(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-01
(45)【発行日】2022-08-09
(54)【発明の名称】溶接電流への、別の溶接電源からの干渉の影響を補償するための方法
(51)【国際特許分類】
B23K 9/10 20060101AFI20220802BHJP
【FI】
B23K9/10 Z
(21)【出願番号】P 2021510762
(86)(22)【出願日】2019-08-02
(86)【国際出願番号】 EP2019070866
(87)【国際公開番号】W WO2020043428
(87)【国際公開日】2020-03-05
【審査請求日】2021-02-26
(32)【優先日】2018-08-30
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】504380611
【氏名又は名称】フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
【氏名又は名称原語表記】FRONIUS INTERNATIONAL GMBH
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(74)【代理人】
【識別番号】100142907
【氏名又は名称】本田 淳
(72)【発明者】
【氏名】アルテルスマイア、ヨーゼフ
(72)【発明者】
【氏名】ゼリンガー、ドミニク
(72)【発明者】
【氏名】ムス、ミヒャエル
【審査官】後藤 泰輔
(56)【参考文献】
【文献】米国特許出願公開第2010/0308027(US,A1)
【文献】特開2015-076988(JP,A)
【文献】特表2001-518603(JP,A)
【文献】米国特許第06710297(US,B1)
【文献】米国特許出願公開第2008/0245781(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 9/10
(57)【特許請求の範囲】
【請求項1】
ワークピース(3)を溶接するために溶接電源(4)によって供給される溶接電流への、別の溶接電源(4’)からの干渉の影響を補償するための方法であって、
(a)他方の溶接電源(4’)によって供給された溶接電流推移に基づいて計算された補償電圧(U
Komp)を供給するステップ(SA)と、
(b)前記溶接電源(4)の電圧測定ユニット(8)によって測定された測定電圧(U
Mess)から前記補償電圧(U
Komp)を減算して、補正測定電圧(U’
Mess)を算定するステップ(SB)と、
(c)前記補正測定電圧(U’
Mess)の関数として、前記溶接電源(4)によって生成された溶接電流を調整するステップ(SC)と、
を含む方法。
【請求項2】
前記補償電圧(U
Komp)は、前記他方の溶接電源(4’)によって供給された溶接電流推移の電流プロファイル(SP)に基づいて、且つ、格納された結合係数(KF)に基づいて計算される、請求項1に記載の方法。
【請求項3】
前記格納された結合係数(KF)は、オーミック結合係数(K
R)及び少なくとも1つの誘導結合係数(K
L)を含む、請求項2に記載の方法。
【請求項4】
前記補償電圧(U
Komp)は、前記他方の溶接電源(4’)の溶接電流推移に応じて、前記溶接電源(4)のデータ格納部(9)から読み取られる、請求項2又は3に記載の方法。
【請求項5】
前記他方の溶接電源(4’)の溶接電流推移の電流プロファイル(SP)は、前記他方の溶接電源(4’)から前記溶接電源(4)の計算処理ユニットに、無線又は有線で送信される、請求項2又は3に記載の方法。
【請求項6】
前記他方の溶接電源(4’)の溶接電流推移の電流プロファイル(SP)は、電流レベル及
び電流レベルの変化
率を含む、請求項2~5のいずれか一項に記載の方法。
【請求項7】
計算処理ユニット(7)によって計算された前記補償電圧(U
Komp)が、前記溶接電源(4)の補償ユニット(10)によって、前記溶接電源(4)の前記電圧測定ユニット(8)によって測定された測定電圧(U
Mess)から連続的に減算されて、前記補正測定電圧(U’
Mess)が算定される、請求項2~6のいずれか一項に記載の方法。
【請求項8】
前記補償電圧(U
Komp)の計算(SA)及び前記補正測定電圧(U’
Mess)の算定(SB)は、アナログ方式又はデジタル方式で実行される、請求項1~7のいずれか一項に記載の方法。
【請求項9】
前記補正測定電圧(U’
Mess)を使用して調整ユニットによって調整された溶接電流は、前記溶接電源(4)の溶接電流線(5)を介して、前記ワークピース(3)を溶接するための溶接トーチ(13)に供給される、請求項1~8のいずれか一項に記載の方法。
【請求項10】
溶接電流線(5)を介して、少なくとも一つのワークピース(3)を溶接するための溶接トーチ(13)に供給可能な溶接電流を生成するための溶接電源(4)であって、
別の溶接電源(4’)の溶接電流推移の関数として、補償電圧(U
Komp)を計算するのに適した計算処理ユニット(7)と、
溶接電源(4)の電圧測定ユニット(8)によって測定された測定電圧(U
Mess)から、前記計算処理ユニット(7)によって計算された前記補償電圧(U
Komp)を減算することにより、前記溶接電源(4)によって生成された溶接電流を調整するために前記溶接電源(4)の調整ユニット(11)によって使用される補正測定電圧(U’
Mess)を算定するのに適した補償ユニット(10)と、
を有する溶接電源。
【請求項11】
前記溶接電源(4)の前記計算処理ユニット(7)は、前記他方の溶接電源(4’)によって供給された溶接電流の電流プロファイル(SP)に基づいて、且つ、結合係数(KF)に基づいて、前記補償電圧(U
Komp)を計算し、前記結合係数(KF)は、前記溶接電源(4)のデータ格納部(9)に格納されたもの、或いは、データベース又は前記他方の溶接電源(4’)のデータ格納部からインタフェースを介して受け取られたものである、請求項10に記載の溶接電源。
【請求項12】
前記他方の溶接電源(4’)の溶接電流の電流プロファイル(SP)は、電流レベル及
び電流レベルの変化
率を含む、請求
項11に記載の溶接電源。
【請求項13】
前記他方の溶接電源(4’)の溶接電流の電流プロファイル(SP)は、前記他方の溶接電源(4’)から、前記溶接電源(4)の無線又は有線インタフェースを介して受信される、請求項
11又は12に記載の溶接電源。
【請求項14】
前記補償電圧(U
Komp)を計算するために設けられた、前記溶接電源(4)の前記計算処理ユニット(7)は、
前記電流プロファイル内の現在の電流レベルにオーミック結合係数(K
R)を乗算して、前記補償電圧(U
Komp)のオーミック部分を計算する第1の乗算器(7A)と、
前記電流プロファイル内の現在の電流レベルの変化に誘導結合係数(K
L)を乗算して、前記補償電圧(U
Komp)の誘導性部分を計算する第2の乗算器(7B)と、
前記補償電圧(U
Komp)の前記オーミック部分と、前記補償電圧(U
Komp)の前記誘導性部分と、を加算して、前記補償電圧(U
Komp)を計算する加算器(7C)と、
を有する、請求項
11又は12に記載の溶接電源。
【請求項15】
1つ又は複数のワークピース(3)を溶接するために同時に連帯して動作する、請求項10~14のいずれか一項に記載の少なくとも2つの溶接電源を備える溶接システム(1)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、溶接システムの溶接回路間の干渉結合を算定するための方法、及びこの干渉結合を補償するための方法に関する。
【背景技術】
