IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ・ジョンズ・ホプキンス・ユニバーシティの特許一覧 ▶ ザ クリーブランド クリニック ファウンデーションの特許一覧

特許7114585ネットワーク脆弱性理論を用いた無発作記録からのてんかん原性領域の同定方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-29
(45)【発行日】2022-08-08
(54)【発明の名称】ネットワーク脆弱性理論を用いた無発作記録からのてんかん原性領域の同定方法
(51)【国際特許分類】
   A61B 5/372 20210101AFI20220801BHJP
   A61B 10/00 20060101ALI20220801BHJP
【FI】
A61B5/372
A61B10/00 H
【請求項の数】 21
(21)【出願番号】P 2019524155
(86)(22)【出願日】2017-11-10
(65)【公表番号】
(43)【公表日】2020-01-23
(86)【国際出願番号】 US2017061122
(87)【国際公開番号】W WO2018089806
(87)【国際公開日】2018-05-17
【審査請求日】2020-11-05
(31)【優先権主張番号】62/421,037
(32)【優先日】2016-11-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】501335771
【氏名又は名称】ザ・ジョンズ・ホプキンス・ユニバーシティ
(73)【特許権者】
【識別番号】595033056
【氏名又は名称】ザ クリーブランド クリニック ファウンデーション
【氏名又は名称原語表記】The Cleveland ClinicFoundation
【住所又は居所原語表記】9500 Euclid Avenue,Cleveland,Ohio,United States of America
(74)【代理人】
【識別番号】100072604
【弁理士】
【氏名又は名称】有我 軍一郎
(72)【発明者】
【氏名】サルマ,スリデヴィ
(72)【発明者】
【氏名】リ,アダム
(72)【発明者】
【氏名】ゴンザレス-マルティネス,ジョージ
【審査官】磯野 光司
(56)【参考文献】
【文献】米国特許出願公開第2014/0107521(US,A1)
【文献】特表2009-502224(JP,A)
【文献】米国特許出願公開第2016/0287118(US,A1)
【文献】米国特許第04417592(US,A)
【文献】米国特許出願公開第2014/0094710(US,A1)
【文献】Samuel P. Burnsほか,Network dynamics of the brain and influence of the epileptic seizure onset zone,Proceedings of the National Acadeemy of Sciences [Online],National Academy of Sciences,2014年11月17日,vol. 111, No. 49,pages E5321-E5330,インターネット,<DOI:10.1073/pnas.1401752111>
【文献】Duluxan Sritharanほか,Fragility in Dynamic Networks: Application to Neural Networks in the Epileptic Cortex,Neural Computation [online],2014年10月01日,vol. 26, no. 10,pages. 2294-2327,インターネット,<DOI:10.1162/NECO_a_00644>
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/372
A61B 5/384
A61B 10/00
(57)【特許請求の範囲】
【請求項1】
被験者の脳のてんかん原性領域を同定するためのプロセッサが、コンピュータ実行可能なプログラムを実行する方法であって、
それぞれが前記被験者の脳から取得された、ある期間にわたる複数Nの脳生理信号を受信するステップと、
前記複数Nの脳生理信号のそれぞれの少なくとも一部に基づいて、時間ウィンドウ内で前記複数Nの脳生理信号に対応するN個のノードのネットワークの線形時不変モデルである状態遷移行列を計算するステップと、
前記複数Nの脳生理信号のそれぞれについて、前記ネットワークを安定状態から不安定状態に遷移させる前記状態遷移行列における摂動の最小ノルムを計算するステップと、
前記脳生理信号に対する前記摂動の最小ノルムに基づいて、前記複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てるステップと、
前記複数Nの脳生理信号の各々に割り当てられた脆弱性メトリックに基づいて、前記複数Nの脳生理信号の各々がてんかん原性領域にある確率を割り当てるステップと、を含む方法。
【請求項2】
請求項1に記載の方法であって、
前記状態遷移行列を計算するステップは、行列Aが
【数1】
となるように計算するステップを含み、
x(t)は時刻tにおける前記ネットワークの活動を記述する状態ベクトルであり、前記ネットワークの活動は前記複数Nの脳生理信号に対応し、Aは前記時間ウィンドウに対する前記状態遷移行列であることを特徴とする方法。
【請求項3】
請求項1又は請求項2のいずれか1項に記載の方法であって、
前記摂動の最小ノルムを計算するステップは、前記状態遷移行列の各行又は列に対する摂動の最小ノルムを計算するステップを含むことを特徴とする方法。
【請求項4】
請求項3に記載の方法であって、
前記複数Nの脳生理信号のそれぞれに前記脆弱性メトリックを割り当てるステップは、前記状態遷移行列の対応する各行又は列に対する前記摂動の最小ノルムに基づいていることを特徴とする方法。
【請求項5】
請求項4に記載の方法であって
前記てんかん原性領域にある前記複数Nの脳生理信号のそれぞれの前記確率を示すヒートマップを生成するステップを更に含むことを特徴とする方法。
【請求項6】
請求項1-5のいずれか1項に記載の方法であって、前記期間内の複数の時点で、前記複数Nの脳生理信号のそれぞれに割り当てられた前記脆弱性メトリックの指標を表示するステップを更に含むことを特徴とする方法。
【請求項7】
請求項1-6のいずれか1項に記載の方法であって、
前記複数Nの脳生理信号のそれぞれは、前記被験者の脳内の複数Nの電極の1つに対応することを特徴とする方法。
【請求項8】
コンピュータに実行させる被験者の脳のてんかん原性領域を同定するためのプログラムであって、前記コンピュータは、
それぞれが前記被験者の脳から取得された、ある期間にわたる複数Nの脳生理信号を受信し、
前記複数Nの脳生理信号のそれぞれの少なくとも一部に基づいて、時間ウィンドウ内で前記複数Nの脳生理信号に対応するN個のノードのネットワークの線形時不変モデルである状態遷移行列を計算し、
前記複数Nの脳生理信号のそれぞれについて、前記ネットワークを安定状態から不安定状態に遷移させる前記状態遷移行列における摂動の最小ノルムを計算し、
前記脳生理信号に対する前記摂動の最小ノルムに基づいて、前記複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当て
前記複数Nの脳生理信号の各々に割り当てられた脆弱性メトリックに基づいて、前記複数Nの脳生理信号の各々がてんかん原性領域にある確率を割り当てることを特徴とするプログラム
【請求項9】
請求項8に記載のプログラムであって
前記コンピュータは、更に、行列Aが
【数2】
となるように計算することによって前記状態遷移行列を計算し、
x(t)は時刻tにおける前記ネットワークの活動を記述する状態ベクトルであり、Aは前記時間ウィンドウに対する前記状態遷移行列であることを特徴とするプログラム
【請求項10】
請求項8又は請求項9のいずれか1項に記載のプログラムであって
前記コンピュータは、更に、前記状態遷移行列の各行又は列に対する摂動の最小ノルムを計算することによって、前記摂動の最小ノルムを計算することを特徴とするプログラム
【請求項11】
請求項10に記載のプログラムであって
前記コンピュータは、更に、前記状態遷移行列の対応する各行又は列に対する前記摂動の最小ノルムに基づいて前記複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てることによって、前記複数Nの脳生理信号のそれぞれに前記脆弱性メトリックを割り当てることを特徴とするプログラム
【請求項12】
請求項11に記載のプログラムであって
前記コンピュータは更に前記てんかん原性領域にある前記複数Nの脳生理信号のそれぞれの前記確率を示すヒートマップを生成することを特徴とするプログラム
【請求項13】
請求項8-12のいずれか1項に記載のプログラムであって
前記コンピュータは更に、前記期間内の複数の時点で、前記複数Nの脳生理信号のそれぞれに割り当てられた前記脆弱性メトリックの指標を表示することを特徴とするプログラム
【請求項14】
請求項8-13のいずれか1項に記載のプログラムであって、
前記複数Nの脳生理信号のそれぞれは、前記被験者の脳内の複数Nの電極の1つに対応することを特徴とするプログラム
【請求項15】
被験者の脳のてんかん原性領域を同定するためのシステムであって、
それぞれが前記被験者の脳から取得された、ある期間にわたる複数Nの脳生理信号を受信し、
前記複数Nの脳生理信号のそれぞれの少なくとも一部に基づいて、時間ウィンドウ内で
前記複数Nの脳生理信号に対応するN個のノードのネットワークの線形時不変モデルである状態遷移行列を計算し、
前記複数Nの脳生理信号のそれぞれについて、前記ネットワークを安定状態から不安定状態に遷移させる前記状態遷移行列における摂動の最小ノルムを計算し、
前記脳生理信号に対する前記摂動の最小ノルムに基づいて、前記複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当て
前記複数Nの脳生理信号の各々に割り当てられた脆弱性メトリックに基づいて、前記複数Nの脳生理信号の各々がてんかん原性領域にある確率を割り当てるように構成されたプロセッサを含むシステム。
【請求項16】
請求項15に記載のシステムであって、
行列Aが
【数3】
となるように計算することによって前記状態遷移行列を計算するように前記プロセッサが更に構成され、
