IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱自動車工業株式会社の特許一覧

<>
  • 特許-電動車両の制御装置 図1
  • 特許-電動車両の制御装置 図2
  • 特許-電動車両の制御装置 図3
  • 特許-電動車両の制御装置 図4
  • 特許-電動車両の制御装置 図5
  • 特許-電動車両の制御装置 図6
  • 特許-電動車両の制御装置 図7
  • 特許-電動車両の制御装置 図8
  • 特許-電動車両の制御装置 図9
  • 特許-電動車両の制御装置 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-01
(45)【発行日】2022-08-09
(54)【発明の名称】電動車両の制御装置
(51)【国際特許分類】
   B60W 20/19 20160101AFI20220802BHJP
   B60K 6/442 20071001ALI20220802BHJP
   B60W 10/06 20060101ALI20220802BHJP
   B60W 10/08 20060101ALI20220802BHJP
   B60W 10/26 20060101ALI20220802BHJP
   B60W 20/13 20160101ALI20220802BHJP
   B60W 20/20 20160101ALI20220802BHJP
   B60L 50/16 20190101ALI20220802BHJP
   B60L 50/61 20190101ALI20220802BHJP
   B60L 58/12 20190101ALI20220802BHJP
   B60L 58/16 20190101ALI20220802BHJP
【FI】
B60W20/19
B60K6/442 ZHV
B60W10/06 900
B60W10/08 900
B60W10/26 900
B60W20/13
B60W20/20
B60L50/16
B60L50/61
B60L58/12
B60L58/16
【請求項の数】 18
(21)【出願番号】P 2021563226
(86)(22)【出願日】2021-06-09
(86)【国際出願番号】 JP2021021870
(87)【国際公開番号】W WO2021261247
(87)【国際公開日】2021-12-30
【審査請求日】2021-10-25
(31)【優先権主張番号】P 2020109244
(32)【優先日】2020-06-25
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006286
【氏名又は名称】三菱自動車工業株式会社
(74)【代理人】
【識別番号】110002424
【氏名又は名称】ケー・ティー・アンド・エス特許業務法人
(72)【発明者】
【氏名】水野 雅大
(72)【発明者】
【氏名】杉本 喬紀
(72)【発明者】
【氏名】生駒 憲彦
(72)【発明者】
【氏名】南部 壮佑
(72)【発明者】
【氏名】清水 亮
(72)【発明者】
【氏名】山崎 聖悟
(72)【発明者】
【氏名】佐藤 琢矢
(72)【発明者】
【氏名】宮下 航輝
【審査官】清水 康
(56)【参考文献】
【文献】特開2016-124318(JP,A)
【文献】特開2003-020972(JP,A)
【文献】国際公開第2013/098943(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B60K 6/20 - 6/547
B60W 10/00 - 10/30
B60W 20/00 - 20/50
B60L 1/00 - 3/12
B60L 7/00 - 13/00
B60L 15/00 - 58/40
(57)【特許請求の範囲】
【請求項1】
電動車両に搭載される内燃機関と、前記内燃機関によって駆動される発電機と、前記電動車両の駆動軸を駆動するモータと、前記モータに電力を供給する駆動用電池と、を有する電動車両の制御装置であって、
前記発電機から前記モータに供給する第1電力と、前記駆動用電池から前記モータに供給する第2電力と、によって前記電動車両を走行させるシリーズモードに切り替える走行モード制御部と、
前記第2電力が不足しているか否か判断する電池出力不足判断部と、
前記第1電力に基づいて前記内燃機関と前記発電機とを制御する発電制御部と、
を備え、
前記発電制御部は、
前記内燃機関を制御して、前記内燃機関の回転数を変化させる第1制御モードと、
前記発電機を制御して、前記内燃機関の回転数を変化させる第2制御モードと、
を含み、
前記走行モード制御部によって前記シリーズモードに切り替えられ、かつ、前記電池出力不足判断部によって前記第2電力が不足していると判断された場合、前記第2制御モードから前記第1制御モードに切り替え、
前記第1電力に基づいて、前記内燃機関の目標とする回転数である目標回転数を演算し、前記目標回転数の下限値を設定し、前記走行モード制御部によって前記シリーズモードに切り替えられ、かつ、前記電池出力不足判断部によって前記第2電力が不足していると判断された場合、前記下限値を高くする補正制御を行う、
電動車両の制御装置。
【請求項2】
前記発電制御部は、前記電動車両の速度が高いほど前記下限値を大きい値に補正する、
請求項1に記載の電動車両の制御装置。
【請求項3】
前記発電制御部は、前記第1電力に基づいて前記内燃機関の目標とする回転数である目標回転数を演算し、前記目標回転数が上昇している場合、前記目標回転数の増加率を演算するとともに、前記増加率の第1制限値を設定し、前記走行モード制御部によって前記シリーズモードに切り替えられ、かつ、前記電池出力不足判断部によって前記第2電力が不足していると判断された場合、前記増加率を前記第1制限値よりも大きい第2制限値に補正する補正制御を行う、
請求項1または2に記載の電動車両の制御装置。
【請求項4】
電動車両に搭載される内燃機関と、前記内燃機関によって駆動される発電機と、前記電動車両の駆動軸を駆動するモータと、前記モータに電力を供給する駆動用電池と、を有する電動車両の制御装置であって、
前記発電機から前記モータに供給する第1電力と、前記駆動用電池から前記モータに供給する第2電力と、によって前記電動車両を走行させるシリーズモードに切り替える走行モード制御部と、
前記第2電力が不足しているか否か判断する電池出力不足判断部と、
前記第1電力に基づいて前記内燃機関と前記発電機とを制御する発電制御部と、
を備え、
前記発電制御部は、
前記内燃機関を制御して、前記内燃機関の回転数を変化させる第1制御モードと、
前記発電機を制御して、前記内燃機関の回転数を変化させる第2制御モードと、
を含み、
前記走行モード制御部によって前記シリーズモードに切り替えられ、かつ、前記電池出力不足判断部によって前記第2電力が不足していると判断された場合、前記第2制御モードから前記第1制御モードに切り替え、
前記第1電力に基づいて前記内燃機関の目標とする回転数である目標回転数を演算し、前記目標回転数が上昇している場合、前記目標回転数の増加率を演算するとともに、前記増加率の第1制限値を設定し、前記走行モード制御部によって前記シリーズモードに切り替えられ、かつ、前記電池出力不足判断部によって前記第2電力が不足していると判断された場合、前記増加率を前記第1制限値よりも大きい第2制限値に補正する補正制御を行う、
電動車両の制御装置。
【請求項5】
前記第2制限値は、前記目標回転数が高いほど小さい値である、
請求項3または4に記載の電動車両の制御装置。
【請求項6】
前記電池出力不足判断部は、前記駆動用電池の温度を取得する電池温度取得部を含み、
前記電池出力不足判断部は、前記電池温度取得部によって取得した温度が第1所定温度以下の場合、または第2所定温度以上の場合、前記第2電力が不足していると判断する、
請求項1から5のいずれか1項に記載の電動車両の制御装置。
【請求項7】
前記電池出力不足判断部は、前記駆動用電池の温度を取得する電池温度取得部を含み、
前記電池出力不足判断部は、前記電池温度取得部によって取得した温度が第1所定温度以下の場合、または第2所定温度以上の場合、前記第2電力が不足していると判断し、
前記第2制限値は、前記電池出力不足判断部によって取得された前記駆動用電池の温度が前記第1所定温度以下の場合よりも前記第2所定温度以上の場合の方が小さい値である、
