(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-26
(45)【発行日】2022-08-03
(54)【発明の名称】マグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極
(51)【国際特許分類】
H01M 10/054 20100101AFI20220727BHJP
H01M 4/134 20100101ALI20220727BHJP
H01M 10/0569 20100101ALI20220727BHJP
H01M 10/058 20100101ALI20220727BHJP
H01M 10/0568 20100101ALI20220727BHJP
H01M 4/485 20100101ALI20220727BHJP
H01M 4/525 20100101ALI20220727BHJP
H01M 4/58 20100101ALI20220727BHJP
H01M 4/587 20100101ALI20220727BHJP
H01M 50/451 20210101ALI20220727BHJP
H01M 50/434 20210101ALI20220727BHJP
H01M 50/443 20210101ALI20220727BHJP
H01M 50/46 20210101ALI20220727BHJP
H01M 50/489 20210101ALI20220727BHJP
【FI】
H01M10/054
H01M4/134
H01M10/0569
H01M10/058
H01M10/0568
H01M4/485
H01M4/525
H01M4/58
H01M4/587
H01M50/451
H01M50/434
H01M50/443 M
H01M50/46
H01M50/489
(21)【出願番号】P 2019507705
(86)(22)【出願日】2018-03-20
(86)【国際出願番号】 JP2018011172
(87)【国際公開番号】W WO2018174087
(87)【国際公開日】2018-09-27
【審査請求日】2021-02-24
(31)【優先権主張番号】P 2017057318
(32)【優先日】2017-03-23
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成25~30年度、国立研究開発法人科学技術振興機構、戦略的創造研究推進事業「室温から200℃以下の中温領域で機能するマグネシウム金属負極系の開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】304023318
【氏名又は名称】国立大学法人静岡大学
(74)【代理人】
【識別番号】100079049
【氏名又は名称】中島 淳
(74)【代理人】
【識別番号】100084995
【氏名又は名称】加藤 和詳
(74)【代理人】
【識別番号】100099025
【氏名又は名称】福田 浩志
(72)【発明者】
【氏名】嵯峨根 史洋
(72)【発明者】
【氏名】枡谷 智矢
(72)【発明者】
【氏名】昆野 昭則
【審査官】前田 寛之
(56)【参考文献】
【文献】国際公開第2016/069749(WO,A1)
【文献】米国特許出願公開第2016/0308248(US,A1)
【文献】特開2014-186940(JP,A)
【文献】国際公開第2015/105140(WO,A1)
【文献】特開2015-213082(JP,A)
【文献】米国特許出願公開第2010/0279174(US,A1)
【文献】特開2016-081930(JP,A)
【文献】特開2015-209427(JP,A)
【文献】国際公開第2014/017461(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M10/05-10/0587
H01M10/36-10/39
H01M 4/00- 4/62
H01M50/40-50/497
(57)【特許請求の範囲】
【請求項1】
負極と、
前記負極の表面と少なくとも一部が接触する活性アルミナ及び酸化ケイ素の少なくとも一方である無機材料と、
マグネシウムカチオンと、下記一般式(1)で表される溶媒と、を含む電解液と、
を備えるマグネシウム二次電池。
【化1】
(一般式(1)中、R
1及びR
2はそれぞれ独立に、炭素数1以上12以下の炭化水素基を表し、nは1以上8以下の整数を表す。)
【請求項2】
負極と、
前記負極の表面と少なくとも一部が接触する酸化アルミニウム及び酸化ケイ素の少なくとも一方である無機材料と、
マグネシウムカチオンと、下記一般式(1)で表される溶媒と、を含む電解液と、
を備え
、
前記無機材料は粒子状であるマグネシウム二次電池。
【化2】
(一般式(1)中、R
1及びR
2はそれぞれ独立に、炭素数1以上12以下の炭化水素基を表し、nは1以上8以下の整数を表す。)
【請求項3】
前記無機材料が前記酸化アルミニウムであり、前記酸化アルミニウムの平均粒子径は、1μm~500μmである請求項2に記載のマグネシウム二次電池。
【請求項4】
一般式(1)中、nは2以上4以下の整数である請求項1
~請求項
3のいずれか1項に記載のマグネシウム二次電池。
【請求項5】
前記電解液は、下記一般式(2)で表されるアニオンを更に含む請求項1~請求項
4のいずれか1項に記載のマグネシウム二次電池。
【化3】
(一般式(2)中、R
Nはそれぞれ独立に、ハロゲン原子、炭素数1以上8以下のハロゲン化アルキル基、又は、炭素数2以上8以下のハロゲン化アルケニル基を表す。)
【請求項6】
正極活物質としてV
2O
5、MgCo
2O
4、MgMnSiO
4、MgFeSiO
4、MnO
2、MoO
3、NiCo
2O
4、Co
3O
4、ZnCo
2O
4、グラファイト及び活性炭からなる群より選択される少なくとも一つを含む正極を更に備える請求項1~請求項
5のいずれか1項に記載のマグネシウム二次電池。
【請求項7】
前記正極と前記負極との間に位置するセパレータを更に備え、
前記セパレータの表面の少なくとも一部に前記無機材料が配置され、当該無機材料の少なくとも一部が前記負極の表面と接触する請求項
6に記載のマグネシウム二次電池。
【請求項8】
負極と、
前記負極の表面と少なくとも一部が接触し、酸性基及び塩基性基の少なくとも一方を有する無機材料と、
を備えるマグネシウム二次電池。
【請求項9】
負極と、
前記負極の表面と少なくとも一部が接触する活性アルミナ及び酸化ケイ素の少なくとも一方である無機材料と、
を備え、
マグネシウムカチオンと、下記一般式(1)で表される溶媒と、を含む電解液と用いる無機材料付きマグネシウム二次電池用負極。
【化4】
(一般式(1)中、R
1及びR
2はそれぞれ独立に、炭素数1以上12以下の炭化水素基を表し、nは1以上8以下の整数を表す。)
【請求項10】
負極と、
前記負極の表面と少なくとも一部が接触する酸化アルミニウム及び酸化ケイ素の少なくとも一方である無機材料と、
を備え、
前記無機材料は粒子状であり、
マグネシウムカチオンと、下記一般式(1)で表される溶媒と、を含む電解液と用いる無機材料付きマグネシウム二次電池用負極。
【化5】
(一般式(1)中、R
1及びR
2はそれぞれ独立に、炭素数1以上12以下の炭化水素基を表し、nは1以上8以下の整数を表す。)
【請求項11】
前記無機材料が前記酸化アルミニウムであり、前記酸化アルミニウムの平均粒子径は、1μm~500μmである請求項10に記載の無機材料付きマグネシウム二次電池用負極。