x(t)は時刻tにおける前記ネットワークの活動を記述する状態ベクトルであり、Aは前記時間ウィンドウに対する前記状態遷移行列であることを特徴とするシステム。
【請求項17】
請求項15又は請求項16のいずれか1項に記載のシステムであって、
前記状態遷移行列の各行又は列に対する摂動の最小ノルムを計算することによって、前記摂動の最小ノルムを計算するように前記プロセッサが更に構成されたことを特徴とするシステム。
【請求項18】
請求項17に記載のシステムであって、
前記状態遷移行列の対応する各行又は列に対する前記摂動の最小ノルムに基づいて、外科的に埋め込まれた複数Nの電極のそれぞれに脆弱性メトリックを割り当てることによって、前記複数Nの脳生理信号のそれぞれに前記脆弱性メトリックを割り当てるように前記プロセッサが更に構成されたことを特徴とするシステム。
【請求項19】
請求項18に記載のシステムであって
前記てんかん原性領域にある前記複数Nの脳生理信号のそれぞれの前記確率を示すヒートマップを生成するように前記プロセッサが更に構成されたことを特徴とするシステム。
【請求項20】
請求項15-19のいずれか1項に記載のシステムであって、
前記期間内の複数の時点で、前記複数Nの脳生理信号のそれぞれに割り当てられた前記脆弱性メトリックの指標を表示するように前記プロセッサが更に構成されたことを特徴とするシステム。
【請求項21】
請求項15-20のいずれか1項に記載のシステムであって、
前記複数Nの脳生理信号のそれぞれは、前記被験者の脳内の複数Nの電極の1つに対応することを特徴とするシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、その全内容が参照により本明細書に組み込まれる、2016年11月11日に出願された米国仮特許出願第62/421,037号に対する優先権を主張する。
【0002】
本発明は、国立衛生研究所により授与されたT32 EB003383に基づく政府の支援を受けてなされた。政府は本発明において一定の権利を有する。
【背景技術】
【0003】
1.発明の分野
本発明の現在特許請求されている実施形態の分野は、被験者の脳のてんかん原性領域を同定するための方法及びシステムに関する。
【0004】
2.関連技術の考察
世界中で2000万人を超える人々が難治性てんかん(MRE)を患っている。MRE患者は、頻繁に入院し、神経認知発達の遅れや運転特権の獲得ができないなどのてんかん関連障害に悩まされており、米国で毎年てんかん治療に費やされている160億ドルのかなりの貢献者となっている。MRE患者の約50%が焦点性MREを有しており、脳内の仮想領域であるてんかん原性領域(EZ)が発作の原因である。
【0005】
てんかんは脳障害であり、ニューロン群からの過剰な放電から生じる慢性反復性発作を特徴とする[1]。てんかんは世界中で5000万人以上が罹患しており、てんかんを持つ全ての人の30%以上が、医学療法によって完全に制御することができない難治性発作[2,3]を起こしている。すなわち、最大許容量の少なくとも2種類以上の抗てんかん薬(AED)で治療したにもかかわらず発作が起こり続ける。MRE患者の評価及び治療にかかる直接費用は、米国では年間30~40億ドル(直接及び間接費用で160億ドル)である(1996年及び2015年の刊行物に基づく)[4-6]。これらの費用の80%は、発作がAEDによって適切に管理されていない患者によって占められている[5]。しかしながら、MREの負担は金銭的コストよりはるかに大きい。MREは、個人が自立を失い、深刻な行動上、心理上、認識上、社会上、財政上、及び法律上の問題を引き起こす衰弱性の病気である[7-9]。反復性発作は、形成期には社会化と心理的発達を害し、教育、雇用、又は運転特権の獲得ができなくなる可能性がある。
【0006】
MREを診断及び治療するための現在の方法は、MREにおける侵襲的モニタリングに関連する高い罹患率及び低い有効性によって制限されている。MREによる重篤な後遺症にもかかわらず、潜在的に治癒的な処置として、反復性発作活動の発生に関与する脳組織の最小面積として定義することができるてんかん原性領域(EZ)の外科的切除がある[10、11]。しかしながら、効果的であるためには、この処置はEZの正しい同定に依存しているが、それはしばしば不明である[12]。総合的な術前評価は、視覚障害又は言語障害などの神経学的罹患率のリスクを同定するだけでなく、EZを特定するために必要である[13-16]。様々な非侵襲的方法及び侵襲的方法が用いられる。非侵襲的技術は、頭皮EEG及びビデオEEGモニタリング、神経心理学的試験、音声言語研究、及び脳のイメージング(MRI、PET、発作時SPECT)を含む。これらの方法のうち、外科的成功の最も高い予測因子は単一の可視的なMRI病変の同定である[12,17,18]。非病変MRIの患者では、発作制御における局在化と外科的成功は更に困難である[17]。
【0007】
イメージング技術の進歩にもかかわらず、焦点性てんかんを有するかなりの数の外科患者(約25%)が非病変MRIを有し続けている[17,19]。局在化の非侵襲的方法がてんかん原性領域(EZ)を同定できない場合、最後の手段の方法は、開頭手術による硬膜下グリッド電極(SDE)の埋め込み、及びその後の長期にわたる専用のてんかんモニタリングユニット(EMU)による術外モニタリングを含む侵襲的評価である。[19,20]。硬膜下グリッド及びストリップは、米国で使用される最も一般的な侵襲的方法である[12,21]。硬膜下方法論によって提供される高い空間分解能にもかかわらず、深部てんかん病巣、及び結果として所与のEZの3D構成は、適切な空間分解能及び時間分解能でサンプリングすることができない[22,23]。加えて、硬膜下グリッドは比較的大きな開頭手術を必要とし、一般的には、1つの半球の探査に限定され、複雑なてんかんネットワークの2次元画像のみを提供する[24,25]。また、現在の硬膜下グリッドによる侵襲的評価は、非常に高価であり、出血、感染症、及び神経学的障害を含む複数の合併症と関連している[26]。
【0008】
EZが確実に同定されれば、EZの切除によるMREの治療はしばしば効果的である。焦点性てんかんは、しかしながら、基本的にネットワークベースの疾患である。EZは、構成され、他のノードも同時又はその後に異常な神経活動を示す可能性がある大規模な神経回路網に接続されている。MRIで検出可能な病変のない患者では、侵襲的記録を使用しても、てんかんネットワーク内のこれらの他のノードからのEZの特徴付け及び識別は困難であり得る。その結果、侵襲的評価に導かれて大きな脳の領域が除去されているにもかかわらず、持続的な外科的成功率はかろうじて30%に達する。高い罹患率に関連するそのような期待外れの結果は、単一の焦点切除を使用してネットワーク疾患を治療しようと試みることに関連する、EZの非精密及び/又は不正確な局在化によることが多い。
【発明の概要】
【発明が解決しようとする課題】
【0009】
したがって、被験者の脳のてんかん原性領域を同定するための改善されたシステム及び方法が依然として必要とされている。
【課題を解決するための手段】
【0010】
本発明の幾つかの実施形態によれば、被験者の脳のてんかん原性領域を同定する方法であって、それぞれが被験者の脳から取得された、ある期間にわたる複数Nの脳生理信号を受信するステップと、複数Nの脳生理信号のそれぞれの少なくとも一部に基づいて、時間ウィンドウ内で複数Nの脳生理信号に対応するN個のノードのネットワークの線形時不変モデルである状態遷移行列を計算するステップと、前記複数Nの脳生理信号のそれぞれについて、ネットワークを安定状態から不安定状態に遷移させる状態遷移行列における摂動の最小ノルムを計算するステップと、脳生理信号に対する摂動の最小ノルムに基づいて、複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てるステップと、を含む。
【0011】
本発明の幾つかの実施形態によれば、被験者の脳のてんかん原性領域を同定するための非一時的なコンピュータ可読媒体は、コンピュータ実行可能なコードを含み、コードがコンピュータによって実行されるときにコンピュータは、それぞれが被験者の脳から取得された、ある期間にわたる複数Nの電気信号を受信し、複数Nの脳生理信号のそれぞれの少なくとも一部に基づいて、時間ウィンドウ内で複数Nの脳生理信号に対応するN個のノードのネットワークの線形時不変モデルである状態遷移行列を計算し、複数Nの脳生理信号のそれぞれについて、ネットワークを安定状態から不安定状態に遷移させる状態遷移行列における摂動の最小ノルムを計算し、脳生理信号に対する摂動の最小ノルムに基づいて、複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てる。
【0012】
本発明の幾つかの実施形態によれば、被験者の脳のてんかん原性領域を同定するためのシステムであって、それぞれが被験者の脳から取得された、ある期間にわたる複数Nの脳生理信号を受信し、複数Nの脳生理信号のそれぞれの少なくとも一部に基づいて、時間ウィンドウ内で複数Nの脳生理信号に対応するN個のノードのネットワークの線形時不変モデルである状態遷移行列を計算し、複数Nの脳生理信号のそれぞれについて、ネットワークを安定状態から不安定状態に遷移させる状態遷移行列における摂動の最小ノルムを計算し、脳生理信号に対する摂動の最小ノルムに基づいて、複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てるように構成されたコンピュータを含む。
【図面の簡単な説明】
【0013】
図1図1は、幾つかの実施形態によるSEEG法を使用したイメージングフュージョン及び複数電極の配置を示す。画像A及びBは、それぞれMRA及びCT血管造影による術前イメージングを示す。併せて、電極の軌跡は安全に計画され、血管構造を避け、出血と電極の誤配置のリスクを制限する。画像Cは、皮膚表面の14個の電極を示す写真である。画像Dは、冠状MRI T1W画像上の両側SEEG電極の重ね合わせを示す術中画像である。先端が正中線又は硬膜表面で終わる正確な平行配置に注意されたい。
【0014】
図2図2は、MRE及び非病変MRIを有する患者における個別化されたてんかんネットワークのロードマップの生成を伴う臨床解剖学的機能分析を示す。A.左前頭発作を示唆する臨床記号学。B.左前頭部の発作間スパイクを示す頭皮のSEEG。C.EN及びその成分を示す解剖学的機能的SEEG分析:電極N'及びF'における早発性及び遅発性ゾーン(明るい赤色の円)を有する電極L'に位置する発作発症ゾーン(太い赤色の円)。Talairach座標を使用したENの最終表現。
