(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-02
(45)【発行日】2022-08-10
(54)【発明の名称】建設車両の障害物検知装置
(51)【国際特許分類】
G08G 1/16 20060101AFI20220803BHJP
E01C 19/26 20060101ALI20220803BHJP
G01S 17/08 20060101ALI20220803BHJP
【FI】
G08G1/16 C
E01C19/26
G01S17/08
(21)【出願番号】P 2020037994
(22)【出願日】2020-03-05
【審査請求日】2021-07-07
(73)【特許権者】
【識別番号】000182384
【氏名又は名称】酒井重工業株式会社
(74)【代理人】
【識別番号】110001807
【氏名又は名称】弁理士法人磯野国際特許商標事務所
(72)【発明者】
【氏名】遠藤 涼平
(72)【発明者】
【氏名】森岡 則雄
【審査官】吉村 俊厚
(56)【参考文献】
【文献】特開2006-017496(JP,A)
【文献】特開2017-078912(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G08G 1/16
E01C 19/26
G01S 17/08
(57)【特許請求の範囲】
【請求項1】
建設車両に搭載され、障害物を検知する障害物検知装置であって、
前記建設車両の車幅方向の障害物検知範囲を変更するトリガとなる
、前記建設車両の操作者によって行われる操作装置への所定の操作を含む変更トリガを検知するトリガ検知部と、
標準時の前記障害物検知範囲である標準検知範囲での運転時に前記変更トリガを検知したとき、前記標準検知範囲を、変更時の前記障害物検知範囲である所定の変更検知範囲に変更する変更部と、を含む演算制御装置を備え
、
前記標準検知範囲の前記車幅方向の寸法は、前記建設車両の車幅寸法以上であるとともに、前記変更検知範囲は、前記標準検知範囲よりも車幅方向に縮小して設定され、
前記建設車両の側部から後方に当該側部に対して平行に延びる線を仮想基準線とした場合、
前記変更検知範囲の幅方向一方側の境界線は、前記仮想基準線よりも内側に設定され、
前記変更検知範囲の幅方向他方側の境界線は、前記標準検知範囲の幅方向他方側の境界線と同一に設定されることを特徴とする
建設車両の障害物検知装置。
【請求項2】
建設車両に搭載され、障害物を検知する障害物検知装置であって、
前記建設車両の車幅方向の障害物検知範囲を変更するトリガとなる
、前記建設車両の操作者によって行われる操作装置への所定の操作を含む変更トリガを検知するトリガ検知部と、
標準時の前記障害物検知範囲である標準検知範囲での運転時に前記変更トリガを検知したとき、前記標準検知範囲を、変更時の前記障害物検知範囲である所定の変更検知範囲に変更する変更部と、を含む演算制御装置を備え
、
前記標準検知範囲の前記車幅方向の寸法は、前記建設車両の車幅寸法以上であるとともに、前記変更検知範囲は、前記標準検知範囲よりも車幅方向に縮小して設定され、
前記建設車両の側部から後方に当該側部に対して平行に延びる線を仮想基準線とした場合、
前記変更検知範囲の幅方向一方側の境界線は、前記仮想基準線よりも内側に設定され、
前記変更検知範囲は、後方側において前記幅方向一方側の角部を含む領域を非検知領域として設定されることを特徴とする
建設車両の障害物検知装置。
【請求項3】
前記変更検知範囲の幅方向他方側の境界線は、前記標準検知範囲の幅方向他方側の境界線と同一に設定されることを特徴とする
請求項
2に記載の建設車両の障害物検知装置。
【請求項4】
建設車両に搭載され、障害物を検知する障害物検知装置であって、
前記障害物のうち構造物を検知する構造物検知センサと、
前記建設車両の車幅方向の障害物検知範囲を変更するトリガとなる
、前記構造物検知センサによる前記構造物の検知を含む変更トリガを検知するトリガ検知部と、
標準時の前記障害物検知範囲である標準検知範囲での運転時に前記変更トリガを検知したとき、前記標準検知範囲を、変更時の前記障害物検知範囲である所定の変更検知範囲に変更する変更部と、を含む演算制御装置
とを備え
、
前記標準検知範囲の前記車幅方向の寸法は、前記建設車両の車幅寸法以上であるとともに、前記変更検知範囲は、前記標準検知範囲よりも車幅方向に縮小して設定され、
