(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-26
(45)【発行日】2022-08-03
(54)【発明の名称】二酸化炭素分離回収装置
(51)【国際特許分類】
B01D 53/62 20060101AFI20220727BHJP
B01D 53/06 20060101ALI20220727BHJP
B01D 53/83 20060101ALI20220727BHJP
B01D 53/04 20060101ALI20220727BHJP
B01D 53/26 20060101ALI20220727BHJP
C01B 32/50 20170101ALI20220727BHJP
【FI】
B01D53/62 ZAB
B01D53/06 100
B01D53/83
B01D53/04 230
B01D53/26 220
C01B32/50
(21)【出願番号】P 2018175486
(22)【出願日】2018-09-20
【審査請求日】2021-08-12
(73)【特許権者】
【識別番号】390020215
【氏名又は名称】株式会社西部技研
(72)【発明者】
【氏名】井上 宏志
(72)【発明者】
【氏名】吉田 和行
【審査官】▲高▼ 美葉子
(56)【参考文献】
【文献】特開2012-250150(JP,A)
【文献】特開2012-5943(JP,A)
【文献】特開2001-205045(JP,A)
【文献】特開2003-181242(JP,A)
【文献】特許第6383467(JP,B1)
【文献】特開2019-13906(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01D53/34-53/85
B01D53/92
B01D53/96
B01D53/02-53/12
B01D53/26-53/28
C01B32/00-32/991
(57)【特許請求の範囲】
【請求項1】
被処理ガスを第一の冷却器に通して、吸着ゾーンと再生ゾーンに2分割された除湿ロータの吸着ゾーンに送り、吸着ゾーンを通過したガスを第二の冷却器に送り二路に分岐し、一部を前記除湿ロータの吸着ゾーンに戻し、残りの一部をロータの回転方向に対し、吸着ゾーン、パージゾーン、再生ゾーン、冷却ゾーンに4分割された二酸化炭素分離回収ロータの吸着ゾーンに送り、前記二酸化炭素分離回収ロータの吸着ゾーンを通過したガスに冷却ゾーンを通過したガスの一部を混合して第三の冷却器に送り、第三の冷却器を通過したガスを前記冷却ゾーンに送り、前記冷却ゾーンを通過したガスを二路に分岐し、一部を前記二酸化炭素分離回収ロータの吸着ゾーンを通過したガスと混合し、残りの一部を前記除湿ロータの再生ゾーンに送り、前記除湿ロータの再生ゾーンを通過したガスを装置外へ排気し、前記二酸化炭素分離回収ロータの再生ゾーンを通過したガスを二路に分岐し、一部を前記パージゾーンに送り、前記パージゾーンを通過したガスを装置外に排気し、残りの一部を前記二酸化炭素分離回収ロータの再生ゾーンに戻して再生循環して二酸化炭素を回収することを特徴とする二酸化炭素分離回収装置。
【請求項2】
前記除湿ロータの再生ゾーンの前に補助再生ヒータを設けたことを特徴とする請求項1記載の二酸化炭素分離回収装置。
【請求項3】
前記再生循環する循環路の前記再生ヒータの前に外気取り入れ配管を設け、前記二酸化炭素分離回収ロータの再生ゾーンの後に装置外への排気用配管を設けたことを特徴とする請求項1、請求項2いずれか1項に記載の二酸化炭素分離回収装置。
【請求項4】