【0002】
溶接システムは、少なくとも1つのワークピースを溶接するために使用することが可能な、1つ又は複数の溶接回路を含むことができる。溶接回路はそれぞれ、ワークピースを溶接するための溶接電流を供給する溶接電源を有する。溶接電源は、溶接回路の溶融溶接ワイヤ電極に電流を供給し、溶接ワイヤ電極の先端と、ワークピースの表面との間にアークが発生する。溶接ワイヤ電極は、溶接方法の変形形態及び使用される溶接パラメータに応じて、様々なやり方でアークによって溶融される。
【0003】
パルスアーク溶接の間、増加したパルス電圧が周期的にベース電圧に重ね合わされ、ベース電流と、所定の周波数及びパルス時間を有するパルス電流とが交互に発生する。
図1は、パルス溶接プロセスにおける時間tにわたる概略的な電流推移を示す。
図1でわかるように、この溶接プロセスでは、溶接電流Iは、パルス状に高い値に上昇している。溶融浴への材料の移行は、電流パルスに基づいている。ベース電流フェーズの間、アークは低電力で燃焼し、追加の材料又は溶接ワイヤ電極が溶融し、溶接浴は液体に保たれている。パルスフェーズの間、液滴が形成され、この液滴は磁気圧縮によって放出される。パルスアーク溶接では、ワークピースへの熱の導入を減らし、制御することが可能である。その結果、比較的太い溶接ワイヤ電極を使用して薄いワークピースシートを溶接することができ、溶融力が高くなり、溶接プロセスの間の液はねを大幅に減らすことが可能である。
【0004】
図1の溶接電流レベルの推移は、ベース電流の振幅I
gと、パルス持続時間t
pを有する電流パルスのパルス電流の振幅I
pと、を示す。電流パルスは、周期持続時間Tに従ってパルス周波数fで印加される。
図1は、溶接電流平均I
avをさらに示す。
【0005】
図2は、パルス溶接プロセスの期間を示す。アークは、当初(t
1)、低いベース電流レベルで燃焼する。電流が増加すると(t
2)、溶接ワイヤ電極のワイヤ端部が最初に溶融する。電流がパルス電流値I
pに達したら(t
3)、溶接ワイヤ電極のワイヤ端部が強く溶融し、液滴が形成される。この液滴は、磁気ピンチオフ効果によって収縮する。電流は、その後より低い電流値に減少し(t
4)、形成された液滴がさらに収縮し、溶融浴の方向に加速される。時間t
5において、液滴は溶接ワイヤ電極のワイヤ端部から放出されている。
図2でわかるように、溶接電流Iは、その後、再びベース電流値まで減少する(t
6)。
【0006】
図3は、溶接システムの従来の溶接回路SSKを示す。溶接回路SSKには、溶接電源SSQの正極から負極までのすべての線及び接続が含まれる。溶接回路SSKには、溶接電流Iが流れる。溶接回路SSKの順方向及び逆方向の伝導はそれぞれ、
図3に概略的に示されているように、抵抗R及びインダクタンスLによる影響を受ける。溶接回路抵抗Rは、溶接電流Iが流れるすべての線と接続のすべての抵抗の合計によって形成される。溶接回路抵抗Rは、以下の副抵抗、すなわち、接地線の抵抗RL-、ケーブル組立体を通る線の抵抗RL+、及び端子接点での境界抵抗に細分することができる。溶接線の抵抗、言いかえれば、接地線の抵抗及びケーブル組立体を通る線の抵抗は、線の断面積及び導体の材質によって算定され、通常の状況下では変動しない。対照的に、端子接点の境界抵抗は、例えば、酸化又は端子接点の緩みの結果として、比較的大きく変動する場合がある。
【0007】
溶接回路SSKの溶接回路インダクタンスLは、溶接回路が動的抵抗で電流の各変化を打ち消す特性であると理解される。溶接回路SSKの溶接回路インダクタンスが大きいほど、この動的抵抗は大きくなる。
【0008】
溶接回路SSKの溶接回路抵抗R及び溶接回路インダクタンスLの両方が、溶接プロセスに影響を与える。例えば、溶接回路抵抗Rが変化すると、アーク長が変化する。
さらに、
図4に示されているように、溶接回路インダクタンスLの変化は、溶接プロセスに影響を与える。
図4は、アークLB及び溶接電源の出力ジャックにおける電圧推移、並びにパルス溶接プロセスの期間中の経時的な溶接電流Iの推移を示す。溶接方法では、様々な変調タイプ、特に、Ig/Ip変調及びIg/Up変調を使用することができる。Ig/Ip変調では、溶接電流Iは、期間内の各時点における所定の溶接電流目標値に正確に対応する。したがって、電流がベース電流からパルス電流に増加すると、溶接回路インダクタンスLに流れる電流の駆動に要する必要電圧が、自動的に定まる。これは、Ig/Up変調と比較して、溶接回路インダクタンスLが電流の上昇に影響を与えないという利点がある。対照的に、Ig/Up変調では、この変調のパルス電圧が一定に保たれるため、電流の上昇は溶接回路SSKの溶接回路インダクタンスLとともに変動する。しかしながら、Ig/Ip変調では、溶接回路SSKの溶接電源SSQによって十分な電圧が供給されている場合にのみ、電流の上昇率を一定に保つことができる。ただし、溶接回路SSKの個々の電圧の合計が、溶接電源SSQの最大出力電圧を超えると、この閾値が満たされる。この場合、溶接電流の上昇は遅くなり、溶接プロセスが変更される。
【0009】
図5は、従来の溶接回路SSKにおける電圧の組成を概略的に示す。電圧U
a、言いかえれば、電源の出力端子の電圧は、副電圧U
sk、U
L、及びU
pulsで構成されている。なお、
U
sk=I
p・R
sk、
U
L=L・di/dtであり、
U
pulsは、使用されるシールドガス、材料、及びアーク長によって変わる。
【0010】
電圧U
skは、溶接回路抵抗R及びパルス電流I
pによって変わる。
電圧U
Lは、インダクタンスL、及び電流の変化率di/dtによって変わる。
図6に概略的に示されているように、溶接システムで複数の溶接電源SSQが使用される場合、溶接回路SSK間に結合が発生する。溶接電源SSQの電流線は、特定の区域を囲む導体ループを形成している。このタイプの2つのフィールド又は区域が重複する場合は常に、一方の導体ループで電流Iに変化があると、第2の導体ループに電圧Uが誘導される。2つの区域又はフィールドの重複が大きいほど、また、2つのフィールド又はループ間の距離が小さいほど、誘導電圧Uは大きくなる。溶接システムの様々な溶接回路SSKは、いくぶんか結合が不十分である変圧器のように挙動する。
【0011】
溶接システムの溶接回路SSK間の結合は、溶接中のプロセス挙動に影響を与える。電流パルスが溶接回路SSKに印加されるごとに、電圧Uが他方の溶接回路SSKの線に誘導される。これは、両方向、すなわち双方向で発生する。溶接回路SSKに誘導された電圧Uは、他方の溶接電源で電流を流させ、前記流れの効果は、アークLBの抵抗の変化のように作用する。溶接回路SSKでは、追加の電圧源がある程度までオンに切り替えられ、
図6に概略的に示されているように、他方の溶接電源SSQによって制御される。2つの溶接電源SSQは同期して動作せず、特に、パルス周波数が異なるため、アーク長のビート又はばらつきが発生する可能性がある。これは、パルス周波数の周波数差が小さい場合に最も顕著になる。
【0012】
溶接システムの溶接回路SSK間の相互の影響を小さくしておくために、従来、溶接回路SSKの線を密に、平行に敷設することにより、各誘導区域を最小化する試みがなされてきた。さらに、従来、溶接回路SSKを空間的に分離する試みがなされてきた。
【0013】
しかしながら、この従来の手順は、実際には行うことができない場合が多い。現行の製造条件の結果として、溶接システムの様々な溶接回路SSKの線を適切に敷設することができないためである。加えて、溶接回路SSKの線を適切に敷設するための知識も意識もない場合が多い。それに加え、溶接回路SSKの線を適切に敷設したとしても、これにより、溶接回路SSK間の結合がどの程度減少し、残りの残留結合がワークピースWSの溶接プロセスにどの程度悪影響を及ぼし続けることになるかを推定することは、ほぼ不可能である。
