(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-21
(45)【発行日】2022-07-29
(54)【発明の名称】モータドライバ装置及び半導体装置
(51)【国際特許分類】
H02P 6/182 20160101AFI20220722BHJP
【FI】
H02P6/182
(21)【出願番号】P 2018094339
(22)【出願日】2018-05-16
【審査請求日】2021-04-22
(73)【特許権者】
【識別番号】000116024
【氏名又は名称】ローム株式会社
(74)【代理人】
【識別番号】110001933
【氏名又は名称】特許業務法人 佐野特許事務所
(72)【発明者】
【氏名】杉江 尚
【審査官】三島木 英宏
(56)【参考文献】
【文献】特開2010-273502(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 6/182
(57)【特許請求の範囲】
【請求項1】
パルス幅が変化する駆動信号を用い、複数相分のコイルを有して構成される直流モータをスイッチング駆動するモータドライバ装置において、
前記駆動信号に従って各コイルに電力を供給する出力回路と、
前記直流モータの所定相のコイルに対する通電が停止される区間としてウィンドウ区間を設定する区間設定部と、
前記所定相のコイルに対する通電が停止された状態において、
前記所定相のコイルに生じる逆起電力がゼロを交差するゼロクロスタイミングを検出するゼロクロス検出部と、
前記ゼロクロス検出部の検出結果に基づき前記駆動信号を生成する駆動信号生成部と、を備え、
前記出力回路は、前記ウィンドウ区間内において前記駆動信号に依らずに前記所定相のコイルへの通電を停止させ、前記ウィンドウ区間の開始後に前記ゼロクロスタイミングが検出されると前記駆動信号に従って各コイルに電力を供給する通常動作を再開し、
前記区間設定部は、順次発生するゼロクロスタイミングを境に区切られる時系列上に並ぶ複数のフレームの何れかである対象フレームにおいて、前記対象フレームの開始後に訪れるゼロクロスタイミングが検出される前に、検出済みの2以上のゼロクロスタイミングに基づいて前記対象フレームにおける前記ウィンドウ区間を設定し
て前記対象フレームの開始後のゼロクロスタイミングが検出されるまで前記ウィンドウ区間を継続させ、
前記駆動信号生成部は、前記駆動信号の周波数である又は前記駆動信号の最小のパルス幅の逆数である可変対象周波数を、前記ウィンドウ区間外において前記ウィンドウ区間内よりも高くする周波数可変制御を実行可能であ
り、
前記区間設定部は、前記ウィンドウ区間を設定する際に、前記検出済みの2以上のゼロクロスタイミングに基づ
き、前記ウィンドウ区間の開始から遅れて開始される検出予測区間を設定し、
前記出力回路は、前記ウィンドウ区間が開始されると前記所定相と異なる他の各相のコイルへの印加電圧のスイッチングを行いつつ前記所定相のコイルに対する通電を停止させ、その後、前記ゼロクロスタイミングが検出されることなく前記検出予測区間が前記ウィンドウ区間の一部として開始されると、前記駆動信号に依らずに前記所定相のコイルの通電を停止させ且つ前記他の各相のコイルへの印加電圧のスイッチングを停止させ、更にその後、前記ゼロクロスタイミングが検出されると前記通常動作を再開する
、モータドライバ装置。
【請求項2】
当該モータドライバ装置の動作モードを第1モードに設定してから第2モードに切り替え可能なモード設定部を更に備え、
前記駆動信号生成部は、前記第1モードが前記動作モードに設定されているとき、前記周波数可変制御により前記ウィンドウ区間内における前記可変対象周波数を前記ウィンドウ区間外の前記可変対象周波数である所定周波数よりも低くする一方、前記第2モードが前記動作モードに設定されているとき、前記可変対象周波数を前記ウィンドウ区間内及び前記ウィンドウ区間外において前記所定周波数に維持し、
前記モード設定部は、前記動作モードが前記第1モードに設定されている状態において、1以上の所定数のフレームに亘り前記ゼロクロスタイミングが前記検出予測区間内にて検出されたとき、前記動作モードを前記第2モードに切り替え、そうでないとき前記動作モードを前記第1モードに維持する
、請求項1に記載のモータドライバ装置。
【請求項3】
前記モード設定部は、前記動作モードが前記第2モードに切り替えられた後、前記ゼロクロスタイミングが前記検出予測区間内にて検出されると前記動作モードを前記第2モードに維持する一方で、前記ゼロクロスタイミングが前記検出予測区間内にて検出されないと前記動作モードを前記第1モードに戻す
、請求項2に記載のモータドライバ装置。
【請求項4】
パルス幅が変化する駆動信号を用い、複数相分のコイルを有して構成される直流モータをスイッチング駆動するモータドライバ装置において、
前記駆動信号に従って各コイルに電力を供給する出力回路と、
前記直流モータの所定相のコイルに対する通電が停止される区間としてウィンドウ区間を設定する区間設定部と、
前記所定相のコイルに対する通電が停止された状態において、前記所定相のコイルに生じる逆起電力がゼロを交差するゼロクロスタイミングを検出するゼロクロス検出部と、
前記ゼロクロス検出部の検出結果に基づき前記駆動信号を生成する駆動信号生成部と、を備え、
前記出力回路は、前記ウィンドウ区間内において前記駆動信号に依らずに前記所定相のコイルへの通電を停止させ、前記ウィンドウ区間の開始後に前記ゼロクロスタイミングが検出されると前記駆動信号に従って各コイルに電力を供給する通常動作を再開し、
前記区間設定部は、順次発生するゼロクロスタイミングを境に区切られる時系列上に並ぶ複数のフレームの何れかである対象フレームにおいて、前記対象フレームの開始後に訪れるゼロクロスタイミングが検出される前に、検出済みの2以上のゼロクロスタイミングに基づいて前記対象フレームにおける前記ウィンドウ区間を設定して前記対象フレームの開始後のゼロクロスタイミングが検出されるまで前記ウィンドウ区間を継続させ、
当該モータドライバ装置の動作モードを第1モードに設定してから第2モードに切り替え可能なモード設定部が更に設けられ、
前記第1モードが前記動作モードに設定されているとき、前記駆動信号生成部は、前記駆動信号の周波数である又は前記駆動信号の最小のパルス幅の逆数である可変対象周波数を、前記ウィンドウ区間外において前記ウィンドウ区間内よりも高くする周波数可変制御を実行し、
前記区間設定部は、前記第1モードが前記動作モードに設定されているとき、前記ウィンドウ区間を設定する際に、前記検出済みの2以上のゼロクロスタイミングに基づき、前記ウィンドウ区間の開始から遅れて開始される第1検出予測区間を設定し、
前記区間設定部は、前記第2モードが前記動作モードに設定されているとき、前記検出済みの2以上のゼロクロスタイミングに基づき第2検出予測区間を設定し、前記第2モードでは前記第2検出予測区間の開始が前記ウィンドウ区間の開始に相当し、
前記第1モードが前記動作モードに設定されているとき、前記出力回路は、前記ウィンドウ区間が開始されると前記所定相と異なる他の各相のコイルへの印加電圧のスイッチングを行いつつ前記所定相のコイルに対する通電を停止させ、その後、前記ゼロクロスタイミングが検出されることなく前記第1検出予測区間が前記ウィンドウ区間の一部として開始されると、前記駆動信号に依らずに前記所定相のコイルの通電を停止させ且つ前記他の各相のコイルへの印加電圧のスイッチングを停止させ、更にその後、前記ゼロクロスタイミングが検出されると前記通常動作を再開し、
前記第2モードが前記動作モードに設定されているとき、前記出力回路は、前記第2検出予測区間の開始により前記ウィンドウ区間が開始されると、前記駆動信号に依らずに前記所定相のコイルの通電を停止させ且つ前記他の各相のコイルへの印加電圧のスイッチングを停止させ、その後、前記ゼロクロスタイミングが検出されると前記通常動作を再開し、
前記モード設定部は、前記動作モードが前記第1モードに設定されている状態において、1以上の所定数のフレームに亘り前記ゼロクロスタイミングが前記第1検出予測区間内にて検出されたとき、前記動作モードを前記第2モードに切り替え、そうでないとき前記動作モードを前記第1モードに維持する
、モータドライバ装置。
【請求項5】
前記駆動信号生成部は、前記第1モードが前記動作モードに設定されているとき、前記周波数可変制御により前記ウィンドウ区間内における前記可変対象周波数を前記ウィンドウ区間外の前記可変対象周波数である所定周波数よりも低くする一方、前記第2モードが前記動作モードに設定されているとき、前記可変対象周波数を前記ウィンドウ区間内及び前記ウィンドウ区間外において前記所定周波数に維持する
、請求項4に記載のモータドライバ装置。
【請求項6】
前記モード設定部は、前記動作モードが前記第2モードに切り替えられた後、前記ゼロクロスタイミングが前記第2検出予測区間内にて検出されると前記動作モードを前記第2モードに維持する一方で、前記ゼロクロスタイミングが前記第2検出予測区間内にて検出されないと前記動作モードを前記第1モードに戻す
、請求項4又は5に記載のモータドライバ装置。
【請求項7】
前記出力回路は、互いに直列接続されたハイサイドトランジスタ及びローサイドトランジスタを各々に備えた複数のハーフブリッジ回路から成り、
各ハーフブリッジ回路において、ハイサイドトランジスタ及びローサイドトランジスタ間の接続ノードが、対応するコイルの一端に接続され、
前記出力回路は、前記所定相のコイルに対する通電が停止させる区間において、前記所定相に対応するハーフブリッジ回路のハイサイドトランジスタ及びローサイドトランジスタの双方をオフ状態とする
、請求項1~6の何れかに記載のモータドライバ装置。
【請求項8】
前記駆動信号生成部は、前記ゼロクロス検出部の検出結果と所定の波形データに基づいて生成した変調前信号を周期的に信号値が変化する所定の周期信号と比較することで、前記駆動信号をパルス幅変調信号として生成し、
前記周期信号の周波数が前記可変対象周波数に相当する
、請求項1~7の何れかに記載のモータドライバ装置。
【請求項9】
前記駆動信号生成部は、前記ゼロクロス検出部の検出結果と所定の波形データに基づいて生成した変調前信号を1ビットの粗密波に変換することで、前記駆動信号をパルス密度変調信号として生成し、
前記粗密波における最小のパルス幅の逆数が前記可変対象周波数に相当する
、請求項1~7の何れかに記載のモータドライバ装置。
【請求項10】
請求項1~9の何れかに記載のモータドライバ装置であって、
磁気ディスク装置の磁気ディスクを回転させるスピンドルモータを前記直流モータとしてスイッチング駆動する
、モータドライバ装置
【請求項11】
請求項1~10に記載のモータドライバ装置を形成する半導体装置であって、
前記モータドライバ装置は集積回路を用いて形成される
、半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、モータドライバ装置及び半導体装置に関する。
【背景技術】
【0002】
ハードディスク装置におけるスピンドルモータなどに用いられるブラシレス直流モータは、一般に、永久磁石が設けられたロータと複数のコイルが設けられたステータとを備える。このような直流モータをセンサレスで駆動するための方法として、所定相のコイルの逆起電力を検出して逆起電力のゼロクロスタイミングからロータの位置情報を得る方法が知られている。この方法では、所定相のコイルの通電を一時的に停止するウィンドウ区間が設定され、ウィンドウ区間にて所定相のコイルの逆起電力が検出される(下記特許文献1及び2参照)。
【0003】
直流モータをセンサレス駆動するためのモータドライバ装置は、逆起電力の検出結果に基づいてパルス幅を可変とする駆動信号を生成する駆動信号生成回路と、駆動信号に基づいて各コイルに電力を供給する出力回路と、を備える。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2010-4733号公報
【文献】国際公開第2009/150794号
【発明の概要】
【発明が解決しようとする課題】
【0005】
駆動信号生成回路は、例えば、パルス幅変調を利用して駆動信号を生成することができるが、駆動信号の周波数(即ちパルス幅変調における周波数)が低いと直流モータでのトルクリプルが増大する傾向にある。トルクリプルの低減が必要とされるケースも多い。但し、トルクリプルを低減させるために単純に駆動信号の周波数を高めると、ウィンドウ区間内であっても他の相の高周波数スイッチングにより逆起電力を示す信号に絶え間なくノイズが混入して当該信号が安定しない状態が支配的となり、正確な逆起電力検出(ゼロクロスタイミング検出)の担保が難しくなる。尚、この点については、
図10等を参照して後にも説明される。駆動信号をパルス密度変調など利用して生成する場合においても同様である。
【0006】
本発明は、正確な逆起電力検出を確保しつつトルクリプルの低減に寄与するモータドライバ装置及び半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る第1のモータドライバ装置は、パルス幅が変化する駆動信号を用い、複数相分のコイルを有して構成される直流モータをスイッチング駆動するモータドライバ装置であって、前記駆動信号に従って各コイルに電力を供給する出力回路と、前記直流モータの所定相のコイルに対する通電が停止される区間としてウィンドウ区間を設定する区間設定部と、前記所定相のコイルに対する通電が停止された状態において、前記直流モータの所定相のコイルに生じる逆起電力がゼロを交差するゼロクロスタイミングを検出するゼロクロス検出部と、前記ゼロクロス検出部の検出結果に基づき前記駆動信号を生成する駆動信号生成部と、を備え、前記出力回路は、前記ウィンドウ区間内において前記駆動信号に依らずに前記所定相のコイルへの通電を停止させ、前記ウィンドウ区間の開始後に前記ゼロクロスタイミングが検出されると前記駆動信号に従って各コイルに電力を供給する通常動作を再開し、前記区間設定部は、順次発生するゼロクロスタイミングを境に区切られる時系列上に並ぶ複数のフレームの何れかである対象フレームにおいて、前記対象フレームの開始後に訪れるゼロクロスタイミングが検出される前に、検出済みの2以上のゼロクロスタイミングに基づいて前記対象フレームにおける前記ウィンドウ区間を設定し、前記駆動信号生成部は、前記駆動信号の周波数である又は前記駆動信号の最小のパルス幅の逆数である可変対象周波数を、前記ウィンドウ区間外において前記ウィンドウ区間内よりも高くする周波数可変制御を実行可能であることを特徴とする。
【0008】
具体的には例えば第1のモータドライバ装置において、前記区間設定部は、前記ウィンドウ区間を設定する際に、前記検出済みの2以上のゼロクロスタイミングに基づいて、前記ウィンドウ区間よりも後に開始される検出予測区間も併せて設定し、前記出力回路は、前記検出予測区間内において前記駆動信号に依らずに前記所定相のコイルへの通電を停止させ且つ他の各相のコイルへの印加電圧のスイッチングを停止させ、前記ウィンドウ区間又は前記検出予測区間の開始後に前記ゼロクロスタイミングが検出されると前記通常動作を再開すると良い。
【0009】
より具体的には例えば第1のモータドライバ装置において、前記区間設定部にて設定された前記検出予測区間内にてゼロクロスタイミングが検出されたか否かを示す情報に基づき、第1モード又は第2モードを当該モータドライバ装置の動作モードとして設定するモード設定部が更に設けられていても良く、前記駆動信号生成部は、前記第1モードが前記動作モードに設定されているとき、前記周波数可変制御により前記ウィンドウ区間内における前記可変対象周波数を前記ウィンドウ区間外の前記可変対象周波数である所定周波数よりも低くする一方、前記第2モードが前記動作モードに設定されているとき、前記可変対象周波数を前記ウィンドウ区間内及び前記ウィンドウ区間外において前記所定周波数とすると良い。
【0010】
そして例えば第1のモータドライバ装置において、前記モード設定部は、前記動作モードが前記第1モードに設定されている状態において、1以上の所定数のフレームに亘り前記ゼロクロスタイミングが前記検出予測区間内にて検出されたとき、前記動作モードを前記第2モードに切り替え、そうでないとき前記動作モードを前記第1モードに維持するとい良い。
【0011】
更に例えば第1のモータドライバ装置において、前記モード設定部は、前記動作モードが前記第2モードに切り替えられた後、前記ゼロクロスタイミングが前記検出予測区間内にて検出されると前記動作モードを前記第2モードに維持する一方で、前記ゼロクロスタイミングが前記検出予測区間内にて検出されないと前記動作モードを前記第1モードに戻すと良い。
【0012】
