画像のうちの少なくとも一方を前記出力部から外部に出力させる出力制御部と、
前記撮像画像の撮像に関する撮像情報を記憶するレジスタを有し、前記撮像情報に従って前記撮像画像の撮像を制御する撮像制御部と、
前記所定の処理の結果を用いて前記撮像情報を算出する撮像情報算出部と
を備え、
前記撮像部と前記処理部とは、単一のチップ内に配置され、
前記単一のチップは、第1のダイと、当該第1のダイに積層された第2のダイとから構成され、
前記撮像部は、1フレーム周期の一部である所定期間内に1フレーム分の前記撮像画像を出力し、
前記処理部は、前記撮像部が前記撮像画像の出力を開始した後、前記所定期間の終了前に、前記撮像画像に基づく画像を用いた前記所定の処理を開始し、
前記撮像制御部と前記撮像情報算出部とは、所定の接続線を介して接続され、
前記撮像情報算出部は、前記撮像情報を、前記所定の接続線を介して、前記撮像制御部の前記レジスタにフィードバックする
撮像装置。
【請求項2】
前記撮像部から出力された前記撮像画像を圧縮して圧縮画像を前記撮像画像に基づく画像として生成する圧縮部をさらに備え、
前記圧縮部は、前記撮像部及び前記処理部と同一の前記チップ内に配置され、
前記圧縮部は、前記撮像部が前記撮像画像の出力を開始した後、前記所定期間の終了前に、前記撮像画像の圧縮を開始し、
前記処理部は、前記圧縮部が前記撮像画像の圧縮を開始した後、当該撮像画像の圧縮を完了する前に、前記圧縮画像を用いた前記所定の処理を開始する
請求項1に記載の撮像装置。
【請求項3】
複数の画素が2次元に並んだ撮像画像を出力する撮像部と、
前記撮像部から出力された前記撮像画像を圧縮して圧縮画像を生成する圧縮部と、
前記圧縮画像を用いた所定の処理として前記撮像画像に基づく画像に対する認識処理の少なくとも一部を実行する処理部と、
前記処理部による処理結果又は前記処理の途中で得られる中間データと、前記撮像画像とを外部へ出力可能な出力部と、
前記処理結果又は前記中間データ、及び、前記撮像画像のうちの少なくとも一方を前記出力部から外部に出力させる出力制御部と
を備え、
前記撮像部と前記圧縮部と前記処理部とは、単一のチップ内に配置され、
前記単一のチップは、第1のダイと、当該第1のダイに積層された第2のダイとから構成され、
前記撮像部は、1フレーム周期の一部である所定期間内に1フレーム分の前記撮像画像を出力し、
前記圧縮部は、前記撮像部が前記撮像画像の出力を開始した後、前記所定期間の終了前に、前記撮像画像の圧縮を開始し、
前記処理部は、前記圧縮部が前記撮像画像の圧縮を開始した後、当該撮像画像の圧縮を完了する前に、前記圧縮画像を用いた前記所定の処理を開始する
撮像装置。
【請求項4】
前記圧縮部は、前記撮像画像の解像度を下げるスケールダウン、及び、前記撮像画像をカラー画像から白黒画像に変換する色変換のうちの少なくとも1つを含む
請求項2又は3に記載の撮像装置。
【請求項5】
前記所定の処理は、前記撮像画像に基づく画像に対する認識処理の少なくとも一部である
請求項1又は2に記載の撮像装置。
【請求項6】
前記出力部及び前記出力制御部は、前記撮像部及び前記処理部と同一の前記チップ内に配置されている
請求項1~5の何れか1項に記載の撮像装置。
【請求項7】
前記第1のダイは、前記撮像部を備え、
前記第2のダイは、前記処理部を備える
請求項1~6の何れか1項に記載の撮像装置。
【請求項8】
前記撮像画像は、前記撮像部の出力に階調処理を行い生成された画像である
請求項1~7の何れか1項に記載の撮像装置。
【請求項9】
前記所定の処理は、ディープラーニングの手法を用いた認識処理である
請求項1~8の何れか1項に記載の撮像装置。
【請求項10】
前記ディープラーニングの手法は、コンボリューショナルニューラルネットワーク(Convolutional Neural Network)である
請求項9に記載の撮像装置。
【請求項11】
前記所定の処理を行うプログラムは、外部からダウンロードされる
請求項1~10の何れか1項に記載の撮像装置。
【請求項12】
複数の画素が2次元に並んだ撮像画像を出力する撮像部と、前記撮像画像に基づく画像を用いた所定の処理を実行する処理部と、前記処理部による処理結果又は前記処理の途中で得られる中間データと、前記撮像画像とを外部へ出力可能な出力部と、前記処理結果又は前記中間データ、及び、前記撮像画像のうちの少なくとも一方を前記出力部から外部に出力させる出力制御部と、前記撮像画像の撮像に関する撮像情報を記憶するレジスタを有し、前記撮像情報に従って前記撮像画像の撮像を制御する撮像制御部と、前記所定の処理の結果を用いて前記撮像情報を算出する撮像情報算出部とを備え、前記撮像部と前記処理部とは、単一のチップ内に配置され、前記単一のチップは、第1のダイと、当該第1のダイに積層された第2のダイとから構成され、前記撮像制御部と前記撮像情報算出部とは、所定の接続線を介して接続された撮像装置の制御方法であって、
前記撮像部が、1フレーム周期の一部である所定期間内に1フレーム分の前記撮像画像を出力し、
前記処理部が、前記撮像部が前記撮像画像の出力を開始した後、前記所定期間の終了前に、前記撮像画像に基づく画像を用いた前記所定の処理を開始し、
前記撮像情報算出部が、前記撮像情報を、前記所定の接続線を介して、前記撮像制御部の前記レジスタにフィードバックする
撮像装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本技術は、撮像装置、及び、電子機器に関し、特に、例えば、ユーザが必要とする情報を出力する撮像装置を、小型に構成することができるようにする撮像装置、及び、電子機器に関する。
【背景技術】
【0002】
画像を撮像する撮像装置として、センサチップ、メモリチップ、及び、DSP(Digital Signal Processor)チップのチップどうしを、複数のバンプで並列に接続した撮像装置が提案されている(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の撮像装置のように、チップどうしをバンプで接続して、撮像装置を構成する場合には、撮像装置の厚みが厚くなり、撮像装置が大型化する。
【0005】
一方、撮像装置を使用するユーザは、その撮像装置で撮像された画像を必要とする場合の他、画像そのものではなく、その画像から得られる情報(メタデータ)を必要とする場合がある。
【0006】
本技術は、このような状況に鑑みてなされたものであり、ユーザが必要とする情報を出力する撮像装置を、小型に構成することができるようにするものである。
【課題を解決するための手段】
【0007】
本技術の撮像装置又は電子機器は、2次元に並んだ複数の画素を備え、画像を取得する撮像部と、前記撮像部の出力に基づく撮像画像に対して認識処理の少なくとも一部を行う認識処理部と、前記認識処理部による前記認識処理の途中で得られる中間データを外部へ出力可能な出力部とを備え、前記撮像部と前記認識処理部とは、単一のチップ内に配置されている。
【発明の効果】
【0008】
本技術によれば、ユーザが必要とする情報を出力する撮像装置を、小型に構成することができる。
【0009】
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
【図面の簡単な説明】
【0010】
【
図1】本技術を適用したディジタルカメラの一実施の形態の構成例を示すブロック図である。
【
図2】撮像装置2の構成例を示すブロック図である。
【
図3】撮像装置2の外観構成例の概要を示す斜視図である。
【
図4】DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【
図5】DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【
図6】DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【
図7】DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理のタイミングの第1の例を説明するタイミングチャートである。
【
図8】DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理のタイミングの第2の例を説明するタイミングチャートである。
【
図9】DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理のタイミングの第3の例を説明するタイミングチャートである。
【
図10】DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理のタイミングの第4の例を説明するタイミングチャートである。
【
図11】DSP32の信号処理としてフュージョン処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【
図12】DSP32の信号処理としてフュージョン処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【
図13】DSP32の信号処理としてフュージョン処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【
図14】DSP32の信号処理としてフュージョン処理が行われる場合の、撮像装置2の処理のタイミングの第1の例を説明するタイミングチャートである。
【
図15】DSP32の信号処理としてフュージョン処理が行われる場合の、撮像装置2の処理のタイミングの第2の例を説明するタイミングチャートである。
【
図16】DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【
図17】DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【
図18】DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【
図19】DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理のタイミングの第1の例を説明するタイミングチャートである。
【
図20】DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理のタイミングの第2の例を説明するタイミングチャートである。
【
図21】DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理のタイミングの第3の例を説明するタイミングチャートである。
【
図22】撮像装置2の他の構成例を示すブロック図である。
【
図23】撮像装置2を使用する使用例を示す図である。
【
図24】車両制御システムの概略的な構成例を示すブロック図である。
【
図25】撮像部の設置位置の一例を示す説明図である。
【発明を実施するための形態】
【0011】
<本技術を適用したディジタルカメラの一実施の形態>
図1は、本技術を適用したディジタルカメラの一実施の形態の構成例を示すブロック図である。
【0012】
なお、ディジタルカメラは、静止画、及び、動画のいずれも撮像することができる。
【0013】
図1において、ディジタルカメラは、光学系1、撮像装置2、メモリ3、信号処理部4、出力部5、及び、制御部6を有する。
【0014】
光学系1は、例えば、図示せぬズームレンズや、フォーカスレンズ、絞り等を有し、外部からの光を、撮像装置2に入射させる。
【0015】
撮像装置2は、例えば、1チップで構成されるCMOS(Complementary Metal Oxide Semiconductor)イメージセンサであり、光学系1からの入射光を受光し、光電変換を行って、光学系1からの入射光に対応する画像データを出力する。
【0016】