【請求項12】
負極と、
前記負極の表面と少なくとも一部が接触し、酸性基及び塩基性基の少なくとも一方を有する無機材料と、
を備える無機材料付きマグネシウム二次電池用負極。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極に関する。
【背景技術】
【0002】
リチウムイオン二次電池は高いエネルギー密度(作動電圧と蓄電容量の積)を有することより、携帯電話、スマートフォン等の小型機器、ハイブリッド自動車、電気自動車等の大型デバイスなどの動力源として主要な地位を占めている。
しかしながら、リチウムイオン電池には、使用条件によっては発熱及び発火の危険がある、過充電によりリチウム析出のおそれがある、エネルギー密度が理論値に近づいている、リチウム源、電極等に用いる遷移金属のコストが高い、など課題も多い。
そこで、リチウムの替わりにマグネシウムを用いたマグネシウム二次電池が提案されている。
【0003】
マグネシウム金属は標準電極電位が低く、2価イオンとなるため容量が大きい。このため、エネルギー密度が高く、かつ、大気中で安定な電極材料である。また、マグネシウム資源は地表近くに豊富に存在することから、マグネシウム金属を用いた二次電池は安価な二次電池となることが期待される。
マグネシウム二次電池としては、例えば、マグネシウムカチオンを可逆的に保持および放出する正極と、前記正極とセパレータを介して対向して配置され、負極活物質である金属マグネシウムまたはマグネシウム合金を含む負極と、電解液とを備えるものが提案されている(例えば、特許文献1参照)。更に特許文献1では、電解液は、マグネシウムカチオンと、1価のアニオンと、式(I)で表されるポリエーテル化合物(グライム化合物)とを含有する溶液からなることが記載されている。
R1-O(CH2CH2O)n-R2 (I)
(式中、R1およびR2はそれぞれ独立して置換基を有していてもよい炭素数1~12の炭化水素基、nは1~8の整数を示す)
また、非特許文献1には、グライム化合物(対称グリコールジエーテル化合物)と、イオン液体と、マグネシウムカチオンとを含む電解液が記載されている。
【先行技術文献】
【特許文献】
【0004】
【非特許文献】
【0005】
【文献】Kitada, et.al. “Room Temperature Magnesium Electrodeposition from Glyme-Coordinated Ammonium Amide Electrolytes”Journal of The Electrochemical Society 162(8) D389-D396 (2015)
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1及び非特許文献1に記載のグライム化合物を含む電解液を用いたマグネシウム二次電池は、イオン伝導性、耐酸化性及び化学安定性に優れている。
【0007】
しかしながら、特許文献1及び非特許文献1に記載の電解液を備えるマグネシウム二次電池では、負極反応の過電圧が大きく、特に負極反応の溶解過電圧が大きいという問題がある。
【0008】
本発明の一形態が解決しようとする課題は、負極反応の過電圧が抑制されたマグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極を提供することである。
【課題を解決するための手段】
【0009】
上記課題を解決するための手段には、以下の態様が含まれる。
<1> 負極と、前記負極の表面と少なくとも一部が接触する無機材料と、を備えるマグネシウム二次電池。
<2> マグネシウムカチオンと、下記一般式(1)で表される溶媒と、を含む電解液を更に備える<1>に記載のマグネシウム二次電池。
【0010】
【0011】
(一般式(1)中、R1及びR2はそれぞれ独立に、炭素数1以上12以下の炭化水素基を表し、nは1以上8以下の整数を表す。)
<3> 一般式(1)中、nは2以上4以下の整数である<2>に記載のマグネシウム二次電池。
<4> 前記電解液は、下記一般式(2)で表されるアニオンを更に含む<2>又は<3>に記載のマグネシウム二次電池。
【0012】
【0013】
(一般式(2)中、RNはそれぞれ独立に、ハロゲン原子、炭素数1以上8以下のハロゲン化アルキル基、又は、炭素数2以上8以下のハロゲン化アルケニル基を表す。)
<5> 前記無機材料は、酸化アルミニウム及び酸化ケイ素の少なくとも一方である<1>~<4>のいずれか1つに記載のマグネシウム二次電池。
<6> 前記無機材料は、活性アルミナである<1>~<4>のいずれか1つに記載のマグネシウム二次電池。
<7> 正極活物質としてV2O5、MgCo2O4、MgMnSiO4、MgFeSiO4、MnO2、MoO3、NiCo2O4、Co3O4、ZnCo2O4、グラファイト及び活性炭からなる群より選択される少なくとも一つを含む正極を更に備える<1>~<6>のいずれか1つに記載のマグネシウム二次電池。
<8> 前記正極と前記負極との間に位置するセパレータを更に備え、前記セパレータの表面の少なくとも一部に前記無機材料が配置され、当該無機材料の少なくとも一部が前記負極の表面と接触する<7>に記載のマグネシウム二次電池。
<9> 負極と、前記負極の表面と少なくとも一部が接触し、酸性基及び塩基性基の少なくとも一方を有する無機材料と、を備えるマグネシウム二次電池。
【0014】
<10> 負極と、前記負極の表面と少なくとも一部が接触する無機材料と、を備える無機材料付きマグネシウム二次電池用負極。
<11> 負極と、前記負極の表面と少なくとも一部が接触し、酸性基及び塩基性基の少なくとも一方を有する無機材料と、を備える無機材料付きマグネシウム二次電池用負極。
【発明の効果】
【0015】
本発明の一形態によれば、負極反応の過電圧が抑制されたマグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極を提供することができる。
【図面の簡単な説明】
【0016】
【
図1】実施例1、3~5において使用した電気化学セルを示す概略図である。
【
図2】実施例1におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。
【
図3】実施例1における析出物の電子顕微鏡像である。
【
図4】実施例1における析出物のエックス線回折パターンである。
【
図5】実施例2において使用した電気化学セル(本発明の一例に係るマグネシウム二次電池)を示す概略図である。
【
図6】実施例2における定電流充放電試験の結果である。
【
図7】実施例3におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。
【
図8】実施例4におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。
【
図9】実施例5におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。
【
図10】比較例1におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。
【
図11】実施例6における定電流充放電試験の結果である。
【
図12】比較例2における定電流充放電試験の結果である。
【
図13】実施例7において、粉砕後の酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナの粒度分布を示すグラフである。
【