【発明の概要】
【発明が解決しようとする課題】
【0014】
したがって、本発明は、ワークピースを溶接するために溶接電源によって供給される溶接電流への、別の溶接電源からの干渉の影響を補償するための方法を提供することを目的とする。
【課題を解決するための手段】
【0015】
この目的は、本発明に従って、請求項1に記載の特徴を有する方法によって実現される。
それに応じて、本発明は、ワークピースを溶接するために溶接電源(受信溶接電源)によって供給される溶接電流への、別の溶接電源(送信溶接電源)からの干渉の影響を補償するための方法を提供し、この補償方法は、以下のステップ、すなわち、
他方の溶接電源(送信溶接電源)によって供給された溶接電流推移に基づいて計算された補償電圧を供給するステップと、
溶接電源(受信溶接電源)の電圧測定ユニットによって測定された測定電圧から補償電圧を減算して、補正測定電圧を算定するステップと、
補正測定電圧の関数として、溶接電源(受信溶接電源)によって生成された溶接電流を調整するステップと、を含む。
【0016】
本発明による、ワークピースを溶接するために溶接電源によって供給される溶接電流への、同じ又は異なるワークピースを溶接するために使用される別の溶接電源(送信溶接電源)からの干渉の影響を補償するための補償方法の可能な一実施形態では、補償電圧は、他方の溶接電源(送信溶接電源)によって供給された溶接電流推移の電流プロファイルに基づいて、且つ、格納された結合係数に基づいて計算される。
【0017】
本発明による補償方法のさらなる可能な実施形態では、格納された結合係数は、オーミック結合係数及び少なくとも1つの誘導結合係数を含む。
本発明による補償方法のさらなる可能な実施形態では、他方の溶接電源(送信溶接電源)の溶接電流推移の電流プロファイルは、溶接電源(受信溶接電源)の電流プロファイル格納部又はデータ格納部から読み取られる。
【0018】
この目的のために、送信溶接電源の電流推移の、受信溶接電源に格納された電流推移データとの適切な同期があることが好ましい。
本発明による補償方法のさらなる可能な実施形態では、他方の溶接電源(送信溶接電源)の溶接電流推移の電流プロファイルは、他方の溶接電源(送信溶接電源)から溶接電源(受信溶接電源)の計算処理ユニットに、無線又は有線で送信される。
【0019】
本発明による補償方法のさらなる可能な実施形態では、他方の溶接電源(送信溶接電源)の溶接電流推移の電流プロファイルは、電流レベル及び関連する時間値に伴う電流レベルの変化を含む。
【0020】
本発明による補償方法のさらなる可能な実施形態では、溶接電源(受信溶接電源)の計算処理ユニットによって計算された補償電圧は、溶接電源(受信溶接電源)の補償ユニットによって、溶接電源(受信溶接電源)の電圧測定ユニットによって測定された測定電圧から連続的に減算されて、補正測定電圧が算定される。
【0021】
本発明による補償方法のさらなる可能な実施形態では、補正測定電圧を使用して調整ユニットによって調整された溶接電流は、溶接電源(受信溶接電源)の溶接電流線を介して、ワークピースを溶接するための溶接トーチに供給される。
【0022】
さらなる態様では、本発明は、溶接電流線を介して、ワークピースを溶接するための溶接トーチに供給可能な溶接電流を生成するための溶接電源であって、
同じ又は異なるワークピースを溶接するために使用される別の溶接電源の溶接電流推移の関数として、補償電圧を計算するのに適した計算処理ユニットと、
溶接電源の電圧測定ユニットによって測定された測定電圧から、計算処理ユニットによって計算された補償電圧を減算して、溶接電源によって生成された溶接電流を調整するために溶接電源の調整ユニットによって使用される補正測定電圧を算定するのに適した補償ユニットと、を有する溶接電源を提供する。
【0023】
本発明による溶接電源の可能な一実施形態では、溶接電源の計算処理ユニットは、他方の溶接電源(送信溶接電源)によって供給された溶接電流の電流プロファイルに基づいて、且つ、データ格納部又はデータベースに格納された結合係数に基づいて、補償電圧を計算する。
【0024】
本発明による溶接電源のさらなる可能な実施形態では、他方の溶接電源(送信溶接電源)の溶接電流の電流プロファイルは、電流レベル及び関連する時間値に伴う電流レベルの変化を含む。
【0025】
本発明による溶接電源のさらなる可能な実施形態では、他方の溶接電源の溶接電流の電流プロファイルは、他方の溶接電源(送信溶接電源)から受信されるか、又は溶接電源の電流プロファイル格納部から同期して読み取られる。
【0026】
本発明による溶接電源のさらなる可能な実施形態では、補償電圧を計算するために設けられた溶接電源の計算処理ユニットは、
電流プロファイル内の現在の電流レベルにオーミック結合係数を乗算して、補償電圧のオーミック部分(Ohmschen Anteils)を計算する第1の乗算器と、
電流プロファイル内の現在の電流レベルの変化に誘導結合係数を乗算して、補償電圧の誘導性部分(induktiven Anteils)を計算する第2の乗算器と、
補償電圧のオーミック部分と、補償電圧の誘導性部分と、を加算して、補償電圧を計算する加算器と、を有する。
【0027】
本発明は、1つ又は複数のワークピースを溶接するために連帯して動作する少なくとも2つの溶接電源を備える溶接システムであって、溶接電源がそれぞれ、溶接電流線を介して、1つ又は複数のワークピースを溶接するための溶接トーチに供給可能な溶接電流を生成するために設けられるとともに、溶接電源がそれぞれ、
溶接システムの別の溶接電源の溶接電流推移の関数として、補償電圧を計算するのに適した計算処理ユニットと、
溶接電源の電圧測定ユニットによって測定された測定電圧から、計算処理ユニットによって計算された補償電圧を減算して、この溶接電源によって生成された溶接電流を調整するために溶接電源の調整ユニットによって使用される補正測定電圧を算定するのに適した補償ユニットと、を有する溶接システムをさらに提供する。
【0028】
以下に、本発明の様々な態様の可能な実施形態について、添付の図面を参照して、より詳細に説明する。
【図面の簡単な説明】
【0029】
【
図1】従来のパルス溶接プロセスにおける電流推移を示す。
【
図2】
図1に示されているパルス溶接プロセスの期間中の電流推移を示す。
【
図4】従来のパルス溶接プロセスの期間の電圧推移、及び電流推移を示す。
【
図5】従来の溶接回路の電圧の組成を図示する概略図である。
【
図6】本発明の基礎となる技術的問題を図示する、異なる溶接回路間の結合の概略図である。
【
図7】本発明の第1の態様による、溶接システムの溶接回路間の干渉結合を算定するための方法の実施形態を示す単純なフローチャートである。
【
図8A】2つの溶接回路を備える溶接システムの概略図であり、
図7に示されている本発明による、溶接システムの溶接回路間の干渉結合を算定するための方法の動作モードを図示している。
【
図8B】2つの溶接回路を備える溶接システムの概略図であり、
図7に示されている本発明による、溶接システムの溶接回路間の干渉結合を算定するための方法の動作モードを図示している。
【
図9】2つの溶接回路を備える溶接システムのさらなる概略図であり、
図7に示されている本発明による、溶接システムの溶接回路間の干渉結合を算定するための方法を図示している。
【
図10】
図7に示されている本発明による、溶接システムの溶接回路間の干渉結合を算定するための方法の可能な実施形態を図示する信号推移を示す。
【
図11】
