(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-19
(45)【発行日】2022-07-27
(54)【発明の名称】半導体素子の製造方法
(51)【国際特許分類】
H01S 5/22 20060101AFI20220720BHJP
H01S 5/042 20060101ALI20220720BHJP
【FI】
H01S5/22
H01S5/042 612
(21)【出願番号】P 2018548582
(86)(22)【出願日】2017-09-15
(86)【国際出願番号】 JP2017033534
(87)【国際公開番号】W WO2018083896
(87)【国際公開日】2018-05-11
【審査請求日】2020-07-20
(31)【優先権主張番号】P 2016214555
(32)【優先日】2016-11-01
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】110003339
【氏名又は名称】特許業務法人南青山国際特許事務所
(74)【代理人】
【識別番号】100104215
【氏名又は名称】大森 純一
(74)【代理人】
【識別番号】100196575
【氏名又は名称】高橋 満
(74)【代理人】
【識別番号】100168181
【氏名又は名称】中村 哲平
(74)【代理人】
【識別番号】100117330
【氏名又は名称】折居 章
(74)【代理人】
【識別番号】100160989
【氏名又は名称】関根 正好
(74)【代理人】
【識別番号】100168745
【氏名又は名称】金子 彩子
(74)【代理人】
【識別番号】100176131
【氏名又は名称】金山 慎太郎
(74)【代理人】
【識別番号】100197398
【氏名又は名称】千葉 絢子
(74)【代理人】
【識別番号】100197619
【氏名又は名称】白鹿 智久
(72)【発明者】
【氏名】村山 雅洋
【審査官】大西 孝宣
(56)【参考文献】
【文献】国際公開第2012/127778(WO,A1)
【文献】特開平10-209559(JP,A)
【文献】特開2004-281431(JP,A)
【文献】特開2011-222973(JP,A)
【文献】特開2004-260152(JP,A)
【文献】特開2013-102043(JP,A)
【文献】米国特許第08971370(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/00 - 5/50
(57)【特許請求の範囲】
【請求項1】
第1の導電型を有する第1半導体層と、第2の導電型を有する第2半導体層と、前記第1半導体層と前記第2半導体層の間に設けられた活性層とを備える積層体を準備し、
前記第1半導体層上に透明導電性材料からなる透明導電層を形成し、
前記透明導電層上にフォトレジストを形成し、前記フォトレジストをストライプ状の開口を有する形状にパターニングし、前記透明導電層及び前記
フォトレジスト上に金属層を形成し、前記フォトレジストと前記フォトレジスト上に形成された金属層を除去することで前記透明導電層上にストライプ状に加工されたマスク構造を形成し、
前記マスク構造の形成後、熱処理によって前記金属層と前記透明導電層の接合部に、前記金属層と前記透明導電層のそれぞれの構成元素が融合した中間層を形成し、
前記マスク構造をエッチングマスクとして前記透明導電層と前記第1半導体層の少なくとも一部をエッチングにより除去する
半導体素子の製造方法。
【請求項2】
請求項1に記載の半導体素子の製造方法であって、
前記第1半導体層は窒化ガリウム系化合物半導体からなり、
前記透明導電層はITO(Indium Tin Oxide)からなり、
前記金属層はTi、Ni又はAlからなる
半導体素子の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本技術は、半導体レーザ等の半導体素子の技術に関する。
【背景技術】
【0002】
半導体レーザは、再結合発光を誘導放出により増幅し、レーザ光を放出する半導体素子であり、狭い放射角と強い強度でレーザ光を出射する特徴を持つ。この半導体レーザは光通信や光ディスク用の光ピックアップ、レーザプリンタ等に応用されており、さらなる光出力の向上や消費電力の低減が望まれている。
【0003】
半導体レーザでは、p型半導体層とn型半導体層に挟まれた活性層の所定領域に電流を注入するため、電流狭窄構造が利用される。電流狭窄構造は、p型半導体層又はn型半導体層にストライプ状のリッジを形成することによって実現することができる。リッジ上にはITO(Indium Tin Oxide)等の導電性材料が積層され、電極と半導体層が電気的に接続される。
【0004】
例えば特許文献1及び2には、透明導電層を用いた半導体レーザのプロセスフローが開示されている。これらのプロセスフローでは、リッジ上にレジストを積層した後、リッジ上のレジストを除去し、このレジストをマスクとして透明導電層をリッジ上に形成する。