請求項4または5に記載の電動車両の制御装置。
【請求項8】
前記発電制御部は、前記内燃機関の回転数を上昇させる回転上昇トルクを演算し、
前記内燃機関の実際の回転数である実回転数を取得し、
前記第1制御モードにおいて、前記実回転数に応じて前記回転上昇トルクを抑制する、
請求項1から7のいずれか1項に記載の電動車両の制御装置。
【請求項9】
前記発電制御部は、前記実回転数が前記目標回転数よりも大きい場合、前記回転上昇トルクを抑制する、
請求項8に記載の電動車両の制御装置。
【請求項10】
前記発電制御部は、前記実回転数が上昇するにつれて前記回転上昇トルクを抑制する、
請求項8または9に記載の電動車両の制御装置。
【請求項11】
アクセル開度を判断するアクセル開度判断部をさらに備え、
前記発電制御部は、前記アクセル開度がゼロの場合、前記第1制御モードから前記第2制御モードに切り替える、
請求項1から10のいずれか1項に記載の電動車両の制御装置。
【請求項12】
前記電池出力不足判断部は、前記電動車両の速度が第1所定速度以上の場合、前記第2電力が不足していると判断する、
請求項1から11のいずれか1項に記載の電動車両の制御装置。
【請求項13】
前記第1所定温度は、前記駆動用電池の劣化および前記駆動用電池の充電率のいずれか一方、または、両方に基づいて演算される、
請求項6または7に記載の電動車両の制御装置。
【請求項14】
前記発電制御部は、前記第1電力に基づいて、前記発電機の目標とする発電量である目標発電量を演算し、前記発電機の実際の発電量である実発電量を取得し、
前記実発電量が前記目標発電量よりも小さい場合、前記第2制御モードから前記第1制御モードに切り替える、
請求項1から13のいずれか1項に記載の電動車両の制御装置。
【請求項15】
前記発電制御部は、前記第1電力に基づいて、前記内燃機関の目標とする回転数である目標回転数を演算し、前記目標回転数の上限値を設定し、前記走行モード制御部によって前記シリーズモードに切り替えられ、かつ、前記電池出力不足判断部によって前記第2電力が不足していると判断された場合、前記上限値を所定回転数以下に制限する、
請求項1から14のいずれか1項に記載の電動車両の制御装置。
【請求項16】
前記所定回転数は、前記内燃機関の出力特性の変化点である、
請求項15に記載の電動車両の制御装置。
【請求項17】
前記発電制御部は、前記電動車両の速度が第2所定速度未満の場合、前記上限値を前記所定回転数以下に制限する、
請求項15または16に記載の電動車両の制御装置。
【請求項18】
前記発電制御部は、前記電動車両の速度が第2所定速度以上の場合、前記速度が上昇するにつれて前記上限値を上昇させる、
請求項15から17のいずれか1項に記載の電動車両の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、内燃機関で駆動される発電機を備える電動車両の制御装置に関する。
【背景技術】
【0002】
従来、内燃機関で駆動される発電機によって発電し、発電した電力をモータに供給し、モータが駆動軸を駆動するシリーズハイブリッド型の電動車両の制御装置が知られている(例えば、特許文献1参照)。特許文献1の電動車両の制御装置では、発電機に要求される発電量が増加したことによって発電機の回転数を増加させる場合、発電機の回転数を上昇させるために必要なイナーシャトルクを内燃機関に要求する要求トルクに加算する。このように、特許文献1の電動車両の制御装置では、内燃機関に要求する要求トルクに、イナーシャトルクを加算することによって、発電機の回転数を速やかに上昇させる。この結果、電動車両の加速性能が向上する。
【0003】
また、従来、パラレルモードと、シリーズモードと、EVモードと、を有する電動車両の制御装置が知られている(例えば、特許文献2参照)。特許文献2の電動車両の制御装置では、シリーズモード中において、発電機の目標回転数が増加している場合、イナーシャトルクを内燃機関に要求する要求トルクに加算する。このように、特許文献1の電動車両の制御装置では、内燃機関に要求する要求トルクに、イナーシャトルクを加算することで、発電量を安定させる。この結果、電動車両の加速性能が向上する。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2003-20972号公報
【文献】特開2016-124318号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、特許文献1および特許文献2の電動車両の制御装置では、内燃機関に要求する要求トルクに、発電機の回転数を増加させるためのイナーシャトルクを加算する。このため、内燃機関がイナーシャトルク分のトルクを出力する必要がある。これによって、内燃機関の燃料噴射量が増加し、燃費が悪化する。
【0006】
本開示の課題は、電動車両の燃費の悪化の抑制と、加速性能の向上と、を両立できる電動車両の制御装置を提供することにある。
【課題を解決するための手段】
【0007】
本開示に係る電動車両の制御装置は、電動車両に搭載される内燃機関と、発電機と、モータと、駆動用電池と、を有する電動車両の制御装置である。発電機は、内燃機関によって駆動される。モータは、電動車両の駆動軸を駆動する。駆動用電池は、モータに電力を供給する。電動車両の制御装置は、走行モード制御部と、電池出力不足判断部と、発電制御部と、を備える。走行モード制御部は、発電機からモータに供給する第1電力と、駆動用電池からモータに供給する第2電力と、によって電動車両を走行させるシリーズモードに切り替える。電池出力不足判断部は、第2電力が不足しているか否か判断する。発電制御部は、第1電力に基づいて、内燃機関と発電機を制御する。発電制御部は、第1制御モードと、第2制御モードと、を含む。第1制御モードは、内燃機関を制御して、内燃機関の回転数を変化させる。第2制御モードは、発電機を制御して、内燃機関の回転数を変化させる。発電制御部は、走行モード制御部によってシリーズモードに切り替えられ、かつ、電池出力不足判断部によって第2電力が不足していると判断された場合、第2制御モードから第1制御モードに切り替える。発電制御部は、第1電力に基づいて、内燃機関の目標とする回転数である目標回転数を演算し、目標回転数の下限値を設定してもよい。発電制御部は、走行モード制御部によってシリーズモードに切り替えられ、かつ、電池出力不足判断部によって第2電力が不足していると判断された場合、下限値を高くする補正制御を行ってもよい。
【0008】
この電動車両の制御装置によれば、駆動用電池からモータに供給する第2電力が不足した場合、発電制御部は、第1制御モードよって、内燃機関が自ら回転数を速やかに変化させる。これによって、発電機からモータに供給する第1電力が速やかに変化する。このため、モータは、シリーズモード走行中において第2電力が不足した場合であっても、すみやかに第1電力の供給を受ける。この結果、電動車両の加速性能が向上する。一方、第2電力が不足していない場合、発電制御部は、第2制御モードによって、発電機を制御して、内燃機関の回転数を変化させる。発電機を制御すると、第1電力が減少する場合もある。しかし、内燃機関は自ら回転を上昇させる必要がないため、燃費はよくなる。すなわち、この電動車両の制御装置によれば、電動車両の燃費の悪化の抑制と、加速性能の向上と、を両立できる。
【0010】
また、この構成によれば、発電制御部は、内燃機関の回転数が高い状態から回転数を上昇させることができる。これによって、内燃機関は、より高い回転数に早く到達しやすい。このため、発電機は、第1電力をより早くモータに供給できる。この結果、第2電力が低下している場合であっても、電動車両の加速性能が向上する。
【0011】
発電制御部は、電動車両の速度が高いほど下限値を大きい値に補正してもよい。
【0012】
この構成によれば、電動車両の速度が高いほど、内燃機関はより高い回転数に早く到達しやすい。一方、速度が低い場合、内燃機関の回転数が低くなるため、内燃機関の回転による音や振動を低減できる。
【0013】
発電制御部は、第1電力に基づいて内燃機関の目標とする回転数である目標回転数を演算してもよい。発電制御部は、目標回転数が上昇している場合、目標回転数の増加率を演算するとともに増加率の第1制限値を設定してもよい。発電制御部は、走行モード制御部によってシリーズモードに切り替えられ、かつ、電池出力不足判断部によって第2電力が不足していると判断された場合、第1制限値よりも大きい第2制限値に補正する補正制御を行ってもよい。