前記建設車両の側部から後方に当該側部に対して平行に延びる線を仮想基準線とした場合、
前記変更検知範囲の前記構造物側における境界線は、前記仮想基準線よりも内側に設定されることを特徴とする
建設車両の障害物検知装置。
【請求項5】
前記変更検知範囲の前記構造物とは反対側における境界線は、前記標準検知範囲の幅方向の境界線と同一に設定されることを特徴とする
請求項
4に記載の建設車両の障害物検知装置。
【請求項6】
建設車両に搭載され、障害物を検知する障害物検知装置であって、
前記障害物のうち構造物を検知する構造物検知センサと、
前記建設車両の車幅方向の障害物検知範囲を変更するトリガとなる
、前記構造物検知センサによる前記構造物の検知を含む変更トリガを検知するトリガ検知部と、
標準時の前記障害物検知範囲である標準検知範囲での運転時に前記変更トリガを検知したとき、前記標準検知範囲を、変更時の前記障害物検知範囲である所定の変更検知範囲に変更する変更部と、を含む演算制御装置を備え
、
前記変更検知範囲は、後方側において前記構造物側の角部を含む領域を非検知領域として設定されることを特徴とする
建設車両の障害物検知装置。
【請求項7】
前記標準検知範囲の前記車幅方向の寸法は、前記建設車両の車幅寸法以上であることを特徴とする
請求項
6に記載の建設車両の障害物検知装置。
【請求項8】
前記変更検知範囲は、前記標準検知範囲よりも車幅方向に縮小して設定されることを特徴とする
請求項
7に記載の建設車両の障害物検知装置。
【請求項9】
前記建設車両の側部から後方に当該側部に対して平行に延びる線を仮想基準線とした場合、
前記変更検知範囲の前記構造物側における境界線は、前記仮想基準線よりも内側に設定されることを特徴とする
請求項
8に記載の建設車両の障害物検知装置。
【請求項10】
前記変更検知範囲の前記構造物とは反対側における境界線は、前記標準検知範囲の幅方向の境界線と同一に設定されることを特徴とする
請求項
9に記載の建設車両の障害物検知装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、建設車両の障害物検知装置に関する。
【背景技術】
【0002】
例えば転圧ローラ等の建設車両付近に存在する障害物を検知する装置が知られている。建設車両に搭載される障害物検知装置に関する技術として、特許文献1に記載の技術が知られている。特許文献1に記載の障害物検知装置は、投射光と反射光との時間差から距離を測定するTime-of-Flight(TOF)方式の距離画像センサと、前記距離画像センサの測定データに基づいて障害物の有無を判定する制御装置と、を備える(請求項1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の障害物検知装置では、建設車両の車幅方向の検知範囲は、建設車両周辺の状況によらず一定である(特許文献1の段落0022)。このため、例えば、建設車両を壁等に幅寄せする場合、当該壁等を検知してしまうことがあり、建設車両の操作性に向上の余地がある。
本発明は、建設車両の操作性を向上させた建設車両の障害物検知装置の提供を課題とする。
【課題を解決するための手段】
【0005】
本発明の建設車両の障害物検知装置は、建設車両に搭載され、障害物を検知する障害物検知装置であって、前記建設車両の車幅方向の障害物検知範囲を変更するトリガとなる、前記建設車両の操作者によって行われる操作装置への所定の操作を含む変更トリガを検知するトリガ検知部と、標準時の前記障害物検知範囲である標準検知範囲での運転時に前記変更トリガを検知したとき、前記標準検知範囲を、変更時の前記障害物検知範囲である所定の変更検知範囲に変更する変更部と、を含む演算制御装置を備え、前記標準検知範囲の前記車幅方向の寸法は、前記建設車両の車幅寸法以上であるとともに、前記変更検知範囲は、前記標準検知範囲よりも車幅方向に縮小して設定され、前記建設車両の側部から後方に当該側部に対して平行に延びる線を仮想基準線とした場合、前記変更検知範囲の幅方向一方側の境界線は、前記仮想基準線よりも内側に設定され、前記変更検知範囲の幅方向他方側の境界線は、前記標準検知範囲の幅方向他方側の境界線と同一に設定される。その他の解決手段は、発明を実施するための形態において後記する。
【発明の効果】
【0006】