図14】実施例7におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。
【
図15】(a)は塩基性活性アルミナのエックス線回折パターンであり、(b)は高温熱処理後の塩基性活性アルミナのエックス線回折パターンである。
【
図16】実施例8におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。
【発明を実施するための形態】
【0017】
以下、本開示について詳細に説明する。
なお、本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
また、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
本開示において、一般式で表される化合物における基の表記に関して、置換あるいは無置換を記していない場合、上記基が更に置換基を有することが可能な場合には、他に特に規定がない限り、無置換の基のみならず置換基を有する基も包含する。例えば、一般式において、「Rはアルキル基を表す」との記載があれば、「Rは無置換アルキル基又は置換基を有するアルキル基を表す」ことを意味する。なお、置換基としては、特に限定されず、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシル基などが挙げられる。なお、置換基における炭素数は、アルキル基の炭素数に含めないものとする。
本開示において、「マグネシウム二次電池」とは、負極におけるマグネシウム及びマグネシウム合金の少なくとも一方の析出反応と溶解反応により充放電が実現される二次電池をいい、正極における挙動は特に限定されない。そのため、例えば、負極活物質であるマグネシウム及びマグネシウム合金の少なくとも一方を用い、かつ正極活物質である活性炭等を用いたハイブリッドキャパシタも本発明の「マグネシウム二次電池」に包含される。
【0018】
[マグネシウム二次電池]
本開示のマグネシウム二次電池は、負極と、前記負極の表面と少なくとも一部が接触する無機材料と、を備える。本開示のマグネシウム二次電池は、更に、マグネシウムカチオンと、後述の一般式(1)で表される溶媒と、を含む電解液、正極等を備えていてもよい。
【0019】
本開示のマグネシウム二次電池は、負極の表面と一部が接触する無機材料を備えているため、負極反応の過電圧が抑制され、特に負極反応の溶解過電圧が抑制される。更に、電解液及び正極を備えるマグネシウム二次電池において、無機材料は電解液に不溶であるため、無機材料による正極への悪影響が抑制される。
【0020】
また、本開示のマグネシウム二次電池では、負極反応の溶解過電圧が抑制されるため、放電電圧の低下が抑制され、放電電圧を高めることができる。その結果、充電電圧と放電電圧との差が小さくなり、エネルギー損失を小さくすることができる。
例えば、本開示のマグネシウム二次電池では、放電電圧を1.0V以上、好ましくは1.5V以上とすることができる。
【0021】
<負極>
負極は、充放電反応により負極活物質が可逆的に析出及び脱離するものである。負極活物質である金属マグネシウム及びマグネシウム合金の少なくとも一方を含む電極であってもよい。即ち、負極は、負極活物質である金属マグネシウム及びマグネシウム合金の少なくとも一方を含む負極材料を後述する集電体に担持させた電極であってもよく、集電体を備えず、集電機能を兼ねた負極活物質であってもよく、充電反応により負極活物質である金属マグネシウム及びマグネシウム合金の少なくとも一方が析出する集電体であってもよい。
マグネシウム合金としては、特に限定されず、例えば、マグネシウムとアルミニウムとの合金、マグネシウムと亜鉛との合金、マグネシウムとマンガンとの合金などが挙げられる。
負極は、集電体に金属マグネシウム又はマグネシウム合金を担持させた電極であってもよく、金属マグネシウム又はマグネシウム合金を電極に適した形状(例えば、板状など)に成形して得られた電極であってもよい。
前記負極材料は、負極活物質を含み、後述する導電助剤及びバインダを更に含有していてもよい。
【0022】
<無機材料>
無機材料は、負極の表面と少なくとも一部が接触する。無機材料としては、酸化物、窒化物等が挙げられる。より具体的には、酸化アルミニウム、酸化ケイ素、酸化ガリウム、酸化亜鉛、酸化インジウム、酸化錫、酸化ホウ素、酸化チタン等の酸化物、窒化アルミニウム、窒化ケイ素、窒化ガリウム、窒化亜鉛、窒化インジウム、窒化錫、窒化ホウ素、窒化チタン等の窒化物が挙げられる。
無機材料としては、1種のみを用いてもよく、2種以上を用いてもよい。
【0023】
無機材料は、負極反応の過電圧を抑制する点から、酸化アルミニウム及び酸化ケイ素の少なくとも一方であることが好ましく、酸化アルミニウムであることがより好ましい。また、無機材料は、負極反応の過電圧を抑制する点から、後述の活性アルミナ及び酸化ケイ素の少なくとも一方であってもよい。
【0024】
無機材料は、負極反応の過電圧を抑制する点から、酸性基及び塩基性基の少なくとも一方を有する無機材料であることが好ましい。このとき、無機材料としては、酸性基を有する酸性の無機材料、塩基性基を有する塩基性の無機材料及び酸性基及び塩基性基を有する中性の無機材料が挙げられる。
なお、酸性の無機材料としては、酸性基及び塩基性を共に有し、酸性基の影響がより大きいものであってもよく、塩基性の無機材料としては、酸性基及び塩基性を共に有し、塩基性基の影響がより大きいものであってもよい。
また、無機材料としては、酸性基及び塩基性基の少なくとも一方を有する酸化アルミニウムがより好ましい。
【0025】
酸性基としては、具体的には、無機材料である酸化物をMOxと表記した場合、表面においてMn+の部分(nは正の数を表す)のほか、カルボキシ基、スルホン酸基、フェノール性水酸基、リン酸基、ホスホン酸基、ホスフィン酸基、硫酸基、スルフィン酸基、等が挙げられる。
【0026】
塩基性基としては、具体的には、無機材料である酸化物をMOxと表記した場合、表面においてM-OHとなる部分のほか、アミノ基、アミド基、ヒドラジド基、等が挙げられる。
【0027】
酸性の無機材料のpHは、3.0~5.0が好ましく、3.5~4.5がより好ましい。また、中性の無機材料のpHは、6.0~8.0が好ましく、6.8~7.8がより好ましく、7.0~7.8が更に好ましい。塩基性の無機材料のpHは、8.0超11以下が好ましく、8.5~10.5がより好ましく、8.5~10が更に好ましい。
なお、酸性の無機材料、中性の無機材料及び塩基性の無機材料のpHは、各無機材料を10質量%分散させた水のpH(25℃)を意味する。
【0028】
また、無機材料は、負極反応の過電圧を効率よく抑制する点から、活性アルミナであることが好ましい。活性アルミナは、酸性活性アルミナ(pH3.0~5.0程度)、中性活性アルミナ(pH6.0~8.0程度)及び塩基性活性アルミナ(pH8.0超11以下程度)の少なくともいずれか1種であることがより好ましい。
酸性活性アルミナとしては、前述の酸性基を有する活性アルミナが挙げられ、中性活性アルミナとしては、前述の酸性基及び塩基性基を有する活性アルミナが挙げられ、塩基性活性アルミナとしては、前述の塩基性基を有する活性アルミナが挙げられる。
なお、酸性活性アルミナとしては、酸性基及び塩基性を共に有し、酸性基の影響がより大きいものであってもよく、塩基性活性アルミナとしては、酸性基及び塩基性を共に有し、塩基性基の影響がより大きいものであってもよい。