本発明に係る第2のモータドライバ装置は、パルス幅が変化する駆動信号を用い、複数相分のコイルを有して構成される直流モータをスイッチング駆動するモータドライバ装置であって、前記駆動信号に従って各コイルに電力を供給する出力回路と、前記直流モータの所定相のコイルに対する通電が停止される区間としてウィンドウ区間及び検出予測区間を設定可能な区間設定部と、前記所定相のコイルに対する通電が停止された状態において、前記所定相のコイルに生じる逆起電力がゼロを交差するゼロクロスタイミングを検出するゼロクロス検出部と、前記ゼロクロス検出部の検出結果に基づき前記駆動信号を生成する駆動信号生成部と、を備え、前記出力回路は、前記ウィンドウ区間及び前記検出予測区間内において前記駆動信号に依らずに前記所定相のコイルへの通電を停止させ、前記検出予測区間内においては前記所定相のコイルへの通電の停止に加えて他の各相のコイルへの印加電圧のスイッチングを停止させ、前記ウィンドウ区間又は前記検出予測区間の開始後に前記ゼロクロスタイミングが検出されると前記駆動信号に従って各コイルに電力を供給する通常動作を再開し、前記駆動信号生成部は、前記駆動信号の周波数である又は前記駆動信号の最小のパルス幅の逆数である可変対象周波数を変更可能に構成され、前記区間設定部は、順次発生するゼロクロスタイミングを境に区切られる時系列上に並ぶ複数のフレームの何れかである対象フレームにおいて、前記対象フレームの開始後に訪れるゼロクロスタイミングが検出される前に、検出済みの2以上のゼロクロスタイミングに基づいて前記対象フレームにおける前記検出予測区間を設定し、当該モータドライバ装置は、前記区間設定部にて設定された前記検出予測区間内にゼロクロスタイミングが検出されたか否かを示す情報に基づき、第1モード又は第2モードを当該モータドライバ装置の動作モードとして設定するモード設定部を更に備え、前記第1モードが前記動作モードに設定されているとき、前記検出予測区間の前から開始される前記ウィンドウ区間が前記区間設定部により設定されて、設定された前記ウィンドウ区間内では前記可変対象周波数が前記ウィンドウ区間外よりも低く設定され、前記第2モードが前記動作モードに設定されているとき、前記検出予測区間前における前記ウィンドウ区間が非設定とされることを特徴とする。
【0013】
具体的には例えば第2のモータドライバ装置において、前記第1モードが前記動作モードに設定されているとき、前記可変対象周波数が前記ウィンドウ区間外において所定周波数とされ且つ前記ウィンドウ区間内で前記所定周波数よりも低くされ、前記第2モードが前記動作モードに設定されているとき、前記可変対象周波数が前記所定周波数で維持されて良い。
【0014】
また具体的には例えば第2のモータドライバ装置において、前記モード設定部は、前記動作モードが前記第1モードに設定されている状態において、1以上の所定数のフレームに亘り前記ゼロクロスタイミングが前記検出予測区間内にて検出されたとき、前記動作モードを前記第2モードに切り替え、そうでないとき前記動作モードを前記第1モードに維持すると良い。
【0015】
更に例えば第2のモータドライバ装置において、前記モード設定部は、前記動作モードが前記第2モードに切り替えられた後、前記ゼロクロスタイミングが前記検出予測区間内にて検出されると前記動作モードを前記第2モードに維持する一方で、前記ゼロクロスタイミングが前記検出予測区間内にて検出されないと前記動作モードを前記第1モードに戻すと良い。
【0016】
また具体的には例えば第1又は第2のモータドライバ装置において、前記出力回路は、互いに直列接続されたハイサイドトランジスタ及びローサイドトランジスタを各々に備えた複数のハーフブリッジ回路から成り、各ハーフブリッジ回路において、ハイサイドトランジスタ及びローサイドトランジスタ間の接続ノードが、対応するコイルの一端に接続され、前記出力回路は、前記所定相のコイルに対する通電が停止させる区間において、前記所定相に対応するハーフブリッジ回路のハイサイドトランジスタ及びローサイドトランジスタの双方をオフ状態とすると良い。
【0017】
また具体的には例えば第1又は第2のモータドライバ装置において、前記駆動信号生成部は、前記ゼロクロス検出部の検出結果と所定の波形データに基づいて生成した変調前信号を周期的に信号値が変化する所定の周期信号と比較することで、前記駆動信号をパルス幅変調信号として生成し、前記周期信号の周波数が前記可変対象周波数に相当しても良い。
【0018】
或いは例えば第1又は第2のモータドライバ装置において、前記駆動信号生成部は、前記ゼロクロス検出部の検出結果と所定の波形データに基づいて生成した変調前信号を1ビットの粗密波に変換することで、前記駆動信号をパルス密度変調信号として生成し、
前記粗密波における最小のパルス幅の逆数が前記可変対象周波数に相当しても良い。
【0019】
また例えば、第1又は第2のモータドライバ装置は、磁気ディスク装置の磁気ディスクを回転させるスピンドルモータを前記直流モータとしてスイッチング駆動するもので合って良い。
【0020】
本発明に係る半導体装置は、第1又は第2のモータドライバ装置形成する半導体装置であって、前記モータドライバ装置は集積回路を用いて形成されることを特徴とする。
【発明の効果】
【0021】
本発明によれば、正確な逆起電力検出を確保しつつトルクリプルの低減に寄与するモータドライバ装置及び半導体装置を提供することが可能となる。
【図面の簡単な説明】
【0022】
【
図1】本発明の実施形態に係るハードディスク装置の機構に関わる概略構成図である。
【
図2】本発明の実施形態に係るハードディスク装置の電気的な概略ブロック図である。
【
図3】本発明の実施形態に係るハードディスク装置に搭載されるドライバICの外観斜視図である。
【
図4】本発明の実施形態に係るSPM及びSPMドライバの構成図である。
【
図5】
図4の逆起電力検出回路の内部構成図である。
【
図6】SPMにおけるU相のコイルに生じる逆起電力の波形と、それに関連する信号波形を示す図である。
【
図7】本発明の実施形態に係り、時系列上に複数のフレームが並ぶ様子を示す図である。
【
図9】本発明の実施形態に係るSPMドライバの一部構成図である。
【
図10】本発明の実施形態に係り、ウィンドウ区間におけるU相のコイルの一端及び他端(中性点)の電圧波形を示す図である。
【
図11】本発明の実施形態に係り、SPMドライバ内で生成される幾つかの信号波形を示す図である。
【
図12】本発明の実施形態に係り、過去の検出済みのゼロクロスタイミングに基づきウィンドウ区間が設定される様子を示す図である。
【
図13】本発明の第1実施例に係る駆動信号生成回路の構成図である。
【
図14】本発明の第1実施例に係り、U相、V相及びW相の各コイルに正弦波状の電流を供給するために各コイルの一端に印加すべきU相、V相及びW相目標電圧の波形を示す図である。
【
図15】本発明の第1実施例に係り、U相目標電圧の波形を示す図である。
【
図16】
図13の波形データテーブルに格納された波形データの概要を示す図である。
【
図17】
図13のPWMカウンタから出力される周期信号を示す図である。
【
図18】本発明の第1実施例に係り、
図13の駆動信号生成回路内で生成される複数の信号の関係を示す図である。
【
図19】本発明の第1実施例に係り、相対的に低い周波数を有する周期信号とスロープ電圧信号との関係を示す図(a)と、相対的に高い周波数を有する周期信号とスロープ電圧信号との関係を示す図(b)である。
【
図20】本発明の第2実施例に係る駆動信号生成回路の構成図である。
【
図21】本発明の第2実施例に係るPDM回路の構成図である。
【
図22】本発明の第2実施例に係り、変調前信号とPDM変動後の信号である駆動信号との関係を示す図である。
【
図23】本発明の第3実施例に係り、非ウィンドウ区間、第1ウィンドウ区間及び第2ウィンドウ区間の説明図である。
【
図24】本発明の第3実施例に係り、検出予測区間及びゼロクロス予測タイミングを説明するための図である。
【
図25】本発明の第3実施例に係り、ゼロクロスタイミングの予測が成功又は失敗したときの信号波形を示す図である。
【
図26】本発明の第3実施例に係り、SPM駆動制御回路内にモード設定部が設けられる様子を示す図である。
【
図27】本発明の第1実施例等に係り、可変対象周波数を可変設定する方法の説明図である。
【
図28】本発明の第4実施例に係り、可変対象周波数を可変設定する方法の説明図である。
【
図29】本発明の第4実施例にて参照される幾つかの記号を定義及び説明するための図である。
【
図30】本発明の第4実施例に係り、動作モードの変遷の様子を示す図である。
【
図31】本発明の第4実施例に係り、過渡モードから安定モードへの移行条件の説明図である。
【
図32】本発明の第4実施例に係り、安定モードに移行した後の動作モードの変遷を説明するための図である。
【
図33】本発明の第5実施例に係り、可変対象周波数を可変設定する方法の説明図である。
【
図34】本発明の第5実施例に係り、安定モードにおける検出予測区間と2つの信号との関係を示す図である。
【発明を実施するための形態】
【0023】
以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量又は部材等を参照する記号又は符号を記すことによって、該記号又は符号に対応する情報、信号、物理量又は部材等の名称を省略又は略記することがある。例えば、後述の“TrH”によって参照されるハイサイドトランジスタは、ハイサイドトランジスタTrHと表記されることもあるし、トランジスタTrHと略記されることもあるが、それらは全て同じものを指す。
【0024】
まず本実施形態で用いられる幾つかの用語について説明を設ける。
本実施形態において、レベルとは電位のレベルを指し、任意の信号又は電圧についてハイレベルはローレベルよりも高い電位を有する。グランドは0V(ゼロボルト)の基準電位を有する導電部を指す又は基準電位そのものを指す。本実施形態において、特に基準を設けずに示される電圧は、グランドから見た電位を表す。
後述のトランジスタTrH及びTrLを含むFET(電界効果トランジスタ)として構成された任意のトランジスタについて、オン状態とは、当該トランジスタのドレイン及びソース間が導通状態となっていることを指し、オフ状態とは、当該トランジスタのドレイン及びソース間が非導通状態(遮断状態)となっていることを指す。オン状態、オフ状態を、単にオン、オフと表現することもある。
【0025】
図1は、本発明の実施形態に係る磁気ディスク装置としてのハードディスク装置(以下HDD装置と称する)1の機構に関わる概略構成図である。
【0026】
HDD装置1は、記録媒体である磁気ディスク10と、磁気ディスク10に対して情報の書き込み及び読み込みを行う磁気ヘッド11(以下ヘッド11とも称されうる)と、磁気ヘッド11を磁気ディスク10の半径方向に対して移動自在に支持するアーム12と、磁気ディスク10を支持及び回転させるスピンドルモータ13(以下SPM13とも称されうる)と、アーム12を回転駆動及び位置決めすることで磁気ヘッド11を磁気ディスク10の半径方向に対して移動させ且つ位置決めするボイスコイルモータ14(以下VCM14とも称されうる)と、を備える。
【0027】
HDD装置1は、更に、一対の圧電素子15と、ロードビーム16と、磁気ヘッド11を磁気ディスク10から離間した所定の退避位置に保持するランプ部17と、を備える。アーム12の先端にロードビーム16が取り付けられ、ロードビーム16の先端に磁気ヘッド11が取り付けられる。アーム12の先端部におけるロードビーム16の取り付け部付近に一対の圧電素子15が配置される。一対の圧電素子15に対して互いに逆位相の電圧を加えることで、一対の圧電素子15が互いに逆位相で伸縮し、ロードビーム16の先端の磁気ヘッド11を磁気ディスク10の半径方向において変位させることができる。
【0028】
このように、HDD装置1では、いわゆる2段アクチュエータ方式が採用されている。VCM14は、アーム12を駆動することで磁気ディスク10上において磁気ヘッド11を荒く位置決めする(相対的に荒い分解能で位置決めする)粗動アクチュエータとして機能し、一対の圧電素子15は、アーム12の位置を基準にして磁気ヘッド11の位置を調整することで磁気ディスク10上において磁気ヘッド11を精密に位置決めする(VCM14よりも細かい分解能で位置決めする)微動アクチュエータとして機能する。以下では、一対の圧電素子15から成るアクチュエータを、マイクロアクチュエータの略称“MA”を用い、MA15と称する。
【0029】
磁気ディスク10と、磁気ヘッド11と、MA15及びロードビーム16が取り付けられたアーム12と、SPM13と、VCM14と、ランプ部17は、HDD装置1の筐体内に収められる。尚、VCM14又はMA15による磁気ヘッド11の移動、変位に関し、磁気ディスク10の半径方向における移動、変位とは、円盤形状を有する磁気ディスク10の外周と中心とを結ぶ方向における移動、変位を意味するが、VCM14又はMA15による磁気ヘッド11の移動、変位が、磁気ディスク10の半径方向における移動、変位に加えて、他の方向(例えば磁気ディスク10の外周の接線方向)における移動、変位の成分を含むこともある。
【0030】
図2は、HDD装置1の電気的な概略ブロック図である。HDD装置1には、電気的な構成部品として、ドライバIC30、信号処理回路21、MPU(micro-processing unit)22及び電源回路23が設けられている。電源回路23は、ドライバIC30及び信号処理回路21、MPU22を駆動するための電源電圧を、それらに供給する。MPU22は、信号処理回路21及びドライバIC30の夫々に対し、双方向通信が可能な形態で接続されている。
【0031】
信号処理回路21は、磁気ディスク10への情報の書き込み時には、当該情報を書き込むための記録信号を磁気ヘッド11に出力し、磁気ディスク10から情報を読み出す時には、磁気ディスク10から読み出された信号に対して必要な信号処理を施し、これによって得られた信号をMPU22に送る。MPU22は、信号処理回路21の制御を通じて磁気ヘッド11による情報の書き込み動作及び読み込み動作を制御する。
【0032】
ドライバIC30は、
図3に示すような、半導体集積回路を、樹脂にて構成された筐体(パッケージ)内に封入することで形成された電子部品(ドライバ装置)である。尚、
図3に示されるドライバIC30のピン数(外部端子の数)は例示に過ぎない。ドライバIC30には、SPM13を駆動制御するためのSPMドライバ33、VCM14を駆動制御するためのVCMドライバ34及びMA15を駆動制御するためのMAドライバ35が設けられる他、MPU22及びドライバIC30間の双方向通信を可能とするためのIF回路(インターフェース回路)32や、IF回路32を通じてMPU22から受けた制御データに基づきドライバ33~35の動作を制御する制御回路31などが設けられる。
【0033】
MPU22は、ドライバIC30のSPMドライバ33を制御することによりSPM13の駆動制御を通じて磁気ディスク10の回転制御を行い、ドライバIC30のVCMドライバ34及びMAドライバ35を制御することによりVCM14及びMA15の駆動制御を通じて磁気ヘッド11の移動制御及び位置決めを行う。磁気ディスク10の各箇所には磁気ディスク10上の各々の位置を示す位置情報が記録されており、磁気ディスク10上に磁気ヘッド11が位置しているとき、この位置情報は磁気ヘッド11により読み取られて、信号処理回路21を通じてMPU22に伝達される。MPU22は当該位置情報に基づいてVCMドライバ34及びMAドライバ35を制御でき、この制御を通じて、VCMドライバ34がVCM14に必要な駆動電流を供給することで磁気ヘッド11の第1段階の位置決めが実現され且つMAドライバ35がMA15に必要な電圧を供給することで磁気ヘッド11の第2段階の位置決めが実現される。尚、磁気ヘッド11が磁気ディスク10上に位置しているとは、磁気ヘッド11が微小な空間を隔てて磁気ディスク10の上方に位置していることを意味する。
【0034】
磁気ヘッド11が磁気ディスク10の外周の外側に位置している場合など、磁気ヘッド11にて位置情報が読み出されていない状態においては、MPU22は、位置情報に頼らずにVCMドライバ34及びMAドライバ35を制御できる。例えば、磁気ヘッド11をランプ部17における退避位置から磁気ディスク10上に移動させる場合、MPU22は、その移動に適した所定の駆動電流をVCM14に供給することを指示する信号をドライバIC30に出力すれば良く、これによりVCMドライバ34は当該信号に基づく所定の駆動電流をVCM14に供給する。磁気ヘッド11にて位置情報が読み出されていない状態において、磁気ヘッド11の精密な位置制御は不要となるため、一対の圧電素子15に対する供給電圧はゼロとされて良い又は固定電圧とされて良い。
【0035】
図4に、SPM13及びSPMドライバ33の内部構成とそれらの接続関係を示す。ドライバIC30に設けられた外部端子には、端子OUTu、OUTv、OUTw及びTM
CTが含まれる。SPM13は、スター結線されたU相のコイル13u、V相のコイル13v及びW相のコイル13wから成る三相ブラシレス直流モータである。SPM13は、ステータと永久磁石を備えたロータと有し、ステータにコイル13u、13v及び13wが設けられる。コイル13uの一端、コイル13vの一端、コイル13wの一端は、夫々、外部端子OUTu、OUTv、OUTwに接続され、コイル13u、13v及び13wの他端同士は中性点13nにて共通接続されている。中性点13nは外部端子TM
CTに接続される。外部端子OUTu、OUTv、OUTwは出力端子とも称され得る。