前記二酸化炭素分離回収ロータとして、無機系バインダーを使ってゼオライトまたはCe酸化物からなる二酸化炭素吸着材が担持されていることを特徴とする請求項1から3いずれか1項に記載の二酸化炭素分離回収装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、排ガスから除湿された二酸化炭素濃縮ガスを得ることに適し、排ガス中の水溶性ガス(NOx、SOx等)の影響を受けにくい、サーマルスイング二酸化炭素分離回収装置に関するものである。
【背景技術】
【0002】
地球温暖化対策として、産業や自動車及び家庭から排出される二酸化炭素をできるだけ削減しようとする取り組みが世界レベルで行われている。これには、エネルギーを消費する機器を省エネルギーとなるように改良し、古い機器と置き換えるという取り組みをしている。また、発電などのエネルギーを生み出す機器としては、太陽光や風力等再生可能エネルギーを利用したものを用いたり、火力発電所の発電効率を上げる改良を行ったり、将来的には火力発電所から排出される二酸化炭素を回収濃縮して、地中や深海に貯留する技術等も研究開発されている。
【0003】
以上のような取り組みの中で、本件発明は特に火力発電所や燃焼炉等から排出されるガスから、除湿された二酸化炭素を回収して濃縮する技術に関するものである。
【0004】
火力発電所としては、燃料に石油や天然ガスや石炭を用いるものが最も普及しており、これ以外には都市より排出されるゴミを焼却するもの等がある。このような火力発電所の中で、石炭を燃料として使用するものは、次のような特徴がある。即ち燃料が安価であり、石炭の世界的な埋蔵量は石油よりも遥かに多く、埋蔵場所も世界各地にあるため入手が容易であり、よって安定して電力を供給できるという特徴がある。
【0005】
しかし、石炭は燃焼時に排出する二酸化炭素が石油や天然ガスと比較して多く、硫化物も多いという問題が有る。さらに石炭だけでなく、重質の石油も石炭と同様の問題がある。このため、石炭や重質油を燃料とする発電所などでは、硫黄酸化物や窒素酸化物を除去する装置を設けて、環境汚染を防止している。
【0006】
しかしながら、発電所やごみ焼却場には、脱硝・脱硫・排煙装置が備わっているが、大気汚染防止法の排出基準を下回りさえすればよい粗処理レベルの装置である。そのため、排ガス中には 数十ppm程度のこれら不純物(特に水溶性ガス)が含まれている。
【0007】
一方で、産業用で使用される二酸化炭素は、高濃度の二酸化炭素を排出していた石油精製設備やアンモニア製造設備といった二酸化炭素供給源が減少したことで、供給不足に陥っており、海外から二酸化炭素を輸入する状況になりつつある。そのため、石油製造設備やアンモニア製造設備よりも二酸化炭素排出濃度の低い燃焼排ガスから、二酸化炭素を効率よく分離回収できるシステムが望まれている。
【0008】
産業用の二酸化炭素は輸送や利便性から液化炭酸ガスにすることが多い。液化炭酸ガスを製造する方法として、深冷分離法がある。深冷分離法は原料ガスを加圧して、加圧下での各ガスの液化温度の差を利用して、二酸化炭素を液化分離する方法である。ガスを圧縮するコンプレッサの電力と、深冷する冷凍機の電力が必要で、例えば二酸化炭素濃度が10%前後の場合、二酸化炭素以外の回収する必要のないその他90%のガスも一緒に圧縮、深冷しなくてはならない為、エネルギー消費が過大になる。また、ガス中に多量の水分が含まれると、圧縮による発熱が生じ、冷却のための冷凍機容量を大きくする必要があること、さらには深冷分離装置に過剰負荷がかかるため、装置の破損につながることもある。そのため深冷分離法では事前に水分を除去したガスを装置に供給させる必要がある。
