IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本精工株式会社の特許一覧

特許7115658油膜の温度導出方法、温度導出装置、およびプログラム
<>
  • 特許-油膜の温度導出方法、温度導出装置、およびプログラム 図1
  • 特許-油膜の温度導出方法、温度導出装置、およびプログラム 図2
  • 特許-油膜の温度導出方法、温度導出装置、およびプログラム 図3
  • 特許-油膜の温度導出方法、温度導出装置、およびプログラム 図4
  • 特許-油膜の温度導出方法、温度導出装置、およびプログラム 図5
  • 特許-油膜の温度導出方法、温度導出装置、およびプログラム 図6
  • 特許-油膜の温度導出方法、温度導出装置、およびプログラム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-08-01
(45)【発行日】2022-08-09
(54)【発明の名称】油膜の温度導出方法、温度導出装置、およびプログラム
(51)【国際特許分類】
   G01K 3/02 20060101AFI20220802BHJP
   G01K 7/34 20060101ALI20220802BHJP
   G01M 13/04 20190101ALI20220802BHJP
【FI】
G01K3/02 M
G01K7/34
G01M13/04
【請求項の数】 6
(21)【出願番号】P 2022502567
(86)(22)【出願日】2021-09-24
(86)【国際出願番号】 JP2021035205
【審査請求日】2022-01-14
(31)【優先権主張番号】P 2020163962
(32)【優先日】2020-09-29
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2021137563
(32)【優先日】2021-08-25
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000004204
【氏名又は名称】日本精工株式会社
(74)【代理人】
【識別番号】110002000
【氏名又は名称】特許業務法人栄光特許事務所
(72)【発明者】
【氏名】岩瀬 駿介
(72)【発明者】
【氏名】丸山 泰右
【審査官】細見 斉子
(56)【参考文献】
【文献】国際公開第2017/188314(WO,A1)
【文献】国際公開第2020/149233(WO,A1)
【文献】特開2012-052941(JP,A)
【文献】米国特許第05788376(US,A)
【文献】米国特許出願公開第2011/0265569(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01K 1/00-19/00
(57)【特許請求の範囲】
【請求項1】
装置内の潤滑剤の油膜温度を導出する温度導出方法であって、
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用することにより、前記潤滑剤の絶対温度と相関を有し、アイリングの式により定義される緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記油膜温度を算出する算出工程と
を有し、
前記算出工程では、
【数1】
T:絶対温度
τ:緩和時間
h:プランク定数
R:気体定数
:ボルツマン定数
ΔH :活性化エンタルピー
ΔS :活性化エントロピー
exp:指数関数
W:ランベルトW関数
を用いて前記油膜温度を算出し、
活性化エンタルピーΔH 、および活性化エントロピーΔS は、バルク状態における前記潤滑剤の値が用いられ、
前記理論式は、
【数2】
【数3】
【数4】
ε ’:比誘電率
ε ”:比誘電損率
ε r0 :低周波極限での比誘電率
ε r∞ :高周波極限での比誘電率
τ:緩和時間
β:緩和時間の分布を表す定数
σ :直流導電率
ε :真空の誘電率
π:円周率
f:周波数
ω:交流電圧の角周波数
ln:対数関数
にて示されることを特徴とする温度導出方法。
【請求項2】
前記算出工程にて算出した前記油膜温度を用いて前記装置の状態を診断する診断工程を更に有することを特徴とする請求項に記載の温度導出方法。
【請求項3】
前記装置は、転動装置であることを特徴とする請求項に記載の温度導出方法。