【0005】
また、特許文献3には、導波路形状にエッチング加工された透明導電層をクラッド層の一部として用いる半導体レーザが示されている。ここでは、透明導電層のみを導波路形状に加工し、p型層を加工しないことがプロセス上の簡素点として挙げられている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2011-014891号公報
【文献】特開2015-167263号公報
【文献】特開2004-289157号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1又は2に記載のようなプロセスフローでは、透明導電層をリッジ端まで形成することが難しく、透明導電層と半導体層のコンタクト面積が小さくなることによる素子の電圧上昇や不均一な電流注入が生じるおそれがある。また、特許文献3に記載の構造では横方向の光閉じ込め効果を十分に得ることができない。
【0008】
以上のような事情に鑑み、本技術の目的は、透明導電層と半導体層の電気的接続を十分に確保することが可能な半導体素子、半導体レーザ及び半導体素子の製造方法を提供することにある。
【課題を解決するための手段】
【0009】
上記目的を達成するため、本技術の一形態に係る半導体素子は、第1半導体層と、第2半導体層と、活性層と、透明導電層とを具備する。
上記第1半導体層は、第1の導電型を有し、表面にストライプ状のリッジが形成されている。
上記第2半導体層は、第2の導電型を有する。
上記活性層は、上記第1半導体層と上記第2半導体層の間に設けられている。
上記透明導電層は、透明導電性材料からなり、上記リッジ上に形成されている。
上記リッジの上記透明導電層が形成された面の、上記リッジの延伸方向に直交する方向の幅を第1の幅とし、上記透明導電層の上記リッジ側の面の上記方向の幅を第2の幅とすると、上記第2の幅は上記第1の幅の0.99倍以上1.0倍以下であり、
上記透明導電層の上記リッジとは反対側の面の上記方向の幅を第3の幅とすると、上記第3の幅は上記第2の幅の0.96倍以上1.0倍以下であり、
上記透明導電層は、上記第3の幅の範囲内において厚みが90%以上110%以下の範囲で均一である。
【0010】
上記構成によれば、透明導電層は、リッジにおける第1半導体層の表面のほぼ全面に均等な厚さで形成されている。これにより、透明導電層とリッジにおける第1半導体層の接触面積を広く取ることができ、半導体素子の電圧を下げることができる。また、リッジの上面全面から均一に電流を注入することができ、活性層へのキャリアの不均一注入を抑制することができるため、不均一な発光拡がりを抑制することが可能となる。
【0011】
上記半導体素子は、導電性材料からなり、上記透明導電層に当接するパッド電極をさらに具備し、
上記パッド電極は、上記パッド電極と上記透明導電層の接合部に形成され、上記パッド電極と上記透明導電層のそれぞれの構成元素が融合した中間層を有してもよい。
【0012】
この構成によれば、中間層によってパッド電極と透明導電層の密着性を向上させることが可能である。
【0013】
上記半導体素子は、金属材料からなり、上記透明導電層上に形成された金属電極をさらに具備し、
上記金属電極は、上記金属電極と上記透明導電層の接合部に形成され、上記金属型電極と上記透明導電層のそれぞれの構成元素が融合した中間層を有してもよい。
【0014】
この構成によれば、中間層によって金属電極と透明導電層の密着性を向上させることが可能である。
【0015】
上記金属電極の上記透明導電層側の面の上記方向の幅を第4の幅とすると、上記第4の幅は上記第3の幅の0.99倍以上1.0倍以下であってもよい。
【0016】
上記目的を達成するため、本技術の一形態に係る半導体レーザは、第1半導体層と、第2半導体層と、活性層と、透明導電層とを具備する。
上記第1半導体層は、第1の導電型を有し、表面にストライプ状のリッジが形成されている。
上記第2半導体層は、第2の導電型を有する。
上記活性層は、上記第1半導体層と上記第2半導体層の間に設けられている。
上記透明導電層は、透明導電性材料からなり、上記リッジ上に形成されている。
上記リッジの上記透明導電層が形成された面の、上記リッジの延伸方向に直交する方向の幅を第1の幅とし、上記透明導電層の上記リッジ側の面の上記方向の幅を第2の幅とすると、上記第2の幅は上記第1の幅の0.99倍以上1.0倍以下であり、
上記透明導電層の上記リッジとは反対側の面の上記方向の幅を第3の幅とすると、上記第3の幅は上記第2の幅の0.96倍以上1.0倍以下であり、
上記透明導電層は、上記第3の幅の範囲内において厚みが90%以上110%以下の範囲で均一である。
【0017】
上記目的を達成するため、本技術の一形態に係る半導体素子の製造方法は、第1の導電型を有する第1半導体層と、第2の導電型を有する第2半導体層と、上記第1半導体層と上記第2半導体層の間に設けられた活性層とを備える積層体を準備する。
上記第1半導体層上に透明導電性材料からなる透明導電層を形成する。
