(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-21
(45)【発行日】2022-07-29
(54)【発明の名称】数値制御方法及び数値制御装置
(51)【国際特許分類】
B23Q 15/12 20060101AFI20220722BHJP
G05B 19/404 20060101ALI20220722BHJP
【FI】
B23Q15/12 Z
G05B19/404 G
(21)【出願番号】P 2020020681
(22)【出願日】2020-02-10
【審査請求日】2021-02-03
(73)【特許権者】
【識別番号】000154990
【氏名又は名称】株式会社牧野フライス製作所
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100147555
【氏名又は名称】伊藤 公一
(74)【代理人】
【識別番号】100160705
【氏名又は名称】伊藤 健太郎
(72)【発明者】
【氏名】佐藤 隆太
(72)【発明者】
【氏名】八木 雅彦
(72)【発明者】
【氏名】尾田 光成
(72)【発明者】
【氏名】河合 利宗
【審査官】杉田 隼一
(56)【参考文献】
【文献】特開平11-024754(JP,A)
【文献】特開2018-126849(JP,A)
【文献】特開2012-198785(JP,A)
【文献】特開2005-348536(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23Q 15/12
G05B 19/404
(57)【特許請求の範囲】
【請求項1】
工作機械の送り軸により、工具とワークとを相対的に運動させて前記ワークを加工する数値制御方法において、
前記送り軸の運動方向反転時に、摩擦によって生じる運動誤差を小さくする補正信号をサーボ制御部に付加し、
前記補正信号を付加した後の前記運動誤差の大きさを
前記送り軸の運動半径、送り速度、サーボ制御部の位置ループ及び速度ループのゲイン、前記補正信号の補正量パラメータ及び補正時間パラメータを用いて定式化して算出し、
前記工具の経路に基づいて前記ワークの加工面の法線方向変化率を算出し、
算出した運動誤差又は法線方向変化率が小さくなる前記補正信号の補正量パラメータ又は/及び補正時間パラメータを求めることを特徴とした数値制御方法。
【請求項2】
工作機械の送り軸により、工具とワークとを相対的に運動させて前記ワークを加工する数値制御方法において、
前記送り軸の運動方向反転時に、摩擦によって生じる運動誤差を小さくする補正信号をサーボ制御部に付加し、
前記補正信号を付加した後の前記運動誤差の大きさを算出し、
前記工具の経路に基づいて前記ワークの加工面の法線方向変化率を前記送り軸の運動半径、送り速度、サーボ制御部の位置ループ及び速度ループのゲイン、前記補正信号の補正量パラメータ及び補正時間パラメータを用いて定式化して算出し、
算出した運動誤差又は法線方向変化率が小さくなる前記補正信号の補正量パラメータ又は/及び補正時間パラメータを求めることを特徴とした数値制御方法。
【請求項3】
前記補正信号の補正量パラメータと補正時間パラメータを2軸とした線図内に、前記運動誤差の大きさを第3軸として表わした第1の等値線図を作成し、
前記補正信号の補正量パラメータと補正時間パラメータを2軸とした線図内に、前記法線方向変化率を第3軸として表わした第2の等値線図を作成し、
前記運動誤差及び法線方向変化率が共に小さくなる前記補正信号の補正量パラメータと補正時間パラメータとの組合せを視覚的又は数値的に求める請求項1
又は2に記載の数値制御方法。
【請求項4】
工作機械の送り軸により、工具とワークとを相対的に運動させて前記ワークを加工する数値制装置において、
前記送り軸の運動方向反転時に、摩擦によって生じる運動誤差を小さくする補正信号をサーボ制御部に付加する反転時摩擦補正部と、
前記補正信号を付加した後の前記運動誤差の大きさを算出する反転時運動誤差演算部と、
