(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-01
(45)【発行日】2022-08-09
(54)【発明の名称】テトラヒドロほう酸塩の製造方法及びテトラヒドロほう酸塩
(51)【国際特許分類】
C01B 6/21 20060101AFI20220802BHJP
【FI】
C01B6/21
(21)【出願番号】P 2018076611
(22)【出願日】2018-04-12
【審査請求日】2020-04-20
(73)【特許権者】
【識別番号】000191009
【氏名又は名称】新東工業株式会社
(74)【代理人】
【識別番号】100088155
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100161425
【氏名又は名称】大森 鉄平
(72)【発明者】
【氏名】長坂 政彦
【審査官】廣野 知子
(56)【参考文献】
【文献】米国特許出願公開第2006/0106195(US,A1)
【文献】米国特許出願公開第2006/0103318(US,A1)
【文献】特開2004-224684(JP,A)
【文献】特開2006-143537(JP,A)
【文献】国際公開第2015/190403(WO,A1)
【文献】特開2005-097047(JP,A)
【文献】特開2002-193604(JP,A)
【文献】特開平8-67503(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C01B 6/00-6/34
C01B 35/00-35/18
JSTPlus(JDreamIII)
JST7580(JDreamIII)
JSTChina(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
ほう酸塩を水素プラズマにさらすプラズマ処理工程を備える、テトラヒドロほう酸塩の製造方法。
【請求項2】
前記水素プラズマが、水素ガス及び炭化水素ガスの少なくとも一種を含む原料ガスを用いて生成される、請求項1に記載の製造方法。
【請求項3】
前記水素プラズマが、マイクロ波プラズマ又はRFプラズマである、請求項1又は2に記載の製造方法。
【請求項4】
前記プラズマ処理工程前に、前記ほう酸塩を加熱する予備加熱工程をさらに備える、請求項1~3のいずれか一項に記載の製造方法。
【請求項5】
前記プラズマ処理工程を前記ほう酸塩を加熱しながら実施する、請求項1~4のいずれか一項に記載の製造方法。
【請求項6】
前記プラズマ処理工程を前記ほう酸塩を流動させながら実施する、請求項1~5のいずれか一項に記載の製造方法。
【請求項7】
前記ほう酸塩の平均粒子径が500μm以下である、請求項1~6のいずれか一項に記載の製造方法。
【請求項8】
前記ほう酸塩がメタほう酸ナトリウムである、請求項1~7のいずれか一項に記載の製造方法。
【請求項9】
前記プラズマ処理工程前に、テトラヒドロほう酸塩と水とを反応させてほう酸塩を得るほう酸塩調製工程をさらに備える、請求項1~8のいずれか一項に記載の製造方法。
【請求項10】
下記一般式(A)又は(B)で表される組成を有するテトラヒドロほう酸塩。
M
xB
yH
z (A)
N
sB
tH
u (B)
[式(A)中、MはLi、Na及びKからなる群より選択される少なくとも一種であり、xは0.05以上1.0未満であり、yは0.6以上1.0未満であり、zは4.0である。式(B)中、NはCa及びMgからなる群より選択される少なくとも一種であり、sは0.05以上1.0未満であり、tは1.2以上2.0未満であり、uは8.0である。]
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、テトラヒドロほう酸塩の製造方法及びテトラヒドロほう酸塩に関する。
【背景技術】
【0002】