【0009】
排ガス中の二酸化炭素を分離回収して濃縮する手段として吸収法、吸着法、膜分離法等種々提案されている。
【0010】
吸収法はアミン系等アルカリ液に吸収させて回収し、加熱することで脱離させて濃縮する方法で、すでに実用化されているが、アルカリ液を取り扱うことで耐蝕性の高価な材料が必要で高コストである。また要所に熱交換器を用いて全体システムの省エネルギー化を図ってきたが、取り扱う液体の熱容量が大きいため限界に近づいている。
【0011】
アミン吸収法をはじめとした二酸化炭素分離回収装置の多くは湿式法である。湿式法は水を介するため、排ガス中に水溶性ガス(特にSO3)がわずかでも残存すると、排ガスを水に接触させた際に酸性あるいはアルカリ溶液(SO3の場合は硫酸)となり、装置の内部を著しく腐食させる。そのため、湿式法の二酸化炭素分離回収装置に排ガスを供給する場合は、水溶性ガス(特にSO3)を徹底的に除去するための装置を備え付ける必要がある。
【0012】
しかしながら、排ガス中の水溶性ガスは100%除去できず、湿式法の中でも例えば、アミン吸収法の場合では、装置の腐食やアミン吸収液の劣化が生じる。そのため、耐蝕性の高価な材料を使用した装置となることや、短期間でのアミン吸収液の交換が必要となりイニシャルコストやランニングコストが非常に高くなる。(非特許文献1)
【0013】
さらに、回収した二酸化炭素は水分飽和状態となっており、深冷分離装置に供給する場合には、除湿が必要となる。また、液化炭酸ガスは食品用途に使われることが多いことから、湿式法で使用されるアミンなどの化学物質での回収は敬遠されるため、除湿以外にもこれら化学物質除去のための大規模な装置が必要となる。
【0014】
吸着法はゼオライトや活性炭などのガス吸着材を用いるもので、圧力差を利用して吸・脱着するプレッシャースイング法(以下PSA法)と温度差を利用して吸・脱着するサーマルスイング法(以下TSA法)とがある。PAS法は水を介さない代表格であり、排ガス中の水溶性ガスを脱硝・脱硫装置で処理した後に、シリカゲルやゼオライト等を充填した除湿用のPSAで-20℃DP(DP:露点温度)程度まで処理した後に、二酸化炭素分離回収用のPSAに導入して二酸化炭素を分離回収している。(非特許文献2)しかし、圧力により二酸化炭素の吸着量が変わる原理を利用しており、加圧して二酸化炭素のみを分離吸着させ、減圧して二酸化炭素を脱着回収する方法なので圧力容器が必要で、周辺機器として電磁弁やコンプレッサ、真空ポンプ等精密機械も必要となり大型化が困難という問題が有る。
【0015】
TSA法は摂氏50℃(以降、温度は全て「摂氏」とする)以下の温度で二酸化炭素を吸着させ、100~300℃前後の温度に加熱して二酸化炭素を脱着させて回収する方法である。
【0016】
TSA法の中でも、回転型吸着ハニカムロータを用いることにより、低圧力損失化や大型化が可能で、二酸化炭素の回収率、濃縮濃度、回収エネルギーの省エネ性を高める方法が特許文献1に示されている。
【先行技術文献】
【特許文献】
【0017】
【非特許文献】
【0018】
【文献】「化学吸収法によるCO2の分離・回収技術」、CO2分離・回収と貯留・隔離技術P105~P124、(株)エヌ・ティー・エス、2009
【文献】「高炉ガスからの二酸化炭素回収用PSAシステムの開発CO2分離における操作条件の影響」、化学工学論文集、39巻 2013 5 号p.439-444
【発明の概要】
【発明が解決しようとする課題】
【0019】