本発明によれば、建設車両の操作性を向上させた建設車両の障害物検知装置を提供できる。
【図面の簡単な説明】
【0007】
【
図1】第1実施形態の障害物検知装置を搭載した建設車両の上面図である。
【
図4】ブレーキ装置を含む走行系の概略油圧回路図である。
【
図5】変更検知範囲での障害物検知を示す上面図である。
【
図6】壁寄せ時の標準検知範囲における検知を説明する図である。
【
図7】壁寄せ時の変更検知範囲における検知を説明する図である。
【
図8】第2実施形態における建設車両の上面図である。
【
図9】第3実施形態の障害物検知装置を搭載した建設車両の上面図である。
【発明を実施するための形態】
【0008】
以下、本発明を実施するための形態(本実施形態)を説明する。ただし、本発明は以下の内容及び図示の内容になんら限定されず、本発明の効果を著しく損なわない範囲で任意に変形して実施できる。本発明は、異なる実施形態同士を組み合わせて実施できる。以下の記載において、異なる実施形態において同じ部材については同じ符号を付し、重複する説明は省略する。また、同じ機能のものについては同じ名称を使用し、重複する説明は省略する。
【0009】
<第1実施形態>
図1は、第1実施形態の障害物検知装置1を搭載した建設車両10の上面図である。また、
図2は、
図1の側面図である。建設車両10は、操作者OPによって運転される。運転は、操作者OPによる例えばハンドル、スイッチ、ボタン等の操作により行われる。また、建設車両10には、詳細は後記するが、障害物検知範囲Aを変更する操作装置21が搭載される。操作装置21は、操作者OPにより操作され易い部位に取り付けられ、具体的には
図1及び
図2の例では、操作装置21はハンドルの付近に取り付けられる。
【0010】
障害物検知装置1は、低速走行しながらタイヤローラ11でアスファルト路面等の転圧を行う転圧ローラ等の建設車両10に搭載される。障害物検知装置1は、障害物検知範囲Aの内部に存在する障害物Gを検知する。障害物Gは、例えば、人G1や構造物である。構造物は、後記する壁G2、建物、支柱、縁石、柵等の固定式構造物や、可動式の壁、可動式の柵、カラーコーン(登録商標)等の可動式構造物や、他の車両も含む。障害物検知装置1は、通常運転時には、障害物検知範囲Aとしての標準検知範囲A1の内部の障害物Gを検知する。
【0011】
障害物検知装置1は、投射光と反射光との時間差から距離を測定するTOF方式の距離画像センサ(3次元距離センサ)2を備える。距離画像センサ2により、障害物検知範囲Aに存在する障害物Gを検知できる。また、TOF方式の距離画像センサ2により、距離画像センサ2から障害物Gまでの距離を精度良く測定でき、障害物Gの検知精度を向上できる。さらに、電波を用いた検知方式のように周囲の作業者に検知用タグを装着する必要がなく、建設車両10の生産コストを抑制できる。また、検知用タグの装着忘れが生じないため、障害物Gの検知精度を向上できる。さらに、障害物検知範囲Aを設定し易くできる。
【0012】
距離画像センサ2は、いずれも図示しないが、赤外線等の投射光を発光する発光部と、投射光が物体に当たった際の反射光を受光する受光部とを備える。発光部から赤外線を送ってから反射光を受光部で受信するまでの時間を計測することで、障害物Gまでの距離が測定される。距離画像センサ2からの投射角度は、例えば横方向角度θ1が95°、縦方向角度θ2が32°であり、投射断面が横長矩形状を呈する。画像分解能は、例えば横方向に64ピクセル、縦方向に16ピクセルの計1024ピクセルである。
【0013】
距離画像センサ2は、タイヤローラ11の後部の車幅方向中央部に、投射光が後進方向斜め下に投射されるように取り付けられる。斜め下への投射により、平面視での投射光の横方向角度θ1を95°よりも一層大きくできる。これにより、非検知範囲5の距離L3を短くでき、建設車両10の後部両脇に形成される非検知の死角を小さくできる。
【0014】
投射光の投射範囲Pをそのまま障害物検知範囲Aに設定すると、衝突の恐れが無いにも関わらず障害物Gの検知精度が過剰に高くなる可能性がある。そこで、
図1及び
図2の例では、障害物検知範囲Aは、投射範囲Pよりも狭くなっている。障害物検知範囲Aは、本実施形態では、標準検知範囲A1及び後記する変更検知範囲A2の2種類がある。
【0015】