【0014】
第2制限値は、目標回転数が高いほど小さい値であってもよい。
【0015】
この構成によれば、発電制御部は、内燃機関の回転数を早く上昇させることができる。これによって、内燃機関はより高い回転数に早く到達しやすい。このため、発電機は、第1電力をより早くモータに供給できる。この結果、第2電力が不足している場合であっても、電動車両の加速性能が向上する。
【0016】
電池出力不足判断部は、駆動用電池の温度を取得する電池温度取得部を含んでもよい。電池出力不足判断部は、電池温度取得部によって取得した温度が第1所定温度以下の場合、または第2所定温度以上の場合、第2電力が不足していると判断してもよい。
【0017】
駆動用電池は、高温状態において電池出力が制限される場合もある。また、駆動用電池は、低温状態において電池出力が低下する場合もある。この構成によれば、いずれの状態であっても、モータは、すみやかに第1電力の供給を受けることができる。
【0018】
第2制限値は、出力不足判定部により取得された駆動用電池の温度が第1所定温度以下の場合よりも第2所定温度以上の場合の方が小さい値であってもよい。
【0019】
この構成によれば、駆動用電池の温度が第2所定温度以上のように高温状態の場合、第2制限値が低く抑制される。これによって、駆動用電池が高温状態においては、駆動用電池が低温状態よりも内燃機関の回転数が遅く上昇する。この結果、内燃機関の回転による音や振動を低減できる。一方、駆動用電池の温度が第1所定温度以下のように低温状態においては、駆動用電池が高温状態よりも内燃機関の回転数が早く上昇する。
【0020】
発電制御部は、内燃機関の回転数を上昇させる回転上昇トルクを演算してもよい。発電制御部は、内燃機関の実際の回転数である実回転数を取得してもよい。発電制御部は、第1制御モードにおいて、実回転数に応じて回転上昇トルクを抑制してもよい。
【0021】
発電制御部は、実回転数が目標回転数よりも大きい場合、回転上昇トルクを抑制してもよい。
【0022】
発電制御部は、実回転数が上昇するにつれて回転上昇トルクを抑制してもよい。
【0023】
この構成によれば、内燃機関の回転数が上昇する際の、過度な回転上昇を抑制できる。
【0024】
電動車両の制御装置は、アクセル開度を判断するアクセル開度判断部をさらに備えてもよい。発電制御部は、アクセルオフの場合、第1制御モードから第2制御モードに切り替えてもよい。
【0025】
この構成によれば、アクセルが踏み込まれていない状態では、第2制御モードによって、内燃機関の回転数が変化する。これによって、燃費が向上する。
【0026】
電池出力不足判断部は、電動車両の速度が第1所定速度以上の場合、第2電力が不足していると判断してもよい。
【0027】
この構成によれば、電動車両の速度が速い場合における加速性能が向上する。
【0028】
第1所定温度は、駆動用電池の劣化および駆動用電池の充電率のいずれか一方、または両方に基づいて演算されてもよい。
【0029】
この構成によれば、駆動用電池の劣化および充電率のいずれか一方、または両方に基づいた第1所定温度を用いて、第2電力の不足を迅速に判断できる。
【0030】
発電制御部は、第1電力に基づいて、発電機の目標とする発電量である目標発電量を演算してもよい。発電制御部は、発電機の実際の発電量である、実発電量を取得してもよい。発電制御部は、実発電量が目標発電量よりも小さい場合、第2制御モードから第1制御モードに切り替えてもよい。
【0031】
この構成によれば、発電制御部は、実発電量が目標発電量よりも小さい場合、第1制御モードによって、内燃機関が自ら回転数を速やかに上昇させる。これによって、発電機からモータに供給する第1電力が速やかに上昇する。このため、第2電力が不足している場合であっても、電動車両の加速性能が向上する。
【0032】
発電制御部は、第1電力に基づいて、内燃機関の目標とする回転数である目標回転数を演算し、目標回転数の上限値を設定し、走行モード制御部によってシリーズモードに切り替えられ、かつ、電池出力不足判断部によって第2電力が不足していると判断された場合、上限値を所定回転数以下に制限してもよい。
【0033】
この構成によれば、電動車両の燃費の悪化の抑制と、加速性能の向上を図りながら内燃機関の回転数上昇に伴う振動・騒音の悪化を抑制できる。
【0034】
所定回転数は、内燃機関の出力特性の変化点であってもよい。
【0035】
この構成によれば、例えば、内燃機関の回転数上昇に対して略一定の傾きで出力される回転数までは、発電制御部は内燃機関の回転数を上昇させることができる。これによって、発電制御部は、内燃機関の出力を効率よく使用し発電機に発電させることができる。
【0036】
また、発電制御部は、電動車両の速度が第2所定速度未満の場合、上限値を所定回転数以下に制限してもよい。
【0037】
この構成によれば、振動・騒音を第2所定速度に応じたレベルにすることができる。
【0038】
発電制御部は、電動車両の速度が第2所定速度以上の場合、速度が上昇するにつれて上限値を上昇させてもよい。
【0039】
この構成によれば、空走感を抑制しながら内燃機関の回転数を上昇させることができる。
【発明の効果】
【0040】
本開示によれば、電動車両の燃費の悪化の抑制と、加速性能の向上と、を両立できる電動車両の制御装置を提供できる。
【図面の簡単な説明】
【0041】
図1】本開示の実施形態による電動車両のシステム図。
図2】本開示の実施形態による電動車両の制御装置の構成を示すブロック図。
図3】本開示の実施形態による3次元マップの一例を示す図。
図4】本開示の実施形態によるアクセル開度に対する目標エンジン回転数Ertの変化を示す図。
図5】本開示の実施形態による増加率制限値dErtLimと目標エンジン回転数Ertの関係の一例を示すグラフ。
図6】本開示の実施形態による回転上昇トルクUTqとエンジン回転数偏差の関係の一例を示すグラフ。
図7】本開示の実施形態による回転上昇トルクUTqと実エンジン回転数Erqの関係の一例を示すグラフ。
図8】本開示の実施形態による制御装置の制御手順を示すフローチャート。
図9】本開示の実施形態による目標エンジン回転数Ertの上限値を変化させた場合に目標エンジン回転数Ertの変化を示すタイミングチャート。
図10】本開示の実施形態による内燃機関の出力特性の一例を示すグラフ。
【発明を実施するための形態】
【0042】
<第1実施形態>
以下、本開示の第1実施形態の電動車両1の制御装置20について、図面を参照しながら説明する。図1に示すように、本実施形態による電動車両1は、四輪駆動型のハイブリッド自動車である。電動車両1は、内燃機関(ENG)2と、発電機(GEN)4と、フロントモータ(FrM)6と、リアモータ(RM)8と、駆動用電池(BT)10と、制御装置(HVECU)20と、アクセルペダル21と、を有する。本実施形態の電動車両1は、フロントモータ6がトランスアクスル16を介して前輪12の前輪駆動軸12aを駆動する。リアモータ8は、減速機8cを介して後輪14の後輪駆動軸14aを駆動する。フロントモータ6は、フロントインバータ18を介して駆動用電池10と接続され、駆動用電池10から電力(第2電力)が供給される。フロントインバータ18は、フロントモータ制御装置(FrMCU)6aと、発電機4を制御する発電機制御装置(GCU)4aと、を有する。フロントモータ制御装置6aは、制御装置20から信号を取得し、フロントモータ6が所望の運転状態となるようにフロントモータ6の回生と力行を制御する。リアモータ8も同様に、リアインバータ8bを介して駆動用電池10と接続され、駆動用電池10から電力(第2電力)が供給される。リアインバータ8bは、リアモータ制御装置(RMCU)8aを有する。リアモータ制御装置8aは、制御装置20から信号を取得し、リアモータ8が所望の運転状態となるようにリアモータ8の回生と力行を制御する。
【0043】