なお、活性アルミナは、多孔質の酸化アルミニウムである。また、活性アルミナは、例えば、酸化アルミニウムの水和物ゲルを300℃~500℃で脱水することにより製造される。
【0029】
酸性活性アルミナのpHは、3.0~5.0が好ましく、3.5~4.5がより好ましい。また、中性活性アルミナのpHは、6.0~8.0が好ましく、6.8~7.8がより好ましく、7.0~7.8が更に好ましい。塩基性活性アルミナのpHは、8.0超11以下が好ましく、8.5~10.5がより好ましく、8.5~10が更に好ましい。
なお、酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナのpHは、各活性アルミナを10質量%分散させた水のpH(25℃)を意味する。
【0030】
無機材料は、負極の表面と少なくとも一部が接触していればよく、負極の表面における電解液と接触する部分と接触していることが好ましい。また、無機材料は、マグネシウム二次電池において、電解液が貯留され、かつ正極及び負極が配置される電解液貯留室内に充填される構成であってもよい。
【0031】
無機材料は、負極反応の過電圧を抑制する点から、負極の表面における電解液と接触する部分の50%以上と接触していることが好ましく、80%以上と接触していることがより好ましく、90%以上と接触していることが更に好ましい。また、無機材料は、負極の表面における電解液と接触する部分の100%と接触している、すなわち、負極の表面における電解液と接触する部分を覆っていることが特に好ましい。
【0032】
無機材料は、粒子状、膜状であってもよい。また、負極反応の過電圧の抑制及び電解液貯留室内への充填性に優れる点から、無機材料は、粒子状であることが好ましい。また、負極反応の過電圧の抑制に優れる点から、膜状の無機材料は多孔質であってもよい。
また、無機材料は、負極以外、例えば後述するセパレータの表面の少なくとも一部に無機材料が配置され、この無機材料の少なくとも一部が負極の表面と接触していてもよく、より具体的には、無機材料は、セパレータの表面の少なくとも一部を被覆した状態、又は、セパレータの表面の少なくとも一部に担持された状態にて負極の表面と接触していてもよい。
【0033】
無機材料が粒子状の場合、無機材料の平均粒子径としては、0.001μm~500μmであることが好ましく、0.001μm~200μmであることがより好ましく、0.001μm~1μmであることが更に好ましい。
無機材料の平均粒子径は、レーザー回折法により測定される体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(D50)である。
無機材料は、ボールミル、乳鉢、ジェットミル等を用いて粉砕したものを用いてもよい。
【0034】
無機材料が酸化アルミニウム、好ましくは活性アルミナである場合、無機材料の平均粒子径としては、1μm~500μmであってもよく、10μm~400μmであってもよく、30μm~300μmであってもよい。また、無機材料が酸化アルミニウム、好ましくは活性アルミナである場合、無機材料の平均粒子径としては、0.001μm~10μmであってもよく、0.005μm~1μmであってもよく、0.01μm~0.5μmであってもよい。
【0035】
無機材料が酸化ケイ素である場合、無機材料の平均粒子径としては、0.001μm~10μmであることが好ましく、0.005μm~1μmであることがより好ましく、0.01μm~0.5μmであることが更に好ましい。
【0036】
<正極>
正極は、特に限定されず、従来公知の二次電池に用いられる正極を使用してもよい。正極としては、例えば、マグネシウムカチオンを可逆的に保持及び放出する正極活物質を含む正極材料を集電体に担持させた電極であることが好ましい。あるいは、正極は、集電体を備えず、集電機能を兼ねた正極活物質であってもよい。
前記正極材料は、正極活物質を含み、導電助剤及びバインダを更に含有することが好ましい。
【0037】
正極活物質としては、例えば、マグネシウムカチオンを可逆的に保持及び放出することができる硫化物、マグネシウムカチオンを可逆的に保持及び放出することができる酸化物、マグネシウムカチオンを可逆的に保持及び放出することができる有機化合物などが挙げられる。
【0038】
正極活物質としては、より具体的には、V2O5、MgCo2O4、MgMnSiO4、MgFeSiO4、MnO2、MoO3、NiCo2O4、Co3O4、ZnCo2O4、グラファイト及び活性炭が挙げられる。正極活物質としては、1種のみを用いてもよく、2種以上を用いてもよい。
【0039】
〔集電体〕
集電体は、電気化学的に安定な物質からなる集電体であればよい。かかる集電体を構成する物質としては、例えば、アルミニウム、ニッケル、ステンレス、タングステンなどが挙げられるが、特に限定されない。
【0040】
〔導電助剤〕
導電助剤としては、特に限定されないが、例えば、アセチレンブラック、黒鉛、カーボンブラックなどの炭素材料などが挙げられる。
正極材料中における導電助剤の含有率は、正極活物質の種類、導電助剤の種類などによって異なることから、正極活物質の種類、導電助剤の種類などに応じて適宜決定することが好ましい。
【0041】
〔バインダ〕
バインダとしては、特に限定されず、例えば、ポリテトラフルオロエチレン、ポリビニリデンフルオライドなどのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂などが挙げられる。
正極材料中におけるバインダの含有率は、正極活物質の種類、バインダの種類などによって異なることから、正極活物質の種類、バインダの種類などに応じて適宜決定することが好ましい。
【0042】
<セパレータ>
本開示のマグネシウム二次電池は、正極と負極との間に位置するセパレータ、好ましくは正極と負極とを分離し電解液を保持するセパレータを備えていてもよい。セパレータを構成する材料としては、特に限定されないが、例えば、ポリテトラフルオロエチレンなどのフッ素樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ガラス、セラミックスなどが挙げられる。
【0043】
<電解液>
本開示のマグネシウム二次電池は、マグネシウムカチオンと、下記一般式(1)で表される溶媒と、を含む電解液を更に備えていてもよい。下記一般式(1)で表される溶媒を含む電解液をマグネシウム二次電池に用いた場合、グリニャール試薬などを含む電解液を用いたマグネシウム二次電池よりも耐酸化性に優れる傾向にある。
【0044】
一方、下記一般式(1)で表される溶媒を含む電解液をマグネシウム二次電池に用いた場合、グリニャール試薬などを含む電解液を用いたマグネシウム二次電池よりも負極反応の過電圧が大きく、特に負極反応の溶解過電圧が大きくなるおそれがある。しかしながら、本開示のマグネシウム二次電池において、前述のように負極の表面と一部が接触する無機材料を備えているため、負極反応の過電圧が抑制される。
【0045】
更に、Mg(BH4)2、MgCl2等の添加剤を電解液に添加することにより、負極反応の過電圧を抑制する方法も考えられるが、高電位にて電解液の酸化分解が発生しやすくなり、耐酸化性が低下してしまうという問題がある。本開示のマグネシウム二次電池では、電解液に前述の添加剤を添加せずとも、負極反応の過電圧の抑制と、耐酸化性の低下の抑制との両立を図ることができる。
【0046】
電解液におけるマグネシウムの電気化学的析出及び溶解の点から、マグネシウムカチオンの電解液の全量に対するモル濃度Amol/Lは、0.1mol/L~2.0mol/Lであることが好ましく、0.3mol/L~1.0mol/Lであることがより好ましい。