また、撮像装置2は、画像データ等を用いて、例えば、所定の認識対象を認識する認識処理、その他の信号処理を行い、その信号処理の信号処理結果を出力する。
【0017】
メモリ3は、撮像装置2が出力する画像データ等を一時記憶する。
【0018】
信号処理部4は、メモリ3に記憶された画像データを用いたカメラ信号処理としての、例えば、ノイズの除去や、ホワイトバランスの調整等の処理を必要に応じて行い、出力部5に供給する。
【0019】
出力部5は、信号処理部4からの画像データやメモリ3に記憶された信号処理結果を出力する。
【0020】
すなわち、出力部5は、例えば、液晶等で構成されるディスプレイ(図示せず)を有し、信号処理部4からの画像データに対応する画像を、いわゆるスルー画として表示する。
【0021】
また、出力部5は、例えば、半導体メモリや、磁気ディスク、光ディスク等の記録媒体を駆動するドライバ(図示せず)を有し、信号処理部4からの画像データやメモリ3に記憶された信号処理結果を記録媒体に記録する。
【0022】
さらに、出力部5は、例えば、外部の装置との間でデータ伝送を行うI/F(Interface)として機能し、信号処理部4からの画像データや、記録媒体に記録された画像データ等を、外部の装置に伝送する。
【0023】
制御部6は、ユーザの操作等に従い、ディジタルカメラを構成する各ブロックを制御する。
【0024】
以上のように構成されるディジタルカメラでは、撮像装置2が、画像を撮像する。すなわち、撮像装置2は、光学系1からの入射光を受光して光電変換を行い、その入射光に応じた画像データを取得して出力する。
【0025】
撮像装置2が出力する画像データは、メモリ3に供給されて記憶される。メモリ3に記憶された画像データについては、信号処理部4によるカメラ信号処理が施され、その結果得られる画像データは、出力部5に供給されて出力される。
【0026】
また、撮像装置2は、撮像によって得られた画像(データ)等を用いて、信号処理を行い、その信号処理の信号処理結果を出力する。撮像装置2が出力する信号処理結果は、例えば、メモリ3に記憶される。
【0027】
撮像装置2では、撮像によって得られた画像そのものの出力、及び、その画像等を用いた信号処理の信号処理結果の出力は、選択的に行われる。
【0028】
<撮像装置2の構成例>
図2は、
図1の撮像装置2の構成例を示すブロック図である。
【0029】
図2において、撮像装置2は、撮像ブロック20及び信号処理ブロック30を有する。撮像ブロック20と信号処理ブロック30とは、接続線(内部バス)CL1,CL2、及び、CL3によって電気的に接続されている。
【0030】
撮像ブロック20は、撮像部21、撮像処理部22、出力制御部23、出力I/F(Interface)24、及び、撮像制御部25を有し、画像を撮像する。
【0031】
撮像部21は、複数の画素が2次元に並んで構成される。撮像部21は、撮像処理部22によって駆動され、画像を撮像する。
【0032】
すなわち、撮像部21には、光学系1(
図1)からの光が入射する。撮像部21は、各画素において、光学系1からの入射光を受光し、光電変換を行って、入射光に対応するアナログの画像信号を出力する。
【0033】
なお、撮像部21が出力する画像(信号)のサイズは、例えば、12M(3968×2976)ピクセルや、VGA(Video Graphics Array)サイズ(640×480ピクセル)等の複数のサイズの中から選択することができる。
【0034】
また、撮像部21が出力する画像については、例えば、RGB(赤、緑、青)のカラー画像とするか、又は、輝度のみの白黒画像とするかを選択することができる。
【0035】
これらの選択は、撮影モードの設定の一種として行うことができる。
【0036】
撮像処理部22は、撮像制御部25の制御に従い、撮像部21の駆動や、撮像部21が出力するアナログの画像信号のAD(Analog to Digital)変換、撮像信号処理等の、撮像部21での画像の撮像に関連する撮像処理を行う。
【0037】
ここで、撮像信号処理としては、例えば、撮像部21が出力する画像について、所定の小領域ごとに、画素値の平均値を演算すること等により、小領域ごとの明るさを求める処理や、撮像部21が出力する画像を、HDR(High Dynamic Range)画像に変換する処理、欠陥補正、現像等がある。
【0038】
撮像処理部22は、撮像部21が出力するアナログの画像信号のAD変換等によって得られるディジタルの画像信号(ここでは、例えば、12Mピクセル又はVGAサイズの画像)を、撮像画像として出力する。
【0039】
撮像処理部22が出力する撮像画像は、出力制御部23に供給されるとともに、接続線CL2を介して、信号処理ブロック30の画像圧縮部35に供給される。
【0040】
出力制御部23には、撮像処理部22から撮像画像が供給される他、信号処理ブロック30から、接続線CL3を介して、撮像画像等を用いた信号処理の信号処理結果が供給される。
【0041】
出力制御部23は、撮像処理部22からの撮像画像、及び、信号処理ブロック30からの信号処理結果を、(1つの)出力I/F24から外部(例えば、
図1のメモリ3等)に選択的に出力させる出力制御を行う。
【0042】
すなわち、出力制御部23は、撮像処理部22からの撮像画像、又は、信号処理ブロック30からの信号処理結果を選択し、出力I/F24に供給する。
【0043】
出力I/F24は、出力制御部23から供給される撮像画像、及び、信号処理結果を外部に出力するI/Fである。出力IF24としては、例えば、MIPI(Mobile Industriy Processor Interface)等の比較的高速なパラレルI/F等を採用することができる。
【0044】
出力I/F24では、出力制御部23の出力制御に応じて、撮像処理部22からの撮像画像、又は、信号処理ブロック30からの信号処理結果が、外部に出力される。したがって、例えば、外部において、信号処理ブロック30からの信号処理結果だけが必要であり、撮像画像そのものが必要でない場合には、信号処理結果だけを出力することができ、出力I/F24から外部に出力するデータ量を削減することができる。
【0045】
また、信号処理ブロック30において、外部で必要とする信号処理結果が得られる信号処理を行い、その信号処理結果を、出力I/F24から出力することにより、外部で信号処理を行う必要がなくなり、外部のブロックの負荷を軽減することができる。
【0046】
撮像制御部25は、通信I/F26及びレジスタ群27を有する。
【0047】
通信I/F26は、例えば、I2C(Inter-Integrated Circuit)等のシリアル通信I/F等の第1の通信I/Fであり、外部(例えば、
図1の制御部6等)との間で、レジスタ27群に読み書きする情報等の必要な情報のやりとりを行う。
【0048】
レジスタ群27は、複数のレジスタを有し、撮像部21での画像の撮像に関連する撮像情報、その他の各種情報を記憶する。
【0049】
例えば、レジスタ群27は、通信I/F26において外部から受信された撮像情報や、撮像処理部22での撮像信号処理の結果(例えば、撮像画像の小領域ごとの明るさ等)を記憶する。
【0050】
レジスタ群27に記憶される撮像情報としては、例えば、ISO感度(撮像処理部22でのAD変換時のアナログゲイン)や、露光時間(シャッタスピード)、フレームレート、フォーカス、撮影モード、切り出し範囲等(を表す情報)がある。
【0051】
撮影モードには、例えば、露光時間やフレームレート等が手動で設定される手動モードと、シーンに応じて自動的に設定される自動モードとがある。自動モードには、例えば、夜景や、人の顔等の各種の撮影シーンに応じたモードがある。
【0052】
また、切り出し範囲とは、撮像処理部22において、撮像部21が出力する画像の一部を切り出して、撮像画像として出力する場合に、撮像部21が出力する画像から切り出す範囲を表す。切り出し範囲の指定によって、例えば、撮像部21が出力する画像から、人が映っている範囲だけを切り出すこと等が可能になる。なお、画像の切り出しとしては、撮像部21が出力する画像から切り出す方法の他、撮像部21から、切り出し範囲の画像(信号)だけを読み出す方法がある。
【0053】
撮像制御部25は、レジスタ群27に記憶された撮像情報に従って、撮像処理部22を制御し、これにより、撮像部21での画像の撮像を制御する。
【0054】
なお、レジスタ群27は、撮像情報や、撮像処理部22での撮像信号処理の結果の他、出力制御部23での出力制御に関する出力制御情報を記憶することができる。出力制御部23は、レジスタ群27に記憶された出力制御情報に従って、撮像画像及び信号処理結果を選択的に出力させる出力制御を行うことができる。
【0055】
また、撮像装置2では、撮像制御部25と、信号処理ブロック30のCPU31とは、接続線CL1を介して、接続されており、CPU31は、接続線CL1を介して、レジスタ群27に対して、情報の読み書きを行うことができる。
【0056】
すなわち、撮像装置2では、レジスタ群27に対する情報の読み書きは、通信I/F26から行う他、CPU31からも行うことができる。
【0057】
信号処理ブロック30は、CPU(Central Processing Unit)31,DSP(Digital Signal Processor)32、メモリ33、通信I/F34、画像圧縮部35、及び、入力I/F36を有し、撮像ブロック10で得られた撮像画像等を用いて、所定の信号処理を行う。
【0058】
信号処理ブロック30を構成するCPU31ないし入力I/F36は、相互にバスを介して接続され、必要に応じて、情報のやりとりを行うことができる。
【0059】
CPU31は、メモリ33に記憶されたプログラムを実行することで、信号処理ブロック30の制御、接続線CL1を介しての、撮像制御部25のレジスタ群27への情報の読み書き、その他の各種の処理を行う。
【0060】
例えば、CPU31は、プログラムを実行することにより、DSP32での信号処理により得られる信号処理結果を用いて、撮像情報を算出する撮像情報算出部として機能し、信号処理結果を用いて算出した新たな撮像情報を、接続線CL1を介して、撮像制御部25のレジスタ群27にフィードバックして記憶させる。
【0061】
したがって、CPU31は、結果として、撮像画像の信号処理結果に応じて、撮像部21での撮像や、撮像処理部22での撮像信号処理を制御することができる。
【0062】
また、CPU31がレジスタ群27に記憶させた撮像情報は、通信I/F26から外部に提供(出力)することができる。例えば、レジスタ群27に記憶された撮像情報のうちのフォーカスの情報は、通信I/F26から、フォーカスを制御するフォーカスドライバ(図示せず)に提供することができる。
【0063】
DSP32は、メモリ33に記憶されたプログラムを実行することで、撮像処理部22から、接続線CL2を介して、信号処理ブロック30に供給される撮像画像や、入力I/F36が外部から受け取る情報を用いた信号処理を行う信号処理部として機能する。
【0064】
メモリ33は、SRAM(Static Random Access Memory)やDRAM(Dynamic RAM)等で構成され、信号処理ブロック30の処理上必要なデータ等を記憶する。
【0065】
例えば、メモリ33は、通信I/F34において、外部から受信されたプログラムや、画像圧縮部35で圧縮され、DSP32での信号処理で用いられる撮像画像、DSP32で行われた信号処理の信号処理結果、入力I/F36が受け取った情報等を記憶する。
【0066】
通信I/F34は、例えば、SPI(Serial Peripheral Interface)等のシリアル通信I/F等の第2の通信I/Fであり、外部(例えば、
図1のメモリ3や制御部6等)との間で、CPU31やDSP32が実行するプログラム等の必要な情報のやりとりを行う。