ほう酸塩を水素化することによりテトラヒドロほう酸塩を製造する方法として、約550℃、2.3MPaの水素雰囲気下で、メタほう酸ナトリウム粉末とマグネシウム粉末とを2時間程度反応させる方法が知られている。(例えば、特許文献1参照)。また、別の方法として、約300℃、1MPaの水素雰囲気下で、メタほう酸ナトリウム粉末と粒状アルミニウムとを、粒状アルミニウムを圧延粉砕しながら1時間程度反応させる方法が知られている(例えば、特許文献2)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2004-224684号公報
【文献】国際公開第2015/190403号
【発明の概要】
【発明が解決しようとする課題】
【0004】
これらの特許文献に記載された技術では、大容積反応容器内の雰囲気を1時間以上にわたって高温高圧に保つ必要があり、外部から大量のエネルギーを投入し続ける必要がある。また、当該技術では、還元金属としてマグネシウムやアルミニウムを消耗材として消費するため、産業応用した場合には非常に高コストなプロセスを含むこととなる。さらには、1バッチの処理時間に1時間以上を要するため、生産性が上がらず、産業応用に適さないという問題点がある。このように、テトラヒドロほう酸塩の製造分野においては、産業応用の観点から満足のいく製造方法が確立されていないのが現状である。
【0005】
本開示は上記事情に鑑みてなされたものであり、テトラヒドロほう酸塩の新規な製造方法を提供することを目的とする。本開示はまた、当該製造方法により得られるテトラヒドロほう酸塩を提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示の一態様に係るテトラヒドロほう酸塩の製造方法は、ほう酸塩を水素プラズマにさらすプラズマ処理工程を備えるものである。
【0007】
一実施形態において、水素プラズマは、水素ガス及び炭化水素ガスの少なくとも一種の原料ガスを用いて生成されたものであってもよい。
【0008】
一実施形態において、水素プラズマは、マイクロ波プラズマ又はRFプラズマであってもよい。
【0009】
一実施形態において、上記製造方法は、プラズマ処理工程前に、ほう酸塩を加熱する予備加熱工程をさらに備えていてもよい。
【0010】
一実施形態において、プラズマ処理工程をほう酸塩を加熱しながら実施してもよい。
【0011】
一実施形態において、プラズマ処理工程をほう酸塩を流動させながら実施してもよい。
【0012】
一実施形態において、ほう酸塩の平均粒子径は500μm以下であってもよい。
【0013】
一実施形態において、ほう酸塩はメタほう酸ナトリウムであってもよい。
【0014】
一実施形態において、上記製造方法は、プラズマ処理工程前に、テトラヒドロほう酸塩と水とを反応させてほう酸塩を得る工程をさらに備えていてもよい。
【0015】
本開示の一態様に係るテトラヒドロほう酸塩は、下記一般式(A)又は(B)で表される組成を有する。
MxByHz (A)
NsBtHu (B)
式(A)中、MはLi、Na及びKからなる群より選択される少なくとも一種であり、xは0.05以上1.0未満であり、yは0.6以上1.0未満であり、zは4.0である。式(B)中、NはCa及びMgからなる群より選択される少なくとも一種であり、sは0.05以上1.0未満であり、tは1.2以上2.0未満であり、uは8.0である。
【発明の効果】
【0016】
本開示によれば、テトラヒドロほう酸塩の新規な製造方法を提供することができる。本開示によれば、当該製造方法により得られるテトラヒドロほう酸塩を提供することができる。本開示の製造方法は低コストかつ高生産性を実現することができるため、産業応用に非常に適していると言える。
【図面の簡単な説明】
【0017】
【
図1】テトラヒドロほう酸塩の製造装置の一例を示す模式図である。
【発明を実施するための形態】
【0018】
以下、場合により図面を参照しつつ本開示の実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。
【0019】
<テトラヒドロほう酸塩の製造方法>
本実施形態に係るテトラヒドロほう酸塩の製造方法は、ほう酸塩を水素プラズマにさらすプラズマ処理工程を備えるものである。
【0020】
(プラズマ処理工程)