内燃機関2は、トランスアクスル16を介して発電機4を駆動する。内燃機関2は、燃料タンク(Fuel TANK)22から供給される燃料が燃焼することで駆動する。内燃機関2の各種装置および各種センサは、エンジン制御装置(ENG-ECU)2aと電気的に接続される。エンジン制御装置2aは、制御装置20からの信号を取得し、内燃機関2が所望の運転状態となるように制御する。トランスアクスル16は、内燃機関2の回転速度を増幅し発電機4に伝達する。また、本実施形態のトランスアクスル16は、内燃機関2とフロントモータ6との間および内燃機関2と前輪駆動軸12aとの間で動力を伝達および遮断するクラッチ16aを有する。内燃機関2は、トランスアクスル16のクラッチ16aを介して前輪駆動軸12aに接続され、前輪駆動軸12aを駆動する。
【0044】
発電機4は、内燃機関2で駆動されることによって発電する。発電機4によって発電された電力(第1電力)は、駆動用電池10を充電可能であるとともに、フロントインバータ18およびリアインバータ8bを介してフロントモータ6およびリアモータ8(以下明細書において各モータと記す)に供給可能である。本実施形態では、発電機4はモータジェネレータであり、発電に加えて内燃機関2を回転駆動することができる。発電機4は、内燃機関2から駆動される場合、発電機4に負荷を与えることで発電する。一方、発電機4は、駆動用電池10から電力が供給され力行することによって内燃機関2を駆動し始動させる。発電機4は、フロントインバータ18に設けられた発電機制御装置4aによって制御される。発電機制御装置4aは、制御装置20と電気的に接続され、制御装置20からの信号を取得し、発電機4が所望の運転状態となるように発電と力行を制御する。
【0045】
駆動用電池10は、リチウムイオン電池等の二次電池で構成され、複数の電池セルをまとめて構成された図示しない電池モジュールを有する。駆動用電池10は、各モータの電源として機能する。さらに駆動用電池10は、電池モジュールの充電率(State Of Charge、以下、SOC)の算出、電池モジュールの劣化状態(State Of Health 以下 SOH)、および電池モジュールの電圧Bvおよび電池温度Btmpの検出を行う電池モニタリングユニット(BMU)10aを有する。電池モニタリングユニット10aは、駆動用電池10の電池温度Btmpを取得し、制御装置20に送信する。
【0046】
制御装置20は、実際には、演算装置と、メモリと、入出力バッファ等と、を含むマイクロコンピュータによって構成される。制御装置20は、各センサおよび各種装置からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、電動車両1が、所望の運転状態となるように各装置を制御する。
【0047】
本実施形態では、エンジン制御装置2a、発電機制御装置4a、フロントモータ制御装置6a、リアモータ制御装置8a、および電池モニタリングユニット10aを含む各種制御装置が、それぞれ制御装置20と別に設けられる。各種制御装置は、それぞれ制御装置20と電気的に接続される。しかし、各種制御装置は、制御装置20と一体で設けられてもよい。各制御装置は、制御装置20と同様に、演算装置と、メモリと、入出力バッファ等と、を含むマイクロコンピュータによって構成される。
【0048】
図2に示すように、制御装置20は、走行モード制御部30と、電池出力不足判断部32と、発電制御部34と、アクセル開度判断部36と、を有する。走行モード制御部30、電池出力不足判断部32、発電制御部34、およびアクセル開度判断部36は、制御装置20に記憶されるソフトウェアによって実現される機能構成である。しかし、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。また、制御装置20は、図示しない車輪速センサで前輪12および後輪14の回転数を取得し、速度演算部38によって車輪速センサの回転数に基づいて電動車両1の速度Vを演算する。
【0049】
アクセルペダル21は、電動車両1のドライバが踏み込み操作することで、電動車両1の加減速を制御するペダルである。アクセルペダル21には、踏み込み位置を検知するアクセルポジションセンサ21aが設けられる。アクセルポジションセンサ21aは、制御装置20と電気的に接続され、制御装置20にアクセル踏み込み位置(アクセル開度)を送信する。アクセル開度判断部36は、ドライバ要求トルク演算部36aを含む。ドライバ要求トルク演算部36aは、アクセルポジションセンサ21aから取得したアクセル開度Thに基づいて、電動車両1のドライバ要求トルクDTqを演算する。
【0050】
走行モード制御部30は、速度V、SOC、およびアクセル開度Thなどの情報に基づいて、クラッチ16aを制御することによって、パラレルモード、シリーズモード、およびEVモードの中から、いずれかにひとつの走行モードに切り替える。パラレルモードでは、走行モード制御部30は、クラッチ16aを接続し、内燃機関2とフロントモータ6の両方よって前輪駆動軸12aを駆動する。このとき、フロントモータ6には、駆動用電池10からの電力(第2電力)、および発電機4で発電した電力(第1電力)のいずれか一方、または両方が供給される。リアモータ8も同様に駆動用電池10からの電力(第2電力)、および発電機4で発電した電力(第1電力)のいずれか一方、または両方が供給され、後輪駆動軸14aを駆動する。EVモードでは、走行モード制御部30は、クラッチ16aを開放し、駆動用電池10の電力(第2電力)を各モータに供給し、各モータが前輪駆動軸12aおよび後輪駆動軸14a(以下明細書において各駆動軸と記す)を駆動する。
【0051】
シリーズモードでは、走行モード制御部30は、クラッチ16aを開放し、内燃機関2で発電機4を駆動し、発電機4で発電した第1電力を各モータに供給する。また、走行モード制御部30は、第1電力によっては各モータが各駆動軸を駆動する駆動力が不足する場合、駆動用電池10からも各モータに第2電力を供給する。すなわち、走行モード制御部30は、シリーズモードにおいて、第1電力と、第2電力と、によって電動車両1を走行させる。このように、走行モード制御部30は、シリーズモードにおいて、発電機4から各モータに供給する第1電力に駆動用電池10から各モータに供給する第2電力を加えることで、内燃機関2を効率的に運転し、内燃機関2が発電機4を発電する際の消費燃料を減らしながら、電動車両1の加速性能を向上させることができる。
【0052】
走行モード制御部30は、駆動軸トルク演算部30aと、前後分配演算部30bと、フロントモータエンジントルク分配演算部30cと、電力変換演算部30dと、駆動軸トルク制限値演算部30eと、を含む。駆動軸トルク演算部30aは、ドライバ要求トルクDTqと、上限駆動軸トルクTqLimを取得する。駆動軸トルク演算部30aは、ドライバ要求トルクDTqと、上限駆動軸トルクTqLimと、に基づいて各駆動軸に発生させるべき目標駆動軸トルクFRTqを演算する。
【0053】
上限駆動軸トルクTqLimは、後述する電池上限電力W2および発電機4の能力に基づく発電量GWiから、電動車両1に搭載される電子機器などが消費する補器消費電力および各モータにおける損失を差し引き、それらを速度Vで除算したのち単位変換係数を掛け合わせて演算してもよい。上限駆動軸トルクTqLimは、駆動軸トルク制限値演算部30eにおいて演算してもよい。しかし、目標駆動軸トルクFRTqは、これら演算方法に限定されるものではなく、例えば、マップなどを用いてもよい。駆動軸トルク演算部30aは、これら演算を行った後、目標駆動軸トルクFRTqを電力変換演算部30dに送信する。電力変換演算部30dは、目標駆動軸トルクFRTqを目標発電電力W1に変換演算し、発電制御部34に送信する。
【0054】
前後分配演算部30bは、路面状況などを取得し、路面状況などに基づいて目標駆動軸トルクFRTqを前輪駆動軸12aに分配する目標前輪軸トルクFTq、および後輪駆動軸14aに分配する目標後輪軸トルクRTqを演算し、フロントモータ制御装置6aおよびリアモータ制御装置8aに送信する。フロントモータエンジントルク分配演算部30cは、パラレルモード中の内燃機関2に要求するパラレルエンジントルクPETqを演算する。
【0055】
電池出力不足判断部32は、駆動用電池10から各モータに供給する第2電力が不足しているか否か判断する。電池出力不足判断部32は、電池出力演算部32aを含む。電池出力演算部32aは、電池モニタリングユニット10aから駆動用電池10のSOC、SOH、電池温度Btmp、および電圧Bvなどを取得し、駆動用電池10が各モータに供給可能な第2電力の上限値である電池上限電力W2を演算する。電池出力不足判断部32は、駆動用電池10の電池上限電力W2が、正常状態における電池上限電力W2よりも低下した場合、第2電力が不足していると判断する。