【0036】
SPMドライバ33は、U相のハーフブリッジ回路50uと、V相のハーフブリッジ回路50vと、W相のハーフブリッジ回路50wと、プリドライバ回路51と、駆動信号生成回路52と、逆起電力検出回路53と、SPM駆動制御回路54と、を備える。
【0037】
ハーフブリッジ回路50u、50v及び50wの夫々は、電源電圧VPWRが加わるラインとグランドとの間に直列に接続されたハイサイドトランジスタTrH及びローサイドトランジスタTrLから成る。トランジスタTrH及びTrLはNチャネル型のMOSFET(Metal Oxide Semiconductor Field effect transistor)として構成されている。電源電圧VPWRは所定の正の直流電圧(例えば12V)である。
【0038】
より具体的には、ハーフブリッジ回路50u、50v及び50wの夫々において、トランジスタTrHのドレインは、電源電圧VPWRが印加される第1電源端子に接続されて電源電圧VPWRの供給を受け、トランジスタTrHのソースとトランジスタTrLのドレインはノードNDにて共通接続され、トランジスタTrLのソースは第2電源端子として機能するグランドに接続されている。ハーフブリッジ回路50u、50v、50wにおけるノードNDは、夫々、出力端子OUTu、OUTv、OUTwに接続される。故に、ハーフブリッジ回路50u、50v、50wにおけるノードNDは、夫々、出力端子OUTu、OUTv、OUTwを介して、コイル13u、13v、13wの一端に接続されることになる。コイル13u、13v、13wの一端における電圧に相当する、出力端子OUTu、OUTv、OUTwに加わる電圧を、夫々、Vu、Vv、Vwにて表す。また、中性点13nに加わる電圧をVCTにて表す。
【0039】
SPM13はSPMドライバ33によりセンサレスモータとしてスイッチング駆動される。これを実現するため、逆起電力検出回路53は、端子OUTu、OUTv、OUTw及びTMCTに接続され、SPM13の回転時において、電圧Vu及び電圧VCTに基づいてコイル13uに生じる逆起電力を検出するU相逆起電力検出処理、電圧Vv及び電圧VCTに基づいてコイル13vに生じる逆起電力を検出するV相逆起電力検出処理、電圧Vw及び電圧VCTに基づいてコイル13wに生じる逆起電力を検出するW相逆起電力検出処理の内の少なくとも1つの逆起電力検出処理を行う。逆起電力検出処理による検出結果は、逆起電力検出信号BEMFとして駆動信号生成回路52及びSPM駆動制御回路54に送られる。尚、本実施形態において、SPM113の回転とはSPM113を構成するロータの回転を意味する。また、以下の説明において、単にロータと記した場合、それはSPM113のロータを指すものとする。
【0040】
駆動信号生成回路52は、ロータの位置情報を含んだ逆起電力検出信号BEMFに基づいて、ハーフブリッジ回路50uに対する駆動信号DRVu、ハーフブリッジ回路50vに対する駆動信号DRVv及びハーフブリッジ回路50wに対する駆動信号DRVwを生成及び出力する。SPM13にて発生されるべきトルクを指定するトルク指令信号Trq*が駆動信号生成回路52に与えられており、駆動信号生成回路52は、トルク指令信号Trq*にて指定されたトルクがSPM13にて発生するよう、駆動信号DRVu、DRVv及びDRVwを生成する。駆動信号DRVu、DRVv、DRVwの夫々はパルス幅が可変の二値信号であり、“1”又は“0”の値をとる。二値信号において、パルス幅とは、特に断りなき限り“1”の値をとる区間の長さを指す。
【0041】
プリドライバ回路51は、駆動信号DRVu、DRVv及びDRVwに従ってハーフブリッジ回路50u、50v及び50w内の各トランジスタのゲート電位を制御することで各ハーフブリッジ回路の状態を制御する。ハーフブリッジ回路50u、50v及び50wの内の任意の1つである対象ハーフブリッジ回路において、トランジスタTrHがオンであって且つトランジスタTrLがオフとなっている状態を出力ハイ状態と称し、トランジスタTrHがオフであって且つトランジスタTrLがオンとなっている状態を出力ロー状態と称する。トランジスタTrH及びTrLのオン抵抗がゼロであると仮定すると、例えばハーフブリッジ回路50uにおいて、出力ハイ状態であればハイサイドトランジスタTrHを介して電源電圧VPWRが出力端子OUTuに加わり、出力ロー状態であればローサイドトランジスタTrLを介してグランドの電位が出力端子OUTuに加わる(但し過渡状態を無視)。ハーフブリッジ回路50v及び50wについても同様である。
【0042】
プリドライバ回路51は、駆動信号DRVuが“1”の値を持つ区間においてハーフブリッジ回路50uが出力ハイ状態となるように且つ駆動信号DRVuが“0”の値を持つ区間においてハーフブリッジ回路50uが出力ロー状態となるように、ハーフブリッジ回路50uのトランジスタTrH及びTrLのゲート電位を制御するU相駆動動作を行う。同様に、プリドライバ回路51は、駆動信号DRVvが“1”の値を持つ区間においてハーフブリッジ回路50vが出力ハイ状態となるように且つ駆動信号DRVvが“0”の値を持つ区間においてハーフブリッジ回路50vが出力ロー状態となるように、ハーフブリッジ回路50vのトランジスタTrH及びTrLのゲート電位を制御するV相駆動動作を行う。同様に、プリドライバ回路51は、駆動信号DRVwが“1”の値を持つ区間においてハーフブリッジ回路50wが出力ハイ状態となるように且つ駆動信号DRVwが“0”の値を持つ区間においてハーフブリッジ回路50wが出力ロー状態となるように、ハーフブリッジ回路50wのトランジスタTrH及びTrLのゲート電位を制御するW相駆動動作を行う。
【0043】
U相駆動動作、V相駆動動作及びW相駆動動作により、電源電圧VPWRを駆動信号DRVu、DRVv及びDRVwに従ってスイッチングした電圧が出力端子OUTu、OUTv及びOUTwに加わり、このスイッチング電圧によりSPM13がスイッチング駆動されることになる。
【0044】
但し、逆起電力検出信号BEMFを取得するために、一時的に対象ハーフブリッジ回路がハイインピーダンス状態とされることもある(詳細は後述)。対象ハーフブリッジ回路におけるハイインピーダンス状態は、対象ハーフブリッジ回路のトランジスタTrH及びTrLを共にオフ(オフ状態)とすることで実現され、これにより、対象ハーフブリッジ回路による、対応するコイルへの通電が停止される。
【0045】
SPM駆動制御回路54は区間設定部55を内包し、逆起電力検出信号BEMFに基づきプリドライバ回路51及び駆動信号生成回路52の動作を制御するが、詳細は後述される。また、駆動信号DRVu、DRVv及びDRVwを含む、駆動信号生成回路52にて生成される任意の信号がSPM駆動制御回路54に提供されて良い。
【0046】
逆起電力検出処理を利用したSPM13のセンサレスによる駆動は、SPM13の始動時には利用できず、ロータが回転しているときにしか利用できない。本実施形態では、特に記述無き限り、ロータが或る程度の速度で回転していることを前提とする。ロータの回転を開始させる際には、公知の任意の方法にてロータの回転開始を実現すれば良い。例えば、ロータが停止している状態を起点とし、コイル13u、13v及び13wの内、コイル13uに対してのみ電流を供給してロータを特定の位置まで移動させた後、低速の一定周期でコイル13u、13v及び13wに対し順番に電流を供給する。この際、パルス幅変調を利用しつつ、コイル13u、13v及び13wへの印加電圧(Vu、Vv、Vw)を徐々に増大させてゆく。そうするとロータが回転し始め、回転速度が或る程度高まると、逆起電力検出処理を利用したSPM13のセンサレスによる駆動が可能となる。
【0047】
図5に逆起電力検出回路53の内部構成の例を示す。逆起電力検出回路53は、電圧Vu及びV
CTを比較して比較結果を示す信号BEMFuを出力する比較器53u、電圧Vv及びV
CTを比較して比較結果を示す信号BEMFvを出力する比較器53v、及び、電圧Vw及びV
CTを比較して比較結果を示す信号BEMFwを出力する比較器53wを備える。比較器53uは、“Vu>V
CT”であるときに“1”の値を持つ信号BEMFuを出力し、“Vu<V
CT”であるときに“0”の値を持つ信号BEMFuを出力する。比較器53vは、“Vv>V
CT”であるときに“1”の値を持つ信号BEMFvを出力し、“Vv<V
CT”であるときに“0”の値を持つ信号BEMFvを出力する。比較器53wは、“Vw>V
CT”であるときに“1”の値を持つ信号BEMFwを出力し、“Vw<V
CT”であるときに“0”の値を持つ信号BEMFwを出力する。“Vu=V
CT”であるとき信号BEMFuの値は“0”又は“1”となる(信号BEMFv及びBEMFwについても同様)。
【0048】
図6に、ロータが回転することでU相のコイル13uに生じる逆起電力Euの波形を示す(
図6に示される信号BEMF_EDGE及びDRVCLKについては後述)。逆起電力は誘起電圧と称されることもある。中性点13nの電位から見て、コイル13uの両端の内、出力端子OUTuに接続される一端に生じる電圧が逆起電力Euに相当する。ハーフブリッジ回路50uをハイインピーダンス状態とすることで、差電圧(Vu-V
CT)が逆起電力Euとして観測される。逆起電力Euは電圧値が周期的に変化する正弦波状の電圧であり、逆起電力Euの周期はロータの電気角における回転周期と一致する。ここでは、ロータの位置の電気角における位相が0°及び180°であるときに逆起電力Euがゼロとなり、且つ、当該位相が90°であるときに逆起電力Euが正の極値をとり、且つ、当該位相が270°であるときに逆起電力Euが負の極値をとるものとする。本実施形態において、単に位相と記した場合又はロータの位相と記した場合、それはロータの位置の電気角における位相を指すものとする。
【0049】
また、説明の具体化のため、用語“フレーム”を導入する。1つのフレームは、位相が0°であるときに開始され、位相が360°に達する直前で終了する区間である(位相が360°に達する時点で終了すると解するようにしても良い)。そうすると、時系列上で複数のフレームが連続して並ぶことになり、各フレームはロータの電気角における回転周期と同じ長さを持つ。
図7に示す如く、ロータが回転している任意且つ所定のタイミングを起点として第n番目のフレームを“FL[n]”で表すこともある。nは任意の自然数である。
【0050】
特に図示しないが、ロータが回転することでコイル13vに生じる逆起電力Ev及びコイル13wに生じる逆起電力Ewも、逆起電力Euと同じ周期を持つ、逆起電力Euと同様の正弦波状の電圧となる。但し、逆起電力Ev、Ewの位相は、逆起電力Euに対して、夫々、120°、240°だけ遅れている。
【0051】
逆起電力検出回路53から出力される検出信号BEMFに、信号BEMFu、BEMFv及びBEMFwの内の、任意の1つだけ或いは任意の2つだけを含めることも可能であるし、それら3つとも含めることも可能である。しかしながら、以下では、信号BEMFuにのみ注目し、逆起電力検出信号BEMFは信号BEMFuと一致しているものとする。そうすると、
図8に示す如く、逆起電力検出回路53は、電圧Vu及びV
CTの比較結果から信号BEMFuを逆起電力検出信号BEMFとして出力する回路であると考えることができる。
【0052】
図9に、SPMドライバ33に設けられる駆動クロック生成回路60の構成を、その周辺の構成と共に示す。駆動クロック生成回路60はエッジ抽出回路61及びクロック出力回路62を備える。ここでは、駆動クロック生成回路60は
図4の駆動信号生成回路52内に設けられると考える。但し、駆動クロック生成回路60は、駆動信号生成回路52外に設けられると考えることもできるし、SPM駆動制御回路54内に設けられると考えるようにしても良い。
【0053】
エッジ抽出回路61には、比較器53uの出力信号BEMFuと一致する逆起電力検出信号BEMFが入力される。エッジ抽出回路61は、ハーフブリッジ回路50uがハイインピーダンス状態とされる区間において、信号BEMFに基づき、逆起電力Euがゼロを交差するゼロクロスタイミングを検出し、そのゼロクロスタイミングを特定する信号BEMF_EDGEを出力する。検出されるゼロクロスタイミングは、逆起電力Euが負である状態から正である状態に切り替わるタイミングであっても良いし、逆起電力Euが正である状態から負である状態に切り替わるタイミングであっても良いが、ここでは、前者のタイミングがゼロクロスタイミングとして検出されるものとする。そうすると、エッジ抽出回路61は、ハーフブリッジ回路50uがハイインピーダンス状態とされる区間において、信号BEMFの値が“0”から“1”への切り替わったタイミング(即ち位相が0°と一致するタイミング)をゼロクロスタイミングとして検出し、
図6に示す如く、検出したゼロクロスタイミングにおいて信号BEMF_EDGEにパルス信号を生じさせる。
【0054】
信号BEMF_EDGEは原則としてローレベルとされており、信号BEMF_EDGEにてパルス信号を生じるとは、信号BEMF_EDGEのレベルがパルス状にハイレベルとなることを指す。ハーフブリッジ回路50uがハイインピーダンス状態とされていないときには、信号BEMFの如何に依らず、信号BEMF_EDGEはローレベルに維持される。ゼロクロスタイミングが検出されるたびにエッジ抽出回路61からパルス信号が出力され、信号BEMF_EDGEのパルス信号の周期(パルス信号の発生周期)は1フレームの長さと一致することになる。即ち、或るゼロクロスタイミングから次のゼロクロスタイミングまでの区間が1フレームに相当する。以下、信号BEMFの値の“0”から“1”への切り替わりに相当する、逆起電力Euの負から正への切り替わりをゼロクロスと称することがある。尚、ゼロクロスの検出とゼロクロスタイミングの検出は同義であると考えて良い。
【0055】
ハーフブリッジ回路50uがハイインピーダンス状態とされる区間は、SPM駆動制御回路54における区間設定部55により設定され、ウィンドウ区間は、ハーフブリッジ回路50uがハイインピーダンス状態とされる区間に属する。プリドライバ回路51は、ウィンドウ区間において、駆動信号DRVuに基づくU相駆動動作を停止してハーフブリッジ回路50uのトランジスタTrH及びTrLをオフ状態に維持する。ウィンドウ区間においてV相駆動動作及びW相駆動動作は行われる(但し、後述の第2ウィンドウ区間及び検出予測区間を除く)。即ち、プリドライバ回路51は、ウィンドウ区間において、駆動信号DRVv及びDRVwに従いハーフブリッジ回路50v及び50wを出力ハイ状態及び出力ロー状態間で切り替えるスイッチング制御を行う(但し、後述の第2ウィンドウ区間及び検出予測区間を除く)。
【0056】
ウィンドウ区間外では通常動作が実行される。通常動作では、U相駆動動作、V相駆動動作及びW相駆動動作の全てが実行される。即ち、ウィンドウ区間外での通常動作において、プリドライバ回路51は、駆動信号DRVu、DRVv、DRVwに従いハーフブリッジ回路50u、50v及び50wを出力ハイ状態及び出力ロー状態間で切り替えるスイッチング制御を行うことで、コイル13u、13v及び13wに対し電力を供給する。
【0057】
ウィンドウ区間内において、ゼロクロスタイミングの検出が可能となるが、ハーフブリッジ回路50v及び50wの何れかにおいてスイッチングが行われた直後は、電圧Vu及びV
CTの比較が不安定となる。これを、
図10を参照して説明する。
図10において、実線波形511及び破線波形512は、夫々、ウィンドウ区間における電圧Vu及びV
CTの波形を表している。
図10では、ハーフブリッジ回路50uがハイインピーダンス状態に維持され、且つ、駆動信号DRVvに従いハーフブリッジ回路50vが出力ハイ状態及び出力ロー状態間でスイッチングされ、且つ、駆動信号DRVwに従いハーフブリッジ回路50wが出力ロー状態に維持されていることが想定されている。タイミング513は、ハーフブリッジ回路50vの出力ロー状態から出力ハイ状態への切り替わりタイミングであり、タイミング514は、ハーフブリッジ回路50vの出力ハイ状態から出力ロー状態への切り替わりタイミングである。タイミング513及び514間では、出力端子OUTvでの電圧変動に伴い、コイル13u、13v及び13w間の寄生容量の存在等に起因して電圧Vu及びV
CTの波形に過渡的な乱れが生じるため、差電圧(Vu-V
CT)が逆起電力Euを正しく表してない可能性がある。ハーフブリッジ回路50wがスイッチングされる場合も同様である。ハーフブリッジ回路50v又は50wのスイッチングに起因して差電圧(Vu-V
CT)が逆起電力Euを正しく表してないと推測される時間をセトリング時間と称した場合、セトリング時間は、様々な要因に依存することになるが、例えば1.1マイクロ秒である。
【0058】