図7に示されている、溶接システムの溶接回路間の干渉結合を算定するための方法の可能な実施形態における動作モードを図示するさらなる信号推移を示す。
【
図12】ワークピースを溶接するために溶接電源によって供給される溶接電流への、本発明のさらなる態様に従って同じワークピースを溶接するために使用される別の溶接電源からの干渉の影響を補償するための、本発明による方法の可能な実施形態を示すフローチャートである。
【
図13】
図12に示されている通信方法の実施形態の動作モードを図示する信号推移を示す。
【
図14】溶接システムの2つ回路間の結合効果を図示する概略図である。
【
図15】本発明による結合の補償がない電源の概略図である。
【
図16A】本発明による、
図12に示されている補償方法に従う結合の補償がある電源の概略図である。
【
図16B】本発明による、
図12に示されている補償方法に従う結合の補償がある電源の概略図である。
【発明を実施するための形態】
【0030】
本発明による方法又は装置は、溶接システムで同時に動作する溶接電源間の相互の影響を低減又は除去する役割を果たす。この目的のために、本発明の第1の態様では、最初に溶接システムの溶接回路間に存在する干渉結合が算定される。本発明のさらなる態様では、算定された干渉はその後補償される。
【0031】
図7は、本発明の第1の態様による、溶接システム1の溶接回路2-1、2-2間の干渉結合を算定するための方法の実施形態を図示するフローチャートである。このタイプの溶接システム1が
図8に例として示されている。
【0032】
図7に示されている実施形態では、本発明による、溶接システム1の溶接回路2-1、2-2間の干渉結合を算定するための方法は、3つのステップを実質的に含む。
第1のステップS1において、溶接システム1の第1の溶接回路2-1(送信溶接回路)で、所定の電流プロファイルが適用される。
【0033】
さらなるステップS2において、溶接システム1の第2の溶接回路2-2(受信溶接回路)にこのように誘導された、電圧推移U(t)及び/又は電流推移I(t)が検出される。
【0034】
最後に、ステップS3において、溶接回路2-1、2-2間の、言いかえれば、送信溶接回路と受信溶接回路との間の干渉結合が、第1の溶接回路2-1(送信溶接回路)で印加された電流の電流プロファイルSPに基づいて、且つ、第2の溶接回路2-2(受信溶接回路)で検出された電圧推移及び/又は電流推移に基づいて、算定される。
【0035】
図8は、例として、ワークピース3を同時に溶接するために使用される2つの溶接回路2-1、2-2を備える溶接システム1を示す。2つの溶接回路2-1、2-2はそれぞれ、
図8に示されているように、溶接電源4-1、4-2を含む。電流Iは、それぞれ供給線5-1、5-2を介してワークピース3に供給することができる。さらに、各溶接回路2-1、2-2の電流Iはそれぞれ、
図8に示されているように、関連する戻り線又は接地線6-1、6-2を介して、関連する溶接回路2-1、2-2の溶接電源4-1、4-2、に帰還する。溶接回路2-1の供給線5-i及びドレイン線6-iはそれぞれ、溶接回路2-1の溶接電源4-iの極12a、12bに接続されている。
【0036】
溶接システム1の2つの溶接回路2-1、2-2は、
図8に示されているように、溶接回路間の干渉結合を算定するために、閉じられていることが好ましい。
図8に示されている回路類の配置は、溶接システム1の溶接回路2-1と、溶接システム1の第2の溶接回路2-2との間の干渉結合を算定するのに適している。この目的のために、第1のステップS1において、最初に、所定の電流プロファイルSPが、
図8に概略的に示されているように、溶接システム1の2つの溶接回路のうちの1つで、例えば、第1の溶接回路2-1で適用される。第1の溶接回路2-1で適用される電流プロファイルSPは、1つ又は複数の電流パルスを有することが好ましい。他方の溶接回路2-2の溶接電源4-2では、
図8に概略的に示されているように、誘導電圧の推移Uが検出され、格納される。このように、溶接システム1の第2の溶接回路2-2に誘導された電圧推移及び/又は電流推移は、ステップS2で検出され、好ましくは、格納される。続いて、溶接電源4-2において、好ましくは統合計算処理ユニット7-2を経由して、溶接回路2-1、2-2間の干渉結合が、第1の溶接回路2-1で適用された電流Iの電流プロファイルSPに基づいて、且つ、検出器ユニット又は測定ユニット8-2を用いて第2の溶接回路2-2で検出された電圧推移U及び/又は電流推移に基づいて、算定又は計算される。これに関連して、溶接システム1の溶接回路2-i間の結合のオーミック部分及び溶接回路2-i間の結合の誘導性部分が、算定又は計算される。好適な実施形態では、溶接システム1の溶接回路2-i間の結合のオーミック部分は、少なくとも1つの第1の測定ウィンドウMF1で算定され、溶接システム1の溶接回路2-i間の結合の誘導性部分は、少なくとも1つの第2の測定ウィンドウMF2で算定される。結合のオーミック部分を算定するための第1の測定ウィンドウMF1は、第1の溶接回路2-1で適用された電流プロファイルSPのフェーズ内に位置しているが、そこでは、
図10にもまた示されているように、印加電流Iの電流レベルは一定である。溶接回路2-i間の結合の誘導性部分を算定するための第2の測定ウィンドウMF2は、好ましくは、第1の溶接回路2-1で適用された電流プロファイルのフェーズに位置しているが、そこでは、印加電流の電流レベルは、電流パルスの立ち上がりエッジの間に上昇しているか、又は電流パルスの立ち下がりエッジの間に低下している。
図10は、電流パルスの立ち上がりエッジの間の結合の誘導性部分を算定するための測定ウィンドウMF2を示す。測定電圧U
2の誘導性部分は、送信溶接電源4-1における電流の変化の間の、受信溶接電源4-2における電圧-時間区域を算定し、そこからオーミック電圧部分を減算することによって計算されることが好ましい。結合の誘導性部分と、オーミック部分との平均電圧は、互いに別々に計算し、評価することが好ましい。溶接システム1の溶接回路2-1、2-2間の結合のオーミック部分、及び結合の誘導性部分を表示する結合係数K
R、K
Lを計算することが好ましい。可能な一実施形態では、計算されたオーミック結合係数K
Rは、溶接回路2-i間の結合のオーミック部分を表示し、計算された誘導結合係数K
Lは、溶接回路2-i間の結合の誘導性部分を表示するが、これらは、溶接システム1の溶接電源4-1、4-2のデータ格納部9-1、9-2に格納される。可能な一実施形態では、計算されたオーミック結合係数K
R、及び計算された誘導結合係数K
Lは、ユーザインタフェースを介して溶接システム1のユーザに出力される。
【0037】
結合のオーミック部分は、オーミック結合係数KRに反映されるが、これは、両方の電源4-1、4-2の電流が流れている2つの溶接回路2-1、2-2に線部分があるかどうかを表示している。結合のオーミック部分RKoppelは、ミリオームで表示されることが好ましい。
【0038】
RKoppel=UEmpfaenger/ISender、
式中、RKoppelは、2つの溶接回路2-1、2-2の共有線部分の抵抗であり、UEmpfaengerは、受信溶接電源4-2によって受信側で検出された電圧であり、ISenderは、送信溶接回路2-1で印加された電流I1である。
【0039】
2つの溶接回路2-1、2-2で線部分が共有されないようにする。言いかえれば、結合のオーミック部分を可能な限り低くしておく試みがなされる。
2つの溶接回路2-1、2-2間の結合の誘導性部分は、2つの溶接回路の、互いに対する空間的配置、特に、2つの溶接回路の間の距離を反映し、ミリヘンリーで表示される。