プラズマ処理工程では極めて活性の高い水素ラジカル(Hラジカル)や水素イオンによりほう酸塩を処理する。この際、ほう酸塩が有する酸素原子の結合部が切断されて酸素原子が除去され、また酸素原子が結合していた電子対に水素原子が結合することで、ほう酸塩の水素化が行われる。例えば、ほう酸塩としてメタほう酸ナトリウムを用いた場合、本工程にて以下の反応(1)が生じると考えられる。
NaBO2+4H2→NaBH4+2H2O (1)
【0021】
本工程においては、ほう酸塩を水素化してテトラヒドロほう酸塩を製造するにあたり、反応容器を高温高圧に保つ必要がなく、外部から大量のエネルギーを投入し続ける必要がない。また、水素プラズマを使うことで従来プロセスと比較して処理時間が大幅に短くなるため、生産性を向上することができる。そのため、ほう酸塩を水素化してテトラヒドロほう酸塩を高速かつ大量に製造することができる。
【0022】
プラズマ処理工程では、マグネシウムやアルミニウム等の還元金属(還元剤)を必須としない。そのため、還元金属の原材料コストが不要となり、従来プロセスと比較して格段に低コストを実現することができる。また、マグネシウムやアルミニウム等の還元金属を使った水素化プロセスの場合、処理後の被処理物中ではテトラヒドロほう酸塩と酸化金属(酸化マグネシウムや酸化アルミニウム)とが混在した状態となる。そのため、還元金属を必須とする従来プロセスにおいてはこれらの分離処理が別途必要となり製造コストが高くなるだけでなく、製造時間が長くなる問題がある。一方、本製造方法によればそのような問題が生じない。ただし、上記記載は、本実施形態において還元金属の使用を排除するものではない。
【0023】
プラズマ処理工程は、半導体プロセス等に一般的に使用されるもの用いることができるため、装置コスト及び運用コスト共に安価に抑えることができる。
【0024】
このように、プラズマ処理工程を備える本実施形態に係る製造方法は、産業応用に適したものであると言うことができる。
【0025】
水素プラズマ処理に用いる水素プラズマは、水素(H)を構成元素として含有するガス、例えば、水素ガス及び炭化水素ガスの少なくとも一種を含む原料ガスを用いて生成することができる。また、NH3ガス等も用いることができる。なお、炭化水素(CH4、C2H2、C6H6等)のように水素よりも酸化しやすい元素を含むガスを用いることで、ほう酸塩が有する酸素原子の結合部を切断して酸素原子を除去する効果をより高くすることができる。これにより、テトラヒドロほう酸塩の製造速度向上が見込まれる。同じ効果を狙って、原料ガスには、一酸化炭素等のような水素よりも酸化し易い元素を含むガスが含まれていてもよい。そのようなガスを水素(H)を構成元素として含有するガスと組み合わせて用いることで、ほう酸塩が有する酸素原子の結合部を切断して酸素原子を除去する効果をより高くすることができる。なお、原料ガスには、アルゴンガス、ヘリウムガス、ネオンガス等のような、水素との組み合わせにおいてペニング効果が生じるガスが含まれていてもよい。これにより水素プラズマ濃度を高く保つことができるとともに、水素プラズマを安定的かつ広範囲に発生させることができるため、テトラヒドロほう酸塩の製造速度向上が見込まれる。密度の高い水素プラズマを発生させるためには、例えば10~150Pa程度に原料ガスを減圧することが好ましい。
【0026】
水素プラズマは、マイクロ波プラズマ(マイクロ波によって励起されたプラズマ)及びRFプラズマ(RF(Radio Frequency)によって励起されたプラズマ)のいずれであってもよい。これらのプラズマは、パルス励起されたものであってもよく、直流励起されたものであってもよい。
【0027】
マイクロ波を用いることで、高密度広範囲の非平衡水素プラズマが発生するため、テトラヒドロほう酸塩を製造する速度を早めることができる。また、ほう酸塩から解離した酸素原子が水素プラズマと反応して生成される水を、マイクロ波によって効果的に加熱蒸発あるいは電離させることができるので、製造されたテトラヒドロほう酸塩と水とが反応してほう酸塩に戻ることを抑制することができる。これにより、テトラヒドロほう酸塩を製造する速度を速めることができる。
【0028】
マイクロ波としては、例えば、産業上使用可能な周波数帯であり、かつ密度の高い非平衡水素プラズマを生成可能な周波数1GHz以上のマイクロ波を用いることができ、好適には周波数2.45GHzのマイクロ波を用いることができる。