前記工具の経路に基づいて前記ワークの加工面の法線方向変化率を算出する法線方向変化率演算部と、
算出した運動誤差又は法線方向変化率が小さくなる前記補正信号の補正量パラメータ又は/及び補正時間パラメータを求める補正パラメータ決定部と、
前記送り軸の反転時の運動誤差を小さくする高精度加工モードと、前記運動誤差と前記法線方向変化率を共に小さくする高品位加工モードを切り換える加工モード選択部と、
を具備することを特徴とした数値制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、工作機械の送り軸により、工具とワークとを相対的に運動させてワークを加工する数値制御方法及び数値制御装置に関する。
【背景技術】
【0002】
数値制御工作機械で加工を行うと、加工面に望まない凹凸や筋状の加工痕が現れることがある。これは、送り軸の運動方向が反転するときに生じる摩擦力や送り駆動系の弾性変形がその原因の一つである。特に、円弧、円、球面加工では複数送り軸の同時制御で円運動を生成するが、1送り軸の運動方向が反転すると、反転部である象限切替り部にいわゆる象限突起が生じる。ピックフィードをかけながら面加工を行うと、隣接する工具経路の象限切替り部にも同様の象限突起が生じ、象限突起が連なって筋状に見えることもある。ワークが金型の場合、金型表面の加工痕が成形品に転写されるため、象限突起などの加工痕や筋状に見える見た目の悪さは避けなければならない。
【0003】
送り軸の送り方向反転時の運動誤差を打ち消するために、サーボ制御部に数値制御装置メーカーは、補正信号を付加する補正機能を用意している。この補正機能は通称バックラッシ加速補正と呼ばれ、各工作機械の特性に合うようそのパラメータを調整し、象限突起を小さくすることができる。工作機械メーカーでは、主軸とテーブルとの間に円運動精度測定器を取り付けて、測定結果を見ながら試行錯誤的にそのパラメータを調整している。この方法は、象限突起などの運動誤差の大きさを極力小さくすることはできるが、実際にワークを加工してみると、加工面に予期しない筋が見えることがある。この筋を見えなくすることについては、本出願人の先願である特許文献1に記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述したように、バックラッシ加速補正のパラメータ調整は、試行錯誤的に行われているので、熟練を要し、時間のかかる作業である。しかも、このパラメータなら象限突起の大きさはいくつになるかを定量的に知ることはできなかった。また、特許文献1では、ワーク加工面の見た目を良くする方法は、円運動精度測定器で測定した円運動軌跡やワーク加工面のプロファイルの実測値から法線方向変化率を算出し、法線方向変化率がヒトが視覚的に認識できる限界以下の値であれば象限突起はあっても筋は見えないことを解明している。そこで、法線方向変化率の大きさを実加工や実測をしなくても求めることが望まれる。
【0006】
本発明は、上述の問題点を解決するためになされたものであり、送り軸の運動方向反転時にサーボ制御部に補正信号を付加したときの摩擦によって生じる運動誤差の大きさや、このときに加工されるワーク加工面の法線方向変化率の大きさを定量的に算出すること、及び運動誤差が小さく、かつワーク加工面の見た目も良い補正信号のパラメータ決定方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上述の目的を達成するために、本発明によれば、工作機械の送り軸により、工具とワークとを相対的に運動させて前記ワークを加工する数値制御方法において、前記送り軸の運動方向反転時に、摩擦によって生じる運動誤差を小さくする補正信号をサーボ制御部に付加し、前記補正信号を付加した後の前記運動誤差の大きさを前記送り軸の運動半径、送り速度、サーボ制御部の位置ループ及び速度ループのゲイン、前記補正信号の補正量パラメータ及び補正時間パラメータを用いて定式化して算出し、前記工具の経路に基づいて前記ワークの加工面の法線方向変化率を算出し、算出した運動誤差又は法線方向変化率が小さくなる前記補正信号の補正量パラメータ又は/及び補正時間パラメータを求める数値制御方法が提供される。