【0067】
例えば、通信I/F34は、CPU31やDSP32が実行するプログラムを外部からダウンロードし、メモリ33に供給して記憶させる。
【0068】
したがって、通信I/F34がダウンロードするプログラムによって、CPU31やDSP32で様々な処理を実行することができる。
【0069】
なお、通信I/F34は、外部との間で、プログラムの他、任意のデータのやりとりを行うことができる。例えば、通信I/F34は、DSP32での信号処理により得られる信号処理結果を、外部に出力することができる。また、通信I/F34は、CPU31の指示に従った情報を、外部の装置に出力し、これにより、CPU31の指示に従って、外部の装置を制御することができる。
【0070】
ここで、DSP32での信号処理により得られる信号処理結果は、通信I/F34から外部に出力する他、CPU31によって、撮像制御部25のレジスタ群27に書き込むことができる。レジスタ群27に書き込まれた信号処理結果は、通信I/F26から外部に出力することができる。CPU31で行われた処理の処理結果についても同様である。
【0071】
画像圧縮部35には、撮像処理部22から接続線CL2を介して、撮像画像が供給される。画像圧縮部35は、撮像画像を圧縮する圧縮処理を行い、その撮像画像よりもデータ量が少ない圧縮画像を生成する。
【0072】
画像圧縮部35で生成された圧縮画像は、バスを介して、メモリ33に供給されて記憶される。
【0073】
ここで、DSP32での信号処理は、撮像画像そのものを用いて行う他、画像圧縮部35で撮像画像から生成された圧縮画像を用いて行うことができる。圧縮画像は、撮像画像よりもデータ量が少ないため、DSP32での信号処理の負荷の軽減や、圧縮画像を記憶するメモリ33の記憶容量の節約を図ることができる。
【0074】
画像圧縮部35での圧縮処理としては、例えば、12M(3968×2976)ピクセルの撮像画像を、VGAサイズの画像に変換するスケールダウンを行うことができる。また、DSP32での信号処理が輝度を対象として行われ、かつ、撮像画像がRGBの画像である場合には、圧縮処理としては、RGBの画像を、例えば、YUVの画像に変換するYUV変換を行うことができる。
【0075】
なお、画像圧縮部35は、ソフトウエアにより実現することもできるし、専用のハードウエアにより実現することもできる。
【0076】
入力I/F36は、外部から情報を受け取るI/Fである。入力I/F36は、例えば、外部のセンサから、その外部のセンサの出力(外部センサ出力)を受け取り、バスを介して、メモリ33に供給して記憶させる。
【0077】
入力I/F36としては、例えば、出力IF24と同様に、MIPI(Mobile Industriy Processor Interface)等のパラレルI/F等を採用することができる。
【0078】
また、外部のセンサとしては、例えば、距離に関する情報をセンシングする距離センサを採用することができる、さらに、外部のセンサとしては、例えば、光をセンシングし、その光に対応する画像を出力するイメージセンサ、すなわち、撮像装置2とは別のイメージセンサを採用することができる。
【0079】
DSP32では、撮像画像(から生成された圧縮画像)を用いる他、入力I/F36が上述のような外部のセンサから受け取り、メモリ33に記憶される外部センサ出力を用いて、信号処理を行うことができる。
【0080】
以上のように構成される1チップの撮像装置2では、撮像部21での撮像により得られる撮像画像(から生成される圧縮画像)を用いた信号処理がDSP32で行われ、その信号処理の信号処理結果、及び、撮像画像が、出力I/F24から選択的に出力される。したがって、ユーザが必要とする情報を出力する撮像装置を、小型に構成することができる。
【0081】
ここで、撮像装置2において、DSP32の信号処理を行わず、したがって、撮像装置2から、信号処理結果を出力せず、撮像画像を出力する場合、すなわち、撮像装置2を、単に、画像を撮像して出力するだけのイメージセンサとして構成する場合、撮像装置2は、出力制御部23を設けない撮像ブロック20だけで構成することができる。
【0082】
図3は、
図1の撮像装置2の外観構成例の概要を示す斜視図である。
【0083】
撮像装置2は、例えば、
図3に示すように、複数のダイが積層された積層構造を有する1チップの半導体装置として構成することができる。
【0084】
図3では、撮像装置2は、ダイ51及び52の2枚のダイが積層されて構成される。
【0085】
図3において、上側のダイ51には、撮像部21が搭載され、下側のダイ52には、撮像処理部22ないし撮像制御部25、及び、CPU31ないし入力I/F36が搭載されている。
【0086】
上側のダイ51と下側のダイ52とは、例えば、ダイ51を貫き、ダイ52にまで到達する貫通孔を形成することにより、又は、ダイ51の下面側に露出したCu配線と、ダイ52の上面側に露出したCu配線とを直接接続するCu-Cu接合を行うこと等により、電気的に接続される。
【0087】
ここで、撮像処理部22において、撮像部21が出力する画像信号のAD変換を行う方式としては、例えば、列並列AD方式やエリアAD方式を採用することができる。
【0088】
列並列AD方式では、例えば、撮像部21を構成する画素の列に対してADC(AD Converter)が設けられ、各列のADCが、その列の画素の画素信号のAD変換を担当することで、1行の各列の画素の画像信号のAD変換が並列に行われる。列並列AD方式を採用する場合には、その列並列AD方式のAD変換を行う撮像処理部22の一部が、上側のダイ51に搭載されることがある。
【0089】
エリアAD方式では、撮像部21を構成する画素が、複数のブロックに区分され、各ブロックに対して、ADCが設けられる。そして、各ブロックのADCが、そのブロックの画素の画素信号のAD変換を担当することで、複数のブロックの画素の画像信号のAD変換が並列に行われる。エリアAD方式では、ブロックを最小単位として、撮像部21を構成する画素のうちの必要な画素についてだけ、画像信号のAD変換(読み出し及びAD変換)を行うことができる。
【0090】
なお、撮像装置2の面積が大になることが許容されるのであれば、撮像装置2は、1枚のダイで構成することができる。
【0091】
また、
図3では、2枚のダイ51及び52を積層して、1チップの撮像装置2を構成することとしたが、1チップの撮像装置2は、3枚以上のダイを積層して構成することができる。例えば、3枚のダイを積層して、1チップの撮像装置2を構成する場合には、
図3のメモリ33を、別のダイに搭載することができる。
【0092】
ここで、前述の特許文献1に記載のように、センサチップ、メモリチップ、及び、DSPチップのチップどうしを、複数のバンプで並列に接続した撮像装置(以下、バンプ接続撮像装置ともいう)では、積層構造に構成された1チップの撮像装置2に比較して、厚みが大きく増加し、装置が大型化する。
【0093】
さらに、バンプ接続撮像装置では、バンプの接続部分での信号劣化等により、撮像処理部22から出力制御部23に撮像画像を出力するレートとして、十分なレートを確保することが困難になることがあり得る。
【0094】
積層構造の撮像装置2によれば、以上のような装置の大型化や、撮像処理部22と出力制御部23との間のレートとして、十分なレートを確保することができなくなることを防止することができる。
【0095】
したがって、積層構造の撮像装置2によれば、ユーザが必要とする情報を出力する撮像装置を小型に構成することを実現することができる。
【0096】
ユーザが必要とする情報が、撮像画像である場合には、撮像装置2は、撮像画像を出力することができる。
【0097】
また、ユーザが必要とする情報が、撮像画像を用いた信号処理により得られる場合には、撮像装置2は、DSP32において、その信号処理を行うことにより、ユーザが必要とする情報としての信号処理結果を得て出力することができる。
【0098】
撮像装置2で行われる信号処理、すなわち、DSP32の信号処理としては、例えば、撮像画像から、所定の認識対象を認識する認識処理を採用することができる。
【0099】
また、例えば、撮像装置2は、その撮像装置2と所定の位置関係になるように配置されたToF(Time of Flight)センサ等の距離センサの出力を、入力I/F36で受け取ることができる。この場合、DSP32の信号処理としては、例えば、入力I/F36で受け取った距離センサの出力から得られる距離画像のノイズを、撮像画像を用いて除去する処理のような、距離センサの出力と撮像画像とを統合して、精度の良い距離を求めるフュージョン処理を採用することができる。
【0100】
さらに、例えば、撮像装置2は、その撮像装置2と所定の位置関係になるように配置されたイメージセンサが出力する画像を、入力I/F36で受け取ることができる。この場合、DSP32の信号処理としては、例えば、入力I/F36で受け取った画像と、撮像画像とをステレオ画像として用いた自己位置推定処理(SLAM(Simultaneously Localization and Mapping))を採用することができる。
【0101】
以下、DSP32の信号処理として、認識処理、フュージョン処理、及び、自己位置推定処理(以下、SLAM処理ともいう)のそれぞれを行う場合を例に、撮像装置2の処理について説明する。
【0102】
なお、以下説明する撮像装置2の処理の順番は、可能な範囲で入れ替えることができる。すなわち、撮像装置2の処理の順番は、以下説明する順番に限定されるものではない。
【0103】
<DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理の例>
図4、
図5、及び、
図6は、DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【0104】
図4のステップS11において、通信I/F34は、DSP32の信号処理として、認識処理を行うのにあたって、CPU31及びDSP32に実行させるプログラム(コード)を、外部からダウンロードし、メモリ33に記憶させる。ここでは、DSP32に実行させるプログラムは、信号処理として、認識処理を行う認識処理プログラムである。
【0105】
CPU31は、メモリ33に記憶されたプログラムを実行することで、所定の処理を開始する。
【0106】
すなわち、ステップS12において、CPU31は、レジスタ群27から、接続線CL1を介して、撮像画像の小領域ごとの明るさ(の情報)、その他の必要な情報を読み出す。
【0107】
ステップS13において、CPU31は、画像圧縮部35の圧縮処理で、撮像画像のスケールダウンを行う程度を表す縮小率を決定する等の、圧縮処理に関する制御を行う。
【0108】
ステップS14では、撮像部21が画像の撮像を開始するとともに、撮像処理部22が、撮像部21からの画像を、撮像画像として出力することを開始する。これにより、撮像画像の、撮像処理部22から出力制御部23への供給、及び、撮像処理部22から接続線CL2を介しての画像圧縮部35への供給が開始される。
【0109】
撮像処理部22から出力制御部23に供給された撮像画像は、出力制御部23において必要に応じて選択され、出力I/F24から外部に出力される。
【0110】
ステップS15において、画像圧縮部35は、撮像処理部22から接続線CL2を介して供給される撮像画像の圧縮処理を開始する。
【0111】
ここで、以下では、撮像処理部22が出力する画像の他、撮像部21が出力する画像も、撮像画像という。
【0112】
図2で説明したように、撮像部21は、例えば、12Mピクセルや、VGAサイズの撮像画像を出力することができる。さらに、撮像部21は、例えば、RGB(赤、緑、青)のカラー画像や、白黒画像を、撮像画像として出力することができる。
【0113】