そこで、SPM駆動制御回路54は、ハーフブリッジ回路50vにおける出力ハイ状態及び出力ロー状態間の切り替わり、又は、ハーフブリッジ回路50wにおける出力ハイ状態及び出力ロー状態間の切り替わりがあったとき、その切り替わりのタイミングから所定のマスク時間だけ“1”の値を持つマスク信号を出力する。マスク信号は駆動クロック生成回路60(特にエッジ抽出回路61)に入力される。SPM駆動制御回路54は、ハーフブリッジ回路50vにおける出力ハイ状態及び出力ロー状態間の切り替わり、及び、ハーフブリッジ回路50wにおける出力ハイ状態及び出力ロー状態間の切り替わりを、出力端子OUTv及びOUTwにおける電圧Vu及びVvに基づいて認識するようにしても良いし、ハーフブリッジ回路50v及び50w内のトランジスタTrH及びTrLの各ゲート電圧から認識するようにしても良い。或いは、それらの切り替わりを、駆動信号DRVv及びDRVwに基づいて認識するようにしても良い。この場合、SPM駆動制御回路54は、駆動信号DRVvにおける“0”から“1”への切り替わり若しくは“1”から“0”への切り替わり、又は、駆動信号DRVwにおける“0”から“1”への切り替わり若しくは“1”から“0”への切り替わりが生じたとき、その切り替わりのタイミングから所定のマスク時間だけ“1”の値を持つマスク信号を出力することになる。
【0059】
エッジ抽出回路61は、マスク信号が“1”である区間(以下マスク区間と称する)において、信号BEMFを無効とし、マスク区間において信号BEMFの値が“0”から“1”への切り替わったとしても信号BEMF_EDGEにパルス信号を発生させない。ウィンドウ区間内のマスク信号の値が“0”となる区間において、エッジ抽出回路61は、信号BEMFを有効とし、原則通り、信号BEMFの値が“0”から“1”への切り替わったタイミングをゼロクロスタイミングとして検出して、検出したゼロクロスタイミングにて信号BEMF_EDGEにパルス信号を生じさせる。
【0060】
マスク区間中に真のゼロクロスタイミングが生じることもあるため、以下のような動作が採用される。即ち、ウィンドウ区間内において、エッジ抽出回路61は、或るマスク区間の開始前に信号BEMFの値が“0”であったが当該マスク区間の終了タイミングに信号BEMFの値が“1”であったときには、当該マスク区間の終了タイミングがゼロクロスタイミングであると捉えて、当該マスク区間の終了タイミングに信号BEMF_EDGEにパルス信号を生じさせる。マスク時間は、上記セトリング時間に対して若干のマージンを追加したものとされ、例えばセトリング時間が1.1マイクロ秒であれば2マイクロ秒とされる。以下では、説明の具体化ため、セトリング時間、マスク時間は、夫々、1.1マイクロ秒、2マイクロ秒であるとする。
【0061】
クロック出力回路62には信号BEMF_EDGEが入力される。クロック出力回路62は、信号BEMF_EDGEにおけるパルス信号に同期した信号であって且つ当該パルス信号の周波数(即ちパルス信号の発生周期の逆数)をm倍した周波数を持つクロック信号DRVCLKを生成して出力する(
図6も適宜参照)。信号BEMF_EDGEにおけるパルス信号の周期(詳細にはパルス信号の発生周期)をTp1にて表すと、クロック信号DRVCLKの周期Tp2は“Tp2=Tp1×1/m”で表される。mは2以上の整数であって、通常、2よりも随分と大きい。具体的には、クロック出力回路62は、信号BEMF_EDGEにおいて或るパルス信号が発生してから次のパルス信号が発生するまでの時間(以下、ゼロクロス間隔と称する)を計測する計測回路と、計測したゼロクロス間隔の内、直近過去VAL
A回分のゼロクロス間隔を保持する保持回路とを備え、直近過去VAL
A回分のゼロクロス間隔に基づいてクロック信号DRVCLKの周期Tp2を設定すれば良い(VAL
Aは1以上の整数)。単純には例えば、直近過去VAL
A回分のゼロクロス間隔の総和を“VAL
A×m”で割って得た値を、周期Tp2に設定することができる。
【0062】
図11は、ウィンドウ区間を定めるためのウィンドウ信号WINDOWが生成される様子を示すタイムチャートである。信号WINDOWは区間設定部55により生成される。信号WINDOWの値が“1”となっている区間がウィンドウ区間であり、信号WINDOWの値が“0”となっている区間はウィンドウ区間に属さない。信号WINDOWの値は、ゼロクロスタイミングの検出に先立って“1”とされ、ゼロクロスタイミングが検出されると“0”とされる。
【0063】
或るタイミングt0を起点にして考えると、タイミングt0にてゼロクロスが発生して信号BEMF_EDGEにパルス信号が生じる。クロック出力回路62は、過去VAL
A回分のゼロクロス間隔に基づいて設定した周期Tp2を持つクロック信号DRVCLKを出力する。区間設定部55は、信号BEMF_EDGEにパルス信号が生じたタイミングt0から“Tp2×q”分の時間が経過したタイミングt1において信号WINDOWの値を“0”から“1”に切り替え、その後、信号BEMF_EDGEに次のパルス信号が生じるタイミングt2において信号WINDOWの値を“1”から“0”に切り替える。ここで、qはmより小さな所定の整数値を持つ。ハーフブリッジ回路50uがハイインピーダンス状態とされるとコイル13uに流れる電流の連続性が損なわれるため、qの値をなるだけmの値に近づけることが好ましい。一方で、qの値を大きくし過ぎると逆起電力の検出失敗の可能性が高まる。これらを総合勘案してqの値が設定される。信号BEMF_EDGEにて或るパルス信号が生じてから次のパルス信号が生じるまでの区間が1フレームに相当する。
図11の例では、タイミングt0からタイミングt2の直前までの区間が1つのフレームに相当し、タイミングt2から次のフレームが開始されることになる。
【0064】
クロック信号DRVCLKはパルス状のクロックの列から成り、各フレームにおいて、クロック信号DRVCLKの第i番目のクロックを、以下では、単に第i番目のクロックと称する(iは自然数)。各フレームの開始タイミングにおいて第1番目のクロックが生じ、第(q+1)番目のクロックの発生に同期してウィンドウ区間が開始されることになる。
【0065】
フレームFL[n]に注目した場合(
図7参照)、フレームFL[n]のウィンドウ区間の開始タイミングは、直近過去VAL
A回分のゼロクロス間隔に基づくクロック信号DRVCLKの周期Tp2に依存することになる。最も単純な例として“VAL
A=1”とした場合、フレームFL[n]で用いられるクロック信号DRVCLKの周期Tp2は、フレームFL[n]の開始タイミング(今回検出されたゼロクロスタイミング)とフレームFL[n-1]の開始タイミング(前回検出されたゼロクロスタイミング)との差を整数mで割ったものとなる。故に、フレームFL[n]におけるウィンドウ区間(ウィンドウ区間の開始タイミング)は、少なくとも、フレームFL[n]よりも前に検出された2以上のゼロクロスタイミングに基づいて設定されると言える(
図12参照)。
【0066】
クロック信号DRVCLKよりロータの位置が特定される。即ち、各フレームにおいて、第i番目のクロックが生じたタイミングは、ロータの位置の電気角における位相が“(360°/m)×(i-1)”と一致するタイミングを表すことになる(但し、SPM13が安定状態にあってロータが一定速度で回転していると仮定)。故に、駆動信号生成回路52は、逆起電力検出信号BEMFに基づくクロック信号DRVCLKを用いて、SPM13を所望の態様で駆動するための駆動信号DRVu、DRVv及びDRVwを生成できる。例えば、駆動信号生成回路52は、クロック信号DRVCLKと所定の波形データに基づき、コイル13u、13v及び13wの夫々に正弦波状の電流を供給するために出力端子Vu、Vv及びVwに印加すべきU相、V相及びW相目標電圧を求め、U相、V相及びW相目標電圧を示す信号をパルス幅変調することで駆動信号DRVu、DRVv、DRVwを生成する。これにより、U相、V相及びW相目標電圧をパルス幅変調した電圧であるU相、V相及びW相スイッチング電圧が出力端子OUTu、OUTv及びOUTwに加わって、SPM13の所望の駆動が実現される。
【0067】
上述の内容を基本とするHDD装置1(特にSPMドライバ13)についての詳細な構成例、動作例、応用例及び変形例を、以下の第1~第6実施例の中で説明する。特に記述無き限り且つ矛盾無き限り、本実施形態において上述した事項が後述の第1~第6実施例に適用され、第1~第6実施例において上述の内容と矛盾する事項については、第1~第6実施例での記載が優先される。また矛盾無き限り、以下に述べる第1~第6実施例の内、任意の実施例に記載した事項を、他の任意の実施例に適用することもできる(即ち第1~第6実施例の内の任意の2以上の実施例を組み合わせることも可能である)。
【0068】
[第1実施例]
第1実施例を説明する。駆動信号生成回路52は、パルス幅変調を利用して駆動信号DRVu、DRVv及びDRVwを生成することができ、この際、パルス幅変調における周波数(以下、PWM周波数と称する)を変化させることが可能に構成されている。パルス幅変調はPWMと略記されることがある。
【0069】
PWM周波数を低くするとSPM13のトルクリプルが大きくなる。SPM13のトルクリプル低減のためにPWM周波数の増大が必要とされることも多いが、PWM周波数を高くし過ぎると、ウィンドウ区間において上記セトリング時間の存在によりゼロクロスタイミングの検出が不能となる。上述の如くセトリング時間が1.1マイクロ秒であって且つマスク時間が2マイクロ秒である場合に、ウィンドウ区間内でPWM周波数を500kHz(キロヘルツ)に設定したならば、ウィンドウ区間の全てにおいてマスク信号が常に“1”となって、信号BEMF_EDGEにパルス信号が発生しなくなり、正確なゼロクロスタイミングの検出が不能となる。
【0070】
これを考慮し、第1実施例に係る駆動信号生成回路52は、ウィンドウ区間内においてPWM周波数を所定の周波数fLとする一方で、ウィンドウ区間外においてPWM周波数を周波数fLよりも高い所定の周波数fHに設定する。第1実施例に係る駆動信号生成回路52は、ウィンドウ信号WINDOWに基づいてPWM周波数を周波数fL及びfH間で切り替えることができる。
【0071】
ウィンドウ区間の全てにおいてマスク信号が“1”になり続けるといった状況が生じないように周波数fLが定められ、例えば、周波数fLは数10kHz~100kHz程度とされる。ウィンドウ区間外において逆起電力の検出は予定されておらず、また逆起電力を検出する必要もない。故に、セトリング時間及びマスク時間を考慮することなく周波数fHを設定することができ、周波数fHを例えば500kHzに設定することができる。これにより、ウィンドウ区間内における逆起電力の検出を確保しつつも、全体として、トルクリプルを低減することが可能となる。
【0072】
図13に、
図4の駆動信号生成回路52として用いることのできる、第1実施例に係る駆動信号生成回路52Aの構成を示す。
図13の駆動信号生成回路52Aは、符号111~121によって参照される各部位を備える。
【0073】
波形データテーブル111は所定の波形データを格納したルックアップテーブルであり、当該波形データにより、ロータの位相に応じて出力端子Vu、Vv及びVwに印加すべきU相、V相及びW相目標電圧が指定される。詳細には、コイル13u、13v及び13wの夫々に正弦波状の電流を供給するために出力端子Vu、Vv及びVwに印加すべきU相目標電圧Sine_u、V相目標電圧Sine_v及びW相目標電圧Sine_wがテーブル111内の波形データにより特定される。
【0074】
図14において、実線波形531、532、533は、夫々、U相目標電圧Sine_u、V相目標電圧Sine_v及びW相目標電圧Sine_wの波形を示している。
図15には、実線波形531のみが抽出して示されている。ロータの位相が0°から60°までの領域、60°から120°までの領域、120°から180°までの領域、180°から240°までの領域、240°から300°までの領域、300°から360°までの領域を、夫々、領域R1、R2、R3、R4、R5、R6と称する。
【0075】
電圧Sine_uは、位相の0°から90°までの領域において位相の増大につれて単調増加して位相が90°のときに極大値をとり、位相の90°から120°までの領域において位相の増大につれて単調減少して位相が120°のときに極小値をとり、位相の120°から150°までの領域において位相の増大につれて単調増加して位相が150°のときに再び極大値をとり、位相の150°から240°までの領域において位相の増大につれて単調減少し、位相の240°から360°までの領域において電圧Sine_uの値はゼロとなる。電圧Sine_vは、電圧Sine_uを位相において120°だけ遅らせた電圧であり、電圧Sine_wは、電圧Sine_uを位相において240°だけ遅らせた電圧である。
【0076】
故に、波形データテーブル111に、電圧Sine_uの波形データだけを格納しておくだけでU相、V相及びW相目標電圧を示す信号を生成できる。但し、電圧Sine_uの波形の内、0°から120°までの位相範囲における波形と120°から240°までの位相範囲における波形とは時間軸に対して対称であると近似でき、且つ、60°から90°までの位相範囲における波形と90°から120°までの位相範囲における波形とは時間軸に対して対称であると近似できる。
【0077】
故に、ここでは、
図16に示すような、電圧Sine_uの波形の内、0°から90°までの位相範囲における波形を示す波形データWDのみが、波形データテーブル111に格納されているものとする。波形データWDは、電圧Sine_uの波形の内の、0°から60°までの位相範囲における波形と一致するスロープ波形のデータWD
SLPと、60°から90°までの位相範囲における波形と一致するトップ波形のデータWD
TOPと、から成る。
【0078】
波形データテーブル111に対しクロック信号DRVCLKが入力され、波形データテーブル111はクロック信号DRVCLKに基づいてスロープ電圧信号VSLP及びトップ電圧信号VTOPを出力する。スロープ波形のデータWDSLP及びトップ波形のデータWDTOPから、夫々、信号VSLP及びVTOPのデータが抽出される。
【0079】
電圧Sine_u、Sine_v及びSine_wをパルス幅変調したものを出力端子Vu、Vv及びVwに印加する際、任意のタイミングにおいて、U相、V相及びW相の内、1つの相は出力停止相となり、他の1つの相はスロープ駆動相となり、残りの1つの相はトップ駆動相となる。出力停止相とは、対応するハーフブリッジ回路が出力オフ状態とされる相を指し、スロープ駆動相とは、対応するハーフブリッジ回路がスロープ電圧信号VSLPに応じて出力オフ状態及び出力オン状態間で切り替えられる相を指し、トップ駆動相とは、対応するハーフブリッジ回路がトップ電圧信号VTOPに応じて出力オフ状態及び出力オン状態間で切り替えられる相を指す。
【0080】
各フレームにおいて、第i番目のクロックが生じたタイミングは、ロータの位相が“(360°/m)×(i-1)”と一致するタイミングとみなすことができる。故に、テーブル111は、各フレームにおいて、第i番目のクロックが入力されたとき、ロータの位相が“(360°/m)×(i-1)”であると認識でき、ロータの位相が“(360°/m)×(i-1)”であるときに対応した信号VSLP及びVTOPを波形データWDから抽出して出力する。
【0081】
例えば、領域R1では、U相がスロープ駆動相となり且つW相がトップ駆動相且つV相が出力停止相となるため、現在の位相が領域R1内に属することを示す第i番目のクロックが入力されたときには、ロータの位相が“(360°/m)×(i-1)”であるときの電圧Sine_u及びSine_wの値を示す信号がスロープ電圧信号VSLP及びトップ電圧信号VTOPとしてテーブル111から出力される。この際、電圧Sine_u、Sine_v及びSine_w間の関係並びに時間軸に対する上記対称の関係に基づき、出力されるスロープ電圧信号VSLP及びトップ電圧信号VTOPの値が決定される。即ち例えば、第i番目のクロックがロータの位相が20°であることを示すのであれば、波形データWD(スロープ波形データWDSLP)における20°での値をスロープ電圧信号VSLPに持たせ且つ波形データWD(トップ波形データWDTOP)における80°での値をトップ電圧信号VTOPに持たせば良く、第i番目のクロックがロータの位相が45°であることを示すのであれば、波形データWD(スロープ波形データWDSLP)における45°での値をスロープ電圧信号VSLPに持たせ且つ波形データWD(トップ波形データWDTOP)における75°での値をトップ電圧信号VTOPに持たせば良い。
【0082】
現在の位相が領域R2~R6の何れかに属することを示すクロックが入力されたときも同様である。何れにせよ、各フレームにおいて、クロック信号DRVCLKにおける何番目のクロック信号がテーブル111に入力されたかに応じ、出力端子Vu、Vv及びVwに電圧Sine_u、Sine_v及びSine_wを印加するための信号VSLP及びVTOPの値が一意に定まるようになっている。
【0083】
領域判定部112は、クロック信号DRVCLKの入力を受け、各フレームにおいてクロック信号DRVCLK内のクロックの個数をカウントすることで現在の位相が領域R1~R6の何れに属するのかを判定し、その判定結果を示す領域判定信号DETRを出力する。テーブル111は領域判定信号DETRをも利用して信号VSLP及びVTOPを生成するようにしても良い。