さらに、本発明によれば、工作機械の送り軸により、工具とワークとを相対的に運動させて前記ワークを加工する数値制御方法において、前記送り軸の運動方向反転時に、摩擦によって生じる運動誤差を小さくする補正信号をサーボ制御部に付加し、前記補正信号を付加した後の前記運動誤差の大きさを算出し、前記工具の経路に基づいて前記ワークの加工面の法線方向変化率を前記送り軸の運動半径、送り速度、サーボ制御部の位置ループ及び速度ループのゲイン、前記補正信号の補正量パラメータ及び補正時間パラメータを用いて定式化して算出し、算出した運動誤差又は法線方向変化率が小さくなる前記補正信号の補正量パラメータ又は/及び補正時間パラメータを求める数値制御方法が提供される。
【0008】
さらに本発明によれば、工作機械の送り軸により、工具とワークとを相対的に運動させて前記ワークを加工する数値制装置において、前記送り軸の運動方向反転時に、摩擦によって生じる運動誤差を小さくする補正信号をサーボ制御部に付加する反転時摩擦補正部と、前記補正信号を付加した後の前記運動誤差の大きさを算出する反転時運動誤差演算部と、前記工具の経路に基づいて前記ワークの加工面の法線方向変化率を算出する法線方向変化率演算部と、算出した運動誤差又は法線方向変化率が小さくなる前記補正信号の補正量パラメータ又は/及び補正時間パラメータを求める補正パラメータ決定部と、前記送り軸の反転時の運動誤差を小さくする高精度加工モードと、前記送り軸の反転時の運動誤差を小さくする高精度加工モードと、前記運動誤差と前記法線方向変化率を共に小さくする高品位加工モードを切り換える加工モード選択部と、を具備する数値制御装置が提供される。
【発明の効果】
【0009】
本発明によれば、送り軸の運動方向反転時の摩擦によって生じる象限突起などの運動誤差の大きさや、ワーク加工面の法線方向変化率の大きさが、実加工や実測を行わなくても定量的に求められる。従って補正信号のパラメータ調整を熟練を要せず迅速に行え、必要に応じて運動誤差の調整に加えて加工面の見た目の調整も同時に行うことができる。
【図面の簡単な説明】
【0010】
【
図1】本発明の好ましい実施形態による工作機械を制御する数値制御装置のブロック図である。
【
図2】X軸とY軸との同時2軸制御で、象限突起の現われた円運動軌跡を描いた説明である。
【
図3】ワークの加工面に立てた法線ベクトルで法線方向変化率を説明する図である。
【
図5】送り軸の変位と摩擦トルクとの関係を示すヒステリシス線図である。
【
図6】バックラッシ加速補正のパラメータと位置偏差を示す第1の等値線図の一例である。
【
図7】バックラッシ加速補正のパラメータと法線方向変化率を示す第2の等値線図の一例である。
【発明を実施するための形態】
【0011】
少なくとも直交3軸の送り軸を有し、主軸に装着した工具とワークとを相対運動させて該ワークを加工する工作機械を用いて、円筒面、Oリング溝のような円周溝、凸球面や凹球面のような金型を加工する場合、送り軸の運動方向が反転する象限切替わり部位では、
図2のような象限突起37が発生することが知られている。
図2はX軸とY軸の同時2軸制御で円形ワークの外周を加工したときの工具の運動軌跡であり、図中35は加工されるべき基準形状、37は象限の切り替わる4箇所に発生する象限突起である。
【0012】
図2の象限突起37付近の工具の運動軌跡、すなわちワークWの部分加工面の拡大図を
図3に示す。特許文献1の
図4にも説明してあるが、ワークWの加工面に複数個の設定点40を配置し、各設定点40に法線ベクトルniを立てる。各法線ベクトルniとY軸とのなす角度をθiとすると、法線方向変化率はdθi/dxとなる。ワークの加工面形状の曲率が小さいと隣接する設定点同士の法線方向変化率は大きくなり、