【0015】
図3図3は、幾つかの実施形態によるEZTrackの計算ステップを示す。
【0016】
図4図4は、予備的結果(D統計対外科的転帰)を示す。
【0017】
図5A図5Aは、対角摂動がオートフィードバック項を乱すだけである場合のRN×Nにおける摂動トポロジを示す。
【0018】
図5B図5Bは、列摂動が単一の列にゼロ以外のエントリを有する場合のRN× における摂動トポロジを示す。
【0019】
図5C図5Cは、行摂動が非ゼロエントリを有する単一の行を有する場合のR ×Nにおける摂動トポロジを示す。
【0020】
図6A図6Aは、実際のEEGデータを示す。
【0021】
図6B図6Bは、図6Aに対応するシミュレートされたEEGデータを示す。この図は、本発明の幾つかの実施形態による離散線形時変モデルから生成されたシミュレーションデータを示す。
【0022】
図7-1】図7-1は、経時的な電極の最小ノルム摂動(F行列)の例を示す。臨床的に注釈が付けられたEZ電極は、黒丸で印を付けられた行を有する。白丸及び星印は、それぞれ臨床的に分類された早期発症及び後期発症に対応する。
図7-2】図7-2は、経時的な電極の最小ノルム摂動(F行列)の例を示す。臨床的に注釈が付けられたEZ電極は、黒丸で印を付けられた行を有する。白丸及び星印は、それぞれ臨床的に分類された早期発症及び後期発症に対応する。
図7-3】図7-3は、経時的な電極の最小ノルム摂動(F行列)の例を示す。臨床的に注釈が付けられたEZ電極は、黒丸で印を付けられた行を有する。白丸及び星印は、それぞれ臨床的に分類された早期発症及び後期発症に対応する。
【発明を実施するための形態】
【0023】
詳細な説明
本発明の幾つかの実施形態を以下に詳細に説明する。実施形態を説明する際に、明確にするために特定の専門用語が使用される。しかしながら、本発明はそのように選択された特定の専門用語に限定されることを意図しない。当業者であれば、本発明の広い概念から逸脱することなく他の同等の構成要素を採用することができ、他の方法を開発することができることを理解するであろう。背景技術及び詳細な説明の節を含む本明細書のどこかに引用されている全ての参考文献は、あたかもそれぞれが個別に組み込まれているかのように、参照により組み込まれる。
【0024】
本明細書に記載の方法は、MRE患者のてんかんネットワーク内のEZの、より精密かつ正確なマップを作成するために使用することができる。これらのマップはネットワークノードの複数のレーザーアブレーションを戦略的にガイドし、結果として大規模な切除と高い罹患率を回避しながら、てんかん活動を完全に消滅させる。EZTrackは、MRI陰性焦点性てんかん患者のEZを明らかにする計算ツールである。EZマップは、てんかんネットワーク内のノードの「脆弱性」を検出する新しいアルゴリズムを適用することによって作成できる。ネットワーク内の各ノード(すなわち、埋め込まれた各電極)の脆弱性は、ネットワーク全体を不安定にする電極とそれに隣接する電極との接続性に適用できる最小の摂動として定義される。脆弱性は、動的システム理論を使用して導き出され、発作発症前の電気生理学的データから計算される。最も脆弱なネットワークノードはEZに対応する。本発明の実施形態による分析は、ネットワークダイナミクスを完全に無視して各EEGチャンネルを個別に処理するか、又は、経時的にペアワイズ相関を計算することによってネットワークダイナミクスの追跡を試み、したがってローカルダイナミクスのみを追跡する既存のアルゴリズムとは全く対照的である。
【0025】
本発明の幾つかの実施形態によれば、被験者の脳のてんかん原性領域を同定する方法であって、それぞれが被験者の脳から取得された、ある期間にわたる複数Nの脳生理信号を受信するステップと、複数Nの脳生理信号のそれぞれの少なくとも一部に基づいて、時間ウィンドウ内で複数Nの脳生理信号に対応するN個のノードのネットワークの線形時不変モデルである状態遷移行列を計算するステップと、前記複数Nの脳生理信号のそれぞれについて、ネットワークを安定状態から不安定状態に遷移させる状態遷移行列における摂動の最小ノルムを計算するステップと、脳生理信号に対する摂動の最小ノルムに基づいて、複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てるステップと、を含む。
【0026】
幾つかの実施形態によれば、状態遷移行列を計算するステップは、行列Aが
【数1】
となるように計算するステップを含み、x(t)は時刻tにおけるネットワークの活動を記述する状態ベクトルであり、ネットワークの活動は複数Nの脳生理信号に対応し、Aは時間ウィンドウに対する状態遷移行列である。
【0027】
幾つかの実施形態によれば、摂動の最小ノルムを計算するステップは、状態遷移行列の各行又は列に対する摂動の最小ノルムを計算するステップを含む。幾つかの実施形態によれば、複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てるステップは、状態遷移行列の対応する各行又は列に対する摂動の最小ノルムに基づいている。
【0028】
幾つかの実施形態によれば、本方法は、複数Nの脳生理信号のそれぞれに割り当てられた脆弱性メトリックに基づいて、てんかん原性領域にある複数Nの脳生理信号のそれぞれの相対確率を示すヒートマップを生成するステップを更に含む。幾つかの実施形態によれば、本方法は、期間内の複数の時点で、複数Nの脳生理信号のそれぞれに割り当てられた脆弱性メトリックの指標を表示するステップを更に含む。幾つかの実施形態によれば、複数Nの脳生理信号のそれぞれは、被験者の脳内の複数Nの電極の1つに対応する。
【0029】
本発明の幾つかの実施形態によれば、被験者の脳のてんかん原性領域を同定するための非一時的なコンピュータ可読媒体は、コンピュータ実行可能なコードを含み、コードがコンピュータによって実行されるときにコンピュータは、それぞれが被験者の脳から取得された、ある期間にわたる複数Nの脳生理信号を受信し、複数Nの脳生理信号のそれぞれの少なくとも一部に基づいて、時間ウィンドウ内で複数Nの脳生理信号に対応するN個のノードのネットワークの線形時不変モデルである状態遷移行列を計算し、複数Nの脳生理信号のそれぞれについて、ネットワークを安定状態から不安定状態に遷移させる状態遷移行列における摂動の最小ノルムを計算し、脳生理信号に対する摂動の最小ノルムに基づいて、複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てる。
【0030】
幾つかの実施形態によれば、コードがコンピュータによって実行されるときにコンピュータは、行列Aが
【数2】
となるように計算することによって状態遷移行列を計算し、x(t)は時刻tにおけるネットワークの活動を記述する状態ベクトルであり、Aは時間ウィンドウに対する状態遷移行列である。
【0031】
幾つかの実施形態によれば、コードがコンピュータによって実行されるときにコンピュータは、状態遷移行列の各行又は列に対する摂動の最小ノルムを計算することによって、摂動の最小ノルムを計算する。幾つかの実施形態によれば、コードがコンピュータによって実行されるときにコンピュータは、状態遷移行列の対応する各行又は列に対する摂動の最小ノルムに基づいて複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てることによって、複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てる。
【0032】
幾つかの実施形態によれば、コードがコンピュータによって実行されるときにコンピュータは更に、複数Nの脳生理信号のそれぞれに割り当てられた脆弱性メトリックに基づいて、てんかん原性領域にある複数Nの脳生理信号のそれぞれの相対確率を示すヒートマップを生成する。幾つかの実施形態によれば、コードがコンピュータによって実行されるときにコンピュータは更に、期間内の複数の時点で、複数Nの脳生理信号のそれぞれに割り当てられた脆弱性メトリックの指標を表示する。幾つかの実施形態によれば、複数Nの脳生理信号のそれぞれは、被験者の脳内の複数Nの電極の1つに対応する。
【0033】
本発明の幾つかの実施形態によれば、被験者の脳のてんかん原性領域を同定するためのシステムであって、それぞれが被験者の脳から取得された、ある期間にわたる複数Nの脳生理信号を受信し、複数Nの脳生理信号のそれぞれの少なくとも一部に基づいて、時間ウィンドウ内で複数Nの脳生理信号に対応するN個のノードのネットワークの線形時不変モデルである状態遷移行列を計算し、複数Nの脳生理信号のそれぞれについて、ネットワークを安定状態から不安定状態に遷移させる状態遷移行列における摂動の最小ノルムを計算し、脳生理信号に対する摂動の最小ノルムに基づいて、複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てるように構成されたコンピュータを含む。
【0034】
幾つかの実施形態によれば、行列Aが
【数3】
となるように計算することによって状態遷移行列を計算するようにコンピュータが更に構成され、x(t)は時刻tにおけるネットワークの活動を記述する状態ベクトルであり、Aは時間ウィンドウに対する状態遷移行列である。
【0035】
幾つかの実施形態によれば、状態遷移行列の各行又は列に対する摂動の最小ノルムを計算することによって、摂動の最小ノルムを計算するようにコンピュータが更に構成される。幾つかの実施形態によれば、状態遷移行列の対応する各行又は列に対する摂動の最小ノルムに基づいて、外科的に埋め込まれた複数Nの電極のそれぞれに脆弱性メトリックを割り当てることによって、複数Nの脳生理信号のそれぞれに脆弱性メトリックを割り当てるようにコンピュータが更に構成される。
【0036】
幾つかの実施形態によれば、複数Nの脳生理信号のそれぞれに割り当てられた脆弱性メトリックに基づいて、てんかん原性領域にある複数Nの脳生理信号のそれぞれの相対確率を示すヒートマップを生成するようにコンピュータが更に構成される。幾つかの実施形態によれば、期間内の複数の時点で、複数Nの脳生理信号のそれぞれに割り当てられた脆弱性メトリックの指標を表示するようにコンピュータが更に構成される。幾つかの実施形態によれば、複数Nの脳生理信号のそれぞれは、被験者の脳内の複数Nの電極の1つに対応する。