【請求項4】
前記装置は、転がり軸受であることを特徴とする請求項に記載の温度導出方法。
【請求項5】
装置内の潤滑剤の油膜温度を検出する温度導出装置であって、
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定手段と、
前記測定手段にて測定された誘電率を理論式に適用することにより、前記潤滑剤の絶対温度と相関を有し、アイリングの式により定義される緩和時間を導出する導出手段と、
前記緩和時間を用いて、前記油膜温度を算出する算出手段と
を有し、
前記算出手段は、
【数5】
T:絶対温度
τ:緩和時間
h:プランク定数
R:気体定数
:ボルツマン定数
ΔH :活性化エンタルピー
ΔS :活性化エントロピー
exp:指数関数
W:ランベルトW関数
を用いて前記油膜温度を算出し、
活性化エンタルピーΔH 、および活性化エントロピーΔS は、バルク状態における前記潤滑剤の値が用いられ、
前記理論式は、
【数6】
【数7】
【数8】
ε ’:比誘電率
ε ”:比誘電損率
ε r0 :低周波極限での比誘電率
ε r∞ :高周波極限での比誘電率
τ:緩和時間
β:緩和時間の分布を表す定数
σ :直流導電率
ε :真空の誘電率
π:円周率
f:周波数
ω:交流電圧の角周波数
ln:対数関数
にて示されることを特徴とする温度導出装置。
【請求項6】
コンピュータに、
装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで、前記装置内の潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用することにより、前記潤滑剤の絶対温度と相関を有し、アイリングの式により定義される緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記潤滑剤の油膜温度を算出する算出工程と
を実行させ、
前記算出工程では、
【数9】
T:絶対温度
τ:緩和時間
h:プランク定数
R:気体定数
:ボルツマン定数
ΔH :活性化エンタルピー
ΔS :活性化エントロピー
exp:指数関数
W:ランベルトW関数
を用いて前記油膜温度を算出し、
活性化エンタルピーΔH 、および活性化エントロピーΔS は、バルク状態における前記潤滑剤の値が用いられ、
前記理論式は、
【数10】
【数11】
【数12】
ε ’:比誘電率
ε ”:比誘電損率
ε r0 :低周波極限での比誘電率
ε r∞ :高周波極限での比誘電率
τ:緩和時間
β:緩和時間の分布を表す定数
σ :直流導電率
ε :真空の誘電率
π:円周率
f:周波数
ω:交流電圧の角周波数
ln:対数関数
にて示されるプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本願発明は、油膜の温度導出方法、温度導出装置、およびプログラムに関する。
【背景技術】
【0002】
従来、軸受装置では、潤滑剤(例えば、潤滑油やグリース)を用いて、その回転を潤滑する構成が広く普及している。一方、軸受装置などの回転部品に対しては、定期的に状態診断を行うことで、損傷や摩耗を早期に検知して回転部品の故障などの発生を抑制することが行われている。
【0003】
潤滑剤を用いた軸受装置では、その動作状態を診断するために、潤滑剤に関する状態を適切に検知することが求められる。例えば、特許文献1では、転動装置において、潤滑油の膜の厚さ及び金属の接触割合を検出する方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】日本国特開2019-211317号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
軸受装置などの装置において潤滑剤周りの状態を把握することは、その装置の損傷などを防止する上でも非常に有用である。潤滑剤周りの状態としては、潤滑剤による油膜の温度が挙げられる。特許文献1の方法では、潤滑剤の膜の厚さや金属の接触割合を導出することは可能であるが、潤滑剤の温度の測定は行っていなかった。温度変化が想定される潤滑剤による油膜の温度を測定する際には、温度センサの設置位置や、温度センサの測定原理による測定時の制御などに応じた制約が生じる。例えば、サーモグラフィ等の赤外線を用いた方法は、物体の熱放射を一定する必要がある。また、サーモクロミズム等の式層による温度診断方法は、対象が診断できる場所に存在する必要がある。