マグネシウムカチオンの電解液の全量に対するモル濃度Amol/Lは、密度測定及び水酸化ナトリウム水溶液中で沈殿する、水酸化マグネシウムの質量により測定される。
【0047】
マグネシウムカチオンは、例えば、マグネシウム塩を、下記一般式(1)で表される溶媒、又は、下記一般式(1)で表される溶媒とその他の溶媒との混合液に添加することにより、電解液中に添加される。
マグネシウム塩としては、特に制限されず、無機塩であっても有機塩であってもよく、マグネシウムの電気化学的析出及び溶解の観点から、有機塩であることが好ましい。
【0048】
マグネシウムの無機塩としては、Mg(PF6)2、Mg(BF4)2、Mg(ClO4)2、Mg(AsF6)2等が挙げられる。
【0049】
マグネシウムの有機塩としては、クエン酸マグネシウム、シュウ酸マグネシウム、下記一般式(2)で表されるアニオンとの塩が挙げられ、解離性及び耐酸化性の観点から、下記一般式(2)で表されるスルホニウムアミドアニオンとの塩が好ましい。
下記一般式(2)で表されるスルホニウムアミドアニオンとの塩を用いることにより、イオン伝導性に優れ、かつ、耐酸化性に優れた電解液が得られる。
【0050】
電解液は、前述のように、マグネシウムカチオンとともに下記一般式(1)で表される溶媒を含んでいてもよい。
【0051】
【0052】
一般式(1)中、R1及びR2はそれぞれ独立に、炭素数1以上12以下の炭化水素基を表し、nは1以上8以下の整数を表す。
【0053】
一般式(1)中、R1及びR2はそれぞれ独立に、炭素数1以上8以下の炭化水素基であることが好ましい。
【0054】
炭素数1以上12以下の炭化水素基としては、例えば、炭素数1以上12以下のアルキル基、炭素数2以上12以下のアルケニル基、炭素数6以上12以下のアリール基、炭素数7以上12以下のアラルキル基などが挙げられる。
【0055】
炭素数1以上12以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の直鎖又は分岐のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基等の脂環式アルキル基などが挙げられる。中でも、メチル基及びエチル基が好ましく、メチル基がより好ましい。
【0056】
炭素数2以上12以下のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基などが挙げられる。
【0057】
炭素数6以上12以下のアリール基としては、例えば、フェニル基、ナフチル基などが挙げられる。
【0058】
炭素数7以上12以下のアラルキル基としては、例えば、ベンジル基、フェニルエチル基、メチルベンジル基、ナフチルメチル基などが挙げられる。
【0059】
一般式(I)で表される化合物としては、マグネシウムの析出溶解反応を効率よく行う点から、対称グリコールジエーテルであることが好ましく、また、一般式(1)中、nは、2以上4以下の整数であることが好ましく、2又は3であることがより好ましい。具体的には、一般式(I)で表される化合物としては、グライム、ジグライム、トリグライム及びテトラグライムの少なくとも1種であることがより好ましく、ジグライム、トリグライム及びテトラグライムの少なくとも1種であることが更に好ましい。
一般式(I)で表される化合物としては、高温環境下での取り扱いの容易性を確保するとともに、充放電反応を効率よく行い、電圧のロスを抑制する点から、ジグライム、トリグライム及びテトラグライムの少なくとも1種が好ましく、ジグライム及びトリグライムの少なくとも1種がより好ましい。
【0060】
電解液は、前述のように、イオン伝導性及び耐酸化性の点から、下記一般式(2)で表されるアニオンを更に含むことが好ましい。
【0061】
【0062】
一般式(2)中、RNはそれぞれ独立に、ハロゲン原子、炭素数1以上8以下のハロゲン化アルキル基、又は、炭素数2以上8以下のハロゲン化アルケニル基を表す。
【0063】
一般式(2)中、RNにおけるハロゲン原子としては、特に限定されず、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。これらのハロゲン原子の中でも、適切な電気陰性度を確保する観点から、フッ素原子が好ましい。
【0064】
一般式(2)中、RNにおける炭素数1以上8以下のハロゲン化アルキル基の炭素数は、1以上であり、取り扱いが容易な溶解度、粘性及び融点を確保する観点から、8以下である。
炭素数1以上8以下のハロゲン化アルキル基としては、特に限定されないが、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘプチル基、パーフルオロオクチル基などの炭素数1以上8以下のフルオロアルキル基;パークロロメチル基、パークロロエチル基、パークロロプロピル基、パークロロブチル基、パークロロペンチル基、パークロロヘプチル基、パークロロオクチル基などの炭素数1以上8以下のクロロアルキル基;
パーブロモメチル基、パーブロモエチル基、パーブロモプロピル基、パーブロモブチル基、パーブロモペンチル基、パーブロモヘプチル基、パーブロモオクチル基などの炭素数1以上8以下のブロモアルキル基;パーヨードメチル基、パーヨードエチル基、パーヨードプロピル基、パーヨードブチル基、パーヨードペンチル基、パーヨードヘプチル基、パーヨードオクチル基などの炭素数1以上8以下のヨードアルキル基などが挙げられる。
これらの炭素数1以上8以下のハロゲン化アルキル基のなかでは、取り扱いが容易な溶解度、粘性及び融点を確保する観点から、炭素数1以上8以下のパーフルオロアルキル基が好ましく、パーフルオロメチル基がより好ましい。
【0065】
一般式(2)中、RNにおける炭素数2以上8以下のハロゲン化アルケニル基の炭素数は、2以上であり、取り扱いが容易な溶解度、粘性及び融点を確保する観点から、8以下である。
炭素数2以上8以下のハロゲン化アルケニル基としては、特に限定されないが、例えば、パーフルオロビニル基、パーフルオロアリル基、パーフルオロブテニル基、パーフルオロペンテニル基などの炭素数2以上8以下のフルオロアルケニル基などが挙げられる。
これらの炭素数2以上8以下のハロゲン化アルケニル基のなかでは、取り扱いが容易な溶解度、粘性及び融点を確保する観点から、炭素数2以上8以下のフルオロアルケニル基が好ましく、フルオロアリル基がより好ましい。
【0066】
一般式(2)で表されるスルホニルアミドアニオンの具体例としては、ビス(トリフルオロメチルスルホニル)アミドアニオン、フルオロスルホニル(トリフルオロメチルスルホニル)アミドアニオン、ビス(フルオロスルホニル)アミドアニオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
一般式(2)で表されるスルホニルアミドアニオンのなかでは、取り扱いが容易な溶解度を確保する観点から、ビス(トリフルオロメチルスルホニル)アミドアニオン及びビス(フルオロスルホニル)アミドアニオンが好ましい。
【0067】
電解液は、前述の一般式(1)で表される溶媒以外のその他の溶媒を更に含んでいてもよい。その他の溶媒としては、特に限定されず、スルホラン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチル-1,3-ジオキソラン、ジメチルスルホン、ジエチルスルホン、エチルメチルスルホン等が挙げられる。
更に、その他の溶媒としては、例えば、下記化合物が挙げられる。