本発明は回転型二酸化炭素吸着ハニカムロータを用いた二酸化炭素分離回収装置に関するもので、回転型二酸化炭素吸着ハニカムロータの前段に除湿ロータを入れることによって、排ガスから除湿された二酸化炭素濃縮ガスを得るとともに、排ガス中の水溶性ガスの影響を受けにくく、省エネ性の高い二酸化炭素分離回収装置を実現するものである。
【0020】
特許文献1に開示されたものは、ハニカムロータ回転式二酸化炭素分離回収装置に関するもので、ロータの回転方向に沿って吸着ゾーンと、予熱ゾーンと、低濃度ガスパージゾーンと、加熱ガス循環による脱着ゾーンと、高濃度ガスパージゾーンと、予冷ゾーンと、冷却ゾーンを経て再び吸着ゾーンに戻る構成にすることにより、二酸化炭素の回収率、回収濃度、回収エネルギーの省エネ性の高い二酸化炭素分離回収装置を実現するものであるが、被処理排ガス中に水溶性ガス(NOx、SOx等)が数十ppm程度含まれている場合、腐食性の無い高価な材料を使って装置を製作したり、腐食しても問題の無いような堅牢で丈夫な構造としたりするなどの対策が必要となり、イニシャルコストが非常に高くなる。また、脱着ゾーンでの加熱ガス循環回数が増えるにつれて、ハニカムロータに吸着した水分も濃縮され、回収ガス中に水分が飽和状態で存在することになる。
【課題を解決するための手段】
【0021】
本発明は、ハニカムロータ回転式二酸化炭素分離回収装置に関するもので、被処理排ガスの冷却器と二酸化炭素分離回収ロータの間に除湿ロータを入れる構成とすることで、被処理排ガス中の水溶性ガス(NOx、SOx等)を除去して乾燥したガスを二酸化炭素分離回収ロータの吸着ゾーンに送るようにしている。
【発明の効果】
【0022】
排ガスから除湿された二酸化炭素濃縮ガスを得ることができるため、深冷分離装置などで液化炭酸ガスを製造する際に、深冷分離装置の前段に除湿装置を入れない、あるいは、除湿装置を小さくすることが可能となる。
【0023】
二酸化炭素分離回収ロータを設けた二酸化炭素を分離回収する装置部分に、特別に耐蝕性の材料を用いる必要が無くなる。
【0024】
また、二酸化炭素分離回収ロータからの排ガスを除湿ロータの再生ガスとして利用することで除湿ロータの再生エネルギーをほぼゼロにすることができる。
【図面の簡単な説明】
【0025】
【
図1】
図1は本発明の二酸化炭素分離回収装置のフロー図である。
【
図2】
図2は本発明の二酸化炭素分離回収装置において、二酸化炭素分離回収ロータとしてゼオライトロータを用いた場合の除湿ロータ有りと無しの場合の二酸化炭素分離回収試験結果である。
【
図3】
図3は本発明の二酸化炭素分離回収装置において、二酸化炭素分離回収ロータとしてCe酸化物ロータを用いた場合の除湿ロータ有りと無しの場合の二酸化炭素分離回収試験結果である。
【発明を実施するための形態】
【0026】
本発明の除湿ロータは、ガラス繊維などの無機繊維紙、PET(ポリエチレンテレフタレート)やPP(ポリプロピレン)などの樹脂製の繊維紙、アルミなどの金属箔、樹脂シートなどの不燃性のシートを、コルゲート(波付け)加工し、ロータ状に巻き付け加工したもので、無機系バインダーや酢酸ビニル系やアクリル系などの有機系バインダーを使って、シリカゲルやゼオライト、高分子収着材などが担持された公知のロータである。
【0027】
本発明の二酸化炭素分離回収ロータは、ガラス繊維などの無機繊維シート等をコルゲート加工して出来たハニカムに、二酸化炭素を吸着するセリウム(Ce)やジルコニウム(Zr)を主成分とする金属酸化物やそのメソ多孔体、あるいは、13Xゼオライト、LSXゼオライト、活性炭、炭酸塩などを二酸化炭素吸着材として無機系バインダーを使って担持したロータである。
【0028】