上記透明導電層上にストライプ状に加工されたマスク構造を形成する。
上記マスク構造をエッチングマスクとして上記透明導電層と上記第1半導体層の少なくとも一部をエッチングにより除去する。
【0018】
この製造方法によれば、マスク構造を用いて透明導電層をエッチングするため、透明導電層をリッジにおける第1半導体層の表面のほぼ全面に均等な厚さで形成することが可能となる。
【0019】
上記マスク構造は誘電体からなるものであってもよい。
【0020】
上記マスク構造を形成する工程では、上記透明導電層上に誘電体からなる誘電体層を形成し、上記誘電体層上にフォトレジストを形成し、上記フォトレジストをストライプ状にパターニングし、上記フォトレジストをエッチングマスクとして上記誘電体層をエッチングしてもよい。
【0021】
上記マスク構造は金属からなるものであってもよい。
【0022】
上記マスク構造を形成する工程では、上記透明導電層上にフォトレジストを形成し、上記フォトレジストをストライプ状の開口を有する形状にパターニングし、上記透明導電層及び上記フォトレジト上に金属層を形成し、上記フォトレジストと上記フォトレジスト上に形成された金属層を除去してもよい。
【0023】
上記マスク構造を形成する工程では、上記透明導電層上に金属層を形成し、上記金属上にフォトレジストを形成し、上記フォトレジストをストライプ状にパターニングし、上記フォトレジストをエッチングマスクとして上記金属層をエッチングしてもよい。
【0024】
上記透明導電層と上記第1半導体層の少なくとも一部をエッチングにより除去する工程の後、上記透明導電層に接触するパッド電極を形成し、熱処理によって上記パッド電極と上記透明導電層の接合部に、上記パッド電極と上記透明導電層のそれぞれの構成元素が融合した中間層を形成してもよい。
【0025】
上記透明導電層上に上記金属層を形成した後、熱処理によって上記金属層と上記透明導電層の接合部に、上記金属層と上記透明導電層のそれぞれの構成元素が融合した中間層を形成してもよい。
【発明の効果】
【0026】
以上、本技術によれば、透明導電層と半導体層の電気的接続を十分に確保することが可能な半導体素子、半導体レーザ及び半導体素子の製造方法を提供することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
【図面の簡単な説明】
【0027】
【
図1】本技術の第1の実施形態に係る半導体素子の斜視図である。
【
図4】同半導体素子が備える透明導電層の形状を示す模式図である。
【
図5】同半導体素子の製造プロセスを示す模式図である。
【
図6】同半導体素子の製造プロセスを示す模式図である。
【
図7】同半導体素子の製造プロセスを示す模式図である。
【
図8】同半導体素子の製造プロセスを示す模式図である。
【
図9】本技術の第2の実施形態に係る半導体素子の断面図である。
【
図10】同半導体素子が備えるp電極の形状を示す模式図である。
【
図11】同半導体素子の第1の製造プロセスを示す模式図である。
【
図12】同半導体素子の第1の製造プロセスを示す模式図である。
【
図13】同半導体素子の第1の製造プロセスを示す模式図である。
【
図14】同半導体素子の第2の製造プロセスを示す模式図である。
【
図15】同半導体素子の第2の製造プロセスを示す模式図である。
【
図16】同半導体素子の第2の製造プロセスを示す模式図である。
【
図17】同半導体素子の第2の製造プロセスを示す模式図である。
【発明を実施するための形態】
【0028】
(第1の実施形態)
本技術の第1の実施形態に係る半導体素子について説明する。
【0029】
[半導体素子の構造]
図1は、第1の実施形態に係る半導体素子100を示す模式的な斜視図である。
図2はその平面図である。
図3は
図2におけるC-C断面図である。この半導体素子100は、p型の導電層にリッジ151を有するリッジ型の半導体レーザである。なお、半導体素子100は、半導体レーザに限られず、SLD(Super Luminescent Diode)やLED(light emitting diode)、その他の半導体素子であってもよい。
【0030】
半導体素子100は、
図3に示すように、n型層101、p型層102、活性層103、透明導電層104、誘電体層105及びパッド電極106を備える。n型層101、活性層103及びp型層102はこの順で積層され、p型層102によってストライプ状のリッジ151が形成されている。なお、
図1及び
図2ではパッド電極106及び誘電体層105の図示は省略されている。
図2に示すように、半導体素子100は光出射端面152と、光出射端面152に対して反対側の端面である後端面153を備える。
【0031】
図2に示すようにリッジ151は、後端面153から光出射端面152にかけて直線状に構成されている。以下、リッジ151が延伸する方向をY方向とする。なお、リッジ151は必ずしも直線状でなくてもよく、曲線状であってもよい。
【0032】