【0068】
【0069】
[無機材料付きマグネシウム二次電池用負極]
本開示の無機材料付きマグネシウム二次電池用負極は、負極と、前記負極の表面と少なくとも一部が接触する無機材料と、を備える。この無機材料付きマグネシウム二次電池用負極をマグネシウム二次電池に用いることにより、負極反応の過電圧を抑制することができる。
なお、無機材料付きマグネシウム二次電池用負極における負極及び無機材料は、前述のマグネシウム二次電池における負極及び無機材料と同様であるため、その説明を省略する。
【実施例】
【0070】
以下、実施例により本開示を詳細に説明するが、本開示はこれらに限定されるものではない。なお、実施例1、3~5及び比較例1では、サイクリックボルタンメトリーにより、マグネシウム二次電池における負極反応の挙動を検討した。
【0071】
[実施例1]
<電解液の調製>
露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で、Mg(TFSA)2(Mg[N(SO2CF3)2]2)と、ジグライム(一般式(1)中、R1及びR2はメチル基、かつnは2)とをMg(TFSA)2が0.5mol/Lとなるよう混合し、電解液を調製した。
【0072】
<電気化学的析出及び溶解の確認>
〔電気化学セルの構築〕
図1に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
図1は実施例1において使用した電気化学セル100の概略図であり、対極14と参照極20とを電解液を貯留する貯留室内に配置し、貯留室の底部の開口部から表面が露出するように作用極12を配置した。更に、貯留室内を電解液16で満たし、貯留室の底部の開口部に作用極12の表面と接触するように無機材料22を配置した。
参照極20は、ガラス管中にて溶液に浸された銀線18を有している。
本実施例において用いた、各構成の詳細は下記の通りである。
・作用極:鏡面研磨した白金板
・対極:研磨したマグネシウム板
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)
2を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:酸性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型酸性)、前処理として250℃にて12時間真空乾燥したもの
【0073】
〔電気化学測定〕
電気化学測定装置として、北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行った。走査速度は5mV/sとした。
測定はアルゴン雰囲気に満たされた密閉容器を用いて行い、室温で行った。
結果を
図2に示す。
【0074】
〔析出物の確認〕
サイクリックボルタンメトリーの後、-4V(参照極に対して)で電位保持を3時間行い、作用極上に堆積物の有無を目視で確認した。
堆積物が認められた場合は、それをエックス線回折測定及び走査型電子顕微鏡観察によって同定を行った。
エックス線回折測定は、エックス線回折装置 リガク社製 UltimaIVを用いて大気中で測定した。試料は作用極(Pt)板ごと測定した。
走査型電子顕微鏡観察は、走査型電子顕微鏡装置 日本電子社製JCM-6000を用いて行った。
また、日本電子社製JCM-6000を用いたエネルギー分散型X線分析(EDX)により、元素分析を行った。
結果を
図3、4及び表1に示す。
【0075】
【0076】
図2に示す結果から、作用極12の表面と接触するように無機材料22を配置した実施例1においては、マグネシウムの析出及び溶解が繰り返されることがわかる。また、溶解過電圧が0.2V程度であった。
また、
図4に示すエックス線回折パターン及び表1に示す元素分析の結果により、析出物は金属マグネシウムを含むことがわかる。
【0077】
[比較例1]
実施例1と同様にして電解液の調製を行った。
次に、無機材料22を配置していない点以外は実施例1と同様にして電気化学セルを構築し、実施例1と同様の条件で電気化学的析出及び溶解の確認を行った。
結果を
図10に示す。
【0078】
図10に示す結果から、無機材料22を配置していない比較例1においてもマグネシウムの析出及び溶解が繰り返されることがわかる。しかしながら、溶解過電圧が1.0V程度であり、実施例1と比較して非常に大きい値であった。
【0079】
実施例1及び比較例1の結果から、マグネシウムの析出及び溶解を繰り返す作用極の表面と接触するように無機材料を配置することにより、作用極反応の過電圧、特に作用極反応の溶解過電圧が抑制できることが示された。この結果から、マグネシウム二次電池において、マグネシウムの析出及び溶解を繰り返す負極の表面と接触するように無機材料を配置することにより、負極反応の過電圧、特に負極反応の溶解過電圧が抑制できることが推測される。
【0080】
また、比較例1においては、一周目のクーロン効率(放電時の電流×時間/充電時の電流×時間)が2%である一方、実施例1においては、一周目のクーロン効率が33%であり、大きく改善された。
【0081】
[実施例2]
実施例1と同様にして電解液の調製を行った。
【0082】
〔電気化学セルの構築〕
図5に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
図5は実施例2において使用した電気化学セル200の概略図であり、作用極(正極)12と対極(負極)14の間に電解液16が満たされており、参照極20が電解液16中に配置されている。
参照極20は、ガラス管中に溶液に浸された銀線18を有している。
更に、貯留室内全体に電解液16が貯留されているとともに、無機材料22が充填されており、無機材料22が対極14の表面と接触するように配置された状態となっている。
本実施例において用いた、各構成の詳細は下記の通りである。
・作用極(正極):Al集電体に研磨したマグネシウム板を担持させた電極
・対極(負極):Al集電体に研磨したマグネシウム板を担持させた電極
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)
2を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:酸性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型酸性)、前処理として250℃にて12時間真空乾燥したもの
【0083】
前述のように構築した電気化学セル及び北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行い、マグネシウムの析出及び溶解を繰り返した。走査速度は5mV/sとした。
【0084】
次に、作用極(正極)12をAl集電体に研磨したマグネシウム板を担持させた電極からV2O5:アセチレンブラック:ポリビニリデンフルオライド=80:10:10(質量比)がAl集電体に塗布された電極に取り替え、電気化学セル(本発明の一例に係るマグネシウム二次電池)を構築した。この操作は、露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
【0085】
〔定電流充放電試験〕
次に、北斗電工社製 HJ-SD8を用いて定電流充放電試験を、電流値1μA、カットオフ電圧1.5V~3.3Vで行った。この試験は、露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で室温にて行った。