【0040】
Lkopp=Uempf+ind/(di/dtSender)、
式中、Lkoppは、結合インダクタンスを表し、Uempf_indは、受信溶接回路2-2で誘導された電圧U2であり、di/dtSenderは、送信溶接回路2-1で生じた電流I1の変化を表す。
【0041】
算定された結合測定値、言いかえれば、溶接回路2-i間の結合の誘導性部分及びオーミック部分は、計算処理ユニット7-iによって計算されることが好ましく、また、可能な一実施形態では、ユーザインタフェースを介して溶接システム1のユーザに出力されることが好ましい。可能な一実施形態では、計算された結合インダクタンスLKoppelは、送信溶接回路2-1のインダクタンスL1に関連し、例えば、パーセントとしてユーザに表示してもよい。これは、ミリヘンリーという単位は、ユーザが理解することが比較的困難であることに加え、溶接回路の通常の溶接回路インダクタンスと容易に混同する可能性があるため、ユーザのディスプレイを介しての表示が理解し易くなるという利点を有する。パーセントで表示された相対的な結合インダクタンス(lKoppel=LKoppel/L)の方が、直観的に理解し易く、相対的な結合インダクタンスlKoppelの理想値は0%、言いかえれば、溶接回路2-i間に結合がないことである。
【0042】
可能な一実施形態では、結合のオーミック部分RKoppelもまた、送信溶接回路2-1に関連し得る(rKoppel=RKoppel/R)。相対的なオーミック部分rKoppelの値rKoppel>0%は、両方の電流I1、I2が流れている2つの溶接回路2-1、2-2間に共有線部分があることを表示する。これを回避しなければならない。したがって、結合の相対的なオーミック部分rKoppelの値0%を目標とするものとする。
【0043】
溶接システム1の可能な一実施形態では、第1の溶接回路2-1の溶接電源4-1と、第2の溶接回路2-2の溶接電源4-2との間に、無線通信又は有線通信接続KVがある。この実施形態では、溶接システム1の第1の溶接電源4-1によって第1の溶接回路2-1で適用された、規定電流プロファイルSPは、通信接続KVを介して溶接電源4-2に送信される。第2の溶接回路2-2では、このようにして生じた誘導電圧推移及び/又は電流推移が検出される。さらなるステップでは、続いて、通信接続KVを介して伝達又は送信された電流プロファイルSPに基づいて、第1の溶接回路2-1で印加された電流Iに基づいて、且つ、第2の溶接回路2-2で検出された電圧推移及び/又は電流推移に基づいて、計算処理ユニット7によって、2つの溶接回路2-1、2-2間の干渉結合を算定、又は計算することができる。
【0044】
代替的な実施形態では、通信接続KVがなく、溶接システム1の2つの溶接回路2-1、2-2の2つの溶接電源4-1、4-2間でデータ交換が行われない。結合係数KFの計算又は溶接回路2-i間の干渉結合の算定は、2つの溶接電源4-1、4-2間でデータ接続がなくても行うことが可能である。この実施形態では、必要なデータは、受信溶接電源4-2のデータ格納部9-2にすでに格納されている。この変形形態の構成では、送信溶接電源4-1のデータ格納部9-1に格納された電流プロファイルSP(di/dt/電流レベル及び時間値)もまた、受信溶接電源4-2のデータ格納部9-2に格納されている。その結果、受信溶接電源4-2に存在する計算処理ユニット7-2は、通信接続KVを介して2つの溶接電源4-1、4-2間でデータを交換する必要なしに、誘導結合係数KL、及びオーミック結合係数KRの計算を行うことが可能になる。この実施形態では、第1の溶接回路2-1で適用された電流プロファイルSPは、同様に、第2の溶接回路2-2のデータ格納部9-2に格納され、対応する補償電圧UKompを計算するために利用することができる。
【0045】
可能な一実施形態では、適用された電流プロファイルSPの開始時間は、様々なフェーズ又は測定ウィンドウMFを同期させることができるように、その測定ユニット8-2によって測定された測定信号を使用して、受信溶接電源4-2における電圧の変化として検出することができる。送信溶接電源4-1の時間プロファイル又は電流プロファイルSPが、受信溶接電源4-2のデータ格納部9-2で格納されているので、これが可能である。
【0046】
可能な一実施形態では、電流の上昇(di/dt)が比較的急峻な、第1の数の送信器の同期サイクルを開始して、たとえ溶接回路2-i間の結合が弱い場合であっても、受信溶接電源4-2の受信器又は検出器8-2を同期させることが可能である。その後、実際の測定プロファイルシーケンスを後続の時間ウィンドウで開始することができる。
【0047】
図8Aに示されている溶接システム1の実施形態では、2つの溶接回路2-1、2-2は、ワークピース3を介して短絡され、特にワークピース3を介して共有線部分を有していない。
図8Bに示されている溶接システム1の実施形態では、2つの異なるワークピース3-1、3-2を溶接するための2つの溶接回路2-1、2-2が提供されている。
図9に示されている実施形態の2つの溶接回路2-1、2-2は、第2の溶接回路2-2の接地線又は戻り線6-2が、第1の溶接回路2-1の接地線又は戻り線6-1のノードKで分岐されているため、共有線部分を有している。これにより、
図9に示されている共有線部分は、ワークピース3を介しての線の接続だけでなく、第1の溶接回路2-1の接地線6-1の部分もまた含む。測定された結合のオーミック部分R
Koppelは、オーミック結合係数K
Rに反映されるが、それは、このタイプの共有線が存在することを表示している。
【0048】
計算された結合係数KL、KRは、格納することができ、また、可能な一実施形態では、第1の溶接回路2-1に印加された電流I1の電流プロファイルSPに基づいて、補償電圧UKompを算定するために利用することができる。可能な一実施形態では、この算定された補償電圧UKompは、第1の溶接回路2-1に位置する溶接電源4-1の電圧測定ユニット8-1によって測定されることが好ましい、溶接動作の間に測定電圧UMessから減算され、溶接動作の間に溶接電源4-1によって生成される溶接電流ISを調整するために使用可能な、補正測定電圧U’Messが算定される。
【0049】
図10は、例として、本発明による溶接システム1における測定サイクルの信号推移を示す。示されている例では、このタイプの複数の、例えば、20の測定サイクルが、送信溶接電源4-1によって、例えば、30msの時間間隔で出力され、個々のサイクル測定値t0からt1(MF2)、及びt2からt3(MF1)は平均されている。
【0050】
図10では、第1の曲線Iは、送信溶接回路2-1における電流推移I
1を示す。さらなる曲線IIは、送信溶接回路2-1における電圧推移U
1を示す。さらなる曲線IIIは、受信溶接回路2-2における電圧推移U
2を示す。
図10でわかるように、時間t2とt3の間で、第1の溶接回路2-1の溶接電源4-1によって適用された電流プロファイルSPのレベルは、一定であり、2つの溶接回路間の干渉結合のオーミック部分を算定するための測定ウィンドウMF
1を形成している。溶接システム1の2つの溶接回路2-1、2-2間の結合のオーミック部分は、第1の測定ウィンドウMF1で算定することができる。この第1の測定ウィンドウMF1は、溶接回路2-1で適用された電流プロファイルSPのフェーズにあり、そこでは、印加電流I
1のレベルは一定である。
【0051】
対照的に、時間t0とt1(MF1)の間で、溶接システム1の溶接回路2-i間の結合の誘導性部分が算定される。このt0とt1の間の期間は、第2の測定ウィンドウMF2を形成し、そこでは、
図10に示されているように、印加電流I