n型層101は、AlN、GaN、AlGaN、AlInGaN又はInN等のIII-V族窒化物半導体からなり、具体的にはInyAlzGa1-y-zN(0≦y、0≦z、y+z≦1)、又はAlxGa1-xN(0<x<1)等の窒化ガリウム系化合物半導体が好適である。n型層101の構成材料にはSi又はGe等のn型不純物がドープされており、n型の導電型を有する。n型層101は、サファイア、シリコン、ZnO、GaAs、GaN、InGaN、AlInGaN、AlGaN、AlN又はInN等からなる図示しない基板上に形成されているものとすることができる。
【0033】
p型層102は、電流狭窄構造を形成する。具体的には、リッジ151の構造により、p型層102から活性層103までの電流の注入領域が狭窄するように構成されている。これにより、活性層103におけるリッジ151の付近に、リッジ151の延伸方向(Y方向)に沿った光導波路が形成される。
【0034】
p型層102はAlN、GaN、AlGaN、AlInGaN又はInN等のIII-V族窒化物半導体からなり、具体的にはInyAlzGa1-y-zN(0≦y、0≦z、y+z≦1)、又はAlxGa1-xN(0<x<1)等の窒化ガリウム系化合物半導体が好適である。p型層102の構成材料にはMg又はZn等のp型不純物がドープされており、p型の導電型を有する
【0035】
活性層103はn型層101及びp型層102の間に設けられている。活性層103の材料は特に限定されないが、半導体素子100の発光色は活性層103の材料によって異なる。例えば、活性層103がAlInGaPからなる場合、発光波長550~900nm(実用域630~680nm)の赤色光が生成される。また、活性層103がAlInGaNからなる場合、発光波長400~1000nm(実用域400~550nm)の青紫色から緑色の光が生成される。
【0036】
この他にも活性層103の材料としてAlGaN(発光波長紫外域~400nm)、AlGaAs(発光波長750~850nm、赤外域)、InGaAs(発光波長800~980nm、赤外域)、InGaAsP(発光波長1.2~1.6μm、赤外域)等が挙げられる。
【0037】
活性層103は周囲の層(n型層101及びp型層102)よりバンドギャップが小さく、量子井戸を形成する。p型層102とn型層101の間に電流が印加されると、伝導帯(CB)に存在する電子が量子井戸のバンドギャップを介して価電子帯(VB)の正孔と再結合し、発光を生じる。
【0038】
透明導電層104は、リッジ151上に形成され、パッド電極106とp型層102を電気的に接続する。透明導電層104は、ITO(Indium Tin Oxide)、ZnO又はIGZO(Indium Gallium Zinc Oxide)等の光透過性を有する導電性材料からなる。このうち、ITOはp型窒化物半導体へのオーミック接触や光吸収の点で特に好適である。透明導電層104の詳細については後述する。
【0039】
誘電体層105は、p型層102上とリッジ151の側面に形成され、パッド電極106とp型層102を絶縁する。誘電体層105の材料は特に限定されないが、リッジ151内に効率的に光を閉じ込めるため、p型層102よりも屈折率が小さい材料が好適であり、例えばSiO2とすることができる。
【0040】
パッド電極106は、透明導電層104及び誘電体層105上においてリッジ151を覆うように形成される。パッド電極106は、金属からなる。また、パッド電極106は複数種の材料から構成されてもよい。例えば透明導電層104が酸化物からなる場合、透明導電層104に接する部分をTi、Ni又はAl等の酸化物を形成しやすい材料とすることでパッド電極106と透明導電層104の密着性を向上させることができる。例えばパッド電極106はTi/Pt/Auの積層構造とすることができる。
【0041】
図3に示すように、パッド電極106には中間層106aが形成されている。中間層106aは、透明導電層104とパッド電極106の構成元素が融合した層である。例えば透明導電層104がITOからなり、パッド電極106がTi/Pt/Aからなる場合、中間層106aはIn、Sn、O及びTiが混晶した構造となる。中間層106aによって透明導電層104とパッド電極106の密着性を向上させることができる。
【0042】
図2に示すように、光出射端面152には低反射ミラー膜154が設けられ、その反対側の後端面153には高反射ミラー膜155が設けられている。
【0043】
p型層102とn型層101の間に電流を印加すると、後端面153近傍の活性層103で自然放出光が生じる。自然放出光は、光導波路を光出射端面152に向かって進行しながら誘導放出により増幅される。自然放出光のうち後端面153側に向かう光は、高反射ミラー膜155によって反射され、光出射端面152に向かって進行しながら増幅される。増幅された光は低反射ミラー膜154を介して光出射端面152から出射される。
図1及び
図2に半導体素子100の出射光Lを示す。
【0044】