撮像画像が、12Mピクセルのフルサイズの画像である場合、画像圧縮部35は、例えば、12Mピクセルの撮像画像を、VGAサイズ等の撮像画像にスケールダウンする処理を、圧縮処理として行う。
【0114】
但し、撮像画像が、スケールダウン後のサイズ、すなわち、ここでは、VGAサイズの画像になっている場合、画像圧縮部35は、スケールダウンする処理を行わない。
【0115】
また、撮像画像が、RGBのカラー画像である場合、画像圧縮部35は、例えば、カラーの撮像画像を、白黒の撮像画像に変換するために、YUV変換を、圧縮処理として行う。
【0116】
但し、撮像画像が、白黒画像である場合、画像圧縮部35は、YUV変換を行わない。
【0117】
したがって、例えば、撮像画像が、12Mピクセルのカラー画像である場合、画像圧縮部35は、撮像画像のスケールダウン、及び、YUV変換を、圧縮処理として行う。
【0118】
また、例えば、撮像画像が、VGAサイズのカラー画像である場合、画像圧縮部35は、撮像画像のYUV変換を、圧縮処理として行う。
【0119】
画像圧縮部35は、圧縮処理の結果得られるVGAサイズの白黒の撮像画像を、圧縮画像として、メモリ33に記憶させる。
【0120】
なお、撮像装置2は、画像圧縮部35を設けずに構成することができる。但し、画像圧縮部35を設けずに撮像装置2を構成する場合には、DSP32の負荷や、メモリ33に要求される記憶容量が大になる。
【0121】
図5のステップS21において、DSP32は、ステップS11でメモリ33に記憶された認識処理プログラムを読み込んで実行することにより、その認識処理プログラムに対応する信号処理としての認識処理を開始する。
【0122】
すなわち、DSP32は、メモリ33に記憶された圧縮画像の各領域を、認識処理の処理対象として、順次、メモリ33から読み出し、その処理対象から、所定の認識対象(例えば、人の顔等)を認識する認識処理を、圧縮画像(ひいては撮像画像)を用いた信号処理として行う。
【0123】
認識処理は、例えば、CNN(Convolutional Neural Network)等のディープラーニング等の手法を用いて行うことができる。また、認識処理では、人の顔等の特定の被写体を認識対象として、その特定の被写体を検出する他、画像に映るシーンを認識対象として、その画像に映るシーンを検出することができる。
【0124】
ステップS22において、DSP32は、認識処理の結果を、信号処理結果として、メモリ33に供給して記憶させる。認識処理の結果(以下、認識結果ともいう)には、例えば、認識対象の検出の有無や、認識対象が検出された検出位置等の情報が含まれる。
【0125】
なお、認識処理では、圧縮画像(撮像画像)の輝度が認識精度に影響することを抑制するため、圧縮画像の平均的な明るさをあらかじめ決められた固定値にするような、圧縮画像の階調変換を行うことができる。かかる階調変換は、
図4のステップS12において、CPU31がレジスタ群27から読み出した、撮像画像の小領域ごとの明るさを用いて行うことができる。
【0126】
図6のステップS31において、CPU31は、メモリ33に記憶された信号処理結果としての認識結果を読み出し、その認識結果を用いて、撮像画像の撮像に適切な露光時間等の撮像情報を算出する演算を行う。
【0127】
例えば、認識結果が、認識対象としての顔が検出された検出位置を含む場合、CPU31は、圧縮画像(撮像画像)上の、顔の検出位置の輝度等に応じて、検出位置に映る顔の撮影に適切な露光時間を算出する。また、例えば、CPU31は、顔の検出位置にフォーカスを合わせるようにオートフォーカスを制御する撮像情報を算出する。
【0128】
その他、CPU31は、認識結果を用いて、撮像画像の撮像に適切なフレームレートや、撮影モード、切り出し範囲等の撮像情報を、必要に応じて算出する。
【0129】
ステップS32において、CPU31は、ステップS31で算出した撮像情報を、接続線CL1を介して、レジスタ群27にフィードバックする。レジスタ群27は、CPU31からフィードバックされた撮像情報を新たに記憶し、その後は、撮像制御部25は、レジスタ群27に新たに記憶された撮像情報に従って、撮像処理部22を制御する。
【0130】
ステップS33において、CPU31は、メモリ33に記憶された信号処理結果としての認識結果を読み出し、出力制御部23に供給する。
【0131】
メモリ33から出力制御部23に供給された信号処理結果としての認識結果は、出力制御部23において必要に応じて選択され、出力I/F24から外部に出力される。
【0132】
図7は、DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理のタイミングの第1の例を説明するタイミングチャートである。
【0133】
例えば、撮像部21は、1/30秒をフレーム周期T1として、そのフレーム周期T1の前半の1/60秒の間に、1フレームの撮像を行う。撮像部21の撮像により得られる撮像画像は、撮像処理部22から、出力制御部23及び画像圧縮部35に供給される。
【0134】
なお、
図7では、撮像画像は、12Mピクセルのカラー画像であることとする。
【0135】
出力制御部23では、撮像処理部22から撮像画像が供給されると、その撮像画像が選択され、出力I/F24から外部に出力される。
【0136】
画像圧縮部35では、12Mピクセルのカラーの撮像画像の圧縮処理として、スケールダウンとYUV変換が行われ、12Mピクセルのカラーの撮像画像が、VGAサイズの白黒の圧縮画像に変換される。この圧縮画像は、メモリ33に記憶される。
【0137】
いま、あるフレーム周期T1に注目し、そのフレーム周期T1を、注目フレーム周期T1ともいう。
【0138】
図7では、注目フレーム周期T1の(前半の1/60秒で撮像された)撮像画像の圧縮処理が、注目フレーム周期T1の前半で終了し、その後の、注目フレーム周期T1の後半の1/60秒が開始するタイミングで、DSP32が、メモリ33に記憶された圧縮画像、すなわち、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いた認識処理を開始している。
【0139】
DSP32は、注目フレーム周期T1が終了する少し前のタイミングで、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いた認識処理を終了し、その認識処理の認識結果を、信号処理結果として、出力制御部23に供給する。
【0140】
出力制御部23は、信号処理結果としての認識結果が供給されると、その信号処理結果を選択して、出力I/F24から外部に出力する。
【0141】
図7では、注目フレーム周期T1についての信号処理結果、すなわち、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いた認識処理の信号処理結果(認識結果)は、注目フレーム周期T1の終了間際から注目フレーム周期T1が終了するまでの期間に、出力I/F24から出力されている。
【0142】
図8は、DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理のタイミングの第2の例を説明するタイミングチャートである。
【0143】
図8では、
図7と同様に、撮像部21は、1/30秒をフレーム周期T1として、そのフレーム周期T1の前半の1/60秒の間に、1フレームの撮像を行い、12Mピクセルのカラーの撮像画像を取得する。撮像部21が取得した撮像画像は、撮像処理部22から、出力制御部23及び画像圧縮部35に供給される。
【0144】
出力制御部23では、
図7と同様に、撮像処理部22からの撮像画像の供給に応じて、その撮像画像が選択され、出力I/F24から外部に出力される。
【0145】
画像圧縮部35では、
図7と同様に、12Mピクセルのカラーの撮像画像の圧縮処理としてのスケールダウンとYUV変換が行われ、12Mピクセルのカラーの撮像画像が、VGAサイズの白黒の圧縮画像に変換される。この圧縮画像は、メモリ33に記憶される。
【0146】
図8では、
図7と同様に、注目フレーム周期T1の撮像画像の圧縮処理が、注目フレーム周期T1の前半で終了する。
【0147】
但し、
図8では、圧縮処理の開始後、その圧縮処理の終了を待たずに、圧縮処理によって生成される圧縮画像の一部が認識処理に用いることができるようになったタイミングで、DSP32が、注目フレーム周期T1の撮像画像から得られた圧縮画像(の一部)を用いた認識処理を開始している。
【0148】
したがって、
図8では、圧縮処理と認識処理とが、一部の期間で並列に行われている。
【0149】
DSP32は、注目フレーム周期T1が終了する少し前のタイミングで、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いた認識処理を終了し、その認識処理の認識結果を、信号処理結果として、出力制御部23に供給する。
【0150】
出力制御部23は、信号処理結果としての認識結果の供給に応じて、その信号処理結果を選択し、出力I/F24から外部に出力する。
【0151】
図8では、
図7と同様に、注目フレーム周期T1についての信号処理結果としての、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いた認識結果は、注目フレーム周期T1の終了間際から注目フレーム周期T1が終了するまでの期間に、出力I/F24から出力されている。
【0152】
上述したように、
図8では、認識処理が、圧縮処理の終了を待たずに開始されるので、圧縮処理の終了を待って、認識処理を開始する
図7の場合に比較して、認識処理を行う時間を、より確保することができる。
【0153】
図9は、DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理のタイミングの第3の例を説明するタイミングチャートである。
【0154】
図9では、
図7と同様に、撮像部21は、1/30秒をフレーム周期T1として、1フレームの撮像を行う。但し、
図9では、撮像部21は、12Mピクセルのカラーの撮像画像ではなく、VGAサイズのカラーの撮像画像を撮像する。そのため、
図9では、フレーム周期T1の開始から極めて短時間で、1フレームの撮像が終了している。撮像部21が撮像したVGAサイズの撮像画像は、撮像処理部22から、出力制御部23及び画像圧縮部35に供給される。
【0155】
ここで、
図9では、外部で撮像画像が使用されないことになっており、そのため、出力制御部23は、撮像処理部22から撮像画像が供給されても、撮像画像を選択せず、出力I/F24から外部に出力しない。
【0156】
画像圧縮部35は、撮像画像の圧縮処理を行い、その結果得られる圧縮画像を、メモリ33に記憶させる。
【0157】
ここで、
図9では、撮像画像が、VGAサイズのカラー画像であるため、圧縮処理としては、YUV変換は行われるが、スケールダウンは行われない。そのため、
図9の圧縮処理は、
図7や
図8の場合に比較して、短時間で終了している。
【0158】
また、
図9では、
図8と同様に、圧縮処理の開始後、その圧縮処理の終了を待たずに、圧縮処理によって生成される圧縮画像の一部が認識処理に用いることができるようになったタイミングで、DSP32が、注目フレーム周期T1の撮像画像から得られた圧縮画像(の一部)を用いた認識処理を開始している。
【0159】
したがって、
図9では、
図8と同様に、圧縮処理と認識処理とが、一部の期間で並列に行われている。
【0160】
DSP32は、注目フレーム周期T1が終了する少し前のタイミングで、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いた認識処理を終了し、その認識処理の認識結果を、信号処理結果として、出力制御部23に供給する。
【0161】