標準検知範囲A1は、例えば、壁等の構造物が周囲に無い場合に設定される検知範囲である。標準検知範囲A1は、例えば、投射範囲Pのうち、幅方向の境界線C2,C2と後端の境界線A0で囲まれた範囲である。境界線A0は、投射範囲Pの後端の境界線と同じである。ここで、建設車両10の側部から後方に当該側部に対して平行に延びる線を仮想基準線C1,C1とする。
【0016】
標準検知範囲A1の幅方向の端部は、仮想基準線C1,C1よりも外側に設定された境界線C2,C2となっている。境界線C2は、仮想基準線C1と必ずしも平行である必要は無いが、本実施形態では両者が平行となるように設定している。標準検知範囲A1の幅方向の寸法L4は、図示の例では投射範囲Pの車幅方向の寸法以下であり、かつ、建設車両10の車幅寸法L1以上(L1でもよい)である。
【0017】
寸法L4を車幅寸法L1以上にすることで、仮想基準線C1,C1内に加えて、仮想基準線C1と境界線C2との間に存在する障害物Gを検知できる。これにより、建設車両10への障害物Gの巻き込みを抑制できる。特に、建設車両10が小型機種であると周囲に作業者が多くなる傾向があるため、建設車両10に巻き込まれるおそれも比較的高い。しかし、本実施形態のように標準検知範囲A1の寸法L4を建設車両10の車幅寸法L1よりも大きくすることで、障害物(作業者)Gの巻き込みをより防ぐことができる。
【0018】
距離画像センサ2は、障害物Gまでの距離を測定する。このため、ピクセル毎の測定データ、具体的には距離画像センサ2と障害物Gとの車幅方向の距離から、車幅寸法に設定された障害物検知範囲Aに障害物Gが存在するか否かを判定できる。判定は、後記する演算制御装置50により行われる。距離画像センサ2を用いることにより、障害物検知範囲Aの寸法(標準検知範囲A1であれば寸法L4)を前後方向にわたって一定に確保できる。障害物検知範囲Aの車両前後方向の寸法L2は、常用される走行速度に応じて適宜に設定され、本実施形態では例えば3メートル程度に設定される。
【0019】
図3は、障害物検知装置1のブロック図である。
図3には、障害物検知装置1に加えて、障害物G及びブレーキ装置6が図示される。障害物検知装置1は、上記距離画像センサ2を備えるほか、演算制御装置50及び操作装置21を備える。演算制御装置50は、障害物検知範囲A又は後記する変更検知範囲A2内に存在する障害物Gを検知したとき、ブレーキ装置6の制御により建設車両10の運転を強制的に停止させるものである。操作装置21は、詳細は後記するが、障害物検知範囲Aを変更するトリガを演算制御装置50に入力するものである。
【0020】
まず、便宜的に、ブレーキ装置6を含む建設車両10の走行系について説明する。
【0021】
図4は、ブレーキ装置6を含む走行系の概略油圧回路図である。エンジン(図示しない)により駆動する走行用ポンプPu、及び、タイヤローラ11(
図1)を回転させる走行用モータMは、直列に接続されて油圧の閉回路U1を構成する。走行用ポンプPuは、斜板式ポンプにより構成される。走行用ポンプPuには、斜板を作動させる油路T1及び油路T2が接続される。油路T1と油路T2との間には、走行用ポンプPuと並列に、2位置3ポートの電磁バルブV1が備えられる。
【0022】
エンジンがかかっているとき、電磁バルブV1は
図4における右位置にあり、油路T1と油路T2とは連通しない。従って、エンジンがかかっているときに、運転席に設置された前後進レバー(図示しない)を前進位置側に傾けると、斜板作動油が油路T1側から油路T2側に流れる。これにより、斜板が一方側に傾く。この結果、閉回路U1において圧油が一方向側に流れ、走行用モータMが一方向に回転して建設車両10(
図1、
図2)が前進する。一方で、前後進レバーを後進位置側に傾けると、斜板作動油が油路T2側から油路T1側に流れる。これにより、斜板が他方側に傾く。この結果、閉回路U1において圧油が他方向側に流れ、走行用モータMが他方向に回転して建設車両10が後進する。
【0023】
エンジンがかかっていないとき、電磁バルブV1は
図4における左位置にあり、油路T1と油路T2とが連通する。電磁バルブV1と走行用ポンプPuとの間で油圧の閉回路U2が形成され、油路T1と油路T2との間で差圧が生じないことで、斜板はニュートラル位置に位置する。これにより、閉回路U1においてHST(Hydro Static Transmission)ブレーキが作用する。