【0056】
本実施形態では、電池出力不足判断部32は、電池温度取得部32bを含む。電池温度取得部32bは、電池モニタリングユニット10aから電池温度Btmpを取得する。電池出力不足判断部32は、電池温度Btmpが第1所定温度T1以下の場合、第2電力が不足していると判断する。第1所定温度T1は、SOCおよびSOHに基づいて、予めマップに定めた温度である。より具体的には、図3に示す3次元マップの一例のように、電池出力不足判断部32は、SOCと電池温度Btmpに基づいて駆動用電池10が出力可能な値(State Of Power、以下 SOP)を定めた一面のマップを、SOH毎に複数面記憶している。図3の矢印が示すように、駆動用電池10が新品状態(例えば、SOH=100%)の場合、SOPが15kwとなるのは、SOCが20%であり、電池温度Btmpがマイナス20℃である。一方、駆動用電池10が劣化状態(例えば、SOH=30%)の場合、SOPが15kwとなるのは、SOCが20%であり、電池温度Btmpが0℃である。
【0057】
このように、電池出力不足判断部32は、SOHおよびSOCを取得し、取得したSOHおよびSOCを3次元マップに照らし合わせて、電池出力低下と判断するSOP(以下基準SOP)となる電池温度Btmpを3次元マップから取得する。ここで電池出力不足判断部32は、実際のSOP(以下実SOP)を取得することも可能である。しかし、実SOPは、駆動用電池10の過放電防止を抑制するために、電圧Bvの低下に応じて補正されることがある。このため、電池出力不足判断部32は、実SOPと基準SOPとを比較して電池出力低下を判断した場合、正しく判断できないおそれがある。そこで、電池出力不足判断部32は、基準SOPとなる電池温度Btmpを取得することで、駆動用電池10の電池上限電力W2の低下を正確、かつ、迅速に判断する。なお、電池出力不足判断部32は、電池温度Btmpに変えて外気温などから、電池上限電力W2が低下していると判断してもよい。また、電池出力不足判断部32は、第1所定温度T1を極低温温度(例えば―20℃)として、SOHおよびSOCを取得せず、第1所定温度T1以下の場合、一律に電池上限電力W2が低下していると判断してもよい。さらに、電池出力不足判断部32は、SOHおよびSOCのいずれか一方と、電池温度BtmpおよびSOPの関係を示した2次元マップに基づいて、電池上限電力W2の低下を判断してもよい。また、電池上限電力W2は、電池モニタリングユニット(BMU)10aで演算してもよい。
【0058】
また、電池出力不足判断部32は、電池温度Btmpが第2所定温度T2以上の場合、第2電力が不足していると判断する。より具体的には、電池温度Btmpが第2所定温度T2以上の場合、制御装置20の電池出力不足判断部32は、電池上限電力W2を抑制することで、駆動用電池10の温度上昇を抑制する。この結果、駆動用電池10から各モータに供給できる第2電力が低下する。電池出力不足判断部32は、このように駆動用電池10が高温状態において電池上限電力W2を抑制する場合、第2電力が不足していると判断する。
【0059】
さらに、電池出力不足判断部32は、速度Vを取得し、速度Vが第1所定速度Vt以上の場合、第2電力が不足していると判断する。すなわち、電動車両1が高速で走行している場合、加速するために必要なエネルギーが大きくなる。このため、第1所定速度Vt以上では第1所定速度Vt未満よりも、より多くの第1電力および第2電力が必要となる。このため、電池出力不足判断部32は、第1所定速度Vt以上の場合、第2電力が不足していると判断することで、各モータに第1電力を素早く供給できるようにする。すなわち、電池出力不足判断部32は、電池上限電力W2の低下がなく、電池上限電力W2の抑制を行っていない場合であっても、第1所定速度Vt以上の場合は、第2電力が不足していると判断する。
【0060】
発電制御部34は、駆動軸トルク演算部30aおよび電力変換演算部30dによって演算した目標発電電力W1に基づいて内燃機関2と、発電機4を制御する。ここで、目標発電電力W1は、発電機4が各モータに供給すべき第1電力の目標値である。本実施形態では、発電制御部34は、内燃機関2で発電機4を駆動し、目標発電電力W1の発電を行うために、後述する各演算部において内燃機関2に要求するエンジン要求トルクETqを演算する。
【0061】
発電制御部34は、電力演算部34aと、目標エンジン回転数演算部34bと、エンジントルク演算部34cと、発電機トルク演算部34dと、を含む。電力演算部34aは、目標発電電力W1に基づいて、発電機4から各モータに第1電力を供給する場合に発生する送電損失など加味して、発電機4に要求する目標発電量GWを演算する。送電損失は、発電機4の発電量と送電損失の関係を記録したマップに基づいて演算してもよい。また、目標発電量GWは、駆動用電池10に充電する電力、その他電動車両1の機器に必要とされる電力、および各モータを保護するための発電量の上限値を加味して演算してもよい。
【0062】
目標エンジン回転数演算部34bは、目標発電量GWを取得し、目標発電量GWに基づいて、内燃機関2が発電機4を駆動する回転数の目標値である目標エンジン回転数(目標回転数)Ertを演算する。このとき、目標エンジン回転数演算部34bは、内燃機関2の燃料噴射量および点火時期を記録したマップを参照し、内燃機関2が最良の燃費となるように目標エンジン回転数Ertを演算してもよい。これによって、電動車両1の燃費が向上する。また、目標エンジン回転数演算部34bは、速度Vを取得し、速度Vに応じた目標エンジン回転数Ertとなるように演算してもよい。これによって、電動車両1が加速する際に、速度Vに対して内燃機関2の回転数が過度に高くなることを抑制できる。
【0063】
発電制御部34は、目標エンジン回転数Ertの下限値minErtを設定する。また、発電制御部34は、走行モード制御部30によってシリーズモードに切り替えられ、かつ、電池出力不足判断部32によって第2電力が不足していると判断された場合、下限値minErtを大きい値に補正し、内燃機関2を制御する補正制御を行う(以下明細書および図8において、この補正制御を下限値補正制御と記す)。図4に示すように、下限値minErtはアクセルペダル21が踏み込まれていない時刻T0から時刻T1までの目標エンジン回転数Ertである。本実施形態では、目標エンジン回転数演算部34bが目標エンジン回転数Ertを取得し、下限値minErtの初期値を設定する。初期値は、予め記憶した値であってもよい。目標エンジン回転数演算部34bは、電池出力不足判断部32によって第2電力が不足していると判断された場合、目標エンジン回転数Ertの下限値minErtを初期値よりも大きい値に補正する補正演算を行う(図4 補正時Ert参照)。
【0064】
また、目標エンジン回転数演算部34bは、目標エンジン回転数Ertおよび速度Vを取得し、速度Vが高いほど目標エンジン回転数Ertの下限値minErtを初期値よりも大きい値に設定する補正演算を行ってもよい。これによって、発電機4から各モータに供給する第1電力が速やかに上昇する。このため、電動車両1の加速性能が向上する。また、電動車両1の速度Vが高いほど、後述する実エンジン回転数Erqが高い回転数に早く到達しやすい。一方、速度Vが低い場合、後述する実エンジン回転数Erqが低くなるため、内燃機関2の回転による音や振動を低減できる。
【0065】
発電制御部34は、目標発電電力W1に基づいて目標発電量GWが増加している場合、目標エンジン回転数Ertの増加率制限値dErtLimを設定する。発電制御部34は、走行モード制御部30によってシリーズモードに切り替えられ、かつ、電池出力不足判断部32によって第2電力が不足していると判断された場合、増加率制限値dErtLimを大きい値に補正し、内燃機関2を制御する補正制御を行う(以下明細書および図8において、この補正制御を制限値補正制御と記す)。増加率制限値dErtLimは、アクセルペダル21が踏み込まれた場合の、目標エンジン回転数Ertの単位時間あたりの変化率の上限値である。すなわち、図4においては、時刻T1から時刻T2までの目標エンジン回転数Ertの傾きの上限値に相当する。
【0066】