本発明の二酸化炭素分離回収装置は、被処理ガスを冷却器に通して冷却除湿され除湿ロータの吸着ゾーンに供給される。除湿ロータの吸着ゾーンを通過したガスを冷却器で冷却して二路に分岐し、一部を二酸化炭素分離回収ロータの吸着ゾーンに送り、残りの一部を除湿ロータの吸着ゾーンに戻す。二酸化炭素分離回収ロータの吸着ゾーンを通過したガスは、二酸化炭素分離回収ロータの冷却ゾーンを通過したガスの一部と混合され、冷却器で冷却して二酸化炭素分離回収ロータの冷却ゾーンに送られる。二酸化炭素分離回収ロータの冷却ゾーンを通過したガスは二路に分岐され、一部は前記のように二酸化炭素分離回収ロータの吸着ゾーンを通過したガスと混合され、残りの一部は除湿ロータの再生ゾーンへ送られ、除湿ロータの再生ゾーンを通過したガスは装置外へ排気される。二酸化炭素分離回収ロータの再生ゾーンを通過したガスを二路に分岐し、一部は二酸化炭素分離回収ロータのパージゾーンへ送られ装置外へ排気し、残りの一部は二酸化炭素分離回収ロータの再生ゾーンの入口に戻され再生循環される。再生循環路の二酸化炭素は、脱着された二酸化炭素の容量分増加して、増加分の二酸化炭素は回収するが、一部は二酸化炭素分離回収ロータのパージゾーンに送られプレパージに使用される。二酸化炭素分離回収ロータのパージゾーンを通過したガスは装置外へ排気される。
【0029】
二酸化炭素を分離回収する前に、再生側のロータに吸着した水分や再生側配管等に残留している水分を除去するために、再生ヒータで二酸化炭素分離回収ロータの再生に必要な温度まで加熱した外気OAを、二酸化炭素分離回収ロータの再生ゾーンに送るような操作をしてもよい。
【実施例1】
【0030】
図1に本発明の実施例1を示す。この実施例では、吸着ゾーン2と再生ゾーン3に分割された除湿ロータ1とロータの回転方向に対し、吸着ゾーン9、パージゾーン10(プレパージ)、再生ゾーン11、冷却ゾーン12に4分割された二酸化炭素分離回収ロータ8が使われており、ギヤードモータなど(図示せず)で矢印の方向に回転する。なお、この実施例では、二酸化炭素分離回収ロータ8の吸着材としてゼオライトを用いたが、二酸化炭素を吸着する吸着材(例えば、Ce酸化物)を用いてもよい。
【0031】
被処理排ガスはボルテックスブロワなどの送風機5により直膨コイルなどの第一の冷却器4に送られる。第一の冷却器4で冷却除湿されたガスは、除湿ロータ1の吸着ゾーン2に送られて通過後、インタークーラとしての第二の冷却器6で冷却されて二路に分岐し、一部は送風機5を通って吸着ゾーン2に戻されて除湿循環され、残りの一部は、二酸化炭素分離回収ロータ8の吸着ゾーン9に送られる。
【0032】
二酸化炭素分離回収ロータ8の吸着ゾーン9を通過したガスは、二酸化炭素分離回収ロータ8の冷却ゾーン12を通過したガスの一部と混合され、第三の冷却器13で冷却された後、送風機14を通って二酸化炭素分離回収ロータ8の冷却ゾーン12に送られる。
【0033】
二酸化炭素分離回収ロータ8の冷却ゾーン12を通過したガスは二路に分岐され、一部は吸着ゾーン9を通過したガスと混合され、残りの一部は除湿ロータ1の再生ゾーン3に送られる。なお、除湿ロータ1の再生に必要なエネルギーが不足する場合は、補助再生ヒータ15によって再生ガスを加熱する。
【0034】
再生ゾーン11では、ダンパ19とダンパ22を閉じて、送風機17によって再生循環路をガスが循環しており、ヒータ18で二酸化炭素分離回収ロータ8に吸着している二酸化炭素を脱着する温度まで加熱される。再生循環路では、脱着された二酸化炭素の容量増加分がダンパ20を通して二酸化炭素回収される。また、一部はパージゾーン10に送られて排気EA3として装置外へ排気される。