【0006】
上記課題を鑑み、本願発明は、装置内の潤滑剤の油膜温度の導出を容易に行う方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するために本願発明は以下の構成を有する。すなわち、装置内の潤滑剤の油膜温度を導出する温度導出方法であって、
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記油膜温度を算出する算出工程と
を有する。
【0008】
また、本願発明の別の形態は以下の構成を有する。すなわち、装置内の潤滑剤の油膜温度を検出する温度導出装置であって、
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定手段と、
前記測定手段にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出手段と、
前記緩和時間を用いて、前記油膜温度を算出する算出手段と
を有する。
【0009】
また、本願発明の別の形態は以下の構成を有する。すなわち、プログラムであって、
コンピュータに、
装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで、前記装置内の潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記潤滑剤の油膜温度を算出する算出工程と
を実行させる。
【発明の効果】
【0010】
本願発明により、装置内の潤滑剤の油膜温度の導出を容易に行う方法を提供することが可能となる。
【図面の簡単な説明】
【0011】
図1】本願発明の一実施形態に係る装置構成の例を示す概略図。
図2】周波数と誘電率との関係を説明するための図。
図3】緩和時間と絶対温度の関係を説明するための図。
図4】理論式への当てはめによるパラメータの導出を説明するための図。
図5】温度と緩和時間の相関を説明するための図。
図6】本実施形態に係る油膜温度の導出結果の例を示す図。
図7】本願発明の一実施形態に係る温度導出時の処理のフローチャート。
【発明を実施するための形態】
【0012】
以下、本願発明を実施するための形態について図面などを参照して説明する。なお、以下に説明する実施形態は、本願発明を説明するための一実施形態であり、本願発明を限定して解釈されることを意図するものではなく、また、各実施形態で説明されている全ての構成が本願発明の課題を解決するために必須の構成であるとは限らない。また、各図面において、同じ構成要素については、同じ参照番号を付すことにより対応関係を示す。
【0013】
<第1の実施形態>
以下、本願発明の第1の実施形態について説明を行う。なお、以下の説明においては、転がり軸受として玉軸受を例に挙げて説明するが、これに限定するものではなく、本願発明は他の構成の転がり軸受にも適用可能である。例えば、本願発明が適用可能な転がり軸受の種類としては、深溝玉軸受、アンギュラ玉軸受、円錐ころ軸受、円筒ころ軸受、自動調心ころ軸受などが挙げられる。
【0014】
[装置構成]
図1は、本実施形態に係る診断装置1にて診断を行う際の全体構成の一例を示す概略構成図である。図1には、本実施形態に係る温度導出方法が適用される軸受装置2と、油膜の温度導出および診断を行う診断装置1が設けられる。なお、図1に示す構成は一例であり、軸受装置2の構成などに応じて、異なる構成が用いられてよい。また、図1においては、軸受装置2は、1の転がり軸受を備える構成を示したが、これに限定するものではなく、1の軸受装置2に複数の転がり軸受が備えられてもよい。
【0015】
軸受装置2において、転がり軸受は、回転軸7を回転自在に支持する。回転軸7は、回転部品である転がり軸受を介して、回転軸7の外側を覆うハウジング(不図示)に支持される。転がり軸受は、ハウジングに内嵌される固定輪である外輪(外方部材)3、回転軸7に外嵌される回転輪である内輪(内方部材)4、内輪4及び外輪3との間に配置された複数の転動体5である複数の玉(ころ)、および転動体5を転動自在に保持する保持器(不図示)を備える。ここでは、外輪3を固定する構成としたが、内輪4が固定され、外輪3が回転するような構成であってもよい。また、転動体5周辺へのごみの侵入や潤滑油の漏れを防止するための周辺部材であるシール6が設けられる。転がり軸受内部において、所定の潤滑方式により、内輪4と転動体5の間、および、外輪3と転動体5の間の摩擦が軽減される。潤滑方式は特に限定するものではないが、例えば、グリース潤滑や油潤滑などが用いられ、転がり軸受内部に供給されている。潤滑剤の種類についても特に限定するものではない。