なお、後端面153には高反射ミラー膜155に変えて低反射ミラー膜を設けてもよい。この場合、出射光は半導体素子100の両端から出射される。
【0045】
半導体素子100は半導体レーザとして利用することができるが、他の光源で発生した光を増幅するための増幅器としても利用することができる。この場合には高反射ミラー膜155に変えて無反射膜が設けられる。他の光源で発生した光は当該無反射膜を介して光導波路に入射し、光導波路を進行しながら増幅される。
【0046】
[透明導電層について]
半導体素子100が備える透明導電層104は所定の形状を備える。
図4は、透明導電層104の形状を示す模式図である。
【0047】
同図に示すように、リッジ151におけるp型層102の上面の、リッジ151の延伸方向(Y方向)に直交する方向(X方向)の幅をD1とし、透明導電層104のp型層102側の面のX方向の幅を幅D2、p型層102とは反対側の面のX方向の幅をD3とする。
【0048】
このとき、D1、D2及びD3は以下の[式1]及び[式2]で表される関係を有する。
【0049】
0.99×D1≦D2≦D1 [式1]
0.96×D2≦D3≦D2 [式2]
【0050】
さらに、D3の範囲内において、透明導電層104の厚み(Z方向)は90%以上110%以下の範囲で均一である。
【0051】
このように、透明導電層104は、リッジ151におけるp型層102表面のほぼ全面に均等な厚さで積層されている。このような透明導電層104の形状は、後述する製造方法によって実現することができる。
【0052】
これにより、透明導電層104とリッジ151におけるp型層102の接触面積を広く取ることができ、半導体素子100の電圧を下げることができる。また、リッジ151の上面全面から均一に電流を注入することができ、活性層103へのキャリアの不均一注入を抑制することができるため、不均一な発光拡がりを抑制することが可能となる。
【0053】
半導体素子100は以上のような構成を有する。なお、上記説明ではp型層102においてリッジ151が形成されるものとしたが、p型層102、活性層103、n型層101の順で積層し、n型層101にリッジを形成してもよい。
【0054】
[半導体素子の製造方法]
半導体素子100の製造方法について説明する。
図5から
図8は半導体素子100の製造プロセスを示す模式図である。
【0055】
図5(a)に示すように、n型層101、活性層103及びp型層102が積層された積層体のp型層102上に透明導電層104を形成する。透明導電層104は、蒸着、スパッタ又はプラズマCVD(chemical vapor deposition)等の方法で形成することができる。透明導電層104の形成後にアニール処理を行ってもよい。これにより、p型層102への良好なオーミック特性を実現することができる。
【0056】
続いて、
図5(b)に示すように透明導電層104上に誘電体層156を形成する。誘電体層156の種類は特に限定されないが、成膜や加工のしやすさからSiO
2が好適である。誘電体層156は蒸着、スパッタ又はプラズマCVD等の方法で形成することができる。
【0057】
続いて、誘電体層156上にフォトレジストを形成し、パターニングすることによって
図5(c)に示すようにフォトレジストRを形成する。フォトレジストRはY方向に沿って延伸するストライプ形状にパターニングされている。
【0058】
続いて、フォトレジストRをマスクとして誘電体層156をエッチングし、
図6(a)に示すように誘電体層156をストライプ状に加工する。エッチングはドライエッチングやウェットエッチングを利用することができる。エッチャントには例えばフッ素系ガスを用いることができる。
【0059】
続いて、
図6(b)に示すようにフォトレジストRを除去する。
【0060】
続いて、
図6(c)に示すように、ストライプ状に加工された誘電体層156をマスクとして透明導電層104をエッチングし、透明導電層104をストライプ状に加工する。エッチングはドライエッチングやウェットエッチングを利用することができるが、ストライプ幅の制御や加工された側面の平坦性の観点からドライエッチングが好適である。エッチャントには例えば塩素系ガスを用いることができる。
【0061】
続いて、
図7(a)に示すように、ストライプ状に加工された誘電体層156及び透明導電層104をマスクとしてp型層102の少なくとも一部をエッチングし、リッジ151を形成する。エッチャントには例えば塩素系ガスを用いることができる。なお、この工程は、透明導電層104のエッチング(
図6(c))とは別々に行ってもよく、一括で行ってもよい。この方法でリッジ151を形成することにより、透明導電層104をリッジ151の上面に均一な厚みで形成することができ、透明導電層104とp型層102の接触面積を広くすることができる。
【0062】
続いて、
図7(b)に示すように、p型層102、透明導電層104及び誘電体層156上に誘電体層105を形成する。
【0063】
続いて、