本実施形態では、目標エンジン回転数演算部34bが目標エンジン回転数Ertの増加率制限値dErtLimを設定する。目標エンジン回転数演算部34bは、時刻T1から時刻T2まで増加率制限値dErtLimの初期値(第1制限値)を設定する。初期値は、予め記憶した値であってもよい。目標エンジン回転数演算部34bは、増加率制限値dErtLimを初期値よりも大きい第2制限値に補正する補正演算を行う。これによって、発電制御部34は、後述する実エンジン回転数Erqを早く上昇させることができる。このため、後述する実エンジン回転数Erqは、より高い回転数に早く到達しやすい。この結果、発電機4は、第1電力をより早く各モータに供給でき、電動車両1の加速がよくなる。
【0067】
また、本実施形態では、目標エンジン回転数演算部34bは、目標エンジン回転数Ertが高くなるにつれて、第2制限値を低くする。図4および図5に示すように、例えば、4000rpmから5000rpmの間では、増加率制限値dErtLimの第2制限値を4000rpm以下よりも低くすることによって、補正時の目標エンジン回転数Ert(図4の補正時Ert)が緩やかに上昇する。これによって、後述する実エンジン回転数Erqの過度な吹き上がりを抑制しやすい。
【0068】
さらに、目標エンジン回転数演算部34bは、第2制限値を駆動用電池10の温度が低い場合よりも駆動用電池10の温度が高い場合の方が小さい値に設定してもよい。より具体的には、図5に示すように、電池温度Btmpが第2所定温度T2以上の場合の増加率制限値dErtLimは、電池温度Btmpが第1所定温度T1以下の場合の増加率制限値dErtLimよりも小さい値である。すなわち、電池温度Btmpは、外気温が常温(概ね10℃から25℃程度)であっても、第2所定温度T2以上となる場合がある。したがって、電池温度Btmpが第2所定温度T2以上となる頻度は、電池温度Btmpが第1所定温度T1以下となる頻度より多い。目標エンジン回転数演算部34bは、このように、より高頻度で発生する駆動用電池10が高温状態である場合は、駆動用電池10が低温状態である場合よりも、増加率制限値dErtLimを小さい値とする。これによって、内燃機関2の回転数が遅く上昇する。この結果、内燃機関2の回転による音や振動を低減できる。一方、駆動用電池10が低温状態においては駆動用電池10が高温状態よりも内燃機関2の回転数が早く上昇する。
【0069】
エンジントルク演算部34cは、目標発電量GWおよび目標エンジン回転数Ertを取得し、目標発電量GWおよび目標エンジン回転数Ertに基づいて、内燃機関2に要求するエンジン要求トルクETqを演算する。より具体的には、エンジントルク演算部34cは、目標発電量GWから目標エンジン回転数Ertを除算してエンジントルクETq1を演算するとともに、内燃機関2の回転数を変化させるためのトルクを加算する必要がある場合はこのトルクを加算してエンジン要求トルクETqを演算する。エンジントルク演算部34cは、エンジン要求トルクETqをエンジン制御装置2aに送信する。エンジン制御装置2aは、内燃機関2のクランク角センサ(図示せず)などの各種センサから取得する実エンジン回転数(実回転数)Erqに基づいて実エンジントルクETqrを演算する。エンジン制御装置2aは、エンジン要求トルクETqを取得し、実エンジントルクETqrがエンジン要求トルクETqとなるように、内燃機関2を制御する。このとき、エンジン制御装置2aは、実エンジン回転数Erqをエンジントルク演算部34cに送信する。エンジントルク演算部34cは、実エンジン回転数Erqを取得し、目標エンジン回転数Ertとなるようにエンジン要求トルクETqを補正する。
【0070】
発電機トルク演算部34dは、エンジン要求トルクETqを取得し、エンジン要求トルクETqに基づいて、発電機4の目標となる負荷トルクである目標負荷トルクLTqを演算する。より具体的には、発電機トルク演算部34dは、エンジン要求トルクETqに対して釣り合う負荷トルクLTq1に内燃機関2の回転数を変化させるためのトルクを加減算して目標負荷トルクLTqを演算する。発電機トルク演算部34dは、エンジン要求トルクETqと目標負荷トルクLTqの関係を記録したマップに基づいて目標負荷トルクLTqを演算してもよい。発電機トルク演算部34dは、目標負荷トルクLTqを発電機制御装置4aに送信する。発電機制御装置4aは、発電機4の実際の発電量である実発電量GWrおよび発電機4の回転数を検知し、実発電量GWrと発電機4の回転数から実負荷トルクLTqrを演算し、実負荷トルクLTqrが目標負荷トルクLTqとなるように発電機4を制御する。また、発電機制御装置4aは、実発電量GWrを、発電機トルク演算部34dを介してエンジントルク演算部34cに送信する。
【0071】
発電制御部34は、第1制御モードと、第2制御モードと、を含む。発電制御部34は、走行モード制御部30によってシリーズモードに切り替えられ、電池出力不足判断部32によって第2電力が不足していると判断され、かつ、アクセル開度Thが所定開度Tht以上の場合、第2制御モードから第1制御モードに切り替える。すなわち、発電制御部34は、ドライバが加速を要求しているにも関わらず、電池上限電力W2が低下している場合、第2制御モードから第1制御モードに切り替える。なお、発電制御部34は、実発電量GWrが目標発電量GWよりも小さい場合、すなわち、実発電量GWrが目標発電量GWに対して不足している場合、第2制御モードから第1制御モードに切り替えてもよい。
【0072】
第1制御モードでは、発電制御部34は、内燃機関2を制御して内燃機関2の実エンジン回転数Erqを変化させる。より具体的には、発電制御部34は、第1制御モードでは、エンジン要求トルクETqに目標エンジン回転数Ertを上昇させる場合に必要な回転上昇トルクUTqを含んで演算する。すなわち、エンジントルク演算部34cは、目標発電量GWに基づいて求めたエンジントルクETq1に回転上昇トルクUTqを加算してエンジン要求トルクETqを演算する。回転上昇トルクUTqは、内燃機関2および発電機4の摩擦損失、内燃機関2のクランク軸および発電機4の回転軸の慣性力などを加味し、目標エンジン回転数Ert毎に予め設定されるトルクである。
【0073】
一方、第2制御モードでは、発電制御部34は、発電機4を制御して内燃機関2の実エンジン回転数Erqを変化させる。より具体的には、発電制御部34は、第2制御モードでは、目標負荷トルクLTqに回転上昇トルクUTqを含んで演算する。すなわち、発電機トルク演算部34dは、エンジン要求トルクETqと釣り合う負荷トルクLTq1から回転上昇トルクUTqを減算して目標負荷トルクLTqを演算する。
【0074】
このように、第1制御モードでは、内燃機関2が自ら実エンジン回転数Erqを上昇させるため、内燃機関2の吸入空気量および燃料噴射量が第2制御モードよりも増加する。この結果、第1制御モードでは、内燃機関2の燃費は悪化する。しかし、発電機4の発電量は減少しないため、発電機4から各モータに供給する第1電力は減少しない。この結果、電動車両1の加速性能は向上する。
【0075】
一方、第2制御モードでは、発電機トルク演算部34dが回転上昇トルクUTqを減算するため、発電機4の実発電量GWrは減少する。しかし、発電機4が実発電量GWrを減らすため、内燃機関2が出力を維持しながら、内燃機関2の実エンジン回転数Erqが上昇する。この結果、内燃機関2の燃費は維持される。なお、目標エンジン回転数Ertが下降する場合、第2制御モードによって、目標負荷トルクLTqを増加させることで、実エンジン回転数Erqが下降する。
【0076】
なお、図6および図7に示すように、本実施形態では、発電制御部34は、第1制御モードにおいて、実エンジン回転数Erqに応じて回転上昇トルクUTqを抑制する。より具体的には、発電制御部34は、実エンジン回転数Erqが目標エンジン回転数Ertよりも大きい場合、回転上昇トルクUTqを抑制してもよい。すなわち、図6に示すように、目標エンジン回転数Ertと実エンジン回転数Erqとの偏差(差分)を演算し、偏差が小さい値になるほど回転上昇トルクUTqを小さくする。図6に示す回転上昇トルクUTqと差分の関係を示すグラフにおいては、偏差が300rpmより小さい場合に回転上昇トルクUTqの値を小さくし、偏差がゼロ以下の場合、回転上昇トルクUTqをゼロにする。これによって、実エンジン回転数Erqが過度に吹き上がることを抑制できる。