【0016】
モータ10は、駆動用のモータであり、回転軸7に対して回転による動力を供給する。回転軸7は、回転コネクタ9を介してLCRメータ8に接続される。回転コネクタ9は、例えば、カーボンブラシを用いて構成されてよく、これに限定するものではない。また、軸受装置2もLCRメータ8に電気的に接続され、このとき、LCRメータ8は、軸受装置2に対する交流電源としても機能する。
【0017】
診断装置1は、本実施形態に係る温度導出方法を実行可能な温度導出装置として動作する。診断装置1は、診断の際に、LCRメータ8に対して交流電源の角周波数ω、および交流電圧Vを入力として指示し、それに対する出力としてLCRメータ8から軸受装置2のインピーダンス|Z|(|Z|は、Zの絶対値を示す)、および位相角θを取得する。そして、診断装置1はこれらの値を用いて軸受装置2における潤滑剤による油膜の温度の導出を行う。ここでの油膜とは、例えば、外輪3と転動体5の間や、内輪4と転動体5の間に流入した潤滑剤により構成される膜が相当する。油膜の温度導出方法の詳細については、後述する。
【0018】
診断装置1は、例えば、不図示の制御装置、記憶装置、および出力装置を含んで構成される情報処理装置にて実現されてよい。制御装置は、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Single Processor)、または専用回路などから構成されてよい。記憶装置は、HDD(Hard Disk Drive)、ROM(Read Only Memory)やRAM(Random Access Memory)等の揮発性および不揮発性の記憶媒体により構成され、制御装置からの指示により各種情報の入出力が可能である。出力装置は、スピーカやライト、或いは液晶ディスプレイ等の表示デバイス等から構成され、制御装置からの指示により、作業者への報知を行う。出力装置による報知方法は特に限定するものではないが、例えば、音声による聴覚的な報知であってもよいし、画面出力による視覚的な報知であってもよい。また、出力装置は、通信機能を備えたネットワークインターフェースであってもよく、ネットワーク(不図示)を介した外部装置(不図示)へのデータ送信により報知動作を行ってもよい。ここでの報知内容は、例えば、油膜温度の導出結果に基づいて、異常診断を行った場合、異常が検出された際の報知に限定するものではなく、軸受装置2が正常である旨の報知を含んでもよい。
【0019】
図1に示すように、軸受装置2は複数の部位を含んで構成される。このような構成により、軸受装置2は、電気回路とみなすことができる。そして、このような電気回路に対して、LCRメータ8が備える交流電源(不図示)により交流電圧を印加することで、軸受装置2の電気特性を測定することができる。軸受装置2の電気回路に印加される交流電圧V、電気回路を流れる電流I、および、電気回路全体の複素数インピーダンスZは以下の式(1)~(3)にて示される。
V=|V|exp(jωt) …(1)
I=|I|exp(jωt-jθ) …(2)
Z=V/I=|V/I|exp(jθ)=|Z|exp(jθ) …(3)
j:虚数
ω:交流電圧の角周波数
t:時間
θ:位相角(電圧と電流の位相のずれ)
【0020】
LCRメータ8により交流電圧を印加することで、軸受装置2のインピーダンス|Z|(|Z|は、Zの絶対値を示す)、および位相角θを取得することができる。これらの情報を用いて、軸受装置2内の潤滑剤の誘電緩和現象を検出する。なお、軸受装置2にて構成される電気回路は、軸受装置2の構造に応じて異なる。そのため、ここでの詳細な説明は省略するが、軸受装置2の構造に応じた電気回路を想定して、以下の処理が行われるものとする。
【0021】
[比誘電率および比誘電損率]