図7(c)に示すように、リッジ151上の誘電体層105を除去し、透明導電層104を露出させる。
【0064】
続いて、
図8に示すように、リッジ151の全体を覆うようにパッド電極106を形成する。
【0065】
続いて、
図3に示すように中間層106aを形成する。中間層106aは熱処理によって透明導電層104とパッド電極106の構成元素を混合させることによって形成することができる。
【0066】
半導体素子100は以上のようにして製造することが可能である。この製造方法ではリッジ151におけるp型層102表面のほぼ全面に均等な厚さで透明導電層104を形成することができる。
【0067】
(第2の実施形態)
本技術の第2の実施形態に係る半導体素子について説明する。
【0068】
[半導体素子の構造]
図9は、第2の実施形態に係る半導体素子200の平面図である。半導体素子200は、第1の実施形態に係る半導体素子100に対してp電極201が設けられている点が異なる。他の構成については半導体素子100と同様であるので同一の符号を付し、説明を省略する。
【0069】
p電極201は透明導電層104とパッド電極106の間に設けられている。p電極201は金属からなる。また、p電極201は複数種の材料から構成されてもよい。例えば透明導電層104が酸化物からなる場合、透明導電層104に接する部分をTi、Ni又はAl等の酸化物を形成しやすい材料とすることでp電極201と透明導電層104の密着性を向上させることができる。例えばp電極201はTi/Pt/Auの積層構造とすることができる。
【0070】
図9に示すように、p電極201には中間層201aが形成されている。中間層201aは、透明導電層104とp電極201の構成元素が融合した層である。例えば透明導電層104がITOからなり、p電極201がTi/Pt/Aからなる場合、中間層201aはIn、Sn、O及びTiが混晶した構造となる。中間層201aによって透明導電層104とp電極201の密着性を向上させることができる。
【0071】
図10は、p電極201の形状を示す模式図である。同図に示すように、p電極201の透明導電層104側の面の、リッジ151の延伸方向(Y方向)に直交する方向(X方向)の幅をD4とする。D1、D2及びD3については第1の実施形態と同様である。
【0072】
このとき、D3及びD4は以下の[式3]で表される関係を有する。
【0073】
0.99×D3≦D4≦1.0×D3 [式3]
【0074】
半導体素子200は以上のような構成を有する。なお、上記説明ではp型層102においてリッジ151が形成されるものとしたが、p型層102、活性層103、n型層101の順で積層し、n型層101にリッジを形成してもよい。この場合にはp電極201に代えてn電極が設けられる。n電極においても透明導電層とn電極の構成元素が融合した中間層が設けられてもよい。
【0075】
[半導体素子の製造方法1]
半導体素子200の製造方法1について説明する。
図11から
図13は半導体素子200の製造プロセスを示す模式図である。
【0076】
図11(a)に示すように、n型層101、活性層103及びp型層102が積層された積層体のp型層102上に透明導電層104を形成する。透明導電層104は、蒸着、スパッタ又はプラズマCVD(chemical vapor deposition)等の方法で形成することができる。透明導電層104の形成後にアニール処理を行ってもよい。これにより、p型層102への良好なオーミック特性を実現することができる。
【0077】
続いて、透明導電層104上にフォトレジストを形成し、パターニングすることによって
図11(b)に示すようにフォトレジストRを形成する。フォトレジストRにはY方向に沿って延伸するストライプ形状の開口が形成されている。
【0078】
続いて、
図11(c)に示すように、フォトレジストR及び透明導電層104上にp電極201を形成する。
【0079】
続いて、
図12(a)に示すように、フォトレジストRを除去する。これにより、フォトレジストR上に形成されたp電極201も除去され、透明導電層104上にストライプ状のp電極201が形成される。
【0080】
続いて、
図12(b)に示すように、中間層201aを形成する。中間層201aは熱処理によって透明導電層104とp電極201の構成元素を混合させることによって形成することができる。
【0081】
続いて、
図12(c)に示すように、ストライプ状に加工されたp電極201をマスクとして透明導電層104をエッチングし、透明導電層104をストライプ状に加工する。エッチングはドライエッチングやウェットエッチングを利用することができるが、ストライプ幅の制御や加工された側面の平坦性の観点からドライエッチングが好適である。エッチャントには例えば塩素系ガスを用いることができる。
【0082】
続いて、
図13(a)に示すように、ストライプ状に加工されたp電極201及び透明導電層104をマスクとしてp型層102の少なくとも一部をエッチングし、リッジ151を形成する。エッチャントには例えば塩素系ガスを用いることができる。なお、この工程は、透明導電層104のエッチング(