【0084】
PWM周波数テーブル113は、PWM周波数を指定する周波数指令信号Frq*に基づいて、周波数設定値CNTMAXを出力するルックアップテーブルである。PWMカウンタ114は、テーブル113からの周波数設定値CNTMAXに基づき、信号Frq*にて指定されるPWM周波数を有する周期信号TRIを出力する。周期信号TRIは周期的に値が変化する信号であり、例えば三角波の形状を有する。SPM駆動生成回路54は、周波数指令信号Frq*をテーブル113に供給することでPWM周波数を指定及び制御することができる。駆動信号生成回路52Aが、SPM駆動生成回路54の制御の下、信号Frq*に基づいてPWM周波数を設定すると解することもできる。
【0085】
図17(a)の三角波状の波形551は、周波数指令信号Frq
*にて所定の第1周波数がPWM周波数に指定されたときの周期信号TRIの波形を示し、
図17(b)の三角波状の波形552は、周波数指令信号Frq
*にて第1周波数よりも高い所定の第2周波数がPWM周波数に指定されたときの周期信号TRIの波形を示している。第1周波数、第2周波数を、夫々、上述の周波数f
L、f
Hとすることができる。
【0086】
PWMカウンタ114には、図示されない基準クロック発生回路から十分に高い周波数を有する基準クロックが入力される。PWMカウンタ114は、基準クロックの入力を受ける度に自身の出力値を“1”だけ減算し、減算結果が“0”になると出力値を周波数設定値CNTMAXに戻すという動作を繰り返す(CNTMAX>0)。PWMカウンタ114の出力値が、デジタル信号としての周期信号TRIの値となる。故に、テーブル113は、信号Frq*にて第1周波数が指定されているときには第1周波数に対応する相対的に大きな設定値CNTMAXを出力し、信号Frq*にて第2周波数が指定されているときには第2周波数に対応する相対的に小さな設定値CNTMAXを出力する。これにより、信号Frq*にて第1、第2周波数が指定されているときには、夫々、第1、第2周波数を有する周期信号TRIが出力されることになる。
【0087】
乗算器115は、デジタル信号の形態で形成されたトルク指令信号Trq*と周波数設定値CNTMAXとを乗算し、乗算結果を補正トルク指令信号Trq*_Cとして出力する。乗算器116は、信号Trq*_Cと信号VSLPとを乗算し、乗算結果を補正スロープ電圧信号VSLP_Cとして出力する。乗算器117は、信号Trq*_Cと信号VTOPとを乗算し、乗算結果を補正トップ電圧信号VTOP_Cとして出力する。周期信号補正部118は、電源電圧VPWRの大きさに応じて周期信号TRIを補正し、補正後の周期信号TRIを補正周期信号TRI_Cとして出力する。
【0088】
比較器119は、補正スロープ電圧信号VSLP_Cを補正周期信号TRI_Cと比較し、その比較結果を示すPWM信号である信号PWMSLPを出力する。信号VSLP_Cの値が信号TRI_Cの値以上となっている区間において、信号PWMSLPの値は“1”となり、そうでない区間において信号PWMSLPの値は“0”となる。
【0089】
比較器120は、補正トップ電圧信号VTOP_Cを補正周期信号TRI_Cと比較し、その比較結果を示すPWM信号である信号PWMTOPを出力する。信号VTOP_Cの値が信号TRI_Cの値以上となっている区間において、信号PWMTOPの値は“1”となり、そうでない区間において信号PWMTOPの値は“0”となる。
【0090】
図18に、或る区間における信号V
SLP_C、V
TOP_C、TRI_C、PWM
SLP及びPWM
TOPの例を示す。クロック信号DRVCLKにてクロックが生じる度にテーブル111の出力信号は更新されるが、
図18に示す区間は十分に短く、テーブル111の出力信号は一定に維持されていることが想定されている。
【0091】
コミュテ―ション回路121は、領域判定信号DETRに基づき信号PWMSLP及びPWMTOPを駆動信号DRVu、DRVv及びDRVwに振り分けるスイッチ回路である。
領域R1において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、U相、W相、V相であるので、現在の位相が領域R1に属することが信号DETRにて示されているとき、コミュテ―ション回路121は、信号PWMSLP及びPWMTOPを夫々駆動信号DRVu及びDRVwとして出力し、駆動信号DRVvを“0”に維持する。
領域R2において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、W相、U相、V相であるので、現在の位相が領域R2に属することが信号DETRにて示されているとき、コミュテ―ション回路121は、信号PWMSLP及びPWMTOPを夫々駆動信号DRVw及びDRVuとして出力し、駆動信号DRVvを“0”に維持する。
領域R3において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、V相、U相、W相であるので、現在の位相が領域R3に属することが信号DETRにて示されているとき、コミュテ―ション回路121は、信号PWMSLP及びPWMTOPを夫々駆動信号DRVv及びDRVuとして出力し、駆動信号DRVwを“0”に維持する。
領域R4において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、U相、V相、W相であるので、現在の位相が領域R4に属することが信号DETRにて示されているとき、コミュテ―ション回路121は、信号PWMSLP及びPWMTOPを夫々駆動信号DRVu及びDRVvとして出力し、駆動信号DRVwを“0”に維持する。
領域R5において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、W相、V相、U相であるので、現在の位相が領域R5に属することが信号DETRにて示されているとき、コミュテ―ション回路121は、信号PWMSLP及びPWMTOPを夫々駆動信号DRVw及びDRVvとして出力し、駆動信号DRVuを“0”に維持する。
領域R6において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、V相、W相、U相であるので、現在の位相が領域R6に属することが信号DETRにて示されているとき、コミュテ―ション回路121は、信号PWMSLP及びPWMTOPを夫々駆動信号DRVv及びDRVwとして出力し、駆動信号DRVuを“0”に維持する。
【0092】
図19(a)に、周波数設定値CNT
MAXが相対的に大きい場合における周期信号TRI及びスロープ電圧信号V
SLP間の関係を示し、
図19(b)に、周波数設定値CNT
MAXが相対的に小さい場合における周期信号TRI及びスロープ電圧信号V
SLP間の関係を示す。
図19(a)及び(b)において信号V
SLPの値は同じであるとする。そうすると、仮に信号TRI及びV
SLP間の大小関係を二値信号として表したとき、その二値信号におけるデューティは値CNT
MAXに依存して(即ちPWM周波数に依存性して)変化することにある。トップ電圧信号V
TOPについても同様である。
【0093】
そこで、値CNTMAXに依存して比較器119及び120の出力信号におけるデューティが変化することを抑止すべく、乗算器115を設けている。また、信号Trq*により指定されるトルクが大きいほど、スロープ駆動相及びトップ駆動相の出力端子に印加すべき電圧を大きくするべきであるので(信号Trq*により指定されるトルクが小さい場合には逆)、テーブル111の出力信号(VSLP、VTOP)を乗算器115~117にて補正している。また、信号Trq*により指定されたトルクを得るための信号PWMSLP及びPWMTOPのデューティは電源電圧VPWRに依存するため、電源電圧VPWRの大きさに基づき周期信号補正部118にて周期信号TRIを補正している。
【0094】
スロープ電圧信号VSLPは、スロープ駆動相に対応する出力端子(OUTu、OUTv又はOUTw)に印加すべき電圧の値を示す信号であり、信号VSLP_Cは、その値を信号Trq*及びFrq*に応じて補正した値を持つ信号(変調前信号)に相当する。信号PMWSLPは変調前信号である信号VSLP_Cをパルス幅変調した信号に相当する。
トップ電圧信号VTOPは、トップ駆動相に対応する出力端子(OUTu、OUTv又はOUTw)に印加すべき電圧の値を示す信号であり、信号VTOP_Cは、その値を信号Trq*及びFrq*に応じて補正した値を持つ信号(変調前信号)に相当する。信号PMWTOPは変調前信号である信号VTOP_Cをパルス幅変調した信号に相当する。
【0095】
以上の構成により、コミュテ―ション回路121から出力される駆動信号DRVu、DRVv、DRVwは、信号Trq*により指定されたトルクを得るための且つコイル13u、13v及び13wの夫々に正弦波状の電流を供給するためのパルス幅変調信号となる。
【0096】
[第2実施例]
第2実施例を説明する。駆動信号生成回路52は、パルス密度変調を利用して駆動信号DRVu、DRVv及びDRVwを生成することもでき、この際、パルス密度変調における周波数(以下、PDM周波数と称する)を変化させることが可能に構成されている。パルス密度変調はPDMと略記されることがある。パルス密度変調を利用する場合、駆動信号DRVu、DRVv及びDRVwの夫々は二値信号としての粗密波となるが、その粗密波における最小のパルス幅の逆数がPDM周波数に相当する。
【0097】
PDM周波数を低くするとSPM13のトルクリプルが大きくなる。SPM13のトルクリプル低減のためにPDM周波数の増大が必要とされることも多いが、PDM周波数を高くし過ぎると、ウィンドウ区間において上記セトリング時間の存在によりゼロクロスタイミングの検出が不能となる。上述の如くセトリング時間が1.1マイクロ秒であって且つマスク時間が2マイクロ秒である場合に、ウィンドウ区間内でPDM周波数を500kHz(キロヘルツ)に設定したならば、粗密波のパルス幅にもよるがマスク信号が“1”となる状況が支配的となって、信号BEMF_EDGEにパルス信号が発生しなくなり又は発生し難くなり、正確なゼロクロスタイミングの検出が不能となる又は難しくなる。
【0098】
これを考慮し、第2実施例に係る駆動信号生成回路52は、ウィンドウ区間内においてPDM周波数を所定の周波数fLとする一方で、ウィンドウ区間外においてPDM周波数を周波数fLよりも高い所定の周波数fHに設定する。第2実施例に係る駆動信号生成回路52は、ウィンドウ信号WINDOWに基づいてPDM周波数を周波数fL及びfH間で切り替えることができる。
【0099】
ウィンドウ区間の全てにおいてマスク信号が“1”になり続けるといった状況が生じないように周波数fLが定められ、例えば、周波数fLは数10kHz~100kHz程度とされる。ウィンドウ区間外において逆起電力の検出は予定されておらず、また逆起電力を検出する必要もない。故に、セトリング時間及びマスク時間を考慮することなく周波数fHを設定することができ、周波数fHを例えば1MHzに設定することができる。これにより、ウィンドウ区間内における逆起電力の検出を確保しつつも、全体として、トルクリプルを低減することが可能となる。
【0100】
図20に、
図4の駆動信号生成回路52として用いることのできる、第2実施例に係る駆動信号生成回路52Bの構成を示す。
図20の駆動信号生成回路52Bは、符号111、112、131~134及び141~143によって参照される各部位を備える。
【0101】
図20の駆動信号生成回路52Bに設けられる波形データテーブル111及び領域判定部112は、
図13の駆動信号生成回路52Aに設けられるそれらと同じものである。
【0102】
トルク指定補正部131は、電源電圧VPWRの大きさに応じてトルク指令信号Trq*を補正し、補正後のトルク指令信号Trq*を補正トルク指令信号Trq*_C1として出力する。乗算器132は、信号Trq*_C1とテーブル111からのスロープ電圧信号VSLPとを乗算し、乗算結果を補正スロープ電圧信号VSLP_C1として出力する。乗算器133は、信号Trq*_C1とテーブル111からのトップ電圧信号VTOPとを乗算し、乗算結果を補正トップ電圧信号VTOP_C1として出力する。
【0103】
コミュテ―ション回路134は、領域判定部112からの領域判定信号DETRに基づいて、信号VSLP_C1及びVTOP_C1を変調前信号Vcu、Vcv及びVcwに振り分けるスイッチ回路である。変調前信号Vcu、Vcv及びVcwが、後段のPDM回路141~143にてパルス密度変調されることで駆動信号DRVu、DRVv、DRVwが得られる。
領域R1において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、U相、W相、V相であるので、現在の位相が領域R1に属することが信号DETRにて示されているとき、コミュテ―ション回路134は、信号VSLP_C1及びVTOP_C1を夫々変調前信号Vcu及びVcwとして出力し、変調前信号Vcvを“0”に維持する。
領域R2において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、W相、U相、V相であるので、現在の位相が領域R2に属することが信号DETRにて示されているとき、コミュテ―ション回路134は、信号VSLP_C1及びVTOP_C1を夫々変調前信号Vcw及びVcuとして出力し、変調前信号Vcvを“0”に維持する。
領域R3において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、V相、U相、W相であるので、現在の位相が領域R3に属することが信号DETRにて示されているとき、コミュテ―ション回路134は、信号VSLP_C1及びVTOP_C1を夫々変調前信号Vcv及びVcuとして出力し、変調前信号Vcwを“0”に維持する。
領域R4において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、U相、V相、W相であるので、現在の位相が領域R4に属することが信号DETRにて示されているとき、コミュテ―ション回路134は、信号VSLP_C1及びVTOP_C1を夫々変調前信号Vcu及びVcvとして出力し、変調前信号Vcwを“0”に維持する。
領域R5において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、W相、V相、U相であるので、現在の位相が領域R5に属することが信号DETRにて示されているとき、コミュテ―ション回路134は、信号VSLP_C1及びVTOP_C1を夫々変調前信号Vcw及びVcvとして出力し、変調前信号Vcuを“0”に維持する。
領域R6において、スロープ駆動相、トップ駆動相、出力停止相は、夫々、V相、W相、U相であるので、現在の位相が領域R6に属することが信号DETRにて示されているとき、コミュテ―ション回路134は、信号VSLP_C1及びVTOP_C1を夫々変調前信号Vcv及びVcwとして出力し、変調前信号Vcuを“0”に維持する。
【0104】
PDM回路141~143は、夫々、多ビットデジタル信号である変調前信号Vcu、Vcv及びVcwを、パルス密度変調することにより、1ビットデジタル信号として駆動信号DRVu、DRVv、DRVwを生成する。PDM回路141~143は互いに同一の構成を有する。
【0105】
図21に、PDM回路141~143の夫々として用いることのできるPDM回路160の構成を示す。PDM回路160は、入力信号をパルス密度変調することでパルス密度変調信号であるPDM信号を生成及び出力する。PDM回路160から出力されるPDM信号は所定のPDM更新周期で更新される。ここにおける更新は、PDM更新周期が経過するごとにPDM信号の値が毎回変化することを意味するのではなく、PDM更新周期が経過するごとにPDM信号の値が変更可能であることを意味する。PDM回路160において、第j回目の更新が行われた後、第(j+1)回目の更新が行われる前の区間(以下第j区間と称する)における入力信号及びPDM信号を、夫々、a[j]、c[j]で表す(ここにおけるjは3以上の整数)。第j区間の長さがPDM更新周期と一致する。PDM回路160内では入力信号からPDM信号を形成する過程で内部信号が生成される。第j区間における内部信号をb[j]で表す。入力信号a[j]のビット数は2以上であれば任意であるが、ここでは、入力信号a[j]のビット数は29であるとする。そうすると、内部信号b[j]のビット数も29となる。
【0106】