【0037】
本明細書に記載の方法は、プロセッサによって実行することができる。プロセッサは、専用の「ハードワイヤード」デバイスでも、プログラマブルデバイスでも構わない。例えば、それは、コンピュータ、ワークステーション、又は特定の用途に適した他の任意の電子機器であり得るが、これらに限定されない。幾つかの実施形態では、それは、ユニットに統合することができ、又は、取り付け可能、遠隔的、及び/又は分散的であり得る。プロセッサは、ユーザインターフェースと通信してもよい。ユーザインターフェースは、キーボード又はタッチスクリーンなどの入力装置を含み得る。ユーザインターフェースは表示装置も含み得る。プロセッサは、表示装置に情報を表示するように構成されてもよい。例えば、プロセッサは、同定されたてんかん原性領域の指標を表示装置に表示するように構成されてもよい。
【0038】
硬膜下頭蓋内電極からの記録はEZの範囲を局在化し描写する能力を大幅に改善するはずであるが、特に非病変MRIを有する患者において[12,30]この目的を達成できないことは珍しくない[12]。次善の結果の理由は以下のとおりである:(i)発作の組織と広がりが明確かつ局所的な表層皮質領域(てんかん病巣)によって引き起こされるという真実ではない広く知られた概念、(ii)より精密なEZ局在化を可能とする、頭蓋内EEG記録からのてんかんネットワーク電気生理学的シグネチャ内のEZの誤った同定[23,38,39]。代わりに、本明細書に記載のシステム及び方法は、てんかん活動が、生じ、組織され、役割と重みが異なる様々なノードと経路から構成される、より広範で複雑なてんかんネットワークを通じて広がるという概念に基づいている[31-37]。臨床医がEZの局在化を支援するために、新しいデータ分析ツールを使用する必要がある。
【0039】
今日、EZを同定するプロセスは、洗練されたネットワーク接続性分析の助けを借りずに、数十から数百のEEG信号を視覚的に検査することを含む。現在、てんかん医は、数日間にわたって発生する発作事象の発症を研究している。発作事象は、典型的には、βバンド活性の早期の存在(「ベータバズ」)、又は、発作の臨床的発症の数ミリ秒前に典型的に起こる高周波振動(100~300Hz)のバーストによって特徴付けられる。てんかん皮質は、てんかん様活動を生じて他の領域を臨床発作に巻き込む[40]と仮定すると、これらの発症特徴が最初に現れるチャンネルは一般にEZとして同定される。電気的反応(律動活動の喪失)もしばしば観察される。一般に、てんかん医は、自分の決断をするために様々なシグネチャを調べる[40]。これらの可能性のあるEEGシグネチャの全てにもかかわらず、EZの定義は非病変患者について不明のままであるかもしれない。
【0040】
最も速い最初の発作再発率は、正常なMRIを有する非病変患者(全再発のうちの70%が手術後の最初の1ヶ月以内に起こる)に対するものであり、一方、異常なMRIを有する患者は、手術後1ヶ月以内に30%の発作再発の可能性がある[12]。非病変MRIを有する患者についての失敗は、発作の起源及びてんかん活動の一次組織に関与するてんかんネットワークの基本的な特徴の非同定、そしてその結果として、根本的にネットワークを特徴付ける重要なノード及び経路の非切除又は不適当な調節によって引き起こされる可能性が高い。そのため、EZの手術前の解剖学的機能の定義を改善し、したがって手術後(特に正常なMRIを有する患者)に観察される最初の急な再発相を遅らせることを目的とした介入は、患者の転帰を大きく改善するであろう。要約すると、本発明の幾つかの実施形態によるシステム及び方法は非常に重要である。なぜなら、
1)かなりの数のてんかん患者が薬物に反応しないため、重度の障害がある。
2)全ての治療法は、侵襲性が高く長期にわたる術前評価を伴うことが多く、罹患率、病院のリソース、及び患者の費用が増加する。
3)発作局在化の現在の臨床パラダイムは、ビッグデータ技術の時代にあるにもかかわらず、EZの精密な特徴付けを妨げ、洗練されたデータ分析を活用していない。
【0041】
本発明の幾つかの実施形態によるシステム及び方法は、洗練されたデータ分析によって導かれるEZのより精密な局在化を促進することによってMRE患者に対する外科的治療の成功率を高めることができる。
【0042】
本発明の幾つかの実施形態によるシステム及び方法は、術前評価の侵襲性及び時間を最小限に抑えることができ、その結果、治療コスト、リソース、及び患者のリスクが低減される。
【0043】
EZを局在化するためにここで開発された動的システム理論の概念は、てんかんネットワークにおける発作の発症及び終了などの重要な遷移のメカニズムを同定するための機構的モデルに適用することができ、そして新しい治療法を更に発展させることができる。
【0044】
本発明の幾つかの実施形態によるシステム及び方法は、上述した重大な課題に対処しながら、MREの治療に革命を起こすために必要な基礎を築くことができる。治療アプローチは、(i)ますます多くの米国のセンターで標準的な方法として出現している低侵襲性の術外頭蓋内EEGモニタリング方法、(ii)EZのネットワーク概念及び我々の新規な計算ツールであるEZTrackを必要とする。EZTrackは、SEEGデータからEZを正確に同定し、それが(iii)低侵襲レーザーアブレーション治療を導くであろう。
【0045】
本発明の実施形態は、様々なソースから取得されたデータに適用することができ、本発明の実施形態は、本明細書に列挙されたソースに限定されない。例えば、データは、定位的深部脳波(SEEG)によって取得され得る。本明細書に記載のシステム及び方法はまた、皮質脳波記録、並びにあらゆる種類の侵襲性脳波(EEG)記録、例えばSEDD、皮質脳波(ECoG)にも適用することができる。本明細書に記載のシステム及び方法は、例えば、頭皮EEG、脳磁図(MEG)、及び機能的磁気共鳴画像法(FMRI)の読み取りに適用することができる。
【0046】
EZを特徴付けるための計算ツール
【0047】
より伝統的な焦点の概念から出発すると、てんかん活動は皮質及び皮質下レベルでのニューロン集団の非同期活動によって引き起こされる発作を特徴とするネットワーク現象として解釈することができ、それらは解剖学的に離れたノード及び経路で組織化され、一緒になってEZを構成する(図2)。以前の研究では、発作事象は動的ネットワークシステムの不安定現象として定義された[56]。具体的には、てんかんの皮質ネットワークは不安定性の危機に瀕しており、ニューロン集団間の機能的な接続(ネットワークノード)への小さな摂動は安定したネットワークを不安定にし、発作を引き起こすと主張された。各ネットワークノードの脆弱性は、異なるネットワークモデルに対して定義され計算された[56]。
【0048】
本発明の幾つかの実施形態によるシステム及び方法は、ネットワークの最も脆弱なノードをEZに関連付ける。システム及び方法は、(i)例えばSEEG、ECoG、頭皮EEG、又は他の治療法から得られた記録から線形モデルを推定するためや、(ii)モデルから各電極接点(ネットワークノード)の脆弱性を計算するためや、(iii)モデルから導出された最も脆弱性の高い電極から最も脆弱性の低い電極の順にソートされた各電極に重みを割り当てるために使用することができる。重みは、重みを視覚化する他の方法も可能であるが、患者の脳画像に重ね合わされたヒートマップを介して視覚化することができる。我々は、患者のてんかんネットワークの最も脆弱なノードが、それらの患者の臨床的に注釈を付けられたEZと高度な一致を有することを見出した。データを以下に提示する。
【0049】
本発明の幾つかの実施形態によるシステム及び方法は、てんかん患者から記録された頭蓋内又はステレオEEGデータを処理し、数分のデータでてんかん原性領域(EZ)を同定するヒートマップを生成するアルゴリズムを使用する。このシステム及び方法は、発作が起こる前に自動化された方法で数分でEZを同定することができる。全ての既知のアルゴリズムは発作からのデータを必要とし、したがって発作が起こるまで患者が病院に滞在することに依存する。患者が電極埋め込みでモニターされている時間が長いほど、感染のリスクが高くなる。本明細書に記載のシステム及び方法は、発作が起こる前に取得されたデータを使用してEZを同定することによってそのリスクを軽減する。
【0050】
この節では、ネットワークのノード脆弱性の概念は、SEEG記録の文脈で紹介されたように説明される[56]。次に、EZを同定するためのSEEGデータから構築されたモデルへの脆弱性理論の適用について説明する。しかしながら、本発明の実施形態は、SEEGデータを処理することに限定されず、患者の脳からの任意の種類のデータに適用することができる。
【0051】
ネットワークノードの脆弱性
【0052】
幾つかの数学を深く掘り下げる前に、各ノードが人であり、それらが互いに友だちである場合には友情の強さによって重み付けされた人々がエッジによって接続されているソーシャルネットワークを検討することができる。一人一人が噂を聞いたならば彼/彼女の友人に噂を伝える可能性があると仮定して、噂がネットワーク全体にどのように広がることができるかを理解することに興味があると仮定する。また、噂が低い確率で広がる「プライベート」ネットワークで噂が始まるとも想定されている。つまり、ある人があるゴシップを聞いたとき、彼らは彼らの友人に話すかもしれないが、ネットワーク接続性はその噂が拡散する可能性が非常に低いようなものである。脆弱性の問題は、「噂が山火事のように広がるように(つまり、高い確率)、特定の人の友情をどの程度強めるか又は弱める必要があるか?(特定のノードの接続重みを混乱させる)」である。噂を広めるためにその人の接続を大幅に変更する必要がある場合、その人はネットワーク内の脆弱なノードではない。一方、ある人の接続強度に対する小さな摂動が噂を広める原因となった場合、その人はネットワーク内で非常に脆弱なノードである。
【0053】
本明細書においててんかんネットワークに対してなされた類推は以下の通りである。「(SEEGによって測定されるように)ニューロン集団間の機能的な接続は、ネットワークが発作(うわさの広がり)を起こすことを可能にするためにどの程度変更される必要があるか?」この質問に定量的に答えるために、線形ネットワークシステムの幾つかの表記法と基本安定性理論を紹介する。SEEGチャンネルiからの各時系列記録をx(t)と表し、x(t)をi=1,2,...,nの場合のn個のチャンネル記録のベクトルとする。所与の患者に対するSEEG記録は以下のように線形的に発展すると仮定される:
【数4】
t=1,2,3,...の場合に、ミリ秒は時間T内の固定ウィンドウである(例:T=500ミリ秒)。式(1.1)は、離散時間線形システムのモデルであり、ここでx(t)は状態ベクトルと呼ばれ、A∈Rn×nは「状態遷移」行列と呼ばれる。状態遷移行列は、n個のノードからなるネットワークの機能的連結性の隣接行列表現と見なすことができ、そのダイナミクスは線形であり、状態ベクトルの発展に取り込まれる。要素Aijは、ノードjの活動x(t)がノードiの将来の活動x(t+1)にどのように影響するかを示す。要素Aiiは、ノードiの内部ダイナミクスへの1次近似を表す、オートフィードバック項である。より一般的には、Aのi番目の行は、ノードiに対するネットワークの累積的な機能的影響を規定し、j番目の列は、ネットワーク全体に対するノードjの活動の機能的影響を捕捉する。
【0054】
線形システム理論から、x(t)が全ての初期条件に対してt→∞でx ̄に収束する場合、システムは固定点x ̄に関して漸近的に安定であると言われる。これは、ノードの活動が基線値のままで、回復する前に一時的に外部入力に応答することを意味する。行列表現(2)に関して、安定性は複素平面内で単位円板の内側、すなわち|λ|<1,i=1,2,...,nにあるA(固有値λ...λ∈C)の固有値と等価である。任意の固有値が単位円板(|λ|=1)上にある場合、システムは僅かに安定していると言われる。これは、ある初期条件x(0)が与えられると、ネットワークが振動することを意味する(発作中のSEEG記録で見られる)。
【0055】
本発明の幾つかの実施形態によるシステム及び方法は、安定したネットワークシステムが、1つ又は複数のノードへの接続重みの小さな摂動を介して不安定なシステムに移行するときに発作事象が発生するという原理に依拠する。ネットワークの脆弱性は、ネットワークを不安定な状態に追い詰めるために必要な、Aに対するΔの最小エネルギー摂動の大きさとして定義される(摂動後の新しいシステムは、A+Δとなった遷移行列を持つ)。各ノードへの大きな摂動が必要とされる場合、ネットワークはより堅牢であり、一方小さなエネルギーの摂動は脆弱なネットワークに対応する。最小のΔを解くことは、動的システムが単位円板の外側に移動する固有値を有するように実行列上で最小化することを伴う。数学的詳細は[56]に提供されている。
【0056】
本発明の幾つかの実施形態によれば、EZTrackは3つの計算ステップを含む。(i)最小二乗推定を用いて発作発症前の期間にわたってSEEG、ECog、頭皮EEG、又は他の種類のデータからモデルを構築すること[78](毎秒SEEGデータの展開を記述するサイズのサブウィンドウについて計算された一連の行列)、(ii)各モデルから各チャンネルの最小ノルム摂動を計算すること、及び(iii)発作の発症につながる各ノードの脆弱性を追跡するために各チャンネルの脆弱性を計算すること。この脆弱性は、0から1の範囲の重みに変換できる。図3にEZTrackの概略図を示す。重みが閾値αを超えるチャンネルは、EEZとして表されるEZTrackのEZを構成する。EEZは臨床的に注釈付きのEZ(CEZ)と比較することができ、パラメータ{W、T、α}は調整及び最適化することができる。
【0057】
予備的結果
【0058】
{W=60秒、T=500ミリ秒、α=0.8}について、クリーブランドクリニックで治療を受けた6人のSEEG患者と、JHUで外科的切除を受けて治療された4人のECoG患者に対してEZTrackを試験した。図4は、各結果に対するDOA分布をプロットする。
【0059】
EZを同定するための臨床標準
【0060】
最初に、利用可能な非侵襲的データ及びてんかんの臨床症状の時間的進展を分析することによって、EZ及びより広範なてんかんネットワークの個々の解剖学的-電気-臨床仮説が定式化される。SEEG埋め込み計画は、経験を積んだてんかん医、神経外科医、及び神経放射線科医によって作成され、彼らが共同で埋め込み戦略を定式化する。定式化された埋め込み戦略は、皮質表面の限られた範囲にもかかわらず、侵入部位から最終標的点までの軌跡に沿った構造の正確なサンプリングを可能にする深さ電極記録の3D側面を考慮に入れている。ビデオSEEGデータの広範な臨床分析の後、各患者の容積測定MRIは共通の作業空間に同時記録される(T1容積測定MRI)。そして、各患者からの(埋め込み後のCTから取得された)電極接点は、デジタル空間に完全に反っている。電極接点の解剖学的位置の組み合わせは、その後、てんかんネットワークとその時空間的な細分の一部として、標準的な臨床命名法によって最初にグループ化される[発作発症ゾーン(SOZ)、早期伝播ゾーン(EPZ)及び後期伝播ゾーン(LPZ)]。これは、SEEG記録段階における解剖学的-電気-臨床発作の相関関係に基づいている(図2)。具体的には、EZは、最も初期の電気生理学的変化(SOZ)を示すノードと、最も初期の臨床症状発現時(EPZ)に関与したノードに対応する(図2)。
【0061】
以下の実施例は、特定の実施例を参照して本発明の幾つかの更なる概念を説明する。本発明の一般概念は特定の実施例に限定されない。
【0062】
実施例
【0063】
現在、焦点性MREには2つの外科的及び潜在的に治癒的な治療選択肢がある:(i)EZの外科的除去(最も古く、最も一般的かつ確立された治療)、及び(ii)EZの電気刺激[80]。
【0064】
治療の成功は人生を変えるという事実にもかかわらず、EZを局在化するための臨床ワークフローは、医師や患者を過度、侵襲的、長く、複雑で、費用がかかり、以下のような問題を抱えていると見なすことで解釈できるため、外科的治療の利用は最小限(2%のみ)である:(i)EZ局在化の効率が低い、(ii)臨床医が十分なデータを得るために幾つかの発作事象を待つので、患者は長期の入院、危険な感染症、及び神経学的合併症に耐え、(iii)専門の臨床医が手動で個々のEEG「チャンネル」を検査してEZを局在化する。目で記録を解釈することは非常に難しいので、私たちのような定量的方法は、EZをより効率的に局在化させ、入院期間を減らすことに役立ち、そして臨床医の意思決定を支援することができる。局在化が完了した後、予測されたEZ及び周囲の領域は、典型的には開頭術アプローチを通して「公然と」切除される。大きな脳の領域が除去されているにもかかわらず、外科的成功率はかろうじて60~65%に達する[12,17,81-83]。高い罹患率に関連するこのような変動しがちな失望の結果は、現在の診断及び治療法における高い侵襲性に関連するEZの非精密な及び/又は不正確な局在化によることが多い。
【0065】
ネットワークのノード脆弱性の概念は、[56]で紹介されているように説明される。次いで、EZを同定するために患者データから構築されたモデルへの幾つかの実施形態による脆弱性理論の適用について説明する。
【0066】
A.ネットワークノードの脆弱性
【0067】
状態ベクトルx(t)∈Rを持つ(2.1)のような状態発展方程式と、|λ|≧...≧|λ|となる固有値λ...∈Cを持つ状態遷移行列A∈RN×Nと、を有する離散時間線形システムを考える。
【数5】
【0068】
状態遷移行列は、N個のノードからなるネットワークの機能的連結性の隣接行列表現と見なすことができ、そのダイナミクスは線形であり、状態ベクトルの発展に取り込まれる。状態ベクトル内の要素は、各ノードの活動のメトリックである。要素Aijは、ノードjの活動x(t)がノードiの将来の活動x(t+1)にどのように影響するかを示す。要素Aiiは、ノードiの内部ダイナミクスへの1次近似を表す、オートフィードバック項である。より一般的には、Aのi番目の行は、ノードiに対するネットワークの累積的な機能的影響を規定し、j番目の列は、ネットワーク全体に対するノードjの活動の機能的影響を捕捉する。
【0069】
線形システム理論から、x(t)が全ての初期条件に対してt→∞でx ̄に収束する場合、システムは固定点x ̄に関して漸近的に安定であると言われる。これは、ノードの活動が基線値のままで、回復する前に一時的に外部入力に応答することを意味する。行列表現に関して、安定性は複素平面内で単位円板の内側、すなわち全てのi=1,2,...,Nに対して|λ|<1にあるAの固有値と等価である。
【0070】
これは、式(2.1)が式(2.2)に示すようにモーダル形式に収められた場合に、より明らかになる。ここで、c∈Cは初期条件に従って設定され、v∈Cはλに対応するAの固有ベクトルである。システムは、固定点が原点(x ̄=0)にあるように既に変換され、Aの固有値がn個あると仮定する。そして、線形システムの解は次のように書くことができる:
【数6】
【0071】
|λ|<1の場合、他の固有値の実数成分もそれらの順序付けのために負であり、(2.2)の全ての項は減衰してシステムはその基線活動に落ち着く(原点になるように変換される)。λ=0である場合、他の固有値は負の実数成分を有し、それらの対応する項は時間とともに消滅するので、状態は初期条件に基づいて第1の固有ベクトルに沿ったどこかに落ち着く:x(t)→c。そのため、ネットワークは基線まで低下するのではなく、何らかのパターンの活動に嵌り込む。状態ベクトルの要素がスパイク率を表す場合、これはトニックスパイク又は沈黙ニューロンに類似している可能性がある。最後に、λ1,2=±jωであれば、tが大きい場合、各ノードの活動は減衰することなくその基線の周りで振動する。これは、振動に同調したスパイク率の適切な表現である。
【0072】
状態行列に変化があると線形システムは不安定になり、そのため固有値に関する安定条件はもはや満たされない。この変化は状態行列に対する加法的摂動Δとしてモデル化することができ、それにより状態方程式(2.1)においてA+ΔがAを置換して(2.3)を与える。
【数7】
【0073】
この不安定性の概念は、そのダイナミクスが線形であるか、又はある状態では線形として近似することができるネットワークに採用することができる。そのようなネットワークでは、機能的連結性行列の固有値が安定性を決定する。
【0074】