図12(c))とは別々に行ってもよく、一括で行ってもよい。この方法でリッジ151を形成することにより、透明導電層104をリッジ151の上面に均一な厚みで形成することができ、透明導電層104とp型層102の接触面積を広くすることができる。
【0083】
続いて、
図13(b)に示すように、p型層102、透明導電層104及びp電極201上に誘電体層105を形成する。
【0084】
続いて、
図13(c)に示すように、リッジ151上の誘電体層105を除去し、p電極201を露出させる。
【0085】
続いて、
図9に示すように、リッジ151の全体を覆うようにパッド電極106を形成する。
【0086】
半導体素子200は以上のようにして製造することが可能である。この製造方法ではリッジ151におけるp型層102表面のほぼ全面に均等な厚さで透明導電層104を形成することができる。
【0087】
[半導体素子の製造方法2]
半導体素子200の製造方法2について説明する。
図14から
図17は半導体素子200の製造プロセスを示す模式図である。
【0088】
図14(a)に示すように、n型層101、活性層103及びp型層102が積層された積層体のp型層102上に透明導電層104を形成する。透明導電層104は、蒸着、スパッタ又はプラズマCVD(chemical vapor deposition)等の方法で形成することができる。透明導電層104の形成後にアニール処理を行ってもよい。これにより、p型層102への良好なオーミック特性を実現することができる。
【0089】
続いて、
図14(b)に示すように、透明導電層104上にp電極201を形成する。
【0090】
続いて、
図14(c)に示すように、中間層201aを形成する。中間層201aは熱処理によって透明導電層104とp電極201の構成元素を混合させることによって形成することができる。
【0091】
続いて、p電極201上にフォトレジストを形成し、パターニングすることによって
図15(a)に示すようにフォトレジストRを形成する。フォトレジストRはY方向に沿って延伸するストライプ形状にパターニングされている。
【0092】
続いて、フォトレジストRをマスクとしてp電極201をエッチングし、
図15(b)に示すようにp電極201をストライプ状に加工する。エッチングはドライエッチングやウェットエッチングを利用することができる。
【0093】
続いて、
図15(c)に示すように、フォトレジストRを除去する。
【0094】
続いて、
図16(a)に示すように、ストライプ状に加工されたp電極201をマスクとして透明導電層104をエッチングし、透明導電層104をストライプ状に加工する。エッチングはドライエッチングやウェットエッチングを利用することができるが、ストライプ幅の制御や加工された側面の平坦性の観点からドライエッチングが好適である。エッチャントには例えば塩素系ガスを用いることができる。
【0095】
続いて、
図16(b)に示すように、ストライプ状に加工されたp電極201及び透明導電層104をマスクとしてp型層102の少なくとも一部をエッチングし、リッジ151を形成する。エッチャントには例えば塩素系ガスを用いることができる。なお、この工程は、透明導電層104のエッチング(
図16(a))とは別々に行ってもよく、一括で行ってもよい。この方法でリッジ151を形成することにより、透明導電層104をリッジ151の上面に均一な厚みで形成することができ、透明導電層104とp型層102の接触面積を広くすることができる。
【0096】
続いて、
図16(c)に示すように、p型層102、透明導電層104及びp電極201上に誘電体層105を形成する。
【0097】
続いて、
図17に示すように、リッジ151上の誘電体層105を除去し、p電極201を露出させる。
【0098】
続いて、
図9に示すように、リッジ151の全体を覆うようにパッド電極106を形成する。
【0099】
半導体素子200は以上のようにして製造することが可能である。この製造方法ではリッジ151におけるp型層102表面のほぼ全面に均等な厚さで透明導電層104を形成することができる。
【0100】
(表示装置について)
本技術の第1及び第2の実施形態に係る半導体素子は、ラスタスキャン方式のプロジェクタ等の表示装置の光源として好適に利用することが可能である。
【0101】
なお、本技術は以下のような構成もとることができる。
(1)
第1の導電型を有し、表面にストライプ状のリッジが形成された第1半導体層と、
第2の導電型を有する第2半導体層と、
上記第1半導体層と上記第2半導体層の間に設けられた活性層と、
透明導電性材料からなり、上記リッジ上に形成された透明導電層と
を具備し、
上記リッジの上記透明導電層が形成された面の、上記リッジの延伸方向に直交する方向の幅を第1の幅とし、上記透明導電層の上記リッジ側の面の上記方向の幅を第2の幅とすると、上記第2の幅は上記第1の幅の0.99倍以上1.0倍以下であり、