【0024】
ブレーキ装置6は、電磁バルブV1を利用する。従って、後進中に演算制御装置50が障害物Gを検知したとき、演算制御装置50は、ブレーキ信号を出力して電磁バルブV1を右位置から左位置に切り換える。これにより、エンジンがかかった状態でかつ前後進レバー(図示しない)が後進位置側に傾いたままであっても、斜板がニュートラル位置に位置する。これとともに、HSTブレーキが作用して、走行用モータMが停止する。なお、走行用ポンプPuに内蔵されたチャージポンプP1と走行用モータMに内蔵されたネガティブブレーキM1との間には、パーキング時にネガティブブレーキM1を作動させる電磁バルブV2が備えられる。
【0025】
障害物Gの検知時にブレーキ装置6を制御することで、障害物Gとの衝突を回避できる。特にエンジン(図示しない)を停止させずにブレーキで建設車両10を停止させるようにすれば、作業を再開するときにエンジンを再始動させる煩わしさもない。また、タイヤローラ11のような転圧ローラにおいて、ブレーキ装置6をHSTブレーキとすることで、エンジンを停止させる場合等と比べて、過度の急停車を回避できる。この結果、アスファルト舗装の路面のへこみ等の平坦性不良を低減できる。また、走行再開作業を容易に行うことができる。
【0026】
なお、ブレーキ装置6に代えて、音又は光による報知を行う報知装置(図示しない)を備えてもよい。また、ブレーキ装置6及び報知装置を併用してもよい。さらには、距離画像センサ2を建設車両10の前部に取り付けることで、建設車両10の前進方向を検知するようにしてもよい。
【0027】
図3に戻って、演算制御装置50は、更に、操作者OP(
図1、
図2)による操作装置21の操作に応じて障害物検知範囲Aを変更するものでもある。第1実施形態では、演算制御装置50は、標準検知範囲A1(
図1)を、障害物Gの一例である壁G2側の一部を非検知領域とした変更検知範囲A2(
図5)に変更する。
【0028】
演算制御装置50は、トリガ検知部51と、変更部52と、障害物検知部53と、制御部54と、検知範囲DB(データベース)55とを含む。
【0029】
トリガ検知部51は、建設車両10(
図1、
図2)の車幅方向の障害物検知範囲Aを変更するトリガとなる変更トリガを検知するものである。変更トリガは、建設車両10の操作者OPによって行われる操作装置21への所定の操作を含む。操作者OPにより行われる所定の操作を含むことで、操作者OPが建設車両10の運転状況に応じて任意の時期に操作装置21を操作でき、適切な時期に障害物検知範囲Aを変更できる。
【0030】
操作者OPにより行われる所定の操作は、いずれも図示しないが、例えば、タッチディスプレイ等に表示された2個のボタンの押下、3Pトグルスイッチでの左右の切り替え、左右に設置された2個のプッシュスイッチの押下、左右の前後進レバーのそれぞれに設置されたスイッチの操作等を含む。例えば、いずれも図示しないが、ディスプレイに2個のボタンが左右に並べて表示されている場合、左側に表示されたボタンの押下により建設車両10の障害物検知範囲Aの左側の端部(
図1の例では左側の境界線C2)を変更できる。また、右側に表示されたボタンの押下により建設車両10の障害物検知範囲Aの右側の端部(
図1の例では右側の境界線C2)を変更できる。なお、前記したボタンの構成はあくまで例示であって、例えば、1個のボタン又は3個以上のボタンで構成してもよい。
【0031】
変更部52は、標準時の障害物検知範囲Aである標準検知範囲A1での運転時に変更トリガを検知したとき、標準検知範囲A1を、変更時の障害物検知範囲Aである所定の変更検知範囲A2に変更する。変更検知範囲A2は、例えば、壁G2等の構造物に幅寄せする場合に設定される検知範囲である。障害物検知範囲Aの変更について、
図5を参照して説明する。
【0032】
図5は、変更検知範囲A2での障害物検知を示す上面図である。変更検知範囲A2は、例えば、投射範囲Pのうち、幅方向の境界線C2、境界線C3及び後端の境界線A0で囲まれた範囲である。
図5の変更検知範囲A2は、操作者OPによる操作装置21の操作によって、
図1に示す標準検知範囲A1から変更したものである。つまり、
図5の例では操作者OPは、建設車両10の右側(幅方向一方側)に壁G2があることを把握しているため、障害物検知範囲Aを区画する右側の端部の位置を変更している。具体的には、障害物検知範囲Aを区画する右側の端部が、標準検知範囲A1(