【0035】
この実施例の場合、二酸化炭素分離回収ロータ8の吸着材としてゼオライトを用いているため、運転当初に二酸化炭素分離回収ロータ8に湿気が存在すると二酸化炭素を吸着しにくくなるためロータの乾燥運転を行なう必要がある。二酸化炭素分離回収ロータ8の吸着ラインのガスが流れないようにして、ダンパ22から送風機17によって外気OAを取り込み、ヒータ18で加熱して二酸化炭素分離回収ロータ8の再生ゾーン11へ送る。ダンパ19を開け、ダンパ20とダンパ21を閉じて、ダンパ19を通して二酸化炭素分離回収ロータ8から脱着した湿気を排気EA2として装置外へ排出することにより二酸化炭素分離回収ロータ8を乾燥させる。この乾燥運転完了後にダンパ19、22を閉じて、ダンパ20、21を開けて二酸化炭素分離回収装置全体の運転を開始する。
【0036】
本発明の実施例1の動作を以下説明する。煙道ガス等を前処理した被処理排ガスは送風機5により第一の冷却器4に送られ冷却除湿された後、除湿ロータ1の吸着ゾーン4に導入される。ここで第一の冷却器4でのドレン水と一緒に大部分の水溶性ガス(NOx、SOx等)も除去される。除湿ロータ1の吸着ゾーン2で、さらに水分と一緒に水溶性ガス(NOx、SOx等)が吸着除去され露点が-20℃DP以下の水溶性ガスを含まないガスにすることができる。吸着ゾーン2を通過したガスは第二の冷却器6で冷却された後二路に分岐され、一部は送風機5の前に戻され、残りの一部は二酸化炭素分離回収ロータ8の吸着ゾーン9に送られる。
【0037】
吸着ゾーン9を通過したガスは、二酸化炭素分離回収ロータ8の冷却ゾーン12を通過したガスの一部と混合された後、第三の冷却器13で冷却され送風機14で冷却ゾーン12に送られる。冷却ゾーン12を通過したガスは二路に分岐され、一部は吸着ゾーン9を通過したガスと混合され、残りの一部は送風機16によって除湿ロータ1の再生ゾーン3に送られ、再生ゾーン3を通過したガスは排気EA1として装置外に排気される。
【0038】
この二酸化炭素分離回収ロータ8の冷却ゾーン12を通過したガスは、露点が-20℃DP以下で温度が140℃前後と相対湿度が極めて低いため、除湿ロータ1の再生ガスとして利用価値の高いガスとなっている。従って、再生ゾーン3の入口側に設置している補助再生ヒータ15を使用しなくても、除湿ロータ1を回転させるだけで除湿ロータ1の吸着ゾーン2を通過したガスの露点を-20℃DP以下にすることができる。
【0039】
二酸化炭素分離回収ロータ8の再生ゾーン11では、再生ヒータ18で加熱されたガスで二酸化炭素分離回収ロータ8に吸着した二酸化炭素が脱着され、脱着された二酸化炭素の容量分増加して、増加分の二酸化炭素はダンパ20を通して回収され、一部はダンパ21を通って、再生循環路で再生ゾーン11に戻される。また、残りの一部はパージゾーン10に送られプレパージに使用された後、排気EA3として装置外へ排出される。このプレパージでは、二酸化炭素分離回収ロータ8の回転によってハニカム空隙内の低濃度の二酸化炭素が吸着ゾーン9から再生循環路に流入することを抑制する効果と、二酸化炭素分離回収ロータ8のプレヒート効果がある。
【0040】
再生ゾーン11を通過した二酸化炭素分離回収ロータ8は、温度が高く、そのままの状態では、吸着材の吸着能力が低いので冷却する必要がある。そのため、冷却ゾーン12を通って昇温したガスと吸着ゾーン9を通過したガスとを混合させて、冷却コイルや熱交換器などの第三の冷却器13を通して冷却し、二酸化炭素分離回収ロータ8の冷却ゾーン12に送る。
【0041】