出力制御部23は、信号処理結果としての認識結果の供給に応じて、その信号処理結果を選択し、出力I/F24から外部に出力する。
【0162】
図9では、
図7や
図8と同様に、注目フレーム周期T1についての信号処理結果としての、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いた認識結果は、注目フレーム周期T1の終了間際から注目フレーム周期T1が終了するまでの期間に、出力I/F24から出力されている。
【0163】
図9では、
図8と同様に、認識処理が、圧縮処理の終了を待たずに開始されるので、圧縮処理の終了を待って、認識処理を開始する
図7の場合に比較して、認識処理を行う時間を、より確保することができる。
【0164】
さらに、
図9では、撮像部21が出力する撮像画像が、VGAサイズの画像であるため、圧縮処理において、スケールダウンを行わずに済み、圧縮処理の負荷を軽減することができる。
【0165】
以上のように、撮像部21が出力する撮像画像を、VGAサイズの画像として、出力I/F24から出力しない形態は、例えば、外部において、撮像画像そのものが必要ではなく、信号処理結果(ここでは、認識処理の認識結果)が必要である場合に有用である。
【0166】
図10は、DSP32の信号処理として認識処理が行われる場合の、撮像装置2の処理のタイミングの第4の例を説明するタイミングチャートである。
【0167】
図10では、
図9と同様に、撮像部21は、1/30秒をフレーム周期T1として、VGAサイズのカラーの撮像画像を撮像する。撮像部21が撮像した撮像画像は、撮像処理部22から、出力制御部23及び画像圧縮部35に供給される。
【0168】
ここで、
図10では、
図9と同様に、外部で撮像画像が使用されないことになっており、そのため、出力制御部23は、撮像画像を出力I/F24から外部に出力しない(選択しない)。
【0169】
画像圧縮部35は、撮像画像の圧縮処理を行い、その結果得られる圧縮画像を、メモリ33に記憶させる。
【0170】
ここで、
図10では、
図9と同様に、圧縮処理としては、YUV変換は行われるが、スケールダウンは行われないため、圧縮処理は、短時間で終了する。
【0171】
また、
図10では、
図8や
図9と同様に、圧縮処理の開始後、その圧縮処理の終了を待たずに、圧縮処理によって生成される圧縮画像の一部が認識処理に用いることができるようになったタイミングで、DSP32が、注目フレーム周期T1の撮像画像から得られた圧縮画像(の一部)を用いた認識処理を開始している。
【0172】
したがって、
図10では、
図8や
図9と同様に、圧縮処理と認識処理とが、一部の期間で並列に行われている。
【0173】
DSP32は、注目フレーム周期T1が終了する少し前のタイミングで、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いた認識処理を終了し、その認識処理の認識結果を、信号処理結果として、出力制御部23に供給する。
【0174】
出力制御部23は、
図7ないし
図9と同様に、注目フレーム周期T1についての信号処理結果としての、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いた認識結果を選択し、注目フレーム周期T1の終了間際に、出力I/F24から出力する。
【0175】
図10では、DSP32は、信号処理としての認識処理を行っている間、その認識処理の途中で得られる中間データを、適宜出力する。DSP32が出力する中間データは、出力制御部23に供給され、出力制御部23は、中間データが供給されると、信号処理結果と同様に、中間データを選択して、出力I/F24から出力する。
【0176】
以上のように、信号処理(ここでは、認識処理)の途中で得られる中間データを、出力I/F24から外部に出力する場合には、その中間データを、信号処理を行うプログラム(ここでは、認識処理プログラム)のデバックに供することができる。
【0177】
<DSP32の信号処理としてフュージョン処理が行われる場合の、撮像装置2の処理の例>
図11、
図12、及び、
図13は、DSP32の信号処理としてフュージョン処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【0178】
図11のステップS41において、通信I/F34は、DSP32の信号処理として、フュージョン処理を行うのにあたって、CPU31及びDSP32に実行させるプログラムを、外部からダウンロードし、メモリ33に記憶させる。ここでは、DSP32に実行させるプログラムは、信号処理として、フュージョン処理を行うフュージョン処理プログラムである。
【0179】
CPU31は、メモリ33に記憶されたプログラムを実行することで、所定の処理を開始する。
【0180】
すなわち、ステップS42において、CPU31は、レジスタ群27から、接続線CL1を介して、撮像画像の小領域ごとの明るさ(の情報)、その他の必要な情報を読み出す。
【0181】
ステップS43において、CPU31は、画像圧縮部35の圧縮処理で、撮像画像のスケールダウンを行う程度を表す縮小率を決定する等の、圧縮処理に関する制御を行う。
【0182】
ステップS44では、撮像部21が撮像画像の撮像を開始するとともに、撮像処理部22が、撮像部21からの撮像画像の出力を開始する。これにより、撮像画像の、撮像処理部22から出力制御部23への供給、及び、撮像処理部22から接続線CL2を介しての画像圧縮部35への供給が開始される。
【0183】
撮像処理部22から出力制御部23に供給された撮像画像は、出力制御部23において必要に応じて選択され、出力I/F24から外部に出力される。
【0184】
ステップS45において、画像圧縮部35は、撮像処理部22から接続線CL2を介して供給される撮像画像の圧縮処理を開始する。
【0185】
画像圧縮部35は、圧縮処理の結果得られるVGAサイズの白黒の撮像画像を、圧縮画像として、メモリ33に記憶させる。
【0186】
信号処理としてフュージョン処理が行われる場合、撮像装置2と所定の位置関係になるように設置された距離センサとしての、例えば、ToFセンサ(図示せず)から、そのToFセンサのセンサ出力が、入力I/F36に供給される。
【0187】
ここで、ToFセンサのセンサ出力は、例えば、距離のセンシング結果(例えば、ToFセンサが発した光が被写体で反射してToFセンサで受光されるまでの時間に対応する値等)を画素値とする画像の形になっている。以下、この画像を、ToF画像ともいう。ToF画像は、例えば、QQVGAサイズやQVGAサイズ等の画像である。
【0188】
ステップS46において、入力I/F36は、ToFセンサのセンサ出力としてのToF画像の受け取りを開始する。入力I/F36が受け取ったToF画像は、メモリ33に供給されて記憶される。
【0189】
図12のステップS51において、DSP32は、ステップS41でメモリ33に記憶されたフュージョン処理プログラムを読み込んで実行することにより、そのフュージョン処理プログラムに対応する信号処理としてのフュージョン処理を開始する。
【0190】
すなわち、DSP32は、メモリ33に記憶された圧縮画像の各領域を、フュージョン処理の処理対象として、順次、メモリ33から読み出すとともに、ToF画像を、メモリ33から読み出し、圧縮画像の処理対象とToF画像とを用いたフュージョン処理を行う。
【0191】
フュージョン処理では、例えば、ToF画像の画素値となっているセンサ出力が、距離を表す値に変換され、その距離を表す値を画素値とする距離画像が生成される。本実施の形態では、例えば、連続する4枚のToF画像から、1枚の距離画像が求められる。
【0192】
さらに、フュージョン処理では、例えば、撮像装置2とToFセンサとの位置関係に基づき、圧縮画像(の処理対象)の各画素と、距離画像の対応する画素との位置合わせ等を行うキャリブレーションが行われる。
【0193】
また、フュージョン処理では、例えば、圧縮画像のテクスチャ等を参照し、等距離にある被写体が映る圧縮画像の複数の画素に対応する距離画像の複数の画素の画素値としての距離を表す値を一致させる補正等を行うことで、距離画像のノイズが除去される。
【0194】
ステップS52において、DSP32は、フュージョン処理の結果を、信号処理結果として、メモリ33に供給して記憶させる。フュージョン処理の結果とは、例えば、ノイズが除去された距離画像である。
【0195】
なお、フュージョン処理では、圧縮画像(撮像画像)の輝度が距離画像のノイズの除去に影響することを抑制するため、圧縮画像の平均的な明るさをあらかじめ決められた固定値にするような、圧縮画像の階調変換を行うことができる。かかる階調変換は、
図11のステップS42において、CPU31がレジスタ群27から読み出した、撮像画像の小領域ごとの明るさを用いて行うことができる。
【0196】
図13のステップS61において、CPU31は、メモリ33に記憶された信号処理結果としての距離画像を読み出し、その距離画像を用いて、撮像画像の撮像に適切なフォーカス等の撮像情報を算出する演算を行う。
【0197】
例えば、CPU31は、距離画像から、最も手前にある被写体や、所定の距離付近に位置する被写体を検出し、その被写体にフォーカスを合わせるようにオートフォーカスを制御する撮像情報を算出する。また、例えば、CPU31は、距離画像から、最も手前にある被写体や、所定の距離付近に位置する被写体を検出し、その被写体の輝度等に応じて、その被写体の撮影に適切な露光時間を算出する。
【0198】
その他、CPU31は、距離画像を用いて、撮像画像の撮像に適切なフレームレートや、撮影モード、切り出し範囲等の撮像情報を、必要に応じて算出する。
【0199】
ステップS62において、CPU31は、ステップS61で算出した撮像情報を、接続線CL1を介して、レジスタ群27にフィードバックする。レジスタ群27は、CPU31からフィードバックされた撮像情報を新たに記憶し、その後は、撮像制御部25は、レジスタ群27に新たに記憶された撮像情報に従って、撮像処理部22を制御する。
【0200】
ステップS63において、CPU31は、メモリ33に記憶された信号処理結果としての距離画像を読み出し、出力制御部23に供給する。
【0201】
メモリ33から出力制御部23に供給された信号処理結果としての距離画像は、出力制御部23において必要に応じて選択され、出力I/F24から外部に出力される。
【0202】
図14は、DSP32の信号処理としてフュージョン処理が行われる場合の、撮像装置2の処理のタイミングの第1の例を説明するタイミングチャートである。
【0203】
例えば、撮像部21は、1/30秒をフレーム周期T1として、そのフレーム周期T1の前半の1/60秒の間に、12Mピクセルのカラーの撮像画像の撮像を行う。撮像部21の撮像により得られる撮像画像は、撮像処理部22から、出力制御部23及び画像圧縮部35に供給される。
【0204】
出力制御部23は、撮像処理部22からの撮像画像の供給に応じて、その撮像画像を選択し、出力I/F24から外部に出力する。
【0205】
画像圧縮部35では、12Mピクセルのカラーの撮像画像の圧縮処理として、スケールダウンとYUV変換が行われ、12Mピクセルのカラーの撮像画像が、VGAサイズの白黒の圧縮画像に変換される。この圧縮画像は、メモリ33に記憶される。
【0206】
図14では、撮像装置2の入力I/F36に、ToFセンサが接続されており、そのToFセンサは、センサ出力として、QVGAサイズのToF画像を出力する。
【0207】
入力I/F36は、ToFセンサのセンサ出力としてのToF画像を受け取り、メモリ33に記憶させる。
【0208】
ここで、
図14では、ToFセンサは、QVGAサイズのToF画像を、240fps(frame per second)で出力することができる。