図1)を区画する右側の境界線C2(
図1)から変更検知範囲A2を区画する右側の境界線C3に変更される。つまり、変更検知範囲A2における壁G2側の変更検知範囲A2の端部は、壁G2側の仮想基準線C1よりも内側に設定される。
【0033】
一方、変更検知範囲A2における壁G2とは反対側における変更検知範囲A2の端部は、標準検知範囲A1と同じである。つまり、
図5の例では、建設車両10の左側(幅方向他方側)の変更検知範囲A2の車幅方向の境界線C2は、標準検知範囲A1(
図1)の左側の境界線C2(
図1)と一致する。即ち、壁G2側とは反対側の変更検知範囲A2の境界線C2は、障害物検知範囲Aが変更されても標準検知範囲A1から変更されずに維持される。
【0034】
変更検知範囲A2は、標準検知範囲A1よりも車幅方向に縮小して設定される。
図5の例では、変更検知範囲A2の車幅方向の寸法L5は、寸法L4(
図1)よりも短い。変更検知範囲A2の壁G2側の仮想基準線C1から境界線C3までの距離(オフセット距離)Xは、適宜設定すればよいが、例えば、当該距離Xを0<X<50(cm)とすることができる。これにより、壁G2付近で作業している人G1を検知できる。
【0035】
なお、前記した形態では、壁G2が右側に存在する場合について説明したが、壁G2が左側に存在する場合には、障害物検知範囲Aを区画する右側の端部の位置を維持しつつ、左側の端部の位置を変更してもよい。
【0036】
図3に戻って、検知範囲DB55は、標準検知範囲A1及び変更検知範囲A2の大きさを格納するものである。具体的には、検知範囲DB55には、距離画像センサ2の測定データから標準検知範囲A1及び変更検知範囲A2の各障害物検知範囲Aを抽出可能な解析パラメータが記録される。操作装置21への操作に応じた障害物検知範囲Aを変更部52が検知範囲DB55から取得することで、取得した障害物検知範囲Aに存在する障害物Gを検知できる。
【0037】
障害物検知部53は、距離画像センサ2により取得された取得データに基づき、障害物検知範囲Aに存在する障害物Gを検知するものである。具体的には、障害物Gは、
図1及び
図2を参照しながら説明した方法により検知される。
【0038】
制御部54は、障害物検知部53によって障害物検知範囲Aに存在する障害物Gを検知したときに、ブレーキ装置6を制御するものである。障害物Gの検知時におけるブレーキ装置6の制御により、建設車両10(
図1)の運転は強制的に停止する。これにより、建設車両10への障害物Gの巻き込みを抑制できる。具体的には、ブレーキ装置6は、
図4を参照しながら説明した方法により制御される。
【0039】
演算制御装置50は、いずれも図示はしないが、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、I/F(インターフェイス)等を備えて構成される。そして、演算制御装置50は、ROMやRAM等に格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。
【0040】
次に、本実施形態に係る障害物検知装置1について、標準検知範囲A1及び変更検知範囲A2を対比しながら説明する。障害物検知装置1によれば、例えば操作装置21の操作等の変更トリガを検知したときに、障害物検知範囲Aを標準検知範囲A1から変更検知範囲A2に変更できる。これにより、建設車両10(
図1)の運転状況及び建設車両10の周囲の状況に応じて障害物検知範囲Aを変更できる。この結果、障害物検知範囲Aでの障害物Gの誤検知及び建設車両10の周辺での過剰な検知を抑制でき、意図しない障害物Gの検知を抑制できる。このため、誤検知及び過剰な検知に起因する建設車両10の運転停止を抑制でき、建設車両10の操作性及び施工効率を向上できる。
【0041】
ここで、
図6は、壁寄せ時の標準検知範囲A1における検知を説明する図である。白抜き矢印で示すように、建設車両10の後進により建設車両10を壁G2に寄せるとき、上面視で、壁G2は、標準検知範囲A1の壁G2側の後側端部の領域A1aに含まれる。この結果、障害物検知部53(
図3)が標準検知範囲A1に存在する障害物Gを検知し、ブレーキ装置6の制御によって建設車両10が強制的に停止する。これにより、建設車両10を更に壁G2に寄せることができるにも関わらず、壁G2付近での施工が不十分になるとともに、施工効率も低下するという問題がある。