(2.3)の様々な摂動行列は、(2.1)の元のネットワークを不安定にする可能性がある。摂動の構造(例えば、図5AのようにΔ∈RN×N又はΔ∈diag{R})と、どの要素が優先的に影響を受けるかとに基づいて、摂動システムを不安定にさせるために、(行列ノルムによって測定される)異なる摂動強度が必要となる。ネットワークの脆弱性は、ここでは、ネットワークを不安定な状態に追い詰めるために必要な最小エネルギー摂動の大きさとして定義される。大きな摂動が必要とされる場合、ネットワークはより堅牢であり、一方小さなエネルギーの摂動は脆弱なネットワークに対応する。最小エネルギー摂動によって修正される要素は、最も脆弱なサブネットワークのエッジを定義する。
【0075】
全ネットワーク摂動又は対角摂動は生物学的にありそうもないので考慮されないであろう。異常な動作を引き起こすために機能的なネットワーク接続のホスト全体を修正する必要があること、又は、他の方法で機能的連結性に影響を与えることなく、オートフィードバックの変化が異なるニューロンで独立して単独で起こることはあり得ない。
【0076】
したがって、ネットワークの脆弱性は、単一のニューロン又は集団への入射投影の影響の変化に対応する行摂動(図5Cを参照)について導き出される。行摂動は、それが入力をどのように統合するかに影響を与えるニューロン又は集団における異常を反映するためのもっともらしい摂動構造であり得る。列摂動の場合も同様に導出できる[56]。
【0077】
B.構造化摂動問題としてのネットワークの脆弱性
【0078】
この節では、(2.1)から離散時間線形システムについて、構造化された行摂動問題の定式化及び解を再現する。
【0079】
1)定理:A∈RN×Nが安定線形ネットワークの状態遷移行列を表すと仮定する。次に、線形ネットワークを不安定にする(又はより正確には、λ=σ+jω(-1<ω≦1)においてA+Δ^の固有値を置く)、最小2-誘導ノルム加法的行摂動、Δ^∈Λ=eΓとΓ∈Rは、
【数8】
で与えられる。ここで、
【数9】
であり、k^は摂動が適用される行である。e∈Rはk番目の基本基底ベクトルである。
【0080】
2)証明:
【数10】
【0081】
σ+jωはA+Δの固有値であるので、
【数11】
となるように、∃v∈C,v≠0である。
【0082】
|・|は行列式を示すものとする。特性方程式から、
【数12】
である。
【0083】
λ(A)≠(σ+jω)であるから、|A-jωI|≠0かつ(A-jωI)-1が存在するので、(8)は、
【数13】
のように因数分解することができる。
【0084】
|AB|=|A||B|であることを思い出されたい。
【数14】
【0085】
適合行列C及びDの場合、|I-CD|=|I-DC|なので、
【数15】
である。
【0086】
式(2.11b)はまた、(両側の複素共役をとることによって)σ+jωがσ-jωによって置き換えられる場合にも予想どおり成り立つ。A+Δは実行列なので、その複素固有値は同じΓを持つ共役対として存在しなければならず、必然的に両方が生成される。今、
【数16】
を定義する。
【0087】
誘導2ノルムの定義により、
【数17】
である。
【0088】
||Δ||=||Δ||であり、Δのk番目の列のみが非ゼロであるため、最大値はx=eに対して達成される。
【数18】
【0089】
次に、(2.11b)、(2.12b)及び(2.12c)を使用して、等価最小化は、
【数19】
である。
【0090】
これは、ω、σ、及びkに対する未決定の最小二乗問題である。ここで、ωは、探索する周波数範囲の上限である。そして、最小の大きさΓは、(ω^,σ^,k^)で達成され、Δ^=ek^Γ^となる。
【数20】
【0091】
ω=0の場合、a(ω,σ,k)=0であるので、(2.15)の最初の条件は省略する必要があり、Γは期待される形に単純化される。
【数21】
【0092】
より一般的には、これらの結果は、対応する基本基底ベクトルに対して(2.15)における追加の直交性制約を含めることによって、特定の要素が行又は列内で乱されないままであることを保証するように拡張することができる。
【0093】
C.ネットワークの脆弱性のモデル推定及び計算
【0094】
この研究では、1kHzのサンプリングレートで記録された頭蓋内EEGデータを使用して、2人のMRE患者における発作発症ゾーンを同定するために、上記の離散時間ネットワーク脆弱性の摂動論を適用した。記録については、セクションII-Eで詳しく説明している。各患者は、使用可能なデータを埋め込まれたN個の電極を有していた。発作の60秒前から発作発症までのデータを使用した。次いで、500msのステップサイズを有する500msのスライドウィンドウ(重複なし)をこの期間にわたって移動させた。発作発症までの60秒間で、これは120ウィンドウを構成し、各ウィンドウに対してA行列が生成される。
【0095】
プロセスは以下のように進行する:500msウィンドウごとに、頭蓋内EEG記録から(式(2.1)の形式の)離散時間線形時不変モデルを構築し、それがj=1,2,...,120の場合のモデルの系列{A}につながった。具体的には、電極iからの各記録は、t∈[500(j-1),500j]についてモデルx(t+1)=Ax(t)によって生成されると仮定されるi=1,2,...,Nの場合の状態変数x(t)の実現と見なされた。各状態発展行列Aは、データとモデルとの間の二乗誤差を最小にすることによって推定された。すなわち、||x(t)-x^(t)||がAに対して最小化され、その結果、x^(t+1)=Ax^(t)となる。
【0096】
以下の変数は、例示的なデータウィンドウを説明するものである。本発明の実施形態は決してこれらの値に限定されない。
【数22】
【0097】
隣接行列のモデルは、データと未知数を線形連立方程式b=HXに変換し、次にX=H\bを使用してMATLABで最小二乗問題を解くことによって構築される。次の連立一次方程式は、各タイムステップに対するLTIモデルの回帰式を書き出すことで直接得られる:
【数23】
【0098】
モデル行列は、このように構成され、各ウィンドウについて解かれる。
【数24】
【0099】
Xについて解いた後、それを行列Aに変形することができる。次に、推定された各Aに対して、行摂動に対する最小ノルム摂動Γと、各ノードk=1,...,Nにおける対応する脆弱性メトリック||Δ^||を計算した。脆弱性メトリックは次のように計算される:
【数25】
【0100】
各時間ウィンドウにおける各チャンネルの推定された最小ノルム摂動を用いて、iEEG時系列データを使用して、経時的な各電極の脆弱性の変化を決定することができる。各時間ウィンドウjに対して、我々は、各電極kに対して1つずつ、N個の脆弱性値を有する。以下のように脆弱性行列Fを作成する:
【0101】
【数26】
【0102】
D.ネットワークの脆弱性を用いたEZ同定
【0103】
Fの各要素に閾値を適用することによってモデルを使用してEZが同定される。脆弱性メトリックには0.8の閾値が使用された。これはF行列を0と1の行列に変換し、この行列の行の和が各電極に対する重みを与える。これはランク付けされ、臨床医によって作成されたヒートマップと比較される臨床ヒートマップを作成する。多くの電極は0の重みを持つことができる。電極はEZの候補とは見なされない。
【0104】
線形時変モデルが有効であるかどうかを判断するために、計算されたA行列を使用してECoGデータのシミュレーションが実証された。図6A及び図6Bでは、シミュレーション対実際のECoGデータのウィンドウが示されており、各AはECoGデータを計算するために使用される。違いはあるが、多くの定性的な特徴は依然として維持されている。シミュレートされたデータはてんかんタイプの振る舞いを生成しないが、それでもなお発作間タイプのパターンを保存することは明らかである。
【0105】
分析は、それぞれ2回の発作を伴う2人の患者について行った。まず、各データセットについて最小ノルム摂動行列を計算した。最小ノルム摂動行列の一例を図7に示す。最小ノルム摂動行列は、「脆弱性マップ」とも呼ばれることがある。脆弱性マップは、各時点における各電極の相対的な脆弱性を示す。図7の例では、脆弱性マップは、時間=0秒での発作の発症前の60秒間の各電極についての相対的な脆弱性を示す。ある種の電極では、発作発症前の期間において、不安定性に必要な最小の摂動は著しく低くなる(領域700、702、及び704を参照)。幾つかの実施形態において、脆弱性マップ内の相対的な脆弱性を示すために色が使用される。
【0106】
これらの行列から、全てのF行列が計算された。臨床的に注釈が付けられたEZのほとんどの電極は、発作の約10秒前のある時点で、一貫した脆弱な状態、又は脆弱なノードへの移行のいずれかを示す。分析はまた、各患者について2つの異なる発作にわたって一貫しているように思われる。
【0107】
各患者に対する脆弱性行列を用いて、各発作に対して、最も脆弱なものから最も脆弱でないものの順に電極を重み付けすることができる。この分析で最も脆弱なノードは、行摂動による脆弱なノードに対応する。臨床的解釈は、これらの電極は、その領域への神経入力が乱されたときにてんかんネットワークを容易に不安定にさせる神経領域を覆うというものである。一般に、この方法は臨床的に注釈付きの電極を最も脆弱なノードとして正しくランク付けする。
【0108】
早発性及び遅発性発症における電極は、ある程度の脆弱性、又は発作発症に近い脆弱性への移行を示す。しかしながら、定性的な特徴はそれほど強くはない。電極重量に換算すると、これらの電極は臨床ヒートマップでは明らかではない。
【0109】
本明細書において、発作は、時変動的ネットワークシステムが不安定になる期間として特徴付けられる。てんかんネットワークの最も脆弱なノードは、てんかん原性領域(EZ)として定義される、発作を開始する脳の領域に対応する。(56)で導入されたノード脆弱性の導出が使用され、臨床目的のためにモニターされているてんかん患者から得られた皮質脳波(ECoG)記録に適用される。線形時変モデルは、発作発症の60秒前のウィンドウでのECoG記録から推定される。最も脆弱なノード(ECoGチャンネル)がモデルから計算される。各患者においててんかん皮質ネットワークを不安定にする最も脆弱なノードは、臨床注釈と高度の一致を有し、したがって現在困難で費用と時間のかかるプロセスであるEZの同定を助けるために使用できることが分かった。
【0110】
参考文献
【0111】
1. Brodie MJ, Shorvon SD, Canger R, et al. Commission on European Affairs: appropriate standards of epilepsy care across Europe.ILEA. Epilepsia. 1997;38(11):1245-1250.