【0029】
マイクロ波プラズマの場合、例えば、水素プラズマ雰囲気を生成する際のマイクロ波電力は300W以上とすることができる。また、ほう酸塩をプラズマ処理する時間は、ほう酸塩の量やプラズマ密度にも依るが、例えば1時間以下とすることができ、0.5時間以下であってもよい。
【0030】
一方、RFプラズマは産業界で広く用いられているプラズマであるため、装置コスト及び運用コスト共に安価に抑えることができる。RFプラズマにより広範囲の非平衡水素プラズマが発生するため、テトラヒドロほう酸塩を製造する速度を早めることができる。RFプラズマの生成に用いられる励起周波数は、法規制の観点から日本国内では13.56MHzが一般的である。
【0031】
プラズマ処理工程は、ほう酸塩を加熱しながら実施することができる。本工程においては、ほう酸塩に対するプラズマ処理により、ほう酸塩から解離した酸素と水素プラズマとが反応して水が生じる。そのため、ほう酸塩を加熱しながらプラズマ処理を実施することで、生成した水と、ほう酸塩が水素化されて生じるテトラヒドロほう酸塩とが反応してしまうことをより抑制し易くなる。なお、上記のとおりマイクロ波プラズマを用いる場合は、当該マイクロ波によってもこの効果を得ることができる。加熱温度は40~300℃とすることができる。
【0032】
プラズマ処理工程におけるプラズマは平衡プラズマであってもよい。これにより水素プラズマ密度及びイオン温度を高くすることができるので、ほう酸塩の酸素原子の結合部を切断して酸素原子を解離する効果が高くなる。これにより、テトラヒドロほう酸塩を製造する速度を早めることができる。また、ほう酸塩から解離した酸素原子と水素プラズマとの結合によって生成される水を高エネルギーにより効果的に蒸発あるいは電離させることができるので、製造されたテトラヒドロほう酸塩と水とが反応してほう酸塩に戻ることを防ぐことができる。これにより、テトラヒドロほう酸塩を製造する速度を速めることができる。
【0033】
プラズマ処理工程は、ほう酸塩を流動させながら実施することができる。これにより、メタほう酸塩をプラズマにより満遍なく処理することができる。
【0034】
ほう酸塩は、還元剤と共にプラズマ処理に供されてもよい。還元剤としては、マグネシウム(マグネシウム系材料)、アルミニウム(アルミニウム系材料)、鉄(鉄系材料)等の還元金属粉末や、炭素粉末が挙げられる。これにより、プラズマ処理によりほう酸塩から解離する酸素原子をトラップし、酸素原子と水素プラズマとが反応して水が生成されることを抑制し易くなる。プラズマ処理後に、場合によってはテトラヒドロほう酸塩と還元剤に由来する不純物(主に金属酸化物)とを分離する工程が必要となるものの、還元剤の作用によりプラズマ処理により水が生成することを抑制し易くなるため、プラズマ処理効率自体は向上させることができる。
【0035】
ほう酸塩は、吸湿剤と共にプラズマ処理に供されてもよい。吸湿剤としては、生石灰、シリカゲル、ベントナイト、塩化マグネシウム、塩化カルシウム等が挙げられる。これにより、上記のとおりプラズマ処理により生じる水を除去することができるため、プラズマ処理効率をより向上させることができる。
【0036】
(予備加熱工程)
本実施形態に係る製造方法は、プラズマ処理工程前に、ほう酸塩を加熱する予備加熱工程をさらに備えていてもよい。本工程により、ほう酸塩水和物が結晶水として含んでいる水を予め除去することができる。そのため、プラズマ処理工程において無用の水分が存在せず、プラズマ処理効率を向上でき、テトラヒドロほう酸塩を製造する速度を速めることができる。
【0037】
予備加熱工程は、ほう酸塩の種類や量に依るが、例えば40~300℃にて0.1~1時間の条件にて実施することができる。
【0038】
(ほう酸塩調製工程)