図2は、周波数の変化に応じた誘電率(比誘電率や比誘電損率)の変化の傾向を説明するための図である。ここでは、図1に示す構成において、以下の条件により試験を行うことで軸受装置2に備えられた転がり軸受内の潤滑剤の比誘電率ε’および比誘電損率ε”を測定し、転がり軸受の潤滑剤による誘電緩和現象を確認している。ここでは、外輪温度が23℃の状態にて測定を行っている。また、転がり軸受内の潤滑剤による油膜に対する比較対象として、温度が23℃の潤滑剤(バルク状態)の測定結果を示す。なお、潤滑剤はいずれも同じものであり、バルク状態の潤滑剤は、測定時において温度変化は無いものとする。
【0022】
(試験条件)
軸受:深溝玉軸受(銘番:6306)
回転速度:997[min-1
アキシアル荷重:1000[N]
ラジアル荷重:0[N]
温度:23[℃]
潤滑剤:リチウム系グリース
交流電圧:1.0[V]
交流電源の周波数:20~1M[Hz]
【0023】
図2(a)において、横軸は周波数[Hz]の対数を示し、縦軸は比誘電率εr’を示す。図2(a)は、上記の試験結果として得られた、転がり軸受内の潤滑剤による油膜とバルク状態の潤滑剤それぞれの実験値を示す。図2(a)に示すように、いずれの測定結果においても、周波数が増加することに伴って、比誘電率ε’は低下(単調減少)する傾向を有する。
【0024】
図2(b)において、横軸は周波数[Hz]の対数を示し、縦軸は比誘電損率ε”を示す。図2(b)は、上記の試験結果として得られた、転がり軸受内の潤滑剤による油膜とバルク状態の潤滑剤それぞれの実験値を示す。図2(b)に示すように、いずれの測定結果においても、比誘電損率ε”は、周波数が増加するに伴って一旦低下した後、上昇に転じ、その後、また減少する傾向を有する。
【0025】
図2を参照すると、潤滑剤(バルク状態)と転がり軸受内の潤滑剤による油膜の測定結果に差異が生じている。図2(b)に示すように、転がり軸受内の潤滑剤による油膜の測定結果の方が、緩和時間τ(ピーク位置)は高周波側に移動している。また、転がり軸受内の潤滑剤による油膜の測定結果の方が、直流導電率σ0は上昇している。このような差異が生じた理由としては、転がり軸受の回転動作により転がり軸受内の油膜の温度が外輪温度(ここでは、23℃)よりも上昇したことが挙げられる。
【0026】
本実施形態では、緩和時間と転がり軸受内の潤滑剤による油膜の温度との相関に基づいて、転がり軸受内の潤滑剤による油膜の温度を導出する。図3は、緩和時間τと絶対温度Tとの関係を説明するための図である。図3において、縦軸は緩和時間τ[μs]を示し、横軸は絶対温度T[K]を示す。ここでは、試験にて用いたリチウム系グリースの測定結果の例を示す。図3に示すように、緩和時間τが減少するに従って、絶対温度Tは増加している。図3を参照すると、緩和時間τと絶対温度Tとの間に相関があることが読み取れる。
【0027】
まず、緩和時間τは、アイリングの式に基づいて、以下の式(4)のように定義できる。
【0028】
【数1】
【0029】
τ:緩和時間[s]
K:平衡定数
h:プランク定数
R:気体定数
:ボルツマン定数
T:絶対温度
ΔH:活性化エンタルピー
ΔS:活性化エントロピー
ΔG:活性化ギブズエネルギー(=ΔH-TΔS
exp:指数関数
【0030】
そして、上記の式(4)を、ランベルトW関数を用いて絶対温度Tについて整理すると、以下の式(5)のように定義できる。
【0031】
【数2】
【0032】
W:ランベルトW関数
【0033】
本実施形態では、アキシアル荷重下における転がり軸受内の潤滑剤による油膜の温度の導出において、上記の式(5)を用いる。平衡定数K、プランク定数h、気体定数R、およびボルツマン定数kは、予め設定される。また、活性化エンタルピーΔHと活性化エントロピーΔSの値は、バルク状態における潤滑剤の値を予め測定し、これを用いる。より具体的には、活性化エンタルピーΔHと活性化エントロピーΔSの値は、以下の式(6)を用いて、実測値を適用することで導出できる。
【0034】
【数3】
【0035】
ln:対数関数
【0036】
上記の試験にて用いたリチウム系グリースの例として、12-OHステアリン酸Li系グリースを潤滑剤に用いるものとする。この場合、上記の式(6)を用いて、バルク状態の潤滑剤について、緩和時間τと絶対温度Tとの関係から、活性化エンタルピーΔHと活性化エントロピーΔSを求めた結果、以下の値が得られた。
ΔH=39.5[kJ・mol-1
ΔS=-2.5[J・mol-1・K-1
【0037】
[理論式への当てはめ]