図3のように加工面形状の曲率が大きいと法線方向変化率は小さくなる。象限突起を含むワークの加工面の品位を評価する場合、法線方向変化率の最大値が予め定められた値以下になると、見た目上加工面の不具合はないと判定される。
【0013】
図1は本発明の数値制御装置1のブロック図である。NCプログラムを読取り解釈部3、補間部5、サーボ制御部7を通して工作機械13を運転する。サーボ制御部7は、補間部5から変位指令を受け速度指令を生成する位置制御部9と、位置制御部9から速度指令を受けてトルク指令に変換するとともに、トルク指令に見合う電流を出力して工作機械13の送り軸モータを駆動する速度制御部11とでなる。位置制御部9、速度制御部11は、工作機械13との間にそれぞれ位置ループ、速度ループが形成され、送り軸の刻々の位置情報及び速度情報を得て、フィードバック制御も行っている。
【0014】
位置ループ、速度ループには、工作機械13のサイズ、加工能力、加工精度に応じた位置ループゲインKpp、速度ループ比例ゲインKvp、速度ループ積分ゲインKvi、トルク乗数など諸々のゲインGが設定される。これらの値は公知の方法で工作機械メーカーによって適正値が予め設定され、操作盤17の入力部19からデータベース記憶部15に記憶される。
【0015】
図4は、X軸とY軸で円運動をしているときのY軸の速度指令の波形を実線で表している。A点及びB点で、Y軸の運動方向が反転する。A点及びB点直前でY軸は減速し、A点及びB点でY軸は停止し、A点及びB点直後にY軸は増速している。Y軸はA点及びB点直後は、静摩擦力が案内面に作用して不動の時間を生じるが、X軸は等速で送られているので
図2のような象限突起37と呼ばれる運動誤差が発生する。これを軽減させるためにいわゆるバックラッシ加速補正を行う必要があり、点線で示すような矩形状の補正速度指令を付加する。すると送り軸モータを後押しする作用が働き、不動時間が短縮し、象限突起が小さくなる。このバックラッシ加速補正は、その補正量BLaccとその補正時間t1がパラメータで可変となっている。このバックラッシ加速補正機能は、反転時摩擦補正部としてサーボ制御部7に内蔵されている。
【0016】
バックラッシ加速補正を行っても若干の象限突起が残ることは多い。ピックフィード分離れた隣の工具経路上にも同様の象限突起が残り、光の加減で筋のように見える現象は依然として発生する問題がある。この問題は、象限突起部分を含んだ運動軌跡の法線方向変化率がヒトが筋を認識できない値に下げれば解決する。そこで象限突起の大きさと法線方向変化率を求める数式を定式化すること、更にその数式に円運動の大きさ、送り速度、バックラッシ加速補正のパラメータを代入するだけで象限突起の大きさと法線方向変化率を算出することを試みた。
【0017】
サーボ制御部7及び工作機械13の送り軸駆動系の位置ループ及び速度ループの制御系を伝達関数で表わし、ラプラス変換手法を用いて象限突起(運動誤差)の大きさに相当する位置偏差d(t)を算出する数式を数1のように定式化した。
【数1】
ここで、位置ループゲインKpp、速度ループ比例ゲインKvp、速度ループ積分ゲインKvi、トルク乗数など諸々のゲインG、クーロン摩擦トルクfm、摩擦の立上りを決める代表長さLは、予め工作機械固有の値としてデータベース記憶部15に入力、記憶されている。
【0018】
摩擦の立上りを決める代表長さLは、次のようにして求める。
図5は、実測したX軸の変位とX軸送りモータに作用する摩擦トルクとのヒステリシス線図である。案内面には静摩擦力が作用するため、往路と復路が異なることを表わしている。この図面の摩擦トルクの立上り部分において、最大摩擦トルクTmaxの約63.2%の摩擦トルクになるときのX軸変位のことを摩擦の立上りを決める代表長さLと定め、本実測値では約15μmである。
【0019】
角速度ω、円運動の半径RはNCプログラムで指定される数値情報から求める。運動誤差演算部29においてこれらの値と、バックラッシ加速補正の補正量BLacc及び加速補正時間t1を数1に代入し、位置偏差d(t)を算出する。このとき補正量BLacc及び補正時間t1について位置偏差を算出し、算出結果を第1等値線図作成部25に送る。第1等値線図作成部25は補正量BLaccを横軸、補正時間t1を縦軸、位置偏差を第3軸とした第1の等値線図(