【0042】
図7は、壁寄せ時の変更検知範囲A2における検知を説明する図である。上記のように、操作装置21の操作等の変更トリガの検知により、障害物検知範囲Aが標準検知範囲A1から変更検知範囲A2に変更される。
図7の例では、障害物Gである壁G2側の障害物検知範囲Aは、黒矢印で示すように、標準検知範囲A1を形成する境界線C2から変更検知範囲A2を形成する境界線C3に変更される。
【0043】
壁G2側の障害物検知範囲Aを標準検知範囲A1から幅方向に縮小することで、壁G2が変更検知範囲A2に含まれなくなる。即ち、上面視で、変更検知範囲A2への変更により、標準検知範囲A1(
図6)のうちの最も壁G2に近い角部B2が壁G2と重ならなくなる。この結果、障害物検知部53(
図3)が壁G2を検知しなくなり、建設車両10の運転停止を抑制できる。
【0044】
また、壁G2側の変更検知範囲A2の端部を壁G2側の仮想基準線C1よりも内側に設定することで、壁G2のぎりぎりの場所で建設車両10を運転できる。これにより、建設車両10を壁G2に十分に寄せることができ、壁G2付近での施工を連続的に行うことができる。
【0045】
また、境界線C2から境界線C3までの縮小距離は適宜設定すればよいが、例えば、仮想基準線C1から境界線C3までの距離Xを0<X<50(cm)とすることで、壁G2付近にいる障害物(例えば、人G1)を検知することができる。つまり、施工効率の低下を抑制しつつ、障害物Gの検知性も維持することができる。
【0046】
また、壁G2とは反対側において、変更検知範囲A2の境界線C2を、標準検知範囲A1の境界線C2と同一に設定することで、壁G2とは反対側の障害物検知範囲Aが仮想基準線C1の外側に維持される。このため、壁G2とは反対側での別の障害物G(
図7の例では人G1)を検知できる。つまり、本実施形態によれば、壁G2側と、壁G2とは反対側とで検知範囲を分けることで、建設車両10の両側における検知性を好適に維持しつつ、施工効率を高めることができる。
【0047】
<第2実施形態>
図8は、第2実施形態における建設車両10の上面図である。第2実施形態は、検知範囲DB55(
図3参照)に記録された変更検知範囲A2に代えて変更検知範囲A3が記録されたこと以外は、第1実施形態と同じである。
【0048】
変更検知範囲A3は、後方側において壁G2側の角の位置である角部B3を含む領域A2aを非検知領域として設定される。
図8の例では、変更検知範囲A3は、変更検知範囲A2(
図5)において角部B3を含む領域A2aを非検知領域として設定する。従って、変更検知範囲A3は、投射範囲Pのうち、幅方向の境界線C2、境界線C3、境界線C4及び後端の境界線A0で囲まれた範囲である。変更検知範囲A3の壁G2側の端部は、建設車両10の後方に向かう境界線C3と、境界線C3に対して角度θ3で交差し、壁G2に沿った方向に延在する境界線C4とにより形成される。境界線C4を境界として角部B3を含む側、即ち、壁G2側の領域A2aが非検知領域として設定される。境界線C4と変更検知範囲A3の後端の境界線A0との交点は点B4である。
【0049】
障害物検知範囲外の領域A2aの大きさは、例えば、境界線C3と境界線C4との為す角度θ3に基づき決定できる。角度θ3は、例えば、建設車両10を壁G2に寄せる際の壁G2に対する通常の建設車両10の後進方向の角度に基づいて決定できる。ただし、変更検知範囲A3は、変更検知範囲A3において後方側に角部が存在し、壁G2側の当該角部を含む領域を非検知領域として設定されればよく、変更検知範囲A2に基づく必要はない。
【0050】
障害物検知範囲Aを標準検知範囲A1から変更検知範囲A3に変更することで、建設車両10を壁G2に向けて後進させているときに、変更検知範囲A2(
図5)の壁G2側の角を角部B3の位置から更に内側である点B4の位置に変更できる。これにより、変更検知範囲A2での検知時には壁G2が検知されていた場合であっても、変更検知範囲A3では壁G2を非検知にできる。この結果、建設車両10の意図しない運転停止をさらに抑制でき、建設車両10を壁G2に十分に寄せることができる。
【0051】
<第3実施形態>
図9は、第3実施形態の障害物検知装置101を搭載した建設車両10の上面図である。障害物検知装置101は、障害物検知装置1(