【0112】
2. Berg AT, Kelly MM. Defining intractability: comparisons among published definitions. Epilepsia. 2006;47(2):431-436.
【0113】
3. Kwan P, Brodie MJ. Definition of refractory epilepsy: defining the indefinable? The Lancet. Neurology. 2010;9(1):27-29.
【0114】
4. Murray MI, Halpern MT, Leppik IE. Cost of refractory epilepsy in adults in the USA. Epilepsy research. 1996;23(2):139-148.
【0115】
5. Begley CE, Famulari M, Annegers JF, et al. The cost of epilepsy in the United States: an estimate from population-based clinical and survey data. Epilepsia. 2000;41(3):342-351.
【0116】
6. Begley CE, Durgin TL. The direct cost of epilepsy in the United States: A systematic review of estimates. Epilepsia. 2015;56(9):1376-1387.
【0117】
7. Ferro MA, Speechley KN. Stability of latent classes in group-based trajectory modeling of depressive symptoms in mothers of children with epilepsy: an internal validation study using a bootstrapping procedure. Social psychiatry and psychiatric epidemiology. 2013;48(7):1077-1086.
【0118】
8. Luders H, Schuele SU. Epilepsy surgery in patients with malformations of cortical development. Current opinion in neurology. 2006;19(2):169-174.
【0119】
9. Hermann BP, Seidenberg M, Dow C, et al. Cognitive prognosis in chronic temporal lobe epilepsy. Annals of neurology. 2006;60(1):80-87.
【0120】
10. Najm IM, Naugle R, Busch RM, Bingaman W, Luders H. Definition of the epileptogenic zone in a patient with non-lesional temporal lobe epilepsy arising from the dominant hemisphere. Epileptic disorders : international epilepsy journal with videotape. 2006;8 Suppl 2:S27-35.
【0121】
11. Rosenow F, Luders H. Presurgical evaluation of epilepsy. Brain : a journal of neurology. 2001;124(Pt 9):1683-1700.
【0122】
12. Bulacio JC, Jehi L, Wong C, et al. Long-term seizure outcome after resective surgery in patients evaluated with intracranial electrodes. Epilepsia. 2012;53(10):1722-1730.
【0123】
13. Wyllie E, Luders H, Morris HH, 3rd, et al. Subdural electrodes in the evaluation for epilepsy surgery in children and adults. Neuropediatrics. 1988;19(2):80-86.
【0124】
14. Jayakar P, Duchowny M, Resnick TJ. Subdural monitoring in the evaluation of children for epilepsy surgery. Journal of child neurology. 1994;9 Suppl 2:61-66.
【0125】
15. Adelson PD, O'Rourke DK, Albright AL. Chronic invasive monitoring for identifying seizure foci in children. Neurosurgery clinics of North America. 1995;6(3):491-504.
【0126】
16. Jayakar P. Invasive EEG monitoring in children: when, where, and what? Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 1999;16(5):408-418.
【0127】
17. Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Luders H. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain : a journal of neurology. 2007;130(Pt 2):574-584.
【0128】
18. Lopez-Gonzalez MA, Gonzalez-Martinez JA, Jehi L, Kotagal P, Warbel A, Bingaman W. Epilepsy surgery of the temporal lobe in pediatric population: a retrospective analysis. Neurosurgery. 2012;70(3):684-692.
【0129】
19. Widdess-Walsh P, Jeha L, Nair D, Kotagal P, Bingaman W, Najm I. Subdural electrode analysis in focal cortical dysplasia: predictors of surgical outcome. Neurology. 2007;69(7):660-667.
【0130】
20. Najm IM, Bingaman WE, Luders HO. The use of subdural grids in the management of focal malformations due to abnormal cortical development. Neurosurgery clinics of North America. 2002;13(1):87-92, viii-ix.
【0131】
21. Nair DR, Burgess R, McIntyre CC, Luders H. Chronic subdural electrodes in the management of epilepsy. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2008;119(1):11-28.
【0132】
22. Gonzalez-Martinez J, Bulacio J, Alexopoulos A, Jehi L, Bingaman W, Najm I. Stereoelectroencephalography in the "difficult to localize" refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia. 2013;54(2):323-330.
【0133】
23. Vadera S, Mullin J, Bulacio J, Najm I, Bingaman W, Gonzalez-Martinez J. Stereoelectroencephalography following subdural grid placement for difficult to localize epilepsy. Neurosurgery. 2013;72(5):723-729; discussion 729.
【0134】
24. Lee WS, Lee JK, Lee SA, Kang JK, Ko TS. Complications and results of subdural grid electrode implantation in epilepsy surgery. Surgical neurology. 2000;54(5):346-351.
【0135】
25. Rydenhag B, Silander HC. Complications of epilepsy surgery after 654 procedures in Sweden, September 1990-1995: a multicenter study based on the Swedish National Epilepsy Surgery Register. Neurosurgery. 2001;49(1):51-56; discussion 56-57.
【0136】
26. Hamer HM, Morris HH, Mascha EJ, et al. Complications of invasive video-EEG monitoring with subdural grid electrodes. Neurology. 2002;58(1):97-103.
【0137】
27. Gonzalez-Martinez J, Lachhwani D. Stereoelectroencephalography in children with cortical dysplasia: technique and results. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery. 2014;30(11):1853-1857.
【0138】
28. Gonzalez-Martinez J, Mullin J, Bulacio J, et al. Stereoelectroencephalography in children and adolescents with difficult-to-localize refractory focal epilepsy. Neurosurgery. 2014;75(3):258-268; discussion 267-258.
【0139】
29. Gonzalez-Martinez J, Mullin J, Vadera S, et al. Stereotactic placement of depth electrodes in medically intractable epilepsy. Journal of neurosurgery. 2014;120(3):639-644.
【0140】
30. Gonzalez-Martinez JA, Srikijvilaikul T, Nair D, Bingaman WE. Long-term seizure outcome in reoperation after failure of epilepsy surgery. Neurosurgery. 2007;60(5):873-880; discussion 873-880.
【0141】
31. Vaugier L, Aubert S, McGonigal A, et al. Neural networks underlying hyperkinetic seizures of "temporal lobe" origin. Epilepsy research. 2009;86(2-3):200-208.
【0142】
32. Thornton R, Vulliemoz S, Rodionov R, et al. Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging. Annals of neurology. 2011;70(5):822-837.
【0143】
33. Spiegler A, Jirsa V. Systematic approximations of neural fields through networks of neural masses in the virtual brain. NeuroImage. 2013;83:704-725.
【0144】
34. Serletis D, Bulacio J, Bingaman W, Najm I, Gonzalez-Martinez J. The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. Journal of neurosurgery. 2014;121(5):1239-1246.
【0145】
35. Lega B, Dionisio S, Flanigan P, et al. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography. Epilepsy research. 2015;115:17-29.
【0146】
36. Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. Brain : a journal of neurology. 2014;137(Pt 8):2210-2230.
【0147】
37. Bonini F, McGonigal A, Wendling F, et al. Epileptogenic networks in seizures arising from motor systems. Epilepsy research. 2013;106(1-2):92-102.
【0148】
38. Wendling F, Bartolomei F, Bellanger JJ, Chauvel P. Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2001;112(7):1201-1218.
【0149】
39. Bartolomei F, Wendling F, Bellanger JJ, Regis J, Chauvel P. Neural networks involving the medial temporal structures in temporal lobe epilepsy. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2001;112(9):1746-1760.