【0077】
さらに、発電制御部34は、実エンジン回転数Erqが上昇するにつれて回転上昇トルクUTqを抑制してもよい。すなわち、図7に示すように、発電制御部34は、例えば、実エンジン回転数Erqが4000rpm以上の場合、実エンジン回転数Erqが高くなるにつれて、回転上昇トルクUTqを小さくする。この場合であっても、実エンジン回転数Erqが過度に吹き上がることを抑制できる。
【0078】
次に、図8のフローチャートを用いて、本実施形態の制御装置20の発電制御部34および電池出力不足判断部32の制御手順について説明する。発電制御部34は、図示しないイグニッションスイッチがオンされることで、制御動作を開始する。また、発電制御部34は、第2制御モードの状態で制御動作を開始する。
【0079】
S1では、発電制御部34は、走行モード制御部30によって走行モードがシリーズモードに切り替えられているか否か判断する。制御装置20の発電制御部34は、シリーズモードに切り替えられていると判断した場合(S1 Yes)、S2に処理を進める。
【0080】
S2からS4は、電池出力不足判断部32が行う処理である。S2からS4において、電池出力不足判断部32は、第2電力が不足しているか否か判断する。S2では電池出力不足判断部32は、電池温度Btmpが第1所定温度T1以下か否か判断する。電池出力不足判断部32は、電池温度Btmpが第1所定温度T1より大きい場合(S2 No)、S3に処理を進める。一方、電池出力不足判断部32は、電池温度Btmpが第1所定温度T1以下の場合(S2 Yes)、第2電力が不足していると判断し、判断結果を発電制御部34に送信する。発電制御部34は、電池出力不足判断部32の判断結果を取得し、S10に処理を進める。
【0081】
S10では、発電制御部34は、下限値補正制御を行う。発電制御部34は、速度V(km/h)を取得し、速度Vが高くなるほど目標エンジン回転数Ertの下限値minErtを大きい値にする下限値補正制御を行う。このとき、例えば、下限値minErtの初期値が0rpmの場合、下限値minErtを1000rpmに補正すればよい。また、発電制御部34は、速度Vが高いほど、下限値minErtを1000rpmよりも大きい値に適宜補正すればよい。なお、第2制御モードでは、発電制御部34は、下限値minErtの初期値を使用する(図4参照)。発電制御部34は、下限値補正制御を行うと、S5に処理を進める。
【0082】
S3では、電池出力不足判断部32は、電池温度Btmpが第2所定温度T2以上か否か判断する。電池出力不足判断部32は、電池温度Btmpが第2所定温度T2未満と判断した場合(S3 No)、S4に処理を進める。一方、電池出力不足判断部32は、電池温度Btmpが第2所定温度T2以上であると判断した場合(S3 Yes)、第2電力が不足していると判断し、判断結果を発電制御部34に送信する。発電制御部34は、電池出力不足判断部32の判断結果を取得し、S5に処理を進める。
【0083】
S4では、電池出力不足判断部32は、電動車両1の速度Vを取得し、速度VがVt以上であるか否か判断する。電池出力不足判断部32は、速度VがVt以上であると判断した場合(S4 Yes)、第2電力が不足していると判断し、判断結果を発電制御部34に送信する。すなわち、電池出力不足判断部32は、S2からS4までの条件のいずれかが成立した場合、第2電力が不足していると判断する。発電制御部34は、電池出力不足判断部32の判断結果を取得し、S5に処理を進める。一方、電池出力不足判断部32は、速度VがVt未満であると判断した場合(S4 No)、S2からS4の条件のいずれも成立していないと判断し、第2電力が不足していないと判断する。電池出力不足判断部32は、この判断結果を発電制御部34に送信する。発電制御部34は、電池出力不足判断部32の判断結果を取得し、S5に処理を進める。
【0084】
S5では、発電制御部34は、アクセル開度Thが所定開度Tht以上か否か判断する。発電制御部34は、アクセル開度Thが所定開度Tht以上と判断した場合(S4 Yes)、S6に処理を進める。S6では、発電制御部34は、第2制御モードから第1制御モードに切り替える。発電制御部34は、第1制御モードに切り替えた後、S7に処理を進める。なお、S5において、発電制御部34は、実発電量GWrが目標発電量GW未満(よりも小さい)か否か判断してもよい。発電制御部34は、実発電量GWrが目標発電量GW未満と判断した場合、S6に処理を進めてもよい。
【0085】
S7では、発電制御部34は、目標エンジン回転数Ertが上昇しているか否か判断する。発電制御部34は、目標エンジン回転数Ertが上昇していると判断した場合(S7
Yes)、S8に処理を進める。目標エンジン回転数Ertが上昇している場合とは、アクセルペダル21が踏み込まれ、ドライバ要求トルクDTqが増加し、目標発電電力W1も増加し、目標発電量GWが増加している場合である。すなわち、電動車両1が加速状態である。発電制御部34は、アクセル開度Thが所定開度Tht以上の場合、目標エンジン回転数Ertが上昇していると判断してもよい。すなわち、発電制御部34は、S5において、目標エンジン回転数Ertが上昇しているか否かを同時に判断してもよい。また、実発電量GWrが目標発電量GWよりも小さい場合、目標エンジン回転数Ertが上昇していると判断してもよい。
【0086】
S8では、発電制御部34は、制限値補正制御を行う。ここで、例えば、発電制御部34は、増加率制限値dErtLimの初期値が20%であれば、20%よりも大きい値に設定する補正を行えばよい。なお、第2制御モードでは、増加率制限値dErtLimの初期値を使用する。S7で制限値補正制御を行うと、S9に処理を進める。
【0087】
S9では、発電制御部34は、アクセル開度判断部36からアクセル開度Thを取得し、アクセル開度Thがゼロ(アクセルオフ)であるか否かを判断する。発電制御部34は、アクセルオフと判断した場合(S9 Yes)、下限値補正、増加率制限補正も共に終了し、処理をS11に進める。S11では、発電制御部34は、第1制御モードから第2制御モードに切り替え、S1の前に処理を進める。
【0088】
発電制御部34は、シリーズモードでないと判断した場合(S1 No)、S1の前に処理を戻す。アクセル開度Thが所定開度Thtより小さいと判断した場合(S5 No)、S11に処理を進めて、第2制御モードを維持し、S1の前に処理を戻す。
【0089】
発電制御部34は、目標エンジン回転数Ertが上昇していないと判断した場合(S7
No)、およびアクセルオフされていないと判断した場合(S9 No)、S5の前に処理を戻す。これにより、アクセル開度Thが所定開度Thtより小さくなるまで、第1制御モードを維持する。
【0090】
次に本開示の第2実施形態の電動車両201の制御装置220について、図面を参照しながら説明する。なお、第2実施形態における電動車両1および制御装置220のシステム構成は、第1実施形態と同一であるため説明を省略する。また、第2実施形態における制御装置220が行う制御については、第1実施形態との制御と異なる点のみ説明する。
【0091】
第2実施形態における制御装置220は、発電制御部234が目標エンジン回転数Ertの下限値minErtに加えて、上限値maxErtを設定する点が第1実施形態における制御装置20と異なる。
【0092】
図9に示すように、本実施形態のタイミングチャートでは、電池温度取得部32aによって取得した電池温度Btmpが段階的に上昇し、第2電力が不足する例について示す。図9の時刻0から時刻Aまでに示すように、電動車両201の速度Vが上昇するとともに、電池温度Btmpが上昇する。目標エンジン回転数Ertは、時刻0から時刻Aまでの間、増加率制限値dErtLimは第1制限値で増加する。時刻Aを超えると、時刻Bに向けて速度Vが下がり、走行モード制御部30によって走行モードがシリーズモードに切り替えられる。一方、電池温度Btmpは、時刻Aから時刻Bの間も低下しない。時刻Bにおいて、電池温度Btmpが第2所定温度T2以上となると、電池出力不足判断部32は、第2電力が不足していると判断する。
【0093】