冷却ゾーン12を通過したガスの多くは再度第三の冷却器13に戻って冷却循環するが、吸着ゾーン9を通過して冷却循環路に供給される被処理ガスに押され、余剰になった分は除湿ロータ1の再生ガスとして使用される。本発明の二酸化炭素分離回収装置では、二酸化炭素濃度と二酸化炭素回収率のバランスが最も良くなるように、再生循環路からダンパ20を通して回収する二酸化炭素の量と、冷却ゾーン12から余剰になったガス量を調整することが重要となる。
【0042】
図1の点線Aで囲まれた箇所は、耐蝕仕様を必要としない箇所となっている。第一の冷却器4で大部分の水溶性ガスはドレン水として排出されるが、残存している微量の水溶性ガスは除湿ロータ1で除湿される水分に含まれている。除湿ロータ1では、水分の吸着と同時に水溶性ガスの吸着も生じるため、除湿ロータ1の吸着入口側の水溶性ガスが濃縮される。そのため、除湿ロータ1の装置部分は、耐蝕仕様の材料を使用しないと、材料の腐食による装置の劣化が生じてしまう。
図1の点線Aで囲まれた箇所には、腐食性の水溶性ガスが来なくなるため耐蝕仕様を必要としない。
【0043】
図2に二酸化炭素分離回収ロータ8の吸着材としてゼオライトを用いた場合の二酸化炭素分離回収試験結果を示す。実施例1として除湿ロータ1が有る場合、比較例1として除湿ロータ1が無い場合の試験結果を示す。除湿ロータ1が無い比較例1の方が二酸化炭素分離回収性能の低下が認められた。
【0044】
図3に二酸化炭素分離回収ロータ8の吸着材としてCe酸化物を用いた場合の二酸化炭素分離回収試験結果を示す。実施例2として除湿ロータ1が有る場合、比較例2として除湿ロータ1が無い場合の試験結果を示す。除湿ロータ1が無い比較例2の方が二酸化炭素分離回収性能の低下が認められた。
【0045】
また、実施例2の回収ガスの露点温度が-10℃DPから-20℃DPであったことに対して、除湿ロータ1が無い比較例では飽和露点温度(0℃)を超えており、再生ラインに結露が認められた。
【0046】
表1に実施例1で試験をした際の消費電力の内訳を示す。除湿ロータ1の補助再生ヒータ15の電力量は0.2kWで、二酸化炭素分離回収装置の全消費電力に対して0.9%とわずかな電力となった。
【表1】
【0047】
以上のように、本発明の乾式法での二酸化炭素分離回収装置を用いることにより、排ガスから除湿された二酸化炭素濃縮ガスを得ることができるため、液化炭酸ガスを製造するための深冷分離装置の前処理装置をなくす、あるいは小さくすることができる。さらに、装置の二酸化炭素分離回収部分に耐蝕性の高価な材料を使用しないため、イニシャルコストを下げることができ、装置の大型化も容易となる。また、二酸化炭素分離回収ロータからの排ガスを除湿ロータの再生ガスとして利用するため、二酸化炭素分離回収ロータに供給するためのガスの露点を下げるためのエネルギーをほぼゼロにすることができる。
【産業上の利用可能性】
【0048】
本発明の二酸化分離回収装置は、除湿ロータを被処理排ガスの冷却器と二酸化炭素分離回収ロータの間に入れることで、排ガスから除湿された二酸化炭素濃縮ガスを得られるとともに、少ない消費エネルギーで効果的に二酸化炭素の分離回収を行うことができるため、排ガス濃度の低い二酸化炭素を濃縮除去する場合に適用できる。
【符号の説明】
【0049】
1 除湿ロータ
2 吸着ゾーン
3 再生ゾーン
4 第一の冷却器
5 送風機
6 第二の冷却器
7 ダンパ
8 二酸化炭素分離回収ロータ
9 吸着ゾーン
10 パージゾーン
11 再生ゾーン
12 冷却ゾーン
13 第三の冷却器
14 送風機
15 補助再生ヒータ
16 送風機
17 送風機
18 再生ヒータ
19、20、21、22 ダンパ