PDM回路160は、加算器161、遅延器162及び163並びに乗算器164及び165から成り、二次のデルタシグマ型のPDM回路として構成されている。加算器161は、入力信号a[j]と乗算器164及び165の出力信号との和を内部信号b[j]として出力する。遅延器62は、内部信号b[j]を構成する29ビットのデータの内、下位側28ビットのデータから成る信号をPDM更新周期だけ遅延させた信号を信号b[j-1]’として出力する。遅延器63は、信号b[j-1]’をPDM更新周期だけ遅延させた信号を信号b[j-2]’として出力する。乗算器164は信号b[j-1]’に“2”を乗じた信号を加算器161に出力する。乗算器165は信号b[j-2]’に“(-1)”を乗じた信号を加算器161に出力する。そうすると、内部信号b[j]は、“b[j]=a[j]+2・b[j-1]’-b[j-2]”にて表される。PDM信号c[j]は1ビットデジタル信号であり、内部信号b[j]を構成する29ビットのデータの内、最上位1ビットのデータがPDM信号c[j]のデータとなる。
【0107】
PDM回路141、142、143にとっての入力信号a[j]は、夫々、変調前信号Vcu、Vcv、Vcwであり、PDM回路141、142、143にとってのPDM信号c[j]は、夫々、駆動信号DRVu、DRVv、DRVwである。
【0108】
図22に、変調前信号VcuとPDM信号として生成された駆動信号DRVuとの関係を概念的に示す。駆動信号DRVuを形成するパルス列の各パルス幅はPDM更新周期の整数倍となる。駆動信号DRVuにおけるパルス幅の最小値はPDM更新周期と一致し且つ上述のPDM周波数に相当する。駆動信号DRVv及びDRVwについても同様である。即ち、駆動信号DRVu、DRVv及びDRVwの夫々は、1ビットデジタル信号による粗密波となるが、その粗密波における最小のパルス幅の逆数がPDM周波数に相当する。
【0109】
PDM回路141~143におけるPDM周波数は、PDM周波数(換言すればPDM更新周期)を指定する信号である周波数指令信号Frq1*に応じて制御される。第2実施例において、信号Frq1*は、ウィンドウ区間内においてPDM周波数を周波数fLに指定し、ウィンドウ区間外においてPDM周波数を周波数fHに指定することになる。SPM駆動生成回路54は、周波数指令信号Frq1*をPDM回路141~143に供給することでPDM周波数を指定及び制御することができる。駆動信号生成回路52Bが、SPM駆動生成回路54の制御の下、信号Frq1*に基づいてPDM周波数を設定すると解することもできる。
【0110】
スロープ電圧信号VSLPは、スロープ駆動相に対応する出力端子(OUTu、OUTv又はOUTw)に印加すべき電圧の値を示す信号であり、信号VSLP_C1は、その値を信号Trq*及び電源電圧VPWRに応じて補正した値を持つ信号に相当する。
トップ電圧信号VTOPは、トップ駆動相に対応する出力端子(OUTu、OUTv又はOUTw)に印加すべき電圧の値を示す信号であり、信号VTOP_C1は、その値を信号Trq*及び電源電圧VPWRに応じて補正した値を持つ信号に相当する。
変調前信号Vcu、Vcv及びVcwは出力端子OUTu、OUTv又はOUTwに印加すべき電圧の値を示す。
【0111】
そして、PDM回路141、142及び143から出力される駆動信号DRVu、DRVv、DRVwは、信号Trq*により指定されたトルクを得るための且つコイル13u、13v及び13wの夫々に正弦波状の電流を供給するためのパルス密度変調信号となる。
【0112】
[第3実施例]
第3実施例を説明する。第3実施例及び後述の各実施例を上述の第1実施例又は第2実施例と組み合わせて実施することができる。第3実施例及び後述の各実施例では、区間設定部55にてウィンドウ区間だけでなく検出予測区間の設定も行われる。検出予測区間について説明する前に、
図23(a)、(b)及び(c)を参照して、第3実施例及び後述の各実施例にて想定されるウィンドウ区間の種類を説明する。
【0113】
区間設定部55は、ウィンドウ信号WINDOWに加えて信号DETWを生成する。信号DETWも信号WINDOWと同様に“1”又は“0”をとる二値信号である。信号WINDOWが“0”である区間は、信号DETWに関係なく、ウィンドウ区間外の区間、即ち非ウィンドウ区間である。信号WINDOWが“0”である区間において信号DETWが“1”になることは無い。非ウィンドウ区間ではU相駆動動作、V相駆動動作及びW相駆動動作の全てが実行される通常動作が行われる。即ち、非ウィンドウ区間での通常動作において、プリドライバ回路51は、駆動信号DRVu、DRVv、DRVwに従いハーフブリッジ回路50u、50v及び50wを出力ハイ状態及び出力ロー状態間で切り替えるスイッチング制御を行うことで、コイル13u、13v及び13wに対し電力を供給する。
【0114】
信号WINDOWが“1”である区間はウィンドウ区間に属し、ウィンドウ区間は信号DETWにより第1ウィンドウ区間と第2ウィンドウ区間に分類される。尚、以下では、信号WINDOWの値が“i”であって且つ信号DETWの値が“j”であることを、“(WINDOW,DETW)=(i,j)”と表現する。また、以下の説明において単にウィンドウ区間を記した場合、それは、第1ウィンドウ区間及び第2ウィンドウ区間の何れか又は双方を指すと解されて良い。
【0115】
“(WINDOW,DETW)=(1,0)”である区間は第1ウィンドウ区間である。第1ウィンドウ区間は、第2実施例の説明までで上述したウィンドウ区間に相当する。即ち、第1ウィンドウ区間において、プリドライバ回路51は、駆動信号DRVuに基づくU相駆動動作を停止してハーフブリッジ回路50uのトランジスタTrH及びTrLをオフ状態に維持することでハーフブリッジ回路50uをハイインピーダンス状態としつつ、V相駆動動作及びW相駆動動作は実行する。つまり、第1ウィンドウ区間において、プリドライバ回路51は、U相駆動動作を停止することでコイル13uへの通電を停止しつつ、駆動信号DRVv及びDRVwに従いハーフブリッジ回路50v及び50wを出力ハイ状態及び出力ロー状態間で切り替えるスイッチング制御を行うことでコイル13v及び13wに対し電力を供給する。
【0116】
“(WINDOW,DETW)=(1,1)”である区間は第2ウィンドウ区間である。第2ウィンドウ区間では、ハーフブリッジ回路50uをハイインピーダンス状態とし且つハーフブリッジ回路50v及び50wにおけるスイッチングを停止させる。即ち、第2ウィンドウ区間において、プリドライバ回路51は、駆動信号DRVuに基づくU相駆動動作を停止してハーフブリッジ回路50uのトランジスタTrH及びTrLをオフ状態に維持することでハーフブリッジ回路50uをハイインピーダンス状態とし、且つ、駆動信号DRVv及びDRVwに基づくV相駆動動作及びW相駆動動作も停止する。第2ウィンドウ区間におけるV相駆動動作及びW相駆動動作の停止とは、ハーフブリッジ回路50v及び50wの状態を第2ウィンドウ区間の直前の状態に維持しておくことを指す。即ち、ハーフブリッジ回路50vが出力ハイ状態であるタイミングにおいて、“(WINDOW,DETW)=(1,0)”から“(WINDOW,DETW)=(1,1)”に変化して第2ウィンドウ区間に移行したとき、当該第2ウィンドウ区間においてハーフブリッジ回路50vは駆動信号DRVvに依らず出力ハイ状態に維持され、ハーフブリッジ回路50vが出力ロー状態であるタイミングにおいて、“(WINDOW,DETW)=(1,0)”から“(WINDOW,DETW)=(1,1)”に変化して第2ウィンドウ区間に移行したとき、当該第2ウィンドウ区間においてハーフブリッジ回路50vは駆動信号DRVvに依らず出力ロー状態に維持される。ハーフブリッジ回路50wについても同様である。第2ウィンドウ区間では、スイッチング制御が停止されるものの、ハーフブリッジ回路50v又は50wからコイル13v又は13wへの電力供給は許容されることになる。
【0117】
図23(c)に示す如く、第1ウィンドウ区間が設けられる場合、第1ウィンドウ区間は第2ウィンドウ区間の前に設けられ、第1ウィンドウ区間の終了に続いて直ちに第2ウィンドウ区間が開始される(第1ウィンドウ区間の終了タイミングと第2ウィンドウ区間の開始タイミングは同じであると解して良い)。詳細には、各フレーム内の或るタイミングにおいて“(WINDOW,DETW)=(0,0)”から“(WINDOW,DETW)=(1,0)”に変化することで第1ウィンドウ区間が開始され、その後に、“(WINDOW,DETW)=(1,0)”から“(WINDOW,DETW)=(1,1)”に変化することで第2ウィンドウ区間が開始され、第2ウィンドウ区間の開始後、信号BEMF_EDGEにパルス信号が生じることを契機に“(WINDOW,DETW)=(1,1)”から“(WINDOW,DETW)=(0,0)”へと切り替わって非ウィンドウ区間に移行する。但し、例外的に、或るフレームにおいて、第2ウィンドウ区間が開始される前の第1ウィンドウ区間にて信号BEMF_EDGEにパルス信号が生じることもあり、その場合には、当該フレームにて第2ウィンドウ区間が開始されることなく“(WINDOW,DETW)=(1,0)” から“(WINDOW,DETW)=(0,0)”へと切り替わって非ウィンドウ区間(次フレームの非ウィンドウ区間)に移行する。信号WINDOWの“0”から“1”への切り替わりタイミングは、
図11を参照して上述したものと同様であって良い。
【0118】
第2ウィンドウ区間は、区間設定部55により導出及び設定されるゼロクロス予測タイミング及び検出予測区間と密接に関係している。区間設定部55は、信号BEMF_EDGEにおいて或るパルス信号が発生してから次のパルス信号が発生するまでの時間(即ち上述のゼロクロス間隔)を計測する計測回路と、計測したゼロクロス間隔の内、直近過去VAL
A回分のゼロクロス間隔を保持する保持回路とを備え、直近過去VAL
A回分のゼロクロス間隔と直近過去に検出されたゼロクロスタイミングとに基づき、次回のゼロクロスが生じるタイミングを予測する(VAL
Aは1以上の整数)。ここで予測されたタイミングを、ゼロクロス予測タイミングと称する。尚、上記計測回路及び保持回路はクロック信号DRVCLKの周期Tp2の設定にも用いられるものであり(
図11参照)、それらの回路は区間設定部55及びクロック出力回路62間で共用されて良い。
【0119】
典型的には例えば、直近過去VAL
A回分のゼロクロス間隔の平均値を求め、直近過去に検出されたゼロクロスタイミングより、その平均値分の時間だけ後のタイミングを、ゼロクロス予測タイミングとして導出すれば良い。つまり“VAL
A=3”である場合、
図24に示す如く、区間設定部55は、フレームFL[n-2]の開始タイミングと一致するゼロクロスタイミング601と、フレームFL[n-1]の開始タイミングと一致するゼロクロスタイミング602と、フレームFL[n]の開始タイミングと一致するゼロクロスタイミング603とが検出された後、フレームFL[n]において少なくとも第1ウィンドウ区間を開始する前に、タイミング601及び602間の間隔とタイミング602及び603間の間隔との平均値を求め、タイミング603より、その平均値分の時間だけ後のタイミングを、フレームFL[n]のゼロクロス予測タイミングZT
EST[n]として導出する。
【0120】
区間設定部55は、或るフレームについてのゼロクロス予測タイミングを導出した後、ゼロクロス予測タイミングを中心とし且つ“2×WD”分の時間幅を持った検出予測区間を設定する。WDは例えば10マイクロ秒である。この際、各フレームにおいて、検出予測区間よりも前に第1ウィンドウ区間が開始されるよう時間WDが設定される。例えば、各フレームにおいて、ゼロクロス予測タイミングから“5×WD”分の時間だけ前のタイミングより第1ウィンドウ区間を開始するようにしても良い。
図24の例では、ゼロクロス予測タイミングZT
EST[n]から時間WDだけ前のタイミングより始まって且つゼロクロス予測タイミングZT
EST[n]より時間WDだけ後のタイミングにて終了する区間DP
EST[n]を検出予測区間として設定する。
【0121】
検出予測区間は第1ウィンドウ区間と重ならないが、検出予測区間の一部又は全部は第2ウィンドウ区間と重なる。具体的には、各フレームにおいて検出予測区間の開始タイミングと第2ウィンドウ区間とは一致している。即ち、区間設定部55は、各フレームにおいて、検出予測区間の開始タイミングに“(WINDOW,DETW)=(1,0)” から“(WINDOW,DETW)=(1,1)”へと切り替えることで第2ウィンドウ区間を開始する。基本的には、その後、信号BEMF_EDGEにパルス信号が生じることを契機に“(WINDOW,DETW)=(1,1)”から“(WINDOW,DETW)=(0,0)”へと切り替えることで非ウィンドウ区間に移行させる。
【0122】
検出予測区間は、未検出の次回のゼロクロスが生じる可能性が高い区間である。第1ウィンドウ区間においてもコイル13uの逆起電力を検出可能であるが、V相及びW相にてスイッチングが行われる分、第2ウィンドウ区間よりも逆起電力の検出精度は劣る。そこで、次回のゼロクロスが生じるであろう区間を検出予測区間として設定しておいて、検出予測区間にてV相及びW相のスイッチングを停止させる。SPM13のロータの定常回転状態では、各フレームにて検出予測区間内で実際にゼロクロスが検出されることが期待される。
【0123】
検出予測区間が開始されると全相のスイッチングが停止されるため、検出予測区間の長さはなるだけ短くした方が好ましい。但し、検出予測区間が短すぎたり、ロータの回転速度に変化が生じたりしたときには、検出予測区間内にてゼロクロスが生じないこともある(即ち予測が外れることもある)。但し、第1実施例又は第2実施例と第3実施例を組み合わせた場合には、ウィンドウ区間内においてPWM周波数又はPDM周波数が周波数fLに下げられるため、予測が外れた場合でも、ウィンドウ区間内でゼロクロスが検出されると期待される。
【0124】
図25(a)~(c)を参照し、フレームFL[n]に対して導出及び設定されたゼロクロス予測タイミングZT
EST[n]及び検出予測区間DP
EST[n]に注目して幾つかのケースを考える。
【0125】
図25(a)に示す第1ケースは予測成功ケースに属する。第1ケースでは、タイミング611にて検出予測区間DP
EST[n]及び第2ウィンドウ区間が開始され、その後、検出予測区間DP
EST[n]内に属するタイミング612にて信号BEMF_EDGEにパルス信号が生じてゼロクロスが検出される。この場合には、ゼロクロスタイミング612にて“(WINDOW,DETW)=(1,1)”から“(WINDOW,DETW)=(0,0)”へと切り替えることで非ウィンドウ区間に移行させる。
図25(a)では、タイミング612が予測タイミングZT
EST[n]よりも前になっているが、タイミング612は予測タイミングZT
EST[n]よりも後でありうる。第1ケースの如く、検出予測区間内にゼロクロス及びゼロクロスタイミングが検出されることを、予測成功と称する。
【0126】
図25(b)に示す第2ケースは予測失敗ケースに属する。第2ケースでは、タイミング611にて検出予測区間DP
EST[n]及び第2ウィンドウ区間が開始され、その後、検出予測区間DP
EST[n]が満了するまでゼロクロスが検出されず、検出予測区間DP
EST[n]が満了した後のタイミング613において信号BEMF_EDGEにパルス信号が生じてゼロクロスが検出される。この場合には、ゼロクロスタイミング613にて“(WINDOW,DETW)=(1,1)”から“(WINDOW,DETW)=(0,0)”へと切り替えることで非ウィンドウ区間に移行させる。即ち、第2ケースでは、第2ウィンドウ区間が検出予測区間DP
EST[n]の満了を越えて延長されることになる。第2ケース及び後述の第3ケースの如く、検出予測区間内にゼロクロス及びゼロクロスタイミングが検出されないことを、予測失敗と称する。
【0127】
図25(c)に示す第3ケースも予測失敗ケースに属する。第3ケースでは、タイミング611にて第2ウィンドウ区間を開始する予定であったが、第1ウィンドウ区間に属するタイミングであってタイミング611よりも前のタイミング610において信号BEMF_EDGEにパルス信号が生じてゼロクロスが検出される。この場合には、フレームFL[n]において、第2ウィンドウ区間が開始されることなく、ゼロクロスタイミング610にて“(WINDOW,DETW)=(1,0)”から“(WINDOW,DETW)=(0,0)”へと切り替えることで非ウィンドウ区間に移行させる。但し、後述の或る実施例では、ウィンドウ区間内でPWM周波数又はPDM周波数が相対的に高い周波数f
Hに設定されることがあり、その場合には第3ケースが生じないこともある。
【0128】
図26を参照し、以下では、SPM駆動制御回路54内にモード設定部56に設けられているものとする。モード設定部56にはゼロクロス履歴情報保持部56aが備えられる。検出予測区間内で実際にゼロクロスが発生することが予測されるのであるが、保持部56aは、検出予測区間内で実際にゼロクロスタイミングが検出されたか否か(換言すれば実際にゼロクロスが発生して検出されたのか否か)を示す履歴情報を保持する。保持される履歴情報は、直近過去のVAL
B個分のフレームについての履歴情報を含んでいると良い(VAL
Bは1以上の整数)。そして、モード設定部56は、この履歴情報を元に、SPMドライバ33の動作モードを過渡モード及び安定モードを含む複数のモードの何れかに設定する。ここにおける動作モードは、駆動信号生成回路52の動作モードであると解しても良い。SPMドライバ33(特に駆動信号生成回路52)は設定された動作モードにて動作を行う。過渡モード及び安定モードの意義及び利用方法については後述される。