図6)を作成する。
【0020】
一方、法線方向変化率DoNV(Derivative of Normal Vector)は、象限切替え部では近似的に運動の加速度acc/送り速度v
2で表わされることをつきとめた。数1と同様に、サーボ制御部7及び工作機械13の送り駆動系の位置ループ及び速度ループの制御系を伝達関数で表わし、ラプラス変換手法を用いて法線方向変化率DoNV(t)を算出する数式を数2のように定式化した。
【数2】
【0021】
法線方向変化率演算部31において、データベース記憶部15に記憶されている各数値、NCプログラムの数値情報、バックラッシ加速補正の数値を数2に代入して法線方向変化率DoNV(t)を算出する。このとき種々の補正量BLacc及び補正時間t1について法線方向変化率を算出し、算出結果を第2等値線図作成部27に送る。第2等値線図作成部は、補正量BLaccを横軸、補正時間t1を縦軸、法線方向変化率を第3軸とした第2の等値線図(
図7)を作成する。
【0022】
バックラッシ加速補正パラメータ決定部23は、ワークに要求される加工精度や表面品位に基づき、第1、第2の等値線図を参照して最適なバックラッシ加速補正パラメータを決定する。操作盤の入力部19又はNCプログラムから、ワークに対する要求が加工精度を重視する高精度加工モードであるのか、加工面の見た目を重視する高品位加工モードであるのかの選択情報をまず取得する。高精度加工モードのときは、第1等値線図作成部25からの第1等値線図上で最も位置偏差が小さいバックラッシ加速補正量パラメータと補正時間パラメータの組み合わせを決定する。その時、操作盤の表示部21に第1の等値線図を表示して、オペレータが視覚的に決定してもよいし、数値的に自動的に決定してもよい。例えば
図6の第1の等値線図は、送り速度1500mm/min、円運動半径100mmにおいてバックラッシ加速量を0~200の範囲で、加速時間を0~100の範囲で5ずつ値を変え、位置偏差算出値を表示している。その結果は、バックラッシ加速補正量65、バックラッシ加速時間40のパラメータ組合せの時、最小の位置偏差0.653μmとなる。
【0023】
高品位加工モードの時は、バックラッシ加速補正パラメータ決定部23は、第1、第2の等値線図から位置偏差が小さく、かつ法線方向変化率も小さいバックラッシ加速補正量と加速時間の組合せを決定する。例えば
図7は、
図6と同様にバックラッシ加速補正量と補正時間を変えた時の法線方向変化率の算出値を表示している。その結果
図7からバックラッシ加速補正量5、バックラッシ加速時間35の組合せのとき最小の法線方向変化率0.00273rad/mmとなる。そして第1と第2の等値線図から位置偏差が小さく、かつ法線方向変化率も小さい最適なバックラッシ加速補正量は、ヒトが形状の変化を視覚的に認識できる限界の法線方向変化率も考慮して、例えばバックラッシ加速補正量35、加速時間37であると決定できる。
【0024】
第1、第2の等値線図は、送り速度、円運動半径、各種ゲインの値を種々変えて作図し、求めた最適なバックラッシ加速補正量又は/及びバックラッシ加速時間を適用した円運動精度測定器による実測を行った結果、象限突起の大きさや加工面の見た目の品位が良好であることを確認し、本発明の基礎となる数1、数2の妥当性を確認した。また、本実施の形態では、
図4において速度指令に付加するバックラッシ加速補正の信号を矩形状にしたが、より象限突起を小さくするために台形状のバックラッシ加速補正信号を付加してもよい。
【符号の説明】
【0025】
1 数値制御装置
7 サーボ制御部
13 工作機械
15 データベース記憶部
23 バックラッシ加速補正パラメータ決定部
25 第1等値線図作成部
27 第2等値線図作成部
29 運動誤差演算部
31 法線方向変化率演算部