本実施形態に係る製造方法は、プラズマ処理工程前に(かつ予備加熱工程を設ける場合は当該予備加熱工程前に)、テトラヒドロほう酸塩と水とを反応させてほう酸塩を得る工程をさらに備えていてもよい。テトラヒドロほう酸塩を水素キャリアとして用い、水素の需要場にてテトラヒドロほう酸塩に水を加えることにより水素を取出して使用した後、その化学反応において生じた残渣であるほう酸塩を水素供給場に戻して再度水素化することで、テトラヒドロほう酸塩を再生することができる。脱水素と再水素化を繰り返し生じさせて水素を輸送貯蔵できるので、安価に水素を輸送貯蔵することが可能になる。例えば、テトラヒドロほう酸塩としてテトラヒドロほう酸ナトリウムを用いた場合、本工程にて以下の反応(2)が生じると考えられる。
NaBH4+2H2O→NaBO2+4H2 (2)
【0039】
<ほう酸塩及びテトラヒドロほう酸塩>
(ほう酸塩)
ほう酸塩としては、例えばメタほう酸塩、四ほう酸塩、五ほう酸塩等のほう酸塩が挙げられる。メタほう酸塩としては、例えばNaBO2、KBO2、LiBO2、Ca(BO2)2、Mg(BO2)2等が挙げられる。四ほう酸塩としては、例えばNa2B4O7、Na2O・2BO3、K2O・B2O3、Li2B4O7、Mg3B4O9等が挙げられる。五ほう酸塩としては、例えばNaB5O8、Na2O・5B2O3、KB5O8、K2O・5B2O9、LiB5O8等が挙げられる。また、天然のほう酸塩鉱物であるNa2B4O7・10H2O、Na2B4O7・4H2O、Ca2B6O11・5H2O、CaNaB5O9・6H2O、Mg7Cl2B17O30等を用いることもできる。入手容易性、入手コスト、化学的安定性、水素脱着容易性、水素貯蔵密度等の観点からは、ほう酸塩としてメタほう酸ナトリウムを用いてもよい。
【0040】
ほう酸塩は、プラズマ処理効率をより向上するという観点から粉末状とすることができる。その際、ほう酸塩の平均粒子径は、500μm以下とすることができ、100μm以下であってもよい。下限は特に限定されないが、5μmとすることができる。
【0041】
(テトラヒドロほう酸塩)
テトラヒドロほう酸塩としては、上記に例示したほう酸塩に対応する水素化物が挙げられる。例えば、ほう酸塩としてメタほう酸塩を用いた場合、NaBH4、KBH4、LiBH4、Ca(BH4)2、Mg(BH4)2等が挙げられる。
【0042】
ただし、本実施形態に係る製造方法により得られるテトラヒドロほう酸塩は、下記一般式(A)又は(B)で表される組成を有するものを含む。
MxByHz (A)
NsBtHu (B)
式(A)中、MはLi、Na及びKからなる群より選択される少なくとも一種であり、xは0.05以上1.0未満であり0.5以上1.0未満であってもよく、yは0.6以上1.0未満であり、zは4.0である。式(B)中、NはCa及びMgからなる群より選択される少なくとも一種であり、sは0.05以上1.0未満であり0.5以上1.0未満であってもよく、tは1.2以上2.0未満であり、uは8.0である。
【0043】
このように、本実施形態に係る製造方法によると、化学量論組成からずれた組成を有するテトラヒドロほう酸塩を得ることができる。この理由は定かではないが、水素化に際し水素プラズマを用いることで、プラズマを構成する粒子によりホウ酸塩中の一部元素(Li,Na,K,Ca,Mg等)が外部にはじき出されるという現象が生じているのではないかと推察される。
【0044】
なお、このようなテトラヒドロほう酸塩は、ほう酸塩のプラズマ処理物(混合物)中に存在するものであるため、テトラヒドロほう酸塩の組成分析をすることで、テトラヒドロほう酸塩がプラズマ処理を経て得られたものであるか否かを検知することができる。すなわち、上記式(A)及び(B)で表される組成を有するテトラヒドロほう酸塩は、検知に際してのマーカーとして使用することができる。
【0045】
<テトラヒドロほう酸塩の製造装置>
図1は、テトラヒドロほう酸塩の製造装置の一例を示す模式図である。
図1に示す装置100は、雰囲気および圧力調整可能に設計された反応容器10、反応容器10内に設けられほう酸塩Sを載置可能とした試料ホルダ11、反応容器10外に設けられ試料ホルダ11を加熱するための赤外線加熱装置12、赤外線加熱装置12から赤外線を試料ホルダ11まで伝導させるためのガラス伝導ロッド13、試料ホルダ11内のほう酸塩Sを流動させるための振動発生器14、及び反応容器10に配管15を介して取り付けられ反応容器10内の雰囲気を排気することができる真空ポンプ16を備えるほう酸塩処理機構と、マイクロ波発振器20、アイソレーター21、パワーモニター22、チューナー23、及び矩形同軸導波路変換器24を備えるマイクロ波発生機構と、炭化水素ガスボンベ30、水素ガスボンベ31、及び水素混合ガスボンベ32を備える原料ガス供給機構と、を備える。