1のレベルSPは、電流パルスの立ち上がりエッジの間に比較的急激に上昇している。溶接システム1の溶接回路2-i間の結合の誘導性部分は、第1の溶接回路2-1で適用された電流プロファイルSPに基づいて、且つ、第2の溶接回路2-2で算定された電圧推移及び/又は電流推移に基づいて、第2の測定ウィンドウMF2で算定される。第2の測定ウィンドウMF2は、第1の溶接回路2-1で適用された電流プロファイルSPのフェーズにあり、そこでは、印加電流I
1のレベルは、電流パルスの立ち上がりエッジの間に上昇している。或いは、第2の測定ウィンドウMF2はまた、第1の溶接回路2-1で適用された電流プロファイルSPのフェーズにある場合もあり、そこでは、印加電流I
1のレベルは、電流パルスの立ち下がりエッジの間に低下している。
図10からわかるように、結合のオーミック部分の算定又は測定は、結合の誘導性部分の算定とは異なる測定ウィンドウMFで行われる。
【0052】
可能な一実施形態では、オーミック電圧部分は、第1の測定ウィンドウ(MF1n)で第1の溶接回路2-1に現在流れている送信器の電流I1から、及び、t2とt3との間のフェーズ(MF1n-1)の先行するサイクルで算定された抵抗から計算することができ、測定値から減算される。例えば、25μsごとに測定値が格納され、そこからオーミック電圧部分が減算される。オーミック部分を差し引いた個々の測定値は、フェーズt0からt1(第2の測定ウィンドウMF2)の間に合計することができる。ここから、t1の終了時に、算術平均を計算することができる。次に、フェーズの算術平均から、複数のサイクル、例えば、20サイクルにわたる平均値を計算することができる。
【0053】
この計算された電圧平均Uempf_ind及び送信器電流推移の電流の変化di/dtから、可能な一実施形態では、結合誘導率KLは、次式を使用して計算することができる。
【0054】
L
kopp=U
empf_ind/(di/dt送信器)
図11は、例として、このタイプの測定サイクルを示す。
可能な一実施形態では、実際の結合係数測定の前に、ユーザが溶接システム1を起動した後、送信溶接電源4-1を設定することで同期シーケンスが行われる。例えば、このタイプの同期シーケンスは、上記で定義された送信溶接電源4-1のボタンを押すことによって開始することができる。
【0055】
その後直ちに、送信溶接電源4-1は、例えば、1000A/msの上昇勾配、及び500Aの目標電流を有する電流パルス(送信器始動パルス)を短絡した送信溶接回路2-1に送給する。
【0056】
電磁結合によって、電圧U2は、2つの溶接回路2-1、2-2の線の敷設に応じてレベルが変わり、その測定ユニット8-2によって受信溶接電源4-2の出力端子で測定されるが、それは、同様に短絡した受信溶接回路2-2に誘導される。可能な一実施形態では、送信器始動パルスは、電圧の絶対値又は電圧推移を評価することによって、或いはこの代わりに、所定の時間間隔で、言いかえれば、差動的に変化率を評価することによって、受信溶接電源4-2で検出することができる。
【0057】
電圧U2が、受信溶接電源4-2で事前設定されたある値、例えば、0.5Vを超える場合、可能な一実施形態では、送信溶接電源4-1のものと同一の測定時系列方式を開始することができる。
【0058】
受信器での送信溶接電流の上昇の検出は、受信溶接電源4-2に誘導された電圧Uの電圧変化du/dtを検出することで行ってもまたよい。この目的のために、電圧差は、例えば、25μsの時間間隔で、連続的に検出される電圧信号から計算することができる。例えば、この電圧差が、ある値、例えば、0.2Vを超える場合、送信溶接電源4-1のものと同一の測定時系列方式を開始することができる。
【0059】
さらなる可能な実施形態では、2つの評価方法の組み合わせ、言いかえれば、絶対的評価と差動的評価との組み合わせが可能である。
図8A、
図8B、
図9に示されている溶接システム1は、したがって、溶接システム1の溶接回路2-1、2-2間の干渉結合を算定する結合算定ユニットを有する。可能な一実施形態では、溶接システム1の溶接電源4-iの一方又は両方が、このタイプの結合算定ユニット又は計算ユニット7-iを有する。代替的な実施形態では、溶接システム1の結合算定ユニットは、別個のユニットによって形成することができ、それは、溶接システム1の様々な溶接電源2-iに接続されて、無線通信接続又は有線通信接続KVを介してそれらと通信していることが好ましい。結合算定ユニットは、
図7に示されている算定方法を行うように構成されている。
【0060】
図7に示されている方法を使用して結合係数K
L、K
Rが算定されたら、好ましくは、本発明のさらなる態様による補償方法によって、この算定された干渉の影響が自動的に補償される。
図12は、ワークピース3を溶接するために溶接電源4によって供給される溶接電流I
Sへの、同じワークピース3を溶接するために使用される別の溶接電源4’からの干渉の影響を補償するための補償方法の、可能な実施形態のフローチャートである。
【0061】
図12に示されている実施形態では、本発明による補償方法は、3つの主要なステップを含む。
第1のステップS
Aにおいて、(受信)溶接電源4-2の計算処理ユニット7-2によって、他方の溶接電源4-1によって供給された他方の溶接電源4-1の溶接電流推移に基づいて、補償電圧U
Kompが計算される。この補償電圧U
Kompは、他方の溶接電源4-1によって供給される電流推移I
1の電流プロファイルSPに基づいて、且つ、格納されている結合係数KFに基づいて、溶接電源4-2の計算処理ユニット7-2によって計算することができる。或いは、この電流プロファイルSPはすでに、溶接電源4-2のローカルデータ格納部9-2の中に存在している。結合係数KFは、オーミック結合係数K
R及び少なくとも1つの誘導結合係数K
Lを含み、例えば、溶接電源4-2のデータ格納部9-2に格納されている。或いは、補償電圧U
Kompもまた、他方の(送信)溶接電源4-1の計算処理ユニット7-1によって計算することができ、計算された補償電圧U
Kompは、次に、通信接続KVを介して(受信)溶接電源4-2に送信される。
【0062】
さらなるステップSBにおいて、ステップSAで計算処理ユニットによって計算された補償電圧UKompは、溶接電源4-2の電圧測定ユニット8-2によって測定された測定電圧UMessから減算されて、補正測定電圧U’Messが算定される。可能な一実施形態では、溶接電源4-2の計算処理ユニット7-2によって計算された補償電圧UKomp、又は通信接続を介して送信された補償電圧UKompは、(受信)溶接電源4-2の補償ユニット10-2によって、(受信)溶接電源4-2の電圧測定ユニット8-2によって測定された測定電圧UMessから連続的に減算されて、補正測定電圧U’Messが算定される。
【0063】
さらなるステップS
Cにおいて、溶接電源4-2によって生成された溶接電流I
Sは、補正測定電圧U’
Messの関数として調整される。可能な一実施形態では、補正測定電圧U’
Messを用いて調整された溶接電流I
Sは、溶接電源4-2の溶接電流線5-2を介して、ワークピース3を溶接するための溶接トーチ13-2に供給することができる。本発明による補償方法の可能な一実施形態では、他方の溶接電源4-1の溶接電流推移I
Sの電流プロファイルSPは、溶接電源4-2のデータ格納部9-2から読み取られる。本発明による補償方法の一実施形態では、他方の溶接電源4-1の溶接電流推移I
Sの電流プロファイルSPは、無線又は有線で通信接続KVを介して、他方の溶接電源4-1から、溶接電源4-2の計算ユニット7-2に送信され、この計算ユニットが、送信された溶接電流推移に基づいて、且つ、格納された結合係数KFに基づいて、補償電圧U