図14では、ToFセンサは、フレーム周期T1の前半の1/60秒の間に、240fpsのQVGAサイズのToF画像を4枚だけ出力し、入力I/F36は、その4枚のToF画像を、フレーム周期T1の前半の1/60秒の間に受け取る。
【0209】
図14では、注目フレーム周期T1の(前半の1/60秒で撮像された)撮像画像の圧縮処理が、注目フレーム周期T1の前半で終了する。さらに、注目フレーム周期T1の前半では、入力I/F36において、4枚のToF画像の受け取りが終了する。
【0210】
そして、その後の、注目フレーム周期T1の後半の1/60秒が開始するタイミングで、DSP32が、メモリ33に記憶された圧縮画像、すなわち、注目フレーム周期T1の撮像画像から得られた圧縮画像と、メモリ33に記憶された4枚のToF画像とを用いたフュージョン処理を開始する。
【0211】
フュージョン処理では、例えば、注目フレーム周期T1の4枚のToF画像から、注目フレーム周期T1の1枚の距離画像が生成され、圧縮画像の各画素と、距離画像の各画素との位置合わせのキャリブレーションが行われる。そして、圧縮画像を用いて、距離画像のノイズが除去される。
【0212】
ここで、
図14では、ToF画像のフレームレートは、240fpsであるが、距離画像のフレームレートは、フレーム周期T1(1/30秒)に対応する30fpsである。
【0213】
DSP32は、注目フレーム周期T1が終了する少し前のタイミングで、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いたフュージョン処理を終了し、そのフュージョン処理の結果得られる、ノイズが除去された距離画像を、信号処理結果として、出力制御部23に供給する。
【0214】
出力制御部23は、信号処理結果としての距離画像が供給されると、その信号処理結果を選択して、出力I/F24から外部に出力する。
【0215】
図14では、注目フレーム周期T1についての信号処理結果、すなわち、注目フレーム周期T1の撮像画像から得られた圧縮画像を用いたフュージョン処理の信号処理結果(距離画像)は、注目フレーム周期T1の終了間際から注目フレーム周期T1が終了するまでの期間に、出力I/F24から出力されている。
【0216】
図15は、DSP32の信号処理としてフュージョン処理が行われる場合の、撮像装置2の処理のタイミングの第2の例を説明するタイミングチャートである。
【0217】
図15では、
図14と同様に、撮像部21において、1/30秒のフレーム周期T1の前半の1/60秒の間に、12Mピクセルのカラーの撮像画像が撮像され、その撮像画像が、出力I/F24から外部に出力される。
【0218】
さらに、
図15では、
図14と同様に、画像圧縮部35において、12Mピクセルのカラーの撮像画像の圧縮処理としてのスケールダウン及びYUV変換によって、VGAサイズの白黒の圧縮画像が生成され、メモリ33に記憶される。
【0219】
また、
図15では、
図14と同様に、撮像装置2の入力I/F36に、ToFセンサが接続されており、そのToFセンサは、センサ出力として、QVGAサイズのToF画像を出力する。
【0220】
但し、
図15では、ToFセンサは、QVGAサイズのToF画像を、120fpsで出力する。したがって、
図15では、ToFセンサにおいて、1枚の距離画像を生成するのに必要な4枚のToF画像を出力するのにかかる時間は、1/30秒=1/120×4秒、すなわち、フレーム周期T1に等しい。
【0221】
入力I/F36は、ToFセンサのセンサ出力としてのToF画像を受け取り、メモリ33に記憶させる。
【0222】
すなわち、
図15では、上述のように、ToFセンサは、フレーム周期T1の間に、4枚の120fpsのQVGAサイズのToF画像を出力するので、入力I/F36は、その4枚のToF画像を、フレーム周期T1の間に受け取る。
【0223】
したがって、注目フレーム周期T1の先頭から開始されたToF画像の受け取りにおいて、距離画像の生成に必要な4枚のToF画像の受け取りは、注目フレーム周期T1の(ほぼ)終わりで完了する。
【0224】
そのため、注目フレーム周期T1の撮像画像から得られた圧縮画像と、注目フレーム周期T1にToFセンサから受け取った4枚のToF画像とを用いたフュージョン処理を、注目フレーム周期T1内に完了することは困難である。
【0225】
そこで、
図15では、注目フレーム周期T1の次のフレーム周期T1の先頭のタイミングで、DSP32が、注目フレーム周期T1の撮像画像から得られた圧縮画像と、注目フレーム周期T1の間にToFセンサから受け取った4枚のToF画像とを用いたフュージョン処理を開始している。
【0226】
ここで、以下、注目フレーム周期T1の撮像画像から得られた圧縮画像を、注目フレーム周期T1の圧縮画像ともいい、注目フレーム周期T1の間にToFセンサから受け取った(4枚の)ToF画像を、注目フレーム周期T1の(4枚の)ToF画像ともいう。
【0227】
DSP32は、注目フレーム周期T1の圧縮画像と、注目フレーム周期T1の4枚のToF画像とを用いたフュージョン処理を、注目フレーム周期T1の次のフレーム周期T1の先頭のタイミングで開始し、注目フレーム周期T1の次のフレーム周期T1の前半が終了する少し前のタイミングで終了する。
【0228】
そして、DSP32は、フュージョン処理の結果得られる、ノイズが除去された距離画像を、信号処理結果として、出力制御部23に供給する。
【0229】
ここで、注目フレーム周期T1の圧縮画像と、注目フレーム周期T1の4枚のToF画像とを用いたフュージョン処理の信号処理結果、及び、その信号処理結果としての距離画像を、それぞれ、注目フレーム周期T1の信号処理結果、及び、注目フレーム周期T1の距離画像ともいう。
【0230】
出力制御部23は、注目フレーム周期T1の次のフレーム周期T1の撮像画像の、出力I/F24からの出力が終了した後、注目フレーム周期T1の信号処理結果としての距離画像を選択して、出力I/F24から外部に出力する。
【0231】
したがって、
図15では、
図14の場合と同様に、距離画像のフレームレートは、フレーム周期T1(1/30秒)に対応する30fpsであるが、注目フレーム周期T1の信号処理結果としての距離画像は、注目フレーム周期T1の間に出力されず、その次のフレーム周期T1に出力される。
【0232】
図14では、注目フレーム周期T1の信号処理結果としての距離画像は、注目フレーム周期T1に出力されるに対して、
図15では、注目フレーム周期T1の信号処理結果としての距離画像は、注目フレーム周期T1の次のフレーム周期T1に出力される。したがって、
図15では、入力I/F36に接続するToFセンサとして、
図14の場合よりも、ToF画像のフレームレートが低速なToFセンサ、すなわち、低コストのToFセンサを使用することができる。
【0233】
なお、
図11ないし
図15で説明したように、ToFセンサ等の距離センサのセンサ出力を、入力I/F36から受け付け、フュージョン処理を行う撮像装置2の使用形態は、例えば、車両の自動運転等に適用することができる。
【0234】
<DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理の例>
図16、
図17、及び、
図18は、DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理の例の概要を説明する図である。
【0235】
図16のステップS71において、通信I/F34は、DSP32の信号処理として、SLAM処理を行うのにあたって、CPU31及びDSP32に実行させるプログラムを、外部からダウンロードし、メモリ33に記憶させる。ここでは、DSP32に実行させるプログラムは、信号処理として、SLAM処理を行うSLAM処理プログラムである。
【0236】
CPU31は、メモリ33に記憶されたプログラムを実行することで、所定の処理を開始する。
【0237】
すなわち、ステップS72において、CPU31は、レジスタ群27から、接続線CL1を介して、撮像画像の小領域ごとの明るさ(の情報)、その他の必要な情報を読み出す。
【0238】
ステップS73において、CPU31は、画像圧縮部35の圧縮処理で、撮像画像のスケールダウンを行う程度を表す縮小率を決定する等の、圧縮処理に関する制御を行う。
【0239】
ステップS74では、撮像部21が撮像画像の撮像を開始するとともに、撮像処理部22が、撮像部21からの撮像画像の出力を開始する。これにより、撮像画像の、撮像処理部22から出力制御部23への供給、及び、撮像処理部22から接続線CL2を介しての画像圧縮部35への供給が開始される。
【0240】
撮像処理部22から出力制御部23に供給された撮像画像は、出力制御部23において必要に応じて選択され、出力I/F24から外部に出力される。
【0241】
ステップS75において、画像圧縮部35は、撮像処理部22から接続線CL2を介して供給される撮像画像の圧縮処理を開始する。
【0242】
画像圧縮部35は、圧縮処理の結果得られるVGAサイズの白黒の撮像画像を、圧縮画像として、メモリ33に記憶させる。
【0243】
信号処理としてSLAM処理が行われる場合、撮像装置2と所定の位置関係になるように設置されたイメージセンサ(図示せず)から、そのイメージセンサのセンサ出力が、入力I/F36に供給される。
【0244】
ここで、撮像装置2と所定の位置関係になるように設置された、撮像装置2とは別のイメージセンサを、以下、他のセンサともいう。さらに、他のセンサは、光をセンシングし、その光に対応する画像を、センサ出力として出力するが、この、他のセンサのセンサ出力としての画像を、他センサ画像ともいう。ここでは、他センサ画像は、例えば、VGAサイズの画像であることとする。
【0245】
ステップS76において、入力I/F36は、他のセンサのセンサ出力としてのVGAサイズの他センサ画像の受け取りを開始する。入力I/F36が受け取ったVGAサイズの他センサ画像は、メモリ33に供給されて記憶される。
【0246】
図17のステップS81において、DSP32は、ステップS71でメモリ33に記憶されたSLAM処理プログラムを読み込んで実行することにより、そのSLAM処理プログラムに対応する信号処理としてのSLAM処理を開始する。
【0247】
すなわち、DSP32は、メモリ33に記憶された圧縮画像の各領域を、SLAM処理の処理対象として、順次、メモリ33から読み出すとともに、他センサ画像を、メモリ33から読み出し、その圧縮画像の処理対象と他センサ画像とをステレオ画像として用いたSLAM処理を行う。
【0248】
SLAM処理では、例えば、撮像装置2と他のセンサとの位置関係に基づき、ステレオ画像としての圧縮画像と他センサ画像とを平行化する(撮像装置2と他のセンサとを平行等化する)レクティフィケーション(rectification)が行われる。
【0249】
そして、SLAM処理では、例えば、レクティフィケーション後のステレオ画像としての圧縮画像と他センサ画像とを用いて、自己位置推定と地図の構築(成長)とが行われる。
【0250】
ステップS82において、DSP32は、SLAM処理の結果を、信号処理結果として、メモリ33に供給して記憶させる。SLAM処理の結果とは、例えば、自己位置推定の推定結果(以下、位置推定結果ともいう)と、その自己位置推定とともに構築された地図である。
【0251】
なお、SLAM処理では、圧縮画像(撮像画像)及び他センサ画像の輝度が自己位置推定や地図の構築に影響することを抑制するため、圧縮画像及び他センサ画像の平均的な明るさをあらかじめ決められた固定値にするような、圧縮画像及び他センサ画像の階調変換を行うことができる。かかる階調変換は、
図16のステップS72において、CPU31がレジスタ群27から読み出した、撮像画像の小領域ごとの明るさを用いて行うことができる。