結果を
図6に示す。
【0086】
図6に示すように、1~20サイクルにて充放電を安定して行うことが可能であった。また、二次電池としては、放電電圧が高く、かつ充電電圧が低いことが好ましく、また、過電圧が大きいほど充電電圧と放電電圧との差が大きくなり、エネルギー損失が大きくなる。そのため、過電圧を小さくしてエネルギーの無駄を削減することが好ましい。
ここで、
図6に示すように実施例2における電気化学セルでは、放電電圧が1.5V超である。一方、例えば、非特許文献(Niya Sa, et.al. “Structural Evolution of Reversible Mg Insertion into a Bilayer Structure of V
2O
5・nH
2O Xerogel Material” Chem. Mater., 2016, 28 (9), pp 2962-2969)のFigure 1(a)では、放電電圧が1.0V以下である。
したがって、実施例2では、無機材料22が作用極12の表面と接触するように配置された状態となっているため、過電圧が抑制されており、その結果、放電電圧が1.5V超と高い値となっている。
【0087】
[実施例3]
実施例1と同様にして電解液の調製を行った。
【0088】
<電気化学的析出及び溶解の確認>
〔電気化学セルの構築〕
図1に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
本実施例において用いた、各構成の詳細は下記の通りである。なお、本実施例では、無機材料として、酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナをそれぞれ単独で用い、アルミナの種類による影響を確認した。
・作用極:鏡面研磨した白金板
・対極:研磨したマグネシウム板
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)
2を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:酸性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型酸性)、中性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型中性)及び塩基性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型塩基性)、それぞれ前処理として250℃にて12時間真空乾燥したもの
【0089】
〔電気化学測定〕
電気化学測定装置として、北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行った。走査速度は5mV/sとした。
測定はアルゴン雰囲気に満たされた密閉容器を用いて行い、室温で行った。
結果を
図7に示す。
【0090】
〔析出物の確認〕
サイクリックボルタンメトリーの後、-4V(参照極に対して)で電位保持を3時間行い、作用極上に堆積物の有無を目視で確認した。
堆積物が認められたため、日本電子社製JCM-6000を用いたエネルギー分散型X線分析(EDX)により元素分析を行った。
結果を表2に示す。
【0091】
【0092】
図7に示す結果から、実施例3においては、アルミナの種類に関係なくマグネシウムの析出及び溶解が繰り返されることがわかる。また、表2に示す元素分析の結果により、析出物は金属マグネシウムを含むことがわかる。また、塩基性活性を用いたアルミナ実施例3では、一周目及び五周目のクーロン効率は、それぞれ45.9%及び24.7%であった。
【0093】
[実施例4]
実施例1と同様にして電解液の調製を行った。
【0094】
<電気化学的析出及び溶解の確認>
〔電気化学セルの構築〕
図1に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
本実施例において用いた、各構成の詳細は下記の通りである。なお、本実施例では、無機材料として、シリカ(酸化ケイ素)を用いた。
・作用極:鏡面研磨した白金板
・対極:研磨したマグネシウム板
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)
2を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:シリカ(アルドリッチ社製、品名 Silica nanopowder、粒子径12nm)、それぞれ前処理として250℃にて12時間真空乾燥したもの
【0095】
〔電気化学測定〕
電気化学測定装置として、北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行った。走査速度は5mV/sとした。
測定はアルゴン雰囲気に満たされた密閉容器を用いて行い、室温で行った。
結果を
図8に示す。
【0096】
図8に示す結果から、実施例4において、マグネシウムの析出及び溶解が繰り返されることがわかる。また、比較例1よりも過電圧が減少していることが確認された。
【0097】
[実施例5]
<電解液の調製>
露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で、Mg(TFSA)2(Mg[N(SO2CF3)2]2)と、トリグライム(一般式(1)中、R1及びR2はメチル基、かつnは3)とをMg(TFSA)2が0.5mol/Lとなるよう混合し、電解液を調製した。
【0098】
<電気化学的析出及び溶解の確認>
図1に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
実施例1において使用した電解液を本実施例にて調製した電解液に変更したこと以外は実施例1と同様にして電気化学的析出及び溶解の確認をサイクリックボルタンメトリーにより行った。
結果を
図9に示す。
【0099】
図9に示す結果から、実施例5において、マグネシウムの析出及び溶解が繰り返されることがわかる。また、比較例1よりも過電圧が減少していることが確認された。
【0100】
[実施例6]
実施例1と同様にして電解液の調製を行った。
【0101】
〔電気化学セルの構築〕
実施例2と同様、
図5に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
本実施例において用いた、各構成の詳細は下記の通りである。
・作用極(正極):ステンレス集電体に研磨したマグネシウム板を担持させた電極
・対極(負極):ステンレス集電体に研磨したマグネシウム板を担持させた電極
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)
2を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:酸性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型酸性)、前処理として250℃にて12時間真空乾燥したもの
【0102】
前述のように構築した電気化学セル及び北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行い、マグネシウムの析出及び溶解を繰り返した。走査速度は5mV/sとした。
【0103】