Kompを計算する。溶接プロセスが進行している間、プロセスの状態(短絡)に従って動的に生成された、循環的に、というよりもむしろ事象ベースで進行する電流推移もまた存在する。したがって、溶接プロセスが進行している間に行われる補償では、結合電圧の適正な補償を実現するように、送信器の電流プロファイルは受信器に直接送信される。他方の溶接電源4-1の溶接電流推移I
Sの電流プロファイルSPは、電流レベル、及び関連する時間値に伴う電流レベルの変化を含むことが好ましい。溶接電源4-2の計算処理ユニット7-2によって計算された補償電圧U
Kompは、その後、溶接電源4-2の補償ユニット10-2によって、溶接電源4-2の電圧測定ユニット8-2によって測定された測定電圧U
Messから連続的に減算されて、補正測定電圧U’
Messを算定することができる。この補正測定電圧U’
Messは、その後、溶接電源4-2の溶接電流線を介して関連する溶接トーチSBへと流れる溶接電流I
Sの調整に使用される。このように、
図12に従う本発明による補償方法により、測定信号からの望ましくない誘導電圧を打ち消すことが可能になる。その結果、溶接回路2-iの相互の影響を低減、又は除去することができる。
【0064】
図12に従う本発明による補償方法は、このように、以前に算定され、格納された結合係数KF、特に、少なくとも1つのオーミック結合係数K
R及び、1つ又は複数の誘導結合係数K
Lにアクセスする。好ましくは、本発明による補償方法では、電流プロファイルSP、言いかえれば、現在の電流推移、及び他方の送信溶接電源4-1によって出力された電流Iの電流の変化率(di/dt)は、通信接続KVを介して受信溶接電源4-2に連続的に又は絶え間なく送信される。
【0065】
電流プロファイルのデータから、言いかえれば、アンペア単位の電流絶対値から、及び電流の変化率di/dt(A/ms)から、以前に算定された結合インダクタンスL(mH)及びオーミック結合係数R(mΩ)を使用して、次式を使用して結合電圧を計算することができる。
【0066】
Ukopp=Lkopp×di/dt+RLeitung×送信器電流
この結合電圧は、誘導された送信電源4-1の電流プロファイルSPの経時的な推移に従い、符号付数値として、補償電圧UKompとして、受信溶接電源4-2の測定ユニット8-2によって、その出力ソケットで測定された電圧UMessから連続的に減算することができる。誘導電圧部分によって補正されたこの測定電圧U’Messは、その後、受信溶接電源4-2のプロセスの調整11-2に使用される。その結果、溶接回路2-1、2-2の相互の影響が低減、又は完全に除去される。
【0067】
好適な実施形態では、補償電圧UKompの計算及び補正測定電圧U’Messの算定は、デジタル方式で行われる。代替的な実施形態では、補償電圧UKompの計算及び補正測定電圧U’Messの算定は、アナログ方式で行われる。
【0068】
図13は、
図7に示されている本発明による補償方法を適用する前、及び適用した後の、受信溶接電源4-2における電圧推移を有する信号図である。
図13の曲線Iは、送信溶接電源4-1における電流推移を示す。曲線IIは、本発明による補償方法を適用する前の、受信溶接電源4-2における電圧推移を示す。
図13の曲線IIIは、本発明による補償方法を適用した後の、受信溶接電源4-2における電圧推移を示す。
【0069】
本発明による、少なくとも2つの溶接回路2-1、2-2間の干渉の影響を補償するための方法は、一定の溶接回路インダクタンスL又は結合係数を有する溶接回路での検出及び補償だけでなく、経時的に変動する溶接回路インダクタンスL(t)を有する溶接回路での検出及び補償にもまた適している。溶接回路2-iの溶接回路インダクタンスLは、電流の振幅とともに変動する可能性がある。これには、例えば、溶接回路2-iに強磁性体がある場合が該当する。
【0070】
本発明による方法の可能な一実施形態では、溶接システム1の溶接回路2-i間の結合の誘導性部分は、より小さい時間間隔に細分された測定ウィンドウMF内で検出され、対応する電流値の個々の誘導値Liは、それぞれの時間間隔ごとに算定され、格納される。続いて、本発明による補償方法のそれぞれの場合において、送信溶接回路2-1の現在の電流の関連する電流値Iiにおける個々の格納された誘導値Liは、ローカルデータ格納部から呼び出され、結合電圧又は補償電圧UKompを計算するために使用される。
【0071】
図14は、2つの溶接回路2-1、2-2の、互いに対する結合効果の実際的な例を示す。示されている実施形態では、
図14の溶接システム1のノードKで分岐されている溶接回路2-1、2-2の接地線6-1、6-2は、大部分が相互に平行に敷設されており、これにより、接地線6-1、6-2を通って電流が流れると、電磁結合を誘導するようになっている。この平行の接地線6-1、6-2が、誘導(磁気)結合の原因である。供給線5-1、5-2はそれぞれ、溶接トーチ13-1、13-2に溶接電流I
Sを供給する。
【0072】
図15は、本発明による補償方法に従う結合の補償が存在しない2つの溶接電源SSQを概略的に示す。
図15でわかるように、2つの溶接回路SSKは、互いに分離されている。各溶接電源SSQは、電圧測定ユニットUME及び電流測定ユニットIMEを有し、それらは、調整ユニットREに測定値を供給する。調整ユニットは、電力変換制御システムPCCに接続されている。溶接電源SSQは、変圧器T及び整流ダイオードDを含んでいる。
【0073】
対照的に、
図16は、本発明による補償方法が実行される溶接システム1の2つの溶接電源4-1、4-2を概略的に示す。
図16に示されている2つの溶接電源4-1、4-2はそれぞれ、溶接電流を生成するために使用され、それは、溶接電流線を介して、ワークピース3を溶接するための溶接トーチ13-1、13-2に供給することができる。2つの溶接電源4-1、4-2はそれぞれ、計算処理ユニット7-1、7-2、及び補償ユニット10-1、10-2を有する。計算処理ユニット7-1、7-2は、
図8A、
図8Bにもまた示されているように、溶接電源4-1、4-2の一部を形式している。溶接電源4-iの計算処理ユニット7-iは、同じワークピース3の溶接に使用され、且つ、測定ユニット8-iによって測定された他方の溶接電源の溶接電流推移によって誘導された電圧U
Messの関数として、また、格納された結合係数KFの関数として、補償電圧U
Kompを計算するのに適している。溶接電源4-iの補償ユニット10-iは、溶接電源4-iの電圧測定ユニット8-iによって測定された測定電圧U
Messから、溶接電源4-iの計算処理ユニット7-iによって計算された補償電圧U
Kompを減算して、補正測定電圧U’
Messを生成するのに適しており、この補正測定電圧は、溶接電源4-iによって生成された溶接電流I
Sを調整するために溶接電源4-iの調整ユニット11-iによって使用される。
【0074】
溶接電源4-iの計算処理ユニット7-iは、他方の溶接電源によって供給された溶接電流I
Sの電流プロファイルSPに基づいて、且つ、関連する溶接電源4-iのデータ格納部9-iに格納されていることが好ましい結合係数KFに基づいて、補償電圧U
Kompを計算することが好ましい。
図16に示されている実施形態では、誘導結合係数K
L及びオーミック結合係数K
Rが、第2の溶接電源4-2のローカルデータ格納部9-2に格納されている。これらの結合係数KFは、通信インタフェースを介して第1の溶接電源4-1の計算処理ユニット7-1によって読み取ることができる。或いは、結合係数K