【0252】
図18のステップS91において、CPU31は、メモリ33に記憶された信号処理結果としての位置推定結果及び地図を読み出し、その位置推定結果及び地図を用いて、撮像画像の撮像に適切な露光時間や、フォーカス、フレームレート、撮影モード、切り出し範囲等の撮像情報を算出する演算を、必要に応じて行う。
【0253】
ステップS92において、CPU31は、ステップS91で算出した撮像情報を、接続線CL1を介して、レジスタ群27にフィードバックする。レジスタ群27は、CPU31からフィードバックされた撮像情報を新たに記憶し、その後は、撮像制御部25は、レジスタ群27に新たに記憶された撮像情報に従って、撮像処理部22を制御する。
【0254】
ステップS93において、CPU31は、メモリ33に記憶された信号処理結果としての位置推定結果及び地図を読み出し、出力制御部23に供給する。
【0255】
メモリ33から出力制御部23に供給された信号処理結果としての位置推定結果及び地図は、出力制御部23において選択され、出力I/F24から外部に出力される。
【0256】
図19は、DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理のタイミングの第1の例を説明するタイミングチャートである。
【0257】
例えば、撮像部21は、1/30秒をフレーム周期T1として、そのフレーム周期T1の前半の1/60秒の間に、12Mピクセルのカラーの撮像画像の撮像を行う。撮像部21の撮像により得られる撮像画像は、撮像処理部22から、出力制御部23及び画像圧縮部35に供給される。
【0258】
出力制御部23は、撮像処理部22からの撮像画像の供給に応じて、その撮像画像を選択し、出力I/F24から外部に出力する。
【0259】
画像圧縮部35では、12Mピクセルのカラーの撮像画像の圧縮処理として、スケールダウンとYUV変換が行われ、12Mピクセルのカラーの撮像画像が、VGAサイズの白黒の圧縮画像に変換される。この圧縮画像は、メモリ33に記憶される。
【0260】
図19では、撮像装置2の入力I/F36に、他のセンサが接続されており、その他のセンサは、センサ出力として、VGAサイズの他センサ画像を出力する。
【0261】
入力I/F36は、他のセンサのセンサ出力としての他センサ画像を受け取り、メモリ33に記憶させる。
【0262】
ここで、
図19では、他のセンサは、VGAサイズの他センサ画像を、フレーム周期T1に等しい30fpsで出力する。すなわち、
図19では、他のセンサは、撮像装置2に同期して、フレーム周期T1の開始時に、30fpsのVGAサイズの他センサ画像を出力する。入力I/F36は、その他センサ画像を受け取る。
【0263】
図19では、注目フレーム周期T1の撮像画像の圧縮処理が、注目フレーム周期T1の前半で終了する。
【0264】
そして、その後の、注目フレーム周期T1の後半の1/60秒が開始するタイミングで、DSP32が、メモリ33に記憶された注目フレーム周期T1の撮像画像から得られた圧縮画像と、メモリ33に記憶された注目フレーム周期T1の他センサ画像とを用いたSLAM処理を開始する。
【0265】
SLAM処理では、例えば、注目フレーム周期T1の(撮像画像の)圧縮画像と、注目フレーム周期T1の他センサ画像とのレクティフィケーションが行われ、そのレクティフィケーション後の圧縮画像及び他センサ画像を用いて、注目フレーム周期T1の自己位置推定及び地図の構築が行われる。
【0266】
DSP32は、注目フレーム周期T1が終了する少し前のタイミングで、注目フレーム周期T1の圧縮画像及び他センサ画像を用いたSLAM処理を終了し、そのSLAM処理の結果得られる位置推定結果及び地図を、信号処理結果として、出力制御部23に供給する。
【0267】
出力制御部23は、信号処理結果としての位置推定結果及び地図が供給されると、その信号処理結果を選択して、出力I/F24から外部に出力する。
【0268】
図19では、注目フレーム周期T1についての信号処理結果、すなわち、注目フレーム周期T1の圧縮画像及び他センサ画像を用いたSLAM処理の信号処理結果(位置推定結果及び地図)は、注目フレーム周期T1の終了間際から注目フレーム周期T1が終了するまでの期間に、出力I/F24から出力されている。
【0269】
図20は、DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理のタイミングの第2の例を説明するタイミングチャートである。
【0270】
図20では、
図19と同様に、撮像部21において、1/30秒をフレーム周期T1として、12Mピクセルのカラーの撮像画像が撮像され、出力I/F24から外部に出力される。
【0271】
さらに、
図20では、
図19と同様に、画像圧縮部35において、12Mピクセルのカラーの撮像画像の圧縮処理としてのスケールダウンとYUV変換によって、VGAサイズの白黒の圧縮画像が生成され、メモリ33に記憶される。
【0272】
また、
図20では、
図19と同様に、撮像装置2の入力I/F36に、他のセンサが接続されており、その他のセンサは、センサ出力として、VGAサイズの他センサ画像を出力する。
【0273】
入力I/F36は、
図19と同様に、他のセンサのセンサ出力としての他センサ画像を受け取り、メモリ33に記憶させる。
【0274】
図20では、
図19と同様に、注目フレーム周期T1の撮像画像の圧縮処理が、注目フレーム周期T1の前半で終了する。
【0275】
そして、その後の、注目フレーム周期T1の後半の1/60秒が開始するタイミングで、DSP32が、メモリ33に記憶された注目フレーム周期T1の撮像画像から得られた圧縮画像と、メモリ33に記憶された注目フレーム周期T1の他センサ画像とを用いたSLAM処理を開始する。
【0276】
SLAM処理では、例えば、注目フレーム周期T1の圧縮画像と、注目フレーム周期T1の他センサ画像とのレクティフィケーションが行われ、そのレクティフィケーション後の圧縮画像及び他センサ画像を用いて、注目フレーム周期T1の自己位置推定及び地図の構築が行われる。
【0277】
図20では、DSP32は、注目フレーム周期T1の次のフレーム周期T1の前半が終了する少し前のタイミングで、注目フレーム周期T1の圧縮画像及び他センサ画像を用いたSLAM処理を終了し、そのSLAM処理の結果得られる位置推定結果及び地図を、信号処理結果として、出力制御部23に供給する。
【0278】
出力制御部23は、注目フレーム周期T1の次のフレーム周期T1の撮像画像の、出力I/F24からの出力が終了した後、注目フレーム周期T1の信号処理結果としての位置推定結果及び地図を選択して、出力I/F24から外部に出力する。
【0279】
したがって、
図20では、注目フレーム周期T1の信号処理結果としての位置推定結果及び地図は、注目フレーム周期T1の間に出力されず、その次のフレーム周期T1に出力される。
【0280】
図19では、注目フレーム周期T1の信号処理結果としての位置推定結果及び地図は、注目フレーム周期T1に出力されるに対して、
図20では、注目フレーム周期T1の信号処理結果としての位置推定結果及び地図は、注目フレーム周期T1の次のフレーム周期T1に出力される。したがって、
図20では、
図19の場合よりも、SRAM処理に長時間を割り当てることができ、その結果、SRAM処理の信号処理結果としての位置推定結果及び地図の精度を向上させることができる。
【0281】
図21は、DSP32の信号処理としてSLAM処理が行われる場合の、撮像装置2の処理のタイミングの第3の例を説明するタイミングチャートである。
【0282】
図21では、撮像部21は、1/30秒をフレーム周期T1として、1フレームの撮像を行う。但し、
図21では、撮像部21は、12Mピクセルのカラーの撮像画像ではなく、VGAサイズのカラーの撮像画像を撮像する。そのため、
図21では、フレーム周期T1の開始から極めて短時間で、1フレームの撮像が終了している。撮像部21が撮像した撮像画像は、撮像処理部22から、出力制御部23及び画像圧縮部35に供給される。
【0283】
ここで、
図21では、外部で撮像画像が使用されないことになっており、そのため、出力制御部23は、撮像処理部22から撮像画像が供給されても、撮像画像を選択せず、出力I/F24から外部に出力しない。
【0284】
画像圧縮部35は、撮像画像の圧縮処理を行い、その結果得られる圧縮画像を、メモリ33に記憶させる。
【0285】
ここで、
図21では、撮像画像が、VGAサイズのカラー画像であるため、圧縮処理としては、YUV変換は行われるが、スケールダウンは行われない。そのため、
図21の圧縮処理は、撮像画像が12Mピクセルのカラー画像である場合に比較して、短時間で終了している。
【0286】
図21では、
図19や
図20と同様に、撮像装置2の入力I/F36に、他のセンサが接続されており、その他のセンサは、センサ出力として、30fpsのVGAサイズの他センサ画像を出力する。
【0287】
入力I/F36は、他のセンサのセンサ出力としての他センサ画像を受け取り、メモリ33に記憶させる。
【0288】
図21では、メモリ33に、注目フレーム周期T1の他センサ画像が記憶されたときには、注目フレーム周期T1の撮像画像の圧縮処理が終了し、その圧縮処理により得られた注目フレーム周期T1の圧縮画像が、メモリ33に記憶されている。
【0289】
すなわち、メモリ33に、注目フレーム周期T1の他センサ画像が記憶されたときには、メモリ33には、注目フレーム周期T1の圧縮画像及び他センサ画像の両方が記憶されており、それらの圧縮画像及び他センサ画像を用いたSLAM処理を開始することができる。
【0290】
そこで、DSP32は、メモリ33に記憶された注目フレーム周期T1の圧縮画像及び他センサ画像をステレオ画像として用いたSLAM処理を開始する。
【0291】
SLAM処理では、例えば、注目フレーム周期T1の圧縮画像と、注目フレーム周期T1の他センサ画像とのレクティフィケーションが行われ、そのレクティフィケーション後の圧縮画像及び他センサ画像を用いて、注目フレーム周期T1の自己位置推定及び地図の構築が行われる。
【0292】
図21では、DSP32は、注目フレーム周期T1が終了する少し前のタイミングで、注目フレーム周期T1の圧縮画像及び他センサ画像を用いたSLAM処理を終了し、そのSLAM処理の結果得られる位置推定結果及び地図を、信号処理結果として、出力制御部23に供給する。
【0293】
出力制御部23は、信号処理結果としての位置推定結果及び地図が供給されると、その信号処理結果を選択して、出力I/F24から外部に出力する。
【0294】
図21では、注目フレーム周期T1についての信号処理結果、すなわち、注目フレーム周期T1の圧縮画像及び他センサ画像を用いたSLAM処理の信号処理結果(位置推定結果及び地図)は、注目フレーム周期T1の終了間際から注目フレーム周期T1が終了するまでの期間に、出力I/F24から出力されている。
【0295】
さらに、
図21では、撮像部21が出力する撮像画像が、VGAサイズの画像であるため、圧縮処理において、スケールダウンを行わずに済み、圧縮処理の負荷を軽減することができる。
【0296】
以上のように、撮像部21が出力する撮像画像を、VGAサイズの画像として、出力I/F24から出力しない形態は、例えば、外部において、撮像画像そのものが必要ではなく、信号処理結果(ここでは、SLAM処理の信号処理結果)が必要である場合に有用である。
【0297】
なお、
図16ないし
図21で説明したように、他センサ画像を、入力I/F36から受け付け、SLAM処理を行う撮像装置2の使用形態は、例えば、自律的に行動するロボット等に適用することができる。
【0298】