図3)に加えて構造物検知センサ22を更に備える。つまり、障害物検知装置101は、障害物のうち壁G2(構造物の一例)を検知する構造物検知センサ22を備える。上記の変更トリガは、構造物検知センサ22による壁G2の検知を含む。
【0052】
構造物検知センサ22は、建設車両10に搭載される。構造物検知センサ22は、例えば距離画像センサ2と同種のセンサを使用できる。即ち、構造物検知センサ22から投射される投射光を建設車両10の両側から側方に投射し、所定の前後方向距離内において所定の時間にモノが存在することを検知した場合、それを壁G2であると検知することができる。
【0053】
障害物検知範囲Aの変更トリガは、構造物検知センサ22による壁G2の検知を含む。従って、壁G2が検知されたときに、障害物検知範囲Aが標準検知範囲A1から変更検知範囲A2(
図5)又は変更検知範囲A3(
図8)に変更される。構造物検知センサ22による壁G2の検知を変更トリガとすることで、建設車両10の操作者OPが操作装置21を特段操作しなくても、自動で障害物検知範囲Aを変更できる。これにより、変更検知範囲A2での障害物Gの検知を行いながら、操作者OPが意識せず建設車両10を壁G2に寄せることができる。
【0054】
つまり、本実施形態によれば、標準検知範囲の車幅方向の寸法は、建設車両10の車幅寸法以上であるため、建設車両10の車幅方向で外側に存在する壁G2を検知できる。また、変更検知範囲は、標準検知範囲よりも車幅方向に縮小して設定される。中でも、建設車両10の側部から後方に当該側部に対して平行に延びる線を仮想基準線とした場合、変更検知範囲の壁G2側における境界線は、仮想基準線よりも内側に設定される。これにより、建設車両10を壁G2に寄せることができる。このとき、変更検知範囲の壁G2とは反対側における境界線は、標準検知範囲の幅方向の境界線と同一に設定されるこれにより、壁G2とは反対側においては、標準検知範囲への設定時と同様の検知精度で別の構造物を検知できる。
【0055】
また、変更検知範囲は、後方側において壁G2側の角部を含む領域を非検知領域として設定される。これにより、構造物検知センサ22が壁G2を検知しなくなり、建設車両10を壁G2に寄せ易くできる。
【0056】
なお、構造物検知センサ22は、前記した建物、支柱、縁石、柵等の固定式構造物や、可動式の壁、可動式の柵、カラーコーン(登録商標)等の可動式構造物を検知可能であれば他の形態であってもよい。例えば、構造物検知センサ22は、車載カメラ、画像判定手段等を備えた画像処理装置を用いてもよい。当該構造物検知センサによれば、車載カメラで捉えた映像から対象物の画像的な特徴を抽出し、基準画像に対して正否判定を行うことで構造物を検知することができる。
【0057】
以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲で適宜設計変更が可能である。例えば、本実施形態では、標準検知範囲から幅方向の片側のみの境界線の位置を内側に移動させたが、両側の境界線の位置を内側に移動させてもよい。また、本実施形態では、変更検知範囲を標準検知範囲から幅方向に縮小させたが、標準検知範囲の片側又は両側の境界線を外側に移動させて(範囲を拡大させて)変更検知範囲としてもよい。
【0058】
なお、前記した実施形態では、物体検知センサとして投射及び反射を利用して物体までの距離を測定することができるTOF(Time Of Flight)方式の距離画像センサ(3D距離センサ)2を例示したがこれに限定されるものではない。物体検知センサとしては、例えば、所定範囲内における物体を検知可能な超音波方式、マイクロ波式、レーザー光方式、赤外線方式、レーダー方式、ライダー方式、ステレオカメラ方式、単眼カメラ方式等のセンサであってもよい。
【符号の説明】
【0059】
1,101 障害物検知装置
10 建設車両
11 タイヤローラ
2 距離画像センサ
21 操作装置
22 構造物検知センサ
41 寸法
5 非検知範囲
50 演算制御装置
51 トリガ検知部
52 変更部
53 障害物検知部
54 制御部
55 検知範囲DB
6 ブレーキ装置
A 障害物検知範囲
A1 標準検知範囲
A1a,A2a 領域
A2,A3 変更検知範囲
C1 仮想基準線
C2,C3,C4 境界線
G 障害物
G1 人
G2 壁