次に、転がり軸受内の潤滑剤による誘電緩和現象に関するパラメータの導出について説明する。転がり軸受内の潤滑剤の誘電緩和現象に基づく電気特性は、図2にて示したような変化傾向を有する。この変化傾向の電気特性を特定するために実測値を理論式へ当てはめ(フィッティング)、各種パラメータを導出する。本実施形態では、転がり軸受内の潤滑剤の油膜の温度を導出するために、緩和時間τを特定する。本実施形態では、以下の式(7)~式(9)にて示す理論式を用いる。
【0038】
【数4】
【0039】
【数5】
【0040】
【数6】
【0041】
εr0:低周波極限での比誘電率
εr∞:高周波極限での比誘電率
τ:緩和時間[s]
β:緩和時間の分布を表す定数
σ:直流導電率[S/m]
ε:真空の誘電率
π:円周率
f:周波数
【0042】
図4は、上記の理論式への当てはめにより得られる曲線と、図1にて示した構成を用いて得られる実験値とを比較したものである。ここでは、本実施形態の対象である、緩和時間τを特定するための比誘電損率ε”に着目して説明する。図4において、横軸は周波数[Hz]の対数を示し、縦軸は比誘電損率ε”を示す。図4に示すように、当てはめにより、比誘電損率について、理論値は実験値の傾向を表現できている。
【0043】
上記の理論式への当てはめを行うことで、潤滑剤に関する電気特性のパラメータである緩和時間τを導出することが可能となる。図4に示す例では、緩和時間τは、1.2[μs]が導出された。そして、この値を上記の式(5)に代入することで、絶対温度T[K]を算出することができる。結果として、転がり軸受内の潤滑剤の油膜の温度として46.3[℃]が導出される。
【0044】
なお、式(7)~式(9)にて示した理論式はCole-Cole型の理論式をベースとしたものであり、一例に過ぎない。そのため、この理論式に限定するものでは無く、他の理論式を用いてもよい。
【0045】
[検証例]
図5は、図1に示す構成を用いて、転がり軸受の外輪の経時温度上昇において、周波数掃引により比誘電損率の測定を行った結果を示す図である。図5において、縦軸は比誘電損率ε”を示し、横軸は周波数[Hz]の対数を示す。また、ここでは、外輪の温度として、23℃、25℃、27℃、および29℃の4つを用いて説明する。図5に示すように、外輪の温度が高くなるに従って、緩和時間τ(ピーク位置)は高周波側に移動している。つまり、温度と緩和時間とは相関があることが読み取れる。
【0046】
図6は、図5の測定結果から導出された緩和時間τと式(5)とを用いて算出された油膜温度と、外輪温度との対応を示す図である。図6を参照すると、緩和時間τの減少に伴って、転がり軸受内の潤滑剤の油膜温度は上昇する結果が得られている。また、これらはいずれも実測されている外輪の温度よりも高温である値が算出されている。つまり、図6に示すように、本実施形態に係る温度導出方法では、外輪ではなく、潤滑剤自体の温度を導出することができる。
【0047】
なお、上記の試験例では、一定速度および一定荷重下において、内輪を回転輪とした例を示した。同様に、外輪を回転輪とした構成であっても本実施形態に係る手法は適用可能である。
【0048】
[処理フロー]
図7は、本実施形態に係る温度検出処理のフローチャートである。本処理は、診断装置1により実行され、例えば、診断装置1が備える制御装置(不図示)が本実施形態に係る処理を実現するためのプログラムを記憶装置(不図示)から読み出して実行することにより実現されてよい。
【0049】
S701にて、診断装置1は、軸受装置2に対して、所定の荷重方向にアキシアル荷重が与えられるように制御する。なお、アキシアル荷重を与える制御は、診断装置1とは別の装置により行われてもよい。この時、静的接触状態における位相とインピーダンスを測定する。
【0050】
S702にて、診断装置1は、モータ10により回転軸7の回転を開始させる。これにより回転軸7に接続された内輪4の回転が開始される。なお、モータ10の制御は、診断装置1とは別の装置により行われてもよい。
【0051】
S703にて、診断装置1は、LCRメータ8に対し、LCRメータ8が備える交流電源(不図示)を用いて角周波数ωの交流電圧Vを軸受装置2に与えるように制御する。これにより、軸受装置2には、角周波数ωの交流電圧Vが印加されることとなる。
【0052】