【0150】
40. Fisher RS. Therapeutic devices for epilepsy. Annals of neurology. 2012;71(2):157-168.
【0151】
41. Gonzalez-Martinez J, Najm IM. Indications and selection criteria for invasive monitoring in children with cortical dysplasia. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery. 2014;30(11):1823-1829.
【0152】
42. Talairach J, Tournoux P, Musolino A, Missir O. Stereotaxic exploration in frontal epilepsy. Advances in neurology. 1992;57:651-688.
【0153】
43. Talairach J, Szikla G. Application of stereotactic concepts to the surgery of epilepsy. Acta neurochirurgica. Supplementum. 1980;30:35-54.
【0154】
44. Talairach J, Szikla G. [Amygdalo-hippocampal partial destruction by yttrium-90 in the treatment of certain epilepsies of rhinencephalic manifestation]. Neuro-Chirurgie. 1965;11(3):233-240.
【0155】
45. Bancaud J TJ. La Stereo-ElectroEncephaloGraphie dans l'epilepsie. . In: Cie M, ed. Paris1965.
【0156】
46. Bancaud J, Talairach J, Waltregny P, Bresson M, Morel P. Activation by Megimide in the topographic diagnosis of focal cortical epilepsies (clinical EEG and SEEG study ). Electroencephalography and clinical neurophysiology. 1969;26(6):640.
【0157】
47. Bancaud J, Talairach J, Waltregny P, Bresson M, Morel P. [Stimulation of focal cortical epilepsies by megimide in topographic diagnosis. (Clinical EEG and SEEG study)]. Revue neurologique. 1968;119(3):320-325.
【0158】
48. Bancaud J, Talairach J, Morel P, et al. "Generalized" epileptic seizures elicited by electrical stimulation of the frontal lobe in man. Electroencephalography and clinical neurophysiology. 1974;37(3):275-282.
【0159】
49. Bancaud J, Talairach J, Morel P, Bresson M. [Ammon's horn and amygdaline nucleus: clinical and electric effects of their stimulation in man]. Revue neurologique. 1966;115(3):329-352.
【0160】
50. Bancaud J, Talairach J, Lamarche M, Bonis A, Trottier S. [Neurophysiopathological hypothesis on startle epilepsy in man]. Revue neurologique. 1975;131(8):559-571.
【0161】
51. Bancaud J, Talairach J, Geier S, Bonis A, Trottier S, Manrique M. [Behavioral manifestations induced by electric stimulation of the anterior cingulate gyrus in man]. Revue neurologique. 1976;132(10):705-724.
【0162】
52. Munari C, Giallonardo AT, Brunet P, Broglin D, Bancaud J. Stereotactic investigations in frontal lobe epilepsies. Acta neurochirurgica. Supplementum. 1989;46:9-12.
【0163】
53. Munari C, Bossi L, Stoffels C, et al. [Cerebral concentrations of anticonvulsants in patients with epilepsy of tumoral origin (author's transl)]. Revue d'electroencephalographie et de neurophysiologie clinique. 1982;12(1):38-43.
【0164】
54. Munari C, Bancaud J, Bonis A, Buser P, Talairach J, Szikla G. [Role of the amygdala in the occurence of oro-alimentary signs of during epileptic seizures in man (author's transl)]. Revue d'electroencephalographie et de neurophysiologie clinique. 1979;9(3):236-240.
【0165】
55. Cardinale F, Lo Russo G. Stereo-electroencephalography safety and effectiveness: Some more reasons in favor of epilepsy surgery. Epilepsia. 2013;54(8):1505-1506.
【0166】
56. Sritharan D., Sarma SV (2014) Fragility in Dynamic Networks: Application to Neural Networks in the Epileptic Cortex. Neural Comput. 2014 Oct;26(10):2294-327. doi: 10.1162/NECO_a_00644. Epub 2014 Jul 24. PMID: 25058705
【0167】
57. Gonzalez-Martinez J, Jirsa, V., Chauvel, P.; Sarma, S; Gale J; Najm, I. Modulating Epileptic Networks by SEEG guided laser ablations. American Epilepsy Society; 2015; Philadelpia.
【0168】
63. Medvid R, Ruiz A, Komotar RJ, et al. Current Applications of MRI-Guided Laser Interstitial Thermal Therapy in the Treatment of Brain Neoplasms and Epilepsy: A Radiologic and Neurosurgical Overview. AJNR. American journal of neuroradiology. 2015.
【0169】
64. Lewis EC, Weil AG, Duchowny M, Bhatia S, Ragheb J, Miller I. MR-guided laser interstitial thermal therapy for pediatric drug-resistant lesional epilepsy. Epilepsia. 2015.
【0170】
65. Hawasli AH, Bandt SK, Hogan RE, Werner N, Leuthardt EC. Laser ablation as treatment strategy for medically refractory dominant insular epilepsy: therapeutic and functional considerations. Stereotactic and functional neurosurgery. 2014;92(6):397-404.
【0171】
66. Gross RE, Mahmoudi B, Riley JP. Less is more: novel less-invasive surgical techniques for mesial temporal lobe epilepsy that minimize cognitive impairment. Current opinion in neurology. 2015;28(2):182-191.
【0172】
67. Gonzalez-Martinez J, Vadera S, Mullin J, et al. Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Neurosurgery. 2014;10 Suppl 2:167-172; discussion 172-163.
【0173】
68. Willie JT, Laxpati NG, Drane DL, et al. Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Neurosurgery. 2014;74(6):569-584; discussion 584-565.
【0174】
69. Willie JT, Gross RE. 202 Role of Repeat Ablation to Treat Seizure Recurrence Following Stereotactic Laser Amygdalohippocampotomy. Neurosurgery. 2015;62 Suppl 1:233-234.
【0175】
70. Waseem H, Osborn KE, Schoenberg MR, et al. Laser ablation therapy: An alternative treatment for medically resistant mesial temporal lobe epilepsy after age 50. Epilepsy & behavior : E&B. 2015;51:152-157.
【0176】
71. Tovar-Spinoza Z, Carter D, Ferrone D, Eksioglu Y, Huckins S. The use of MRI-guided laser-induced thermal ablation for epilepsy. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery. 2013;29(11):2089-2094.
【0177】
72. Sun XR, Patel NV, Danish SF. Tissue Ablation Dynamics During Magnetic Resonance-Guided, Laser-Induced Thermal Therapy. Neurosurgery. 2015;77(1):51-58; discussion 58.
【0178】
73. Esquenazi Y, Kalamangalam GP, Slater JD, et al. Stereotactic laser ablation of epileptogenic periventricular nodular heterotopia. Epilepsy research. 2014;108(3):547-554.
【0179】
74. Curry DJ, Gowda A, McNichols RJ, Wilfong AA. MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy & behavior : E&B. 2012;24(4):408-414.
【0180】
75. Engel J, Jr., Henry TR, Risinger MW, et al. Presurgical evaluation for partial epilepsy: relative contributions of chronic depth-electrode recordings versus FDG-PET and scalp-sphenoidal ictal EEG. Neurology. 1990;40(11):1670-1677.
【0181】
76. Gonzalez-Martinez J. Convergence of Stereotactic Surgery and Epilepsy: The Stereoelectroencephalography Method. Neurosurgery. 2015;62 Suppl 1:117-122.
【0182】
77. Mullin JP, Shriver M, Alomar SA, Najm I, Gonzalez-Martinez JA. Is Stereotacticelectroencephalography Safe? A Systematic Review and Meta-Analysis of Stereo-electroencephalography-Related Complications. Neurosurgery. 2016 Aug;63
【0183】
78. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. (1963) Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441.
【0184】
79. Berg, AT. Identification of Pharmacoresistant Epilepsy. Neurol Clin 27 (2009) 1003-1013.
【0185】
80. Sun F, Morrell M, Wharen R. Responsive Cortical Stim¬ulation for the Treatment of Epilepsy. Neurotherapeutics. 2008 Jan;5:68-74.
【0186】
81. McIntosh AM, Kalnins RM, Mitchell LA, Fabinyi GC, Briellmann RS, Berkovic SF. Temporal lobectomy: long-term seizure outcome, late recurrence and risks for seizure recurrence. Brain. 2004 Sep;127(Pt 9):2018-30. Epub 2004 Jun 23.
【0187】
82. Jeha LE, Najm IM, Bingaman WE, Khandwala F, Widdess-Walsh P, Morris HH, Dinner DS, Nair D, Foldvary-Schaeffer N, Prayson RA, Comair Y, O'Brien R, Bulacio J, Gupta A, Luders HO. Predictors of outcome after temporal lobectomy for the treatment of intractable epilepsy. Neurology. 2006 Jun 27;66(12):1938-40.
【0188】
83. See SJ, Jehi LE, Vadera S, Bulacio J, Najm I, Bingaman W. Surgical Outcomes in Patients With Extratemporal Epilepsy and Subtle or Normal Magnetic Resonance Imaging Findings. Neurosurgery. 2013 Jul;73(1): 68-7; discussion 76-7.
【0189】
本明細書に例示され論じられている実施形態は、本発明をどのようにして製造し使用するかを当業者に教示することだけを意図している。本発明の実施形態を説明する際に、明確にするために特定の専門用語が使用される。しかしながら、本発明はそのように選択された特定の専門用語に限定されることを意図しない。本発明の上記の実施形態は、上記の教示に照らして当業者には理解されるように、本発明から逸脱することなく修正又は変更することができる。したがって、特許請求の範囲及びその同等物の範囲内で、本発明は具体的に記載されたものとは別の方法で実施されてもよいことを理解されたい。
図1
図2
図3
図4
図5A
図5B
図5C
図6A
図6B
図7-1】
図7-2】
図7-3】