R、K
Lは、2つの溶接電源4-1、4-2にローカルに格納されてもまたよい。さらに、格納された結合係数K
R、K
Lは、データネットワークを介して中央データ格納部から読み取ることが可能である。
【0075】
図16に示されているように、溶接電源4-1、4-2はそれぞれ、専用の計算処理ユニット7-1、7-2を有する。好適な実施形態では、計算処理ユニット7-1、7-2はそれぞれ、第1の乗算器7A、第2の乗算器7B、及び加算器7Cを有する。計算処理ユニット7の第1の乗算器7Aは、電流プロファイル内の現在の電流レベルIにオーミック結合係数K
Rを乗算して、補償電圧のオーミック部分U
KompRを計算する。計算処理ユニット7の第2の乗算器7Bは、電流プロファイルSP内の現在の電流レベルの変化di/dtに読み取られた誘導結合係数K
Lを乗算して、補償電圧の誘導性部分U
KompLを計算する。溶接電源4-1の計算ユニット7-iは、それぞれの場合において、加算器7B-iをさらに備え、加算器は、補償電圧のオーミック部分U
KompRと、補償電圧の誘導性部分U
KompLと、を加算して、補償電圧U
Kompを計算する。
図16に示されている実施形態では、このようにして算定された補償電圧U
Kompは、それぞれの場合において、他方の溶接電源に送信される。
図16に示されているように、各溶接電源4-1、4-2は、専用の補償ユニット10-1、10-2を有する。溶接電源4の補償ユニット10は、自身の計算処理ユニット、又は他方の溶接電源の計算処理ユニット7によって計算された補償電圧U
Kompを得て、溶接電源4の専用の電圧測定ユニット8によって測定した測定電圧U
Messからそれを減算して、補正測定電圧U’
Messを算定するように構成されている。この補正測定電圧U’
Messは、補償ユニット10-iによって、溶接電源4の調整ユニット11-iに適用され、溶接電源4によって生成された溶接電流I
Sを調整するために使用される。
【0076】
図16に示されている実施形態では、補償電圧U
Kompは、他方の溶接電源4’の計算処理ユニットによって計算され、計算された補償電圧が送信される。或いは、補償電圧U
Kompもまた、通信接続を介して他方の溶接電源4’によって送信された電流プロファイルSPに基づいて、専用の計算処理ユニット7によって計算することができる。さらに、さらなる代替的な実施形態では、溶接電源4の計算処理ユニット7は、溶接電源4のローカルの専用のデータ格納部9から、他方の溶接電源4’の既知の、所定の電流プロファイルSPを読み取り、やはり溶接電源4のローカルデータ格納部9から読み取られた結合係数K
R、K
Lを用いて、補償電圧又は補償電圧プロファイルをそこから計算することができる。さらなる実施形態では、補償電圧プロファイルは、結合係数KF及び予め定義された電流プロファイルSPに従って事前に計算され、溶接電源のローカルデータ格納部9に格納される。
【0077】
図16に示されている実施形態では、補償電圧U
Komp及び補正測定電圧U
Messは、所定の計算式を使用して、計算ユニット7の乗算器7A、7B及び加算器7Cを使用して計算される。格納及び実装された計算式の代わりに、代替的な実施形態では、格納されたルックアップテーブルLUTを使用してもまたよい。
【0078】
結合係数算定の間に測定された電圧補正値又は補償電圧プロファイルは、ルックアップテーブルLUTに格納される。ルックアップテーブルLUTでは、測定電圧(例えば、X軸)は、関連する電流I(例えば、Y軸)及び電流の変化(di/dt)(例えば、Z軸)に対してプロットされる。
【0079】
溶接プロセスの間に補償方法が行われると、他方の溶接電源4’の現在の実際の電流値及び電流の実際の変化がY軸及びZ軸上にプロットされ、関連する電圧値(X軸)が読み取られ、内部で現在測定されている電圧UMessから減算される。
【0080】
好ましくは、個々の結合値(誘導結合の電圧及びオーミック結合の電圧)が検出され、ルックアップテーブルLUTに格納される。
図9に示されているように、2つの溶接回路2-1、2-2は、短絡している場合がある。送信溶接電源4-1は、例えば、0~500Aの範囲で50A/msで第1の電流プロファイルを実行してもよい。受信溶接電源4-2は、自身の現在の電圧、並びに送信溶接電源4-1の現在の電流及び電流値の変化を測定し、ルックアップテーブルLUT内の対応するテーブルポイントで測定電圧を入力する。次に、このプロセスは、さらなる電流プロファイル(例えば、100A/msで0~500Aから最大1000A/msで0~500Aまで)に繰り返すことができる。
【0081】
さらなるステップにおいて、実際の補償が溶接プロセスの間に行われる。溶接プロセスの間の補償では、他方の溶接電源の現在の実際の電流値及び電流の変化の実際値がY軸及びZ軸上にプロットされ、関連する電圧値(X軸)が読み取られ、内部で現在測定されている電圧から減算される。
【0082】
この補償は、例えば、周期的な、例えば、25μsの時間間隔で循環的に行ってもよい。表中の数値の間の値は、直線補間によって得ることが好ましい場合がある。
以下の表は、R_Koppel=25mΩ及びL_koppel=20μHの値の場合に発生する結合電圧(又は補償電圧)のボルト単位の例である。
【0083】
【表1】
複数のLUT(ルックアップテーブル)が存在する場合もあり、状況に応じて選択される。ロボットガントリーシステムでは、溶接ケーブル5-1、5-2の互いに対する位置が変化するため、結合インダクタンスは、運送路に取り付け可能な個々のロボットの位置に応じて変動する場合がある。したがって、互いに対するロボット位置に応じて、さらなるLUTから結合係数又は補償電圧を選択することもまた可能である。次に、結合係数KFの事前の算定は、ユーザによって固定された複数のロボット位置でも行われる。LUTの選択は、ロボットの制御システムによって行われることが好ましい。
【0084】
本発明による補償方法の結果として、同じワークピース3の溶接に使用される別の溶接電源からの干渉の影響が低減又は補償されるため、溶接プロセスの質を大幅に向上させることができ、これは溶接プロセスの結果生じる溶接継目を質的に向上させることを意味する。本発明による補償方法は、デジタル方式で実行できるだけでなく、アナログ方式でも実行することができる。本発明による補償方法は、複数の溶接電源4-iがシステム/セルで同時に溶接する溶接システム1に特に適している。これに関連して生じる電圧結合により、調整変数として使用される測定電圧UMessが歪められてしまう。本発明による補償方法の結果として、測定電圧UMessは、干渉変数がないように補正される。これにより、溶接システム1の溶接結果が大幅に向上する。
【0085】
計算された結合係数KR、KLを介して、溶接システム1のユーザは、溶接システム1の溶接回路間の干渉結合の程度に関する情報を追加で取得する。本発明による補償方法の可能な一実施形態では、計算された結合係数を使用して、ワークピース3を溶接するために溶接電源によって供給される溶接電流ISへの、同じワークピース3を溶接するために使用される他方の溶接電源からの干渉の影響を低減又は除去する。他方では、溶接システム1のユーザは、計算又は算定された結合係数KR、KLを利用して、ユーザ自身が、溶接システム1、特に、様々な溶接回路2-iの線の敷設を最適化することができる。溶接電源のディスプレイを介して、溶接回路2-i間の誘導結合及び/又はオーミック結合のレベルに関してユーザに通知することができる。本発明による、溶接システム1の溶接回路2-i間の干渉結合を算定するための方法は、2つ以上の溶接回路2-i又は溶接電源4-iを備える溶接システム1に特に適している。