ここで、入力I/F36において、他のセンサの他センサ画像を受け取り、その他センサ画像と、撮像装置2で撮像された撮像画像(から生成される圧縮画像)とを、ステレオ画像として用いる場合には、レクティフィケーションが必要となる。
【0299】
図16ないし
図21では、DSP32にSLAM処理プログラムを実行させることにより行われるSLAM処理の一部として、レクティフィケーションを行うこととしたが、すなわち、ソフトウエアにより、レクティフィケーションを行うこととしたが、他センサ画像と撮像画像とをステレオ画像として用いる場合には、その場合に必要となるレクティフィケーションは、ソフトウエアにより行うのではなく、専用のハードウエアを撮像装置2に設け、その専用のハードウエアにより行うことができる。
【0300】
<撮像装置2の他の構成例>
図22は、
図1の撮像装置2の他の構成例を示すブロック図である。
【0301】
すなわち、
図22は、レクティフィケーションを行う専用のハードウエアが設けられた撮像装置2の構成例を示している。
【0302】
なお、図中、
図2の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
【0303】
図22において、撮像装置2は、撮像部21ないし撮像制御部25、CPU31ないし入力I/F36、及び、レクティフィケーション部71を有する。
【0304】
したがって、
図22の撮像装置2は、撮像部21ないし撮像制御部25、及び、CPU31ないし入力I/F36を有する点で、
図2の場合と共通する。
【0305】
但し、
図22の撮像装置2は、レクティフィケーション部71が新たに設けられている点で、
図2の場合と相違する。
【0306】
レクティフィケーション部71は、レクティフィケーションを行う専用のハードウエアであり、メモリ33に記憶された圧縮画像及び他センサ画像を対象に、レクティフィケーションを行う。
【0307】
図22では、DSP32は、レクティフィケーション部71によるレクティフィケーション後の圧縮画像及び他センサ画像を用いて、SLAM処理を行う。
【0308】
以上のように、レクティフィケーション専用のハードウエアとしてのレクティフィケーション部71を設けることにより、レクティフィケーションの高速化を図ることができる。
【0309】
<撮像装置2の使用例>
図23は、
図1の撮像装置2を使用する使用例を示す図である。
【0310】
撮像装置2は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々な電子機器に使用することができる。
【0311】
・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する電子機器
・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される電子機器
・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される電子機器
・内視鏡や、電子顕微鏡、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される電子機器
・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される電子機器
・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される電子機器
・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される電子機器
・畑や作物の状態を監視するためのカメラ等の、農業の用に供される電子機器
【0312】
<移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
【0313】
図24は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
【0314】
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。
図24に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
【0315】
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
【0316】
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
【0317】
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
【0318】
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
【0319】
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
【0320】
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
【0321】
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
【0322】
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
【0323】
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。
図24の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
【0324】
図25は、撮像部12031の設置位置の例を示す図である。
【0325】
図25では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
【0326】
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
【0327】
なお、
図25には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
【0328】
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
【0329】
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
【0330】
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
【0331】
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
【0332】
以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、
図2の撮像装置2は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、撮像部12031は、ユーザが必要とする情報、すなわち、後段の処理を行うブロック(以下、後段ブロックともいう)で必要な情報を出力することができる。したがって、後段ブロックは、画像から、必要な情報を生成する処理を行う必要がなく、その分、後段ブロックの負荷を軽減することができる。
【0333】
ここで、本明細書において、コンピュータ(プロセッサ)がプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。
【0334】
また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。
【0335】
なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
【0336】
例えば、本技術は、可視光線をセンシングするイメージセンサの他、赤外線その他の、可視光線以外の電磁波をセンシングするイメージセンサに適用することができる。
【0337】
また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
【0338】
なお、本技術は、以下の構成をとることができる。
【0339】
<1>
複数の画素が2次元に並んだ、画像を撮像する撮像部と、
前記撮像部が出力する撮像画像を用いた信号処理を行う信号処理部と、
前記信号処理の信号処理結果、及び、前記撮像画像を外部に出力する出力I/Fと、
前記信号処理の信号処理結果、及び、前記撮像画像を、前記出力I/Fから外部に選択的に出力させる出力制御を行う出力制御部と
を備える1チップの撮像装置。
<2>
複数のダイが積層された積層構造を有する
<1>に記載の撮像装置。
<3>
前記撮像画像を圧縮し、前記撮像画像よりもデータ量が少ない圧縮画像を生成する画像圧縮部をさらに備える
<1>又は<2>に記載の撮像装置。
<4>
前記撮像画像の撮像に関する撮像情報を記憶するレジスタを有し、前記撮像情報に従って、前記撮像画像の撮像を制御する撮像制御部と、
前記信号処理結果を用いて、前記撮像情報を算出する撮像情報算出部と
をさらに備え、
前記撮像制御部と前記撮像情報算出部とは、所定の接続線を介して接続され、
前記撮像情報算出部は、前記撮像情報を、前記所定の接続線を介して、前記撮像制御部の前記レジスタにフィードバックする
<1>ないし<3>のいずれかに記載の撮像装置。
<5>
前記レジスタは、前記出力制御に関する出力制御情報をも記憶し、
前記出力制御部は、前記レジスタに記憶された前記出力制御情報に従って、前記出力制御を行う
<4>に記載の撮像装置。
<6>
前記レジスタに読み書きする情報を外部との間でやりとりする第1の通信I/Fをさらに備える
<4>又は<5>に記載の撮像装置。
<7>
前記信号処理部は、プログラムを実行するプロセッサであり、
前記プロセッサが実行するプログラムを外部からダウンロードする第2の通信I/Fをさらに備える
<1>ないし<6>のいずれかに記載の撮像装置。
<8>
前記信号処理部は、前記信号処理として、前記撮像画像から、所定の認識対象を認識する認識処理を行う
<1>ないし<7>のいずれかに記載の撮像装置。
<9>
外部のセンサから外部センサ出力を受け取る入力I/Fをさらに備え、
前記信号処理部は、前記撮像画像及び前記外部センサ出力を用いた信号処理を行う
<1>ないし<7>のいずれかに記載の撮像装置。
<10>
前記外部センサ出力は、距離に関する情報をセンシングする距離センサの出力、又は、光をセンシングし、前記光に対応する画像を出力するイメージセンサの出力である
<9>に記載の撮像装置。
<11>
前記信号処理部は、前記信号処理として、前記撮像画像と前記距離センサの出力とを用いて距離を求めるフュージョン処理、又は、前記イメージセンサの出力としての画像と前記撮像画像とを用いた自己位置推定処理を行う
<10>に記載の撮像装置。
<12>
光を集光する光学系と、
光を受光し、前記光の受光量に対応する画像を出力する1チップの撮像装置と
を備え、
前記撮像装置は、
複数の画素が2次元に並んだ、画像を撮像する撮像部と、
前記撮像部が出力する撮像画像を用いた信号処理を行う信号処理部と、
前記信号処理の信号処理結果、及び、前記撮像画像を外部に出力する出力I/Fと、
前記信号処理の信号処理結果、及び、前記撮像画像を、前記出力I/Fから外部に選択的に出力させる出力制御を行う出力制御部と
を有する
電子機器。
符号の説明
【0340】
1 光学系, 2 撮像装置, 3 メモリ, 4 信号処理部, 5 出力部, 6 制御部, 20 撮像ブロック, 21 撮像部, 22 撮像処理部, 23 出力制御部, 24 出力I/F, 25 撮像制御部, 26 通信I/F, 27 レジスタ群, 30 信号処理ブロック, 31 CPU, 32 DSP, 33 メモリ, 34 通信I/F, 35 画像圧縮部, 36 入力I/F, 51,52 ダイ, 71 レクティフィケーション部