S704にて、診断装置1は、S703の入力に対する出力として、LCRメータ8からインピーダンス|Z|および位相角θを取得する。つまり、LCRメータ8は、入力である交流電圧Vおよび交流電圧の角周波数ωに対する軸受装置2の検出結果として、インピーダンス|Z|および位相角θを診断装置1に出力する。
【0053】
S705にて、診断装置1は、油膜の温度導出のための各種パラメータを記憶部から読み出す。具体的には、転がり軸受にて用いられている潤滑剤に対応して、式(5)にて用いられるパラメータを取得する。これらのパラメータは、予め規定され、記憶装置(不図示)等に保持されているものとする。
【0054】
S706にて、診断装置1は、S704にて取得したインピーダンス|Z|および位相角θ、S703にて指示した角周波数ωの交流電圧Vの情報に基づいて、各周波数に対応する比誘電率および比誘電損率を導出する。ここでの導出方法は、公知の手法が用いられてよい。また、比誘電率および比誘電損率の導出はLCRメータ8が行い、インピーダンス|Z|および位相角θと併せて、比誘電率および比誘電損率を測定結果として診断装置1に出力するような構成であってもよい。
【0055】
S707にて、診断装置1は、得られた測定結果を、上記の式(7)~式(9)にて示す理論式へ当てはめ(フィッティング)を行う。
【0056】
S708にて、診断装置1は、S707の当てはめの結果から緩和時間τを導出する。ここでの緩和時間τの導出方法は、公知の手法が用いられてよい。
【0057】
S709にて、診断装置1は、S708にて導出した緩和時間τ、およびS705にて取得した各種パラメータに基づいて、油膜温度を導出する。具体的には、診断装置1は、上記の式(2)に各種パラメータを代入することで絶対温度Tを算出し、油膜温度(セルシウス温度)へ変換する。なお、油膜温度を絶対温度[K]の値にて出力してもよい。
【0058】
S710にて、診断装置1は、S709にて導出した油膜温度に基づいて、潤滑剤の状態診断を行う。ここでの診断内容は特に限定するものでは無いが、例えば、油膜温度に対して閾値を設定しておき、その閾値との比較により正常または異常を診断するような構成であってもよい。
【0059】
S711にて、診断装置1は、S710にて得られた診断結果をユーザに対して報知する。ここでの報知方法は特に限定するものでは無いが、例えば、油膜温度の値と、温度の変遷などを画面上で表示してもよい。また、動作条件に応じた異常昇温などを通知したりするような構成であってよい。そして、本処理フローを終了する。
【0060】
以上、本実施形態により、転がり軸受などの潤滑剤を用いる装置において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。また、これに基づき、装置の状態診断を容易に行うことが可能となる。
【0061】
<その他の実施形態>
上記の実施形態では、転がり軸受内の潤滑剤による油膜を例に挙げて説明したが、これに限定するものではない。例えば、装置内において用いられており直接の温度検出が困難な物質であって、誘電緩和が生じる物質であれば、潤滑剤に限られず、本願発明に係る手法は適用可能である。また、適用する装置についても転がり軸受に限定するものではなく、その他、誘電緩和が生じる物質を利用した転動装置に本願発明に係る手法は適用可能である。
【0062】
また、上記の例では、潤滑剤の例として、リチウム系グリースを例に挙げて説明したが、これに限定するものではない。上述したように、誘電緩和が生じる潤滑剤などにも本願発明に係る手法は適用可能である。
【0063】
また、本願発明において、上述した1以上の実施形態の機能を実現するためのプログラムやアプリケーションを、ネットワーク又は記憶媒体等を用いてシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。
【0064】
また、1以上の機能を実現する回路(例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array))によって実現してもよい。
【0065】
このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
【0066】
以上の通り、本明細書には次の事項が開示されている。
(1) 装置内の潤滑剤の油膜温度を導出する温度導出方法であって、