次に、作用極(正極)をステンレス集電体に研磨したマグネシウム板を担持させた電極からMgCo2O4:アセチレンブラック:ポリビニリデンフルオライド=80:10:10(質量比)がタングステン集電体に塗布された電極に取り替え、電気化学セル(本発明の一例に係るマグネシウム二次電池)を構築した。この操作は、露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
【0104】
〔定電流充放電試験〕
次に、北斗電工社製 HJ-SD8を用いて定電流充放電試験を、100℃、電流値5.2mA(活物質1g当たり)、カットオフ電圧1.0V~3.5Vで行った。この試験は、露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で電気化学セルを構築し、次いで密閉容器内に電気化学セルを移し、そして、アルゴン雰囲気を保ったまま大気中に設置された恒温槽に移して行った。
結果を
図11に示す。
【0105】
図11に示すように、1サイクル目にて充放電を安定して行うことが可能であった。また、
図11の結果から、本実施例のマグネシウム二次電池では、Mgの理論容量を2205mA h/g、MgCo
2O
4の理論容量を260mA h/g及び作動電圧を2.2Vとしたとき、エネルギー密度(理論値)は、511mW・h/gであった。リチウムイオン二次電池では、黒鉛の理論容量を372mA h/g、コバルト酸リチウムの理論容量を140mA h/g及び作動電圧を3.6Vとしたとき、エネルギー密度(理論値)は、367mW・h/gである。そのため、本実施例のマグネシウム二次電池のエネルギー密度(理論値)は、リチウムイオン二次電池のエネルギー密度(理論値)の約1.5倍である。
【0106】
[比較例2]
実施例1と同様にして電解液の調製を行った。
次に、無機材料を配置していない点以外は実施例6と同様にして電気化学セルを構築し、実施例6と同様の条件で電気化学的析出及び溶解の確認を行った。
【0107】
次に、作用極(正極)をステンレス集電体に研磨したマグネシウム板を担持させた電極からMgCo
2O
4:アセチレンブラック:ポリビニリデンフルオライド=80:10:10(質量比)がタングステン集電体に塗布された電極に取り替え、実施例6と同様の方法及び条件にて電気化学セル(比較例に係るマグネシウム二次電池)を構築し、かつ、定電流充放電試験を行った。
結果を
図12に示す。
【0108】
図12に示すように、放電時は負極反応の過電圧が大きく、すぐに電圧下限に達した。また、放電反応がほとんど起こらなかったため、その後の充電反応も起こらず、2サイクル目の充放電ができなかった。
【0109】
前述の実施例6及び比較例2の結果より、無機材料を負極の表面と接触させることにより、負極反応の過電圧を低減することができ、電気化学セルの充放電への影響が非常に大きいことが示された。
【0110】
[実施例7]
実施例1と同様にして電解液の調製を行った。
【0111】
<電気化学的析出及び溶解の確認>
〔電気化学セルの構築〕
図1に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
本実施例において用いた、各構成の詳細は下記の通りである。なお、本実施例では、無機材料として、酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナを、それぞれ粉砕したものを単独で用い、アルミナの種類による影響を確認した。粉砕後の酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナの粒度分布を
図13に示す。また、
図13に示すように、粉砕後にて、酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナのメジアン径(D50、体積平均粒子径)は、それぞれ1.42μm、0.95μm及び1.74μmであった。
・作用極:鏡面研磨した白金板
・対極:研磨したマグネシウム板
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)
2を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:酸性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型酸性)、中性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型中性)及び塩基性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型塩基性)、それぞれ前処理として250℃にて12時間真空乾燥した後に、メタノールを分散媒として1mmφのジルコニアビーズを用いて遊星型ボールミルで、200rpm(回転/分)、400rpm、600rpm及び800rpmの順でそれぞれ2分間の撹拌を30回繰り返して行うことにより粉砕したもの
【0112】
〔電気化学測定〕
電気化学測定装置として、北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行った。走査速度は5mV/sとした。
測定はアルゴン雰囲気に満たされた密閉容器を用いて行い、室温で行った。
結果を
図14に示す。
【0113】
図14に示す結果から、実施例7においては、アルミナの種類に関係なくマグネシウムの析出及び溶解が繰り返されることがわかる。また、一周目、五周目及び十周目のクーロン効率(放電時の電流×時間/充電時の電流×時間)の結果を表3に示す。
【0114】
【0115】
図14及び表3に示すように、塩基性活性アルミナを用いた実施例7にて負極反応の過電圧をより好適に低減することができ、かつクーロン効率に優れていた。更に、実施例3と比較すると、実施例7にて活性アルミナの粒子径をより小さくすることにより、負極反応の過電圧をより好適に低減することができ、かつクーロン効率に優れていた。
【0116】
[実施例8]
無機材料として実施例3で用いた塩基性活性アルミナを1200℃にて12時間真空乾燥したものを用いた以外は、実施例7と同様の実験を行った。このとき、塩基性活性アルミナについて高温熱処理の前後における結晶構造の変化を、エックス線回折法により分析した。結果を
図15に示す。
図15において、(a)は、高温熱処理前の塩基性活性アルミナにおけるエックス線回折パターンであり、(b)は、高温熱処理後の塩基性活性アルミナにおけるエックス線回折パターンである。
図15から、塩基性活性アルミナの結晶構造が高温熱処理によりγ型(
図15の(a))からα型(
図15の(b))に変化していることがわかる。また、高温熱処理後の塩基性活性アルミナのpHを、高温熱処理後の塩基性活性アルミナを10質量%分散させた水のpH(25℃)をpH試験紙(pH 1~14)を用いて測定したところ、pHは約9であった。この結果から、高温熱処理後の塩基性活性アルミナ中に塩基性基が残存していることを確認した。
【0117】
次に、実施例7と同様の条件で行った電気化学測定の結果を
図16に示す。
図16に示す結果から、実施例8においては、アルミナの種類に関係なくマグネシウムの析出及び溶解が繰り返されることがわかる。
【0118】
2017年3月23日に出願された日本国特許出願2017-057318の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
【符号の説明】
【0119】
12 作用極
14 対極
16 電解液
18 銀線
20 参照極
22 無機材料
100 電気化学セル
200 電気化学セル(本発明の一例に係るマグネシウム二次電池)