上記透明導電層の上記リッジとは反対側の面の上記方向の幅を第3の幅とすると、上記第3の幅は上記第2の幅の0.96倍以上1.0倍以下であり、
上記透明導電層は、上記第3の幅の範囲内において厚みが90%以上110%以下の範囲で均一である
半導体素子。
【0102】
(2)
上記(1)に記載の半導体素子であって、
導電性材料からなり、上記透明導電層に当接するパッド電極をさらに具備し、
上記パッド電極は、上記パッド電極と上記透明導電層の接合部に形成され、上記パッド電極と上記透明導電層のそれぞれの構成元素が融合した中間層を有する
半導体素子。
【0103】
(3)
上記(1)に記載の半導体素子であって、
金属材料からなり、上記透明導電層上に形成された金属電極をさらに具備し、
上記金属電極は、上記金属電極と上記透明導電層の接合部に形成され、上記金属電極と上記透明導電層のそれぞれの構成元素が融合した中間層を有する
半導体素子。
【0104】
(4)
上記(3)に記載の半導体素子であって、
上記金属電極の上記透明導電層側の面の上記方向の幅を第4の幅とすると、上記第4の幅は上記第3の幅の0.99倍以上1.0倍以下である
半導体素子。
【0105】
(5)
第1の導電型を有し、表面にストライプ状のリッジが形成された第1半導体層と、
第2の導電型を有する第2半導体層と、
上記第1半導体層と上記第2半導体層の間に設けられた活性層と、
透明導電性材料からなり、上記リッジ上に形成された透明導電層と
を具備し、
上記リッジの上記透明導電層が形成された面の、上記リッジの延伸方向に直交する方向の幅を第1の幅とし、上記透明導電層の上記リッジ側の面の上記方向の幅を第2の幅とすると、上記第2の幅は上記第1の幅の0.99倍以上1.0倍以下であり、
上記透明導電層の上記リッジとは反対側の面の上記方向の幅を第3の幅とすると、上記第3の幅は上記第2の幅の0.96倍以上1.0倍以下であり、
上記透明導電層は、上記第3の幅の範囲内において厚みが90%以上110%以下の範囲で均一である
半導体レーザ。
【0106】
(6)
第1の導電型を有する第1半導体層と、第2の導電型を有する第2半導体層と、上記第1半導体層と上記第2半導体層の間に設けられた活性層とを備える積層体を準備し、
上記第1半導体層上に透明導電性材料からなる透明導電層を形成し、
上記透明導電層上にストライプ状に加工されたマスク構造を形成し、
上記マスク構造をエッチングマスクとして上記透明導電層と上記第1半導体層の少なくとも一部をエッチングにより除去する
半導体素子の製造方法。
【0107】
(7)
上記(6)に記載の半導体素子の製造方法であって、
上記マスク構造は誘電体からなる
半導体素子の製造方法。
【0108】
(8)
上記(7)に記載の半導体素子の製造方法であって、
上記マスク構造を形成する工程では、上記透明導電層上に誘電体からなる誘電体層を形成し、上記誘電体層上にフォトレジストを形成し、上記フォトレジストをストライプ状にパターニングし、上記フォトレジストをエッチングマスクとして上記誘電体層をエッチングする
半導体素子の製造方法。
【0109】
(9)
上記(6)に記載の半導体素子の製造方法であって、
上記マスク構造は金属からなる
半導体素子の製造方法。
【0110】
(10)
上記(9)に記載の半導体素子の製造方法であって、
上記マスク構造を形成する工程では、上記透明導電層上にフォトレジストを形成し、上記フォトレジストをストライプ状の開口を有する形状にパターニングし、上記透明導電層及び上記フォトレジト上に金属層を形成し、上記フォトレジストと上記フォトレジスト上に形成された金属層を除去する
半導体素子の製造方法。
【0111】
(11)
上記(9)に記載の半導体素子の製造方法であって、
上記マスク構造を形成する工程では、上記透明導電層上に金属層を形成し、上記金属上にフォトレジストを形成し、上記フォトレジストをストライプ状にパターニングし、上記フォトレジストをエッチングマスクとして上記金属層をエッチングする
半導体素子の製造方法。
【0112】
(12)
上記(8)に記載の半導体素子の製造方法であって、
上記透明導電層と上記第1半導体層の少なくとも一部をエッチングにより除去する工程の後、上記透明導電層に接触するパッド電極を形成し、熱処理によって上記パッド電極と上記透明導電層の接合部に、上記パッド電極と上記透明導電層のそれぞれの構成元素が融合した中間層を形成する
半導体素子の製造方法。
【0113】
(13)
上記(9)又は(10)に記載の半導体素子の製造方法であって、
上記透明導電層上に上記金属層を形成した後、熱処理によって上記金属層と上記透明導電層の接合部に、上記金属層と上記透明導電層のそれぞれの構成元素が融合した中間層を形成する
半導体素子の製造方法。
【符号の説明】
【0114】
100…半導体素子
101…n型層
102…p型層
103…活性層
104…透明導電層
105…誘電体層
106…パッド電極
106a…中間層
151…リッジ
200…半導体素子
201…p電極
201a…中間層