【0129】
[第4実施例]
第4実施例を説明する。第4実施例は上述の第1~第3実施例と組み合わせて実施される。
【0130】
図27(a)及び(b)に示す如く、以下では、第1実施例に示した方法に従い、ウィンドウ区間内においてPWM周波数を所定の周波数f
Lとする一方でウィンドウ区間外においてPWM周波数を周波数f
Lよりも高い所定の周波数f
Hに設定する制御を“周波数可変制御JA”と称し、第2実施例に示した方法に従い、ウィンドウ区間内においてPDM周波数を所定の周波数f
Lとする一方でウィンドウ区間外においてPDM周波数を周波数f
Lよりも高い所定の周波数f
Hに設定する制御を“周波数可変制御JB”と称する。周波数可変制御JA、JBは、駆動信号生成回路52として、夫々、
図13の駆動信号生成回路52A、
図20の駆動信号生成回路52Bを用いることを前提として実行され得る。
【0131】
尚、以下では、駆動信号生成回路52として
図13の駆動信号生成回路52Aが用いられるときのPWM周波数、及び、駆動信号生成回路52として
図20の駆動信号生成回路52Bが用いられるときのPDM周波数を、総称して、可変対象周波数と称することがある。
【0132】
第4実施例に係る駆動信号生成回路52は、過渡モードが動作モードに設定されているとき、第1又は第2実施例による周波数可変制御JA又はJBを実行し、安定モードが動作モードに設定されているとき、第1又は第2実施例による周波数可変制御JA又はJBを実行するのではなく、ウィンドウ区間外に加えてウィンドウ区間内おいてもPWM周波数を相対的に高い周波数f
Hに設定する高周波数維持制御JC、又は、ウィンドウ区間外に加えてウィンドウ区間内おいてもPDM周波数を相対的に高い周波数f
Hに設定する高周波数維持制御JDを実行する(
図28(a)及び(b)参照)。高周波数維持制御JC、JDは、駆動信号生成回路52として、夫々、
図13の駆動信号生成回路52A、
図20の駆動信号生成回路52Bを用いることを前提として実行され得る。ウィンドウ区間内及びウィンドウ区間外においてPWM周波数を周波数f
Hに指定する周波数指令信号Frq
*を
図13のPWM周波数テーブル113に供給することで高周波数維持制御JCが実現され、ウィンドウ区間内及びウィンドウ区間外においてPDM周波数を周波数f
Hに指定する周波数指令信号Frq1
*を
図20のPDM回路141~143に供給することで高周波数維持制御JDが実現される。
【0133】
動作モードの設定方法を説明するに先立ち、説明の明確化のため、フレーム、ゼロクロス予測タイミング及び検出予測区間などについて以下のように定義する。
【0134】
時系列上に並ぶ複数のフレームは順次発生するゼロクロスタイミングを境に区切られることになるが、ここでは、第n番目のフレームであるフレームFL[n]は、第(n-1)番目のゼロクロスタイミングから第n番目のゼロクロスタイミングまでのフレームであるものとする(nは整数)。そして、第n番目のゼロクロスタイミングを記号“ZT
REAL[n]”にて参照する。そうすると、
図29(a)に示す如く、フレームFL[n]はゼロクロスタイミングZT
REAL[n-1]からゼロクロスタイミングZT
REAL[n]までの区間を指し示すことになる。また、
図24を参照して上述したものと符合するが、フレームFL[n]に対するゼロクロスタイミングZT
REAL[n]を予測したものである、フレームFL[n]についてのゼロクロス予測タイミングを記号“ZT
EST[n]”にて参照する(
図29(b))。加えて、ゼロクロス予測タイミングZT
EST[n]を中心とする区間であって且つフレームFL[n]に対して設定される検出予測区間を記号“DP
EST[n]”にて参照する。
【0135】
図30を参照して、動作モードの移行の様子を示す。モード設定部56は、ロータの回転速度が或る程度高まって、逆起電力検出処理を利用したSPM13のセンサレスによる駆動が可能な状態となると、まず動作モードを過渡モードに設定する。モード設定部56は、過渡モードでの動作が行われているとき、所定の安定モード移行条件の成否を継続的に監視し、所定の安定モード移行条件が成立した場合には動作モードを過渡モードから安定モードに切り替え、安定モード移行条件が成立していない場合には動作モードを過渡モードのままで維持する。モード設定部56は、安定モードでの動作が行われているとき、所定の過渡モード移行条件の成否を継続的に監視し、所定の過渡モード移行条件が成立した場合には動作モードを安定モードから過渡モードに切り替え、過渡モード移行条件が成立していない場合には動作モードを安定モードのままで維持する。
【0136】
モード設定部56はフレームごとに動作モードを設定可能であって良い。即ち例えば、動作モードをフレームFL[n-1]、FL[n]、FL[n+1]に対し、夫々、過渡モード、安定モード、過渡モードに設定することが可能であって良い。フレームFL[n]に対して過渡モードが設定されているとき、フレームFL[n]に対して周波数可変制御JA又はJBが実行され、フレームFL[n]に対して安定モードが設定されているとき、フレームFL[n]に対して高周波数維持制御JC又はJDが実行される。他のフレームについても同様である。
【0137】
フレームFL[n]に注目して、安定モード移行条件及び過渡モード移行条件に関する方法MT1~MT3を説明する。方法MT1~MT3の実現に際し、
図26のゼロクロス履歴情報保持部56aにて保持された履歴情報が適宜用いられる。
【0138】
[方法MT1]
方法MT1は、フレームFL[n]に対しモード設定部56により過渡モードが設定されていて、フレームFL[n]に対し周波数可変制御JA又はJBが実行される条件の下で実行される。
【0139】
図31(a)に、方法MT1の採用時において安定モード移行条件が成立するときの動作概念を示す。方法MT1では、
図25(a)の予測成功ケースの如く、検出予測区間DP
EST[n]内にてゼロクロスタイミングZT
REAL[n]が検出された場合に安定モード移行条件が成立して、動作モードが過渡モードから安定モードに切り替えられる。この場合、フレームFL[n+1]に対し安定モードが設定されてフレームFL[n+1]にて高周波数維持制御JC又はJDが実行されることになる。一方、
図25(b)又は(c)に示す予測失敗ケースの如く、検出予測区間DP
EST[n]内にてゼロクロスタイミングZT
REAL[n]が検出されなかった場合には、安定モード移行条件が成立せずに動作モードが過渡モードに維持される。この場合、フレームFL[n+1]に対し過渡モードが設定されてフレームFL[n+1]にて周波数可変制御JA又はJBが実行されることになる。
【0140】
[方法MT2]
方法MT1に代えて方法MT2を採用しても良い。方法MT2も、方法MT1と同様、フレームFL[n]に対しモード設定部56により過渡モードが設定されていて、フレームFL[n]に対し周波数可変制御JA又はJBが実行される条件の下で実行される。
【0141】
図31(b)に、方法MT2の採用時において安定モード移行条件が成立するときの動作概念を示す。方法MT2において、モード設定部56は、検出予測区間DP
EST[n]内にてゼロクロスタイミングZT
REAL[n]が検出されたか否かを確認する。そして、方法MT2では、
図25(a)の予測成功ケースの如く検出予測区間DP
EST[n]内にてゼロクロスタイミングZT
REAL[n]が検出され、且つ、検出予測区間DP
EST[n-k]~DP
EST[n-1]内の夫々においても対応するゼロクロスタイミングが検出されていた場合に限って、安定モード移行条件が成立して、動作モードが過渡モードから安定モードに切り替えられる。この場合、フレームFL[n+1]に対し安定モードが設定されてフレームFL[n+1]にて高周波数維持制御JC又はJDが実行されることになる。
【0142】
一方、
図25(b)又は(c)に示す予測失敗ケースの如く、検出予測区間DP
EST[n]内にてゼロクロスタイミングZT
REAL[n]が検出されなかった場合には、安定モード移行条件が成立せず、動作モードが過渡モードに維持される。この場合、フレームFL[n+1]に対し過渡モードが設定されてフレームFL[n+1]にて周波数可変制御JA又はJBが実行されることになる。方法MT2では、検出予測区間DP
EST[n]内にてゼロクロスタイミングZT
REAL[n]が検出されたとしても、検出予測区間DP
EST[n-k]~DP
EST[n-1]の何れか1以上において対応するゼロクロスタイミングが検出されなかったときには、安定モード移行条件が成立せずに動作モードが過渡モードに維持される。kは1以上の任意の整数である。即ち、方法MT2では、予測成功が(k+1)フレームに亘って継続した場合に限り、安定モード移行条件が成立する。
【0143】
方法MT2は、フレームFL[n-k]~FL[n]に対して過渡モードが設定されていて、フレームFL[n-k]~FL[n]に対し周波数可変制御JA又はJBが実行される条件の下で実行されるものであると解して良い。
【0144】
[方法MT3]
方法MT3は、フレームFL[n]に対しモード設定部56により安定モードが設定されていて、フレームFL[n]に対し高周波数維持制御JC又はJDが実行される条件の下で実行される。方法MT1又はMT2にて安定モードが設定された後に方法MT3が実施されると考えて良い。
【0145】
図32(a)及び(b)に、方法MT3にて過渡モード移行条件が成立しないとき及び過渡モード移行条件が成立するときの動作概念を示す。方法MT3では、
図25(a)の予測成功ケースの如く、検出予測区間DP
EST[n]内にてゼロクロスタイミングZT
REAL[n]が検出された場合には過渡モード移行条件が成立せず、動作モードが安定モードにて維持される。この場合、フレームFL[n+1]に対しも安定モードが設定されてフレームFL[n+1]にて高周波数維持制御JC又はJDが実行されることになる。一方、
図25(b)又は(c)に示す予測失敗ケースの如く、検出予測区間DP
EST[n]内にてゼロクロスタイミングZT
REAL[n]が検出されなかった場合には、過渡モード移行条件が成立して動作モードが安定モードから過渡モードに切り替えられる。この場合、フレームFL[n+1]に対し過渡モードが設定されてフレームFL[n+1]にて周波数可変制御JA又はJBが実行されることになる。
【0146】
高周波数維持制御JC又はJDが実行されている場合には、ウィンドウ区間内であっても検出予測区間が開始される前ではV相及びW相にてスイッチングが行われているため、周波数fHが十分に大きいと、マスク信号が“1”に維持されることになる。このような場合において、検出予測区間DPEST[n]前にゼロクロスが生じたとしても、検出予測区間DPEST[n]前に有効なパルス信号が信号BEMF_EDGEに生じず、検出予測区間DPEST[n]の開始後に、ゼロクロスが既に生じたことを示す逆起電力検出信号BEMF(即ち “Vu>VCT”を示す信号)が得られるのみとなる。つまり、この場合には、真のゼロクロスタイミングZTREAL[n]は不明となるが、次フレーム以降の動作にフレームFL[n]についてのゼロクロスタイミングがいつであったのかを利用する必要がある。
【0147】
故に、安定モードにおいて、検出予測区間DP
EST[n]の開始前にゼロクロスが発生した結果、ゼロクロスが既に生じたことを示す逆起電力検出信号BEMF(即ち “Vu>V
CT”を示す信号)が検出予測区間DP
EST[n]の開始タイミングにて得られた場合にあっては、検出予測区間DP
EST[n]の開始タイミングにて信号BEMF_EDGEにパルス信号が生ずるように駆動クロック生成回路60(
図9参照)が構成されているものとし、検出予測区間DP
EST[n]の開始タイミングがフレームFL[n]についてのゼロクロスタイミングであるとみなすようにする。
【0148】
SPM13の始動直後など、ロータの回転速度が安定していない状態においては、ゼロクロスタイミングが検出予測区間から外れることも多いが、ロータの回転速度が所望速度に達して安定的なロータの回転が行われるようなるとゼロクロス間隔は実質的に一定となるため、ゼロクロスタイミングが検出予測区間内に入り続けるような安定状態となる。このような安定状態では、毎回、検出予測区間内で正しくゼロクロスタイミングを検出できると期待されるため、ウィンドウ区間内で可変対象周波数を低下させる必要はないと言える。そこで、本実施例では、上述の方法により安定状態に対応するような状況において、動作モードを安定モードにしてウィンドウ区間外でも可変対象周波数を高く設定する(
図28(a)及び(b)参照)。これにより、SPM13の動作区間の大半を占める安定状態において、ゼロクロスタイミングの正確な検出を担保しつつもトルクリプルを低く抑えることが可能となる。
【0149】
[第5実施例]
第5実施例を説明する。第5実施例も第4実施例と同様に上述の第1~第3実施例と組み合わせて実施される。
【0150】
図33に、第5実施例に係る、動作モードと可変対象周波数(PWM周波数又はPDM周波数)とウィンドウ区間との関係を示す。第5実施例において、過渡モードが動作モードに設定されているときの動作は第4実施例と同様である。即ち、第5実施例に係る駆動信号生成回路52は、過渡モードが動作モードに設定されているとき、第1又は第2実施例による周波数可変制御JA又はJB(
図28(a)及び(b)参照)を実行する。故に、過渡モードでは、第1~第3実施例で説明した方法により、各フレームにおいて、ゼロクロスタイミングの検出に先立ち、検出予測区間が設定されると共に検出予測区間より前から開始されるウィンドウ区間が設定され、且つ、可変対象周波数がウィンドウ区間外で相対的に高い周波数f
Hとされる一方でウィンドウ区間内では相対的に低い周波数f
Lとされる。
【0151】
第5実施例に係る駆動信号生成回路52は、動作モードが安定モードに設定されているとき、第4実施例で示した高周波数維持制御JC又はJDに対応する高周波数維持制御JC’又はJD’を実行する。高周波数維持制御JC’、JD’は、駆動信号生成回路52として、夫々、
図13の駆動信号生成回路52A、
図20の駆動信号生成回路52Bを用いることを前提として実行され得る。
【0152】
制御JC及びJDと制御JC’及びJD’との違いを説明する。第4実施例に係る制御JC及びJDは、検出予測区間の開始前から開始されるウィンドウ区間が設定されるという前提の下で行われる制御であるのに対し、制御JC’及びJD’は、そのようなウィンドウ区間が設定されない。その他の点において、制御JCと制御JC’は同様であり、制御JDと制御JD’は同様である。故に、高周波数維持制御JC’又はJD’の実行時においては可変対象周波数(PWM周波数又はPDM周波数)が常に周波数f
Hに維持される。PWM周波数を周波数f
Hに指定する周波数指令信号Frq
*を常に
図13のPWM周波数テーブル113に供給することで高周波数維持制御JC’が実現され、PDM周波数を周波数f
Hに指定する周波数指令信号Frq1
*を常に
図20のPDM回路141~143に供給することで高周波数維持制御JD’が実現される。
【0153】
図34に、動作モードが安定モードに設定されているときの検出予測区間と信号WINDOW及びDETWとの関係を示す。動作モードが安定モードに設定されているとき、
各フレームに対し、上述してきた方法によりゼロクロス予測タイミングの導出及び検出予測区間の設定が行われ、
各フレームにおいて、検出予測区間が開始されるまでの全区間では“(WINDOW,DETW)=(0,0)”とされて上述の非ウィンドウ区間におけるものと同様の通常動作が実行され、
各フレームにおいて、検出予測区間の開始と同期して“(WINDOW,DETW)=(0,0)”から“(WINDOW,DETW)=(1,1)”に切り替わり、ゼロクロスタイミングが検出されて信号BEMF_EDGEにパルス信号が発生すると、そのパルス信号の発生を契機に“(WINDOW,DETW)=(1,1)”から “(WINDOW,DETW)=(0,0)”に切り替わる。
【0154】
“(WINDOW,DETW)=(1,1)”となっている区間は上述の第2ウィンドウ区間と同じものであると言え、故に、安定モードでは、検出予測区間の開始に同期して第2ウィンドウ区間が開始されると解することができるが、何れせよ、各クレームにおいて検出予測区間の開始前にウィンドウ区間が設定されることは無い。
図33では、安定モードにてウィンドウ区間の一種である第2ウィンドウ区間が設けられる様子は示されていないが、第5実施例において、以下では、検出予測区間の開始と同時に第2ウィンドウ区間が開始されると考える。そうすると、安定モードは第1ウィンドウ区間が非設定となるモードと言え、安定モードでは、非ウィンドウ区間と第2ウィンドウ区間とが交互に訪れることになる。“(WINDOW,DETW)=(0,0)”となる区間である非ウィンドウ区間及び“(WINDOW,DETW)=(1,1)”となる区間である第2ウィンドウ区間でのプリドライバ回路51の動作は第3実施例にて説明した通りである。