発電制御部234は、走行モード制御部30によってシリーズモードに切り替えられ、かつ、電池出力不足判断部32によって第2電力が不足していると判断された場合、増加率制限値dErtLimを補正する制限値補正制御を実行する(図9の制限値補正制御のON参照)。発電制御部234は、制限値補正制御に加えて、さらに下限値補正制御および第2制御モードから第1制御モードへの切り替えの少なくともいずれか一方を実行してもよい。
【0094】
図9の時刻Cから時刻Dでは、電動車両201のユーザによってアクセルペダル21が再び踏まれた状態を示す。その間、電池温度Btmpが低下せず、引き続きシリーズモードが継続している。このような場合、発電制御部234は、振動・騒音低減制御(以下明細書においてNV低減制御と記す。NVはNoise,Vibrationの略である)を実行する。より具体的には、発電制御部234は、上限値maxErtを所定回転数R1以下に制限する。時刻Cから時刻Dの目標エンジン回転数Ertのグラフに示すように、発電制御部234は、目標エンジン回転数Ertが所定回転数R1となるまで、増加率制限値dErtLimに第1制限値よりも大きい第2制限値を用いて目標エンジン回転数Ertを増加させる。これによって、発電制御部234は、電動車両201の燃費の悪化の抑制と、加速性能の向上を図りながら内燃機関2の回転数上昇に伴う振動・騒音の悪化を抑制する。
【0095】
ここで、所定回転数R1は、内燃機関2の出力特性の変化点であってもよい。図10は、内燃機関2の出力特性を示すグラフである。図10に示すように、内燃機関2のエンジン最大出力は、所定回転数R1までは略一定の傾きであり、所定回転数R1を超えると、エンジン最大出力の傾きが低下する。発電制御部234は、所定回転数R1まで増加率制限値dErtLimとして第2制限値を用いて目標エンジン回転数Ertを上昇させる。これによって、発電制御部234は、内燃機関2の出力を効率よく使用しながら素早く第1電力をモータに供給する。
【0096】
なお、図9の時刻BからCに示すように、発電制御部234は、目標エンジン回転数Ertが所定回転数R1以上である状況において電池出力不足判断部32によって第2電力が不足していると判断された場合、目標エンジン回転数Ertが所定回転数R1となるまで待ってから、NV低減制御を実行する。
【0097】
図9の時刻Dから時刻Eに示すように、発電制御部234は、電動車両201の速度Vが第2所定速度V2未満の場合、目標エンジン回転数Ertを所定回転数R1以下に制限する。本実施形態では、時刻Dから時刻Eまでの間、電動車両201の速度Vが上昇を続ける。発電制御部234は、この間、目標エンジン回転数Ertを所定回転数R1に維持することによって、目標エンジン回転数Ertの上限値maxErtを制限する。
【0098】
また、時刻Cから時刻Eまでの区間では、増加率制限値dErtLimが高いため、目標エンジン回転数Ertが素早く上昇することによって、実エンジン回転数Erqも早く上昇する。一方、電動車両201の速度Vに比較して内燃機関2の実エンジン回転数Erqが高い場合、電動車両201のユーザは、電動車両201の振動・騒音が大きいことに対する違和感、または電動車両201が空走しているかのような違和感(空走感)を生じることがある。しかし、発電制御部234は、第2所定速度V2未満は、目標エンジン回転数Ertの上限値maxErtを所定回転数R1に制限するため、このような違和感が生じにくい。さらに、時刻Dから時刻Eでは、発電制御部234は、電動車両201の速度Vが上昇している間は、目標エンジン回転数Ertを維持する。これによって発電制御部234は、実エンジン回転数Erqが急激に低下することによって生じる違和感の発生を抑制できる。
【0099】
図9の時刻Eから時刻Fに示すように、発電制御部234は、電動車両201の速度Vが第2所定速度V2以上から第3所定速度V3未満の場合、速度Vが上昇するにつれて上限値maxErtを緩和する。第3所定速度V3は、第2所定速度V2よりも高い値である。本実施形態では、発電制御部234は、速度Vが上昇するにつれて目標エンジン回転数Ertの上限値maxErtが段階的に上昇するマップを参照する。発電制御部234は、目標エンジン回転数Ertの上限値maxErtを速度Vに応じて高くすることによって、上限値maxErtを緩和する。これによって、速度Vの増加に合わせて実発電量GWrも増加する。この結果、空走感を抑制しながら電池出力不足を補い、電動車両201の加速性能の向上が図れる。
【0100】
図9の時刻F以降に示すように、発電制御部234は、第3所定速度V3以上では、上限値maxErtの制限を解除する。本実施形態では、電動車両201は時刻F以降も速度Vが上昇するため、発電制御部234は、目標エンジン回転数Ertが目標エンジン回転数Ertの最大値である最大回転数Rmaxを維持する。その後、アクセルペダル21が離され電動車両201が減速すると、発電制御部234は、目標エンジン回転数Ertを下げる。発電制御部234は、最終的に目標エンジン回転数Ertが所定回転数R1を下回った場合、NV低減制御を終了する。
【0101】
以上説明した通り、本開示の電動車両1,201の制御装置20,220によれば、電動車両1,201の燃費の悪化の抑制と、加速性能の向上を両立できる。
【0102】
<他の実施形態>
以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の変形例は必要に応じて任意に組合せ可能である。
【0103】
(a)上記第1実施形態では、発電制御部34は、アクセル開度Thが所定開度Tht以上と判断した場合、第1制御モードに切り替えたが、本開示はこれに限定されない。発電制御部34は、S2からS4において電池出力不足判断部32によって第2電力が不足していると判断した場合、判断結果を取得し第1制御モードに即座に切り替えてもよい。
【0104】
(b)上記第1実施形態では、発電制御部34は、S2において駆動用電池10が第1所定温度T1以下の場合(S2 Yes)、第1制御モードに切り替える前に下限値補正制御を実施する例を用いて説明したが、本開示はこれに限定されない。下限値補正制御は、第1制御モードに切り替えた後に実施してもよい。
【0105】
(c)上記第1実施形態では、発電制御部34は、電池出力不足判断部32によって第2電力が不足していると判断された場合、下限値補正制御を行い、第1モードへの切り替え、および制限値補正制御行う例を用いて説明したが、本開示はこれに限定されない。発電制御部34は、電池出力不足判断部32によって第2電力が不足していると判断された場合であっても、電動車両1のユーザがエコモードを選択した場合、下限値補正制御、第1モードへの切り替え、および制限値補正制御のいずれか、または全てを行わないようにしてもよい。これによって、エコモードの場合、燃費を優先できる。また、発電制御部34は、電動車両1のユーザが下限値補正制御、第1モードへの切り替え、および制限値補正制御のいずれかを行うように選択できる選択部を有してもよい。これによって、ユーザが選択的に加速および燃費のいずれか一方を優先できる。また、発電制御部34は、電動車両1のナビゲーションシステムと連動し、電動車両1が住宅街を走行している場合、下限値補正制御を、行わなくてもよい。これによって、電動車両1が静かに住宅街を走行できる。
【0106】
(d)上記第1実施形態、および第2実施形態では、電動車両1,201が四輪駆動型のハイブリッド自動車であり場合を例に説明したが、本開示はこれに限定されない。電動車両1,201はプラグインハイブリッドカーとすることができ、駆動用電池10から外部機器(例えば家電機器等)に給電する給電機能を有してもよい。
【符号の説明】
【0107】
1,201:電動車両,2:内燃機関,4:発電機
6:フロントモータ,8:リアモータ,10:駆動用電池
12a:前輪駆動軸,14a:後輪駆動軸,20,220:制御装置
21:アクセルペダル,21a:アクセルポジションセンサ
30:走行モード制御部,32:電池出力不足判断部
32a:電池温度取得部,34,234:発電制御部
36:アクセル開度判断部,Btmp:電池温度
Ert:目標エンジン回転数(目標回転数),Erq:実エンジン回転数(実回転数)
GW:目標発電量,GWr:実発電量
T:所定温度,V:速度
minErt:下限値,dErtLim:増加率制限値
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10