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記油膜温度を算出する算出工程と
を有することを特徴とする温度導出方法。
この構成によれば、潤滑剤を用いる装置において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。
【0067】
(2) 前記算出工程では、
【0068】
【数7】
【0069】
を用いて前記油膜温度を算出し、
活性化エンタルピーΔH、および活性化エントロピーΔSは、バルク状態における前記潤滑剤の値が用いられることを特徴とする(1)に記載の温度導出方法。
この構成によれば、バルク状態の潤滑剤の情報を用いて、潤滑剤の油膜温度を容易に導出することが可能となる。
【0070】
(3) 前記理論式は、
【0071】
【数8】
【0072】
【数9】
【0073】
【数10】
【0074】
にて示されることを特徴とする(1)または2に記載の温度導出方法。
この構成によれば、装置内の潤滑剤による誘電緩和現象の電気特性を精度よく特定し、この電気特性に基づく値に基づいて、潤滑剤の油膜温度を導出することができる。
【0075】
(4) 前記算出工程にて算出した前記油膜温度を用いて前記装置の状態を診断する診断工程を更に有することを特徴とする(1)~(3)のいずれかに記載の温度導出方法。
この構成によれば、また、算出した油膜温度に基づき、装置の状態診断を容易に行うことが可能となる。
【0076】
(5) 前記装置は、転動装置であることを特徴とする(1)~(4)のいずれかに記載の温度導出方法。
この構成によれば、転動装置において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。
【0077】
(6) 前記装置は、転がり軸受であることを特徴とする(1)~(4)のいずれかに記載の温度導出方法。
この構成によれば、転がり軸受において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。
【0078】
(7) 装置内の潤滑剤の油膜温度を検出する温度導出装置であって、
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定手段と、
前記測定手段にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出手段と、
前記緩和時間を用いて、前記油膜温度を算出する算出手段と
を有することを特徴とする温度導出装置。
この構成によれば、潤滑剤を用いる装置において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。
【0079】
(8) コンピュータに、
装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで、前記装置内の潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記潤滑剤の油膜温度を算出する算出工程と
を実行させるためのプログラム。
この構成によれば、潤滑剤を用いる装置において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。
【0080】
以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
【0081】
なお、本出願は、2020年9月29日出願の日本特許出願(特願2020-163962)、および、2021年8月25日出願の日本特許出願(特願2021-137563)に基づくものであり、その内容は本出願の中に参照として援用される。
【符号の説明】
【0082】
1…診断装置
2…軸受装置
3…外輪(外方部材)
4…内輪(内方部材)
5…転動体
6…シール
7…回転軸
8…LCRメータ
9…回転コネクタ
10…モータ
【要約】
装置内の潤滑剤の油膜温度を導出する温度導出方法であって、前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定工程と、前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、前記緩和時間を用いて、前記油膜温度を算出する算出工程とを有する。
図1
図2
図3
図4
図5
図6
図7