【0155】
故に、動作モードが安定モードに設定されている状況の下、ハーフブリッジ回路50vが出力ハイ状態であるタイミングにおいて“(WINDOW,DETW)=(0,0)”から“(WINDOW,DETW)=(1,1)”に変化して第2ウィンドウ区間に移行したとき、当該第2ウィンドウ区間においてハーフブリッジ回路50vは駆動信号DRVvに依らず出力ハイ状態に維持され、ハーフブリッジ回路50vが出力ロー状態であるタイミングにおいて“(WINDOW,DETW)=(0,0)”から“(WINDOW,DETW)=(1,1)”に変化して第2ウィンドウ区間に移行したとき、当該第2ウィンドウ区間においてハーフブリッジ回路50vは駆動信号DRVvに依らず出力ロー状態に維持される。ハーフブリッジ回路50wについても同様である。第2ウィンドウ区間では、スイッチング制御が停止されるものの、ハーフブリッジ回路50v又は50wからコイル13v又は13wへの電力供給は許容されることになる。
【0156】
安定モードであっても過渡モードであっても、第3実施例にて上述したように、検出予測区間の一部又は全部は第2ウィンドウ区間と重なることになる。検出予測区間の開始タイミングは第2ウィンドウ区間の開始タイミングと一致するが、それらの終了タイミングは一致することもあるし一致しないこともある(多くの場合、一致しない)。検出予測区間は、ゼロクロスタイミングが検出される前に固定的に設定される区間である一方、第2ウィンドウ区間はゼロクロスタイミングが検出された時点で終了する、動的に長さが変わる区間であるためである。
【0157】
動作モードの設定方法は第4実施例において述べた通りであり、上述の方法MT1~MT3を含む、第4実施例で述べた動作モードの設定方法が第5実施例にも適用される(
図30、
図31(a)及び(b)並びに
図32(a)及び(b)参照)。但し、この適用の際、第4実施例の記述における記号「JC」及び「JD」は夫々「JC’」及び「JD’」に読み替えられる。
【0158】
尚、第5実施例では動作モードが安定モードに設定されているとき、任意のフレームであるフレームFL[n]において検出予測区間DPEST[n]が開始されるまで逆起電力を検出することができない。このため、安定モードでは、検出予測区間DPEST[n]前にゼロクロスが生じたとしても、検出予測区間DPEST[n]の開始後に、ゼロクロスが既に生じたことを示す逆起電力検出信号BEMF(即ち “Vu>VCT”を示す信号)が得られるのみとなる。つまり、この場合には、真のゼロクロスタイミングZTREAL[n]は不明となるが、次フレーム以降の動作にフレームFL[n]についてのゼロクロスタイミングがいつであったのかを利用する必要がある。
【0159】
故に、安定モードにおいて、検出予測区間DP
EST[n]の開始前にゼロクロスが発生した結果、ゼロクロスが既に生じたことを示す逆起電力検出信号BEMF(即ち “Vu>V
CT”を示す信号)が検出予測区間DP
EST[n]の開始タイミングにて得られた場合にあっては、検出予測区間DP
EST[n]の開始タイミングにて信号BEMF_EDGEにパルス信号が生じるように駆動クロック生成回路60(
図9参照)が構成されているものとし、検出予測区間DP
EST[n]の開始タイミングがフレームFL[n]についてのゼロクロスタイミングであるとみなすようにする。
【0160】
第5実施例によっても、第4実施例と同様、SPM13の動作区間の大半を占める安定状態において、ゼロクロスタイミングの正確な検出を担保しつつもトルクリプルを低く抑えることが可能となる。加えて、安定モードが設定されるような安定状態では、U相のコイル13uの電流を不連続とさせる第1ウィンドウ区間(検出予測区間前におけるウィンドウ区間)が設けられず、スイッチングを極めて短時間停止させるだけでゼロクロスタイミングを安定的に検出し続けることが可能となるため、メリットが大きい。
【0161】
[第6実施例]
第6実施例を説明する。
【0162】
信号BEMFuに基づいて信号BEMF_EDGEを得る例を上出したが、信号BEMFv又はBEMFwに基づいて信号BEMF_EDGEを得るようにしても良い。
【0163】
駆動信号生成回路52(
図4参照)は、逆起電力検出回路53による逆起電力の検出結果(ゼロクロスタイミング)とトルク指令信号Trq
*に基づいて駆動信号(DRVu、DRVv、DRVw)を生成するようにしているが、SPM13にて発生されるべきトルクが予め定まっているようなケースでは、トルク指令信号Trq
*は不要となりうる。
【0164】
検出予測区間内でゼロクロスタイミングが検出されたか否かを示す情報に基づいて可変対象周波数を2段階で可変させる方法を説明したが、その情報に基づいて可変対象周波数を3段階以上で可変させるようにしても良い。これに関連するが、検出予測区間内でゼロクロスタイミングが検出されたか否かを示す情報に基づいて、動作モードを3段階以上に可変設定する構成が採用されても良い。
【0165】
SPM13が3相分のコイルにて構成される例を上述したが、SPM13が3相とは異なる複数相分のコイルにて構成されることがあっても良い。
【0166】
また、本発明をHDD装置1のSPM13に適用する例を上述したが、多相直流モータをセンサレス駆動する任意の用途において本発明を広く適用可能である。
【0167】
ドライバIC30の各構成要素は半導体集積回路の形態で形成され、当該半導体集積回路を、樹脂にて構成された筐体(パッケージ)内に封入することで半導体装置が構成される。但し、複数のディスクリート部品を用いてドライバIC30内の回路と同等の回路を構成するようにしても良い。
【0168】
また、SPMドライバ33単体を半導体集積回路の形態で形成し、当該半導体集積回路を、樹脂にて構成された筐体(パッケージ)内に封入することで半導体装置を構成するようにいても良い。
【0169】
論理値を示す任意の信号又は電圧に関して、上述の主旨を損なわない形で、それらのハイレベルとローレベルの関係を逆にしても良い(即ち論理値“1”にハイレベルを割り当てるのかローレベルを割り当てるのかは任意であって良い)。
【0170】
トランジスタTrHがPチャネル型のMOSFETにて構成されるように各ハーフブリッジ回路を変形しても良い。トランジスタTrLをPチャネル型のMOSFETにすることも可能ではある。
【0171】
上述の各トランジスタは、任意の種類のトランジスタであって良い。例えば、MOSFETとして上述されたトランジスタを、接合型FET、IGBT(Insulated Gate Bipolar Transistor)又はバイポーラトランジスタに置き換えることも可能である。任意のトランジスタは第1電極、第2電極及び制御電極を有する。FETにおいては、第1及び第2電極の内の一方がドレインで他方がソースであり且つ制御電極がゲートである。IGBTにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がゲートである。IGBTに属さないバイポーラトランジスタにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がベースである。
【0172】
<<本発明の考察>>
上述の実施形態にて具体化された本発明について考察する。
【0173】
本発明に係る一側面に係るモータドライバ装置WAは、パルス幅が変化する駆動信号(DRVu、DRVv、DRVw)を用い、複数相分のコイルを有して構成される直流モータ(13)をスイッチング駆動するモータドライバ装置であって、前記駆動信号に従って各コイルに電力を供給する出力回路(50u、50v、50w、51)と、前記直流モータの所定相のコイル(13u)に対する通電が停止される区間としてウィンドウ区間を設定する区間設定部(55)と、前記所定相のコイルに対する通電が停止された状態において、前記直流モータの所定相のコイルに生じる逆起電力がゼロを交差するゼロクロスタイミングを検出するゼロクロス検出部(53)と、前記ゼロクロス検出部の検出結果に基づき前記駆動信号を生成する駆動信号生成部(52)と、を備え、前記出力回路は、前記ウィンドウ区間内において前記駆動信号に依らずに前記所定相のコイルへの通電を停止させ、前記ウィンドウ区間の開始後に前記ゼロクロスタイミングが検出されると前記駆動信号に従って各コイルに電力を供給する通常動作を再開し、前記区間設定部は、順次発生するゼロクロスタイミングを境に区切られる時系列上に並ぶ複数のフレームの何れかである対象フレーム(FL[n])において、前記対象フレームの開始後に訪れるゼロクロスタイミング(ZTREAL[n])が検出される前に、検出済みの2以上のゼロクロスタイミングに基づいて前記対象フレームにおける前記ウィンドウ区間を設定し、前記駆動信号生成部は、前記駆動信号の周波数である又は前記駆動信号の最小のパルス幅の逆数である可変対象周波数を、前記ウィンドウ区間外において前記ウィンドウ区間内よりも高くする周波数可変制御を実行可能であることを特徴とする。
【0174】
可変対象周波数を低くすると直流モータのトルクリプルが増大する方向に向かう。モータドライバ装置WAによれば、ウィンドウ区間内において可変対象周波数を相対的に低くすることでウィンドウ区間を利用したゼロクロスタイミングの正確な検出を担保しつつ、ウィンドウ区間外で可変対象周波数を相対的に高くすることによりトルクリプルを全体として低減することが可能となる。
【0175】
具体的には例えばモータドライバ装置WAにおいて、前記区間設定部は、前記ウィンドウ区間を設定する際に、前記検出済みの2以上のゼロクロスタイミングに基づいて、前記ウィンドウ区間よりも後に開始される検出予測区間も併せて設定し、前記出力回路は、前記検出予測区間内において前記駆動信号に依らずに前記所定相のコイルへの通電を停止させ且つ他の各相のコイルへの印加電圧のスイッチングを停止させ、前記ウィンドウ区間又は前記検出予測区間の開始後に前記ゼロクロスタイミングが検出されると前記通常動作を再開すると良い。
【0176】
検出済みの2以上のゼロクロスタイミングに基づけば次回のゼロクロスタイミングが生じるであろう区間を予測でき、当該区間を検出予測区間として設定することができる。そして、検出予測区間において所定相のコイルへの通電を停止させ且つ他の各相のコイルへの印加電圧のスイッチングを停止させることにより、検出予測区間内にてゼロクロスタイミングの正確な検出が可能となる。
【0177】
より具体的には例えばモータドライバ装置WAにおいて、前記区間設定部にて設定された前記検出予測区間内にてゼロクロスタイミングが検出されたか否かを示す情報に基づき、第1モード(過渡モード)又は第2モード(安定モード)を当該モータドライバ装置の動作モードとして設定するモード設定部(56)をモータドライバ装置WAに更に設けておくと良く、前記駆動信号生成部は、前記第1モードが前記動作モードに設定されているとき、前記周波数可変制御により前記ウィンドウ区間内における前記可変対象周波数を前記ウィンドウ区間外の前記可変対象周波数である所定周波数(fH)よりも低くする一方、前記第2モードが前記動作モードに設定されているとき、前記可変対象周波数を前記ウィンドウ区間内及び前記ウィンドウ区間外において前記所定周波数とすると良い。
【0178】
検出予測区間内にてゼロクロスタイミングが検出されたか否かを示す情報により、直流モータの状態が検出予測区間内にてゼロクロスタイミングが検出されるような安定状態であるのか、直流モータの状態が検出予測区間内にてゼロクロスタイミングが検出されないような不安定状態であるのかが分かる。上記構成によるモータドライバ装置WAによれば、上記情報に基づき安定状態であると判断される状況において第2モードを設定することが可能である。これにより、可変対象周波数がウィンドウ区間外だけでなくウィンドウ区間内においても相対的に高い所定周波数とされてトルクリプル低減が図られる。ウィンドウ区間内でも可変対象周波数が高められることになるが、安定状態では検出予測区間内でゼロクロスが生じることが期待され、検出予測区間内では全相のスイッチングが停止されるので問題は無い(即ちゼロクロスタイミングを問題なく検出できることが期待される)。
【0179】
本発明に係る一側面に係るモータドライバ装置WBは、パルス幅が変化する駆動信号(DRVu、DRVv、DRVw)を用い、複数相分のコイルを有して構成される直流モータ(13)をスイッチング駆動するモータドライバ装置であって、前記駆動信号に従って各コイルに電力を供給する出力回路(50u、50v、50w、51)と、前記直流モータの所定相のコイル(13u)に対する通電が停止される区間としてウィンドウ区間及び検出予測区間を設定可能な区間設定部(55)と、前記所定相のコイルに対する通電が停止された状態において、前記所定相のコイルに生じる逆起電力がゼロを交差するゼロクロスタイミングを検出するゼロクロス検出部(53)と、前記ゼロクロス検出部の検出結果に基づき前記駆動信号を生成する駆動信号生成部(52)と、を備え、前記出力回路は、前記ウィンドウ区間及び前記検出予測区間内において前記駆動信号に依らずに前記所定相のコイルへの通電を停止させ、前記検出予測区間内においては前記所定相のコイルへの通電の停止に加えて他の各相のコイルへの印加電圧のスイッチングを停止させ、前記ウィンドウ区間又は前記検出予測区間の開始後に前記ゼロクロスタイミングが検出されると前記駆動信号に従って各コイルに電力を供給する通常動作を再開し、前記駆動信号生成部は、前記駆動信号の周波数である又は前記駆動信号の最小のパルス幅の逆数である可変対象周波数を変更可能に構成され、前記区間設定部は、順次発生するゼロクロスタイミングを境に区切られる時系列上に並ぶ複数のフレームの何れかである対象フレーム(FL[n])において、前記対象フレームの開始後に訪れるゼロクロスタイミング(ZTREAL[n])が検出される前に、検出済みの2以上のゼロクロスタイミングに基づいて前記対象フレームにおける前記検出予測区間を設定し、当該モータドライバ装置は、前記区間設定部にて設定された前記検出予測区間内にゼロクロスタイミングが検出されたか否かを示す情報に基づき、第1モード(過渡モード)又は第2モード(安定モード)を当該モータドライバ装置の動作モードとして設定するモード設定部(56)を更に備え、前記第1モードが前記動作モードに設定されているとき、前記検出予測区間の前から開始される前記ウィンドウ区間が前記区間設定部により設定されて、設定された前記ウィンドウ区間内では前記可変対象周波数が前記ウィンドウ区間外よりも低く設定され、前記第2モードが前記動作モードに設定されているとき、前記検出予測区間前における前記ウィンドウ区間が非設定とされることを特徴とする。
【0180】
検出済みの2以上のゼロクロスタイミングに基づけば次回のゼロクロスタイミングが生じるであろう区間を予測でき、当該区間を検出予測区間として設定することができる。そして、検出予測区間において所定相のコイルへの通電を停止させ且つ他の各相のコイルへの印加電圧のスイッチングを停止させることにより、検出予測区間内にてゼロクロスタイミングの正確な検出が可能となる。また、検出予測区間内にてゼロクロスタイミングが検出されたか否かを示す情報により、直流モータの状態が検出予測区間内にてゼロクロスタイミングが検出されるような安定状態であるのか、直流モータの状態が検出予測区間内にてゼロクロスタイミングが検出されないような不安定状態であるのかが分かる。モータドライバ装置WBによれば、上記情報に基づき不安定状態であると判断される状況において第1モードを設定することが可能である。第1モードが設定されたときには、検出予測区間内にゼロクロスタイミングが生じなくても検出予測区間前からウィンドウ区間が開始され、そのウィンドウ区間内では可変対象周波数が低くされるのでゼロクロスタイミングの検出が可能な状態を確保することができる。一方、上記情報に基づき安定状態であると判断される状況においては第2モードを設定することが可能である。この場合には検出予測区間前のウィンドウ区間が非設定とされて、第1モードでは行われる可変対象周波数の低下が行われないのでトルクリプル低減が図られる。第2モードにおいて可変対象周波数の低下は行われないが、第2モードに対応する安定状態では検出予測区間内でゼロクロスが生じることが期待され、検出予測区間内では全相のスイッチングが停止されるので問題は無い(即ちゼロクロスタイミングを問題なく検出できることが期待される)。
【0181】
尚、SPMドライバ33単体がモータドライバ装置WA又はWBとして機能すると考えることもできるし、SPMドライバ33を含むドライバIC30がモータドライバ装置WA又はWBとして機能すると考えても良い。
【0182】
本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。
【符号の説明】
【0183】
1 HDD装置
13 SPM(スピンドルモータ)
13u、13v、13w コイル
33 SPMドライバ
50u、50v、50w ハーフブリッジ回路
51 プリドライバ回路
52 駆動信号生成回路
53 逆起電力検出回路(ゼロクロス検出部)
54 SPM駆動制御回路
55 区間設定部
56 モード設定部
TrH ハイサイドトランジスタ
TrL ローサイドトランジスタ