【0046】
また、同装置100は、マイクロ波発生機構から発振されるマイクロ波をほう酸処理機構に伝導させる可撓同軸導波路40、可撓同軸導波路40と反応容器10との間に設けられ、雰囲気を遮蔽しながらマイクロ波が伝搬可能である石英板(誘電体)41、及び原料ガス供給機構から供給される原料ガスをほう酸塩処理機構に供給する配管42を備える。
【0047】
なお、反応容器10内では、導入された原料ガスが所定圧力に減圧され、マイクロ波による電界によって加速させた電子と原料ガス分子とが衝突電離をすることでプラズマPが発生する。これにより、ほう酸塩がプラズマ処理され、テトラヒドロほう酸塩を得ることができる。
【実施例】
【0048】
以下、実施例により本開示をさらに詳しく説明するが、本開示はこれらの実施例に限定されるものではない。
【0049】
(実験例)
図1に示す装置を用いて、テトラヒドロほう酸塩の製造を行った。ほう酸塩としてNaBO
2・4H
2O(メタほう酸ナトリウム四水和物:キシダ化学株式会社製、含量98質量%)を準備した。これをボールミルで粉砕処理しながら160℃で15分間加熱して結晶水を除去し、粉状のNaBO
2(無水メタほう酸ナトリウム)を得た。粉状のNaBO
2の平均粒子径は100μmであった。平均粒子径はデジタルマイクロスコープにより測定した。
【0050】
次に、粉状のNaBO2(試料S)を1.0g秤量して試料ホルダ11に載せ、試料ホルダ11を反応容器10内に載置した。反応容器10としては容積が2.5Lのものを使用した。反応容器10内を10-4Paとなるまで真空排気し、水素ガスを、流量が50sccmとなるよう調整して反応容器10内に供給した。そして、反応容器10内の圧力が110Paに維持されるよう排気速度を調整した。赤外線加熱装置12の電源を入れ、ガラス伝導ロッド13及び試料ホルダ11を介して試料Sを160℃に加熱した。
【0051】
マイクロ波発振器20の電源を入れ、反応容器10内に周波数2.45GHzのマイクロ波を入射した。その際、マイクロ波反射電力が最小となるようにチューナー23にて調整した。マイクロ波入射電力は350W、マイクロ波反射電力は70Wであった。反応容器10内にマイクロ波で励起された水素プラズマが発生し、試料ホルダ11に載せられた試料Sをプラズマ処理した。プラズマ処理中は、振動発生器14により試料ホルダ11に振動を与え、試料Sを流動させた。プラズマ処理時間は30分間とした。
【0052】
上記所定の処理時間経過後、マイクロ波発振器20、振動発生器14、及び赤外線加熱装置12の電源を切り、水素ガスの供給を停止した。その後、反応容器10内を大気解放し、プラズマ処理された試料を取り出した。
【0053】
(評価)
フーリエ変換赤外分光光度計FT/IR-6300(日本分光株式会社製、製品名)を用いて、試料の赤外吸収スペクトルを測定した。測定の結果、無水メタほう酸ナトリウムに由来するB-O結合のピークが減少し、テトラヒドロほう酸ナトリウムに由来するB-H結合のピークが増加した。これにより、無水メタほう酸ナトリウムに対するプラズマ処理により、テトラヒドロほう酸ナトリウムが得られることを確認した。
【0054】
また、プラズマ処理後の試料について、XRDにより結晶構造を解析した。得られた試料にはNa0.6B0.9H4.0という組成を有するテトラヒドロほう酸ナトリウムが含まれていた。
【符号の説明】
【0055】
10…反応容器、11…試料ホルダ、12…赤外線加熱装置、13…ガラス伝導ロッド、14…振動発生器、15…配管、16…真空ポンプ、20…マイクロ波発振器、21…アイソレーター、22…パワーモニター、23…チューナー、24…矩形同軸導波路変換器、30…炭化水素ガスボンベ、31…水素ガスボンベ、32…水素混合ガスボンベ、40…可撓同軸導波路、41…石英板(誘電体)、42…配管、100…テトラヒドロほう酸塩の製造装置、P…プラズマ、S…ほう酸塩。