IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社GSユアサの特許一覧

<>
  • 特許-状態推定装置 図1
  • 特許-状態推定装置 図2
  • 特許-状態推定装置 図3
  • 特許-状態推定装置 図4
  • 特許-状態推定装置 図5
  • 特許-状態推定装置 図6
  • 特許-状態推定装置 図7
  • 特許-状態推定装置 図8
  • 特許-状態推定装置 図9
  • 特許-状態推定装置 図10
  • 特許-状態推定装置 図11
  • 特許-状態推定装置 図12
  • 特許-状態推定装置 図13
  • 特許-状態推定装置 図14
  • 特許-状態推定装置 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-03
(45)【発行日】2022-08-12
(54)【発明の名称】状態推定装置
(51)【国際特許分類】
   G01R 31/392 20190101AFI20220804BHJP
   G01R 31/378 20190101ALI20220804BHJP
   H01M 10/48 20060101ALI20220804BHJP
   H02J 7/00 20060101ALI20220804BHJP
【FI】
G01R31/392
G01R31/378
H01M10/48 P
H02J7/00 Y
【請求項の数】 1
(21)【出願番号】P 2017028747
(22)【出願日】2017-02-20
(65)【公開番号】P2018136131
(43)【公開日】2018-08-30
【審査請求日】2019-12-10
(73)【特許権者】
【識別番号】507151526
【氏名又は名称】株式会社GSユアサ
(74)【代理人】
【識別番号】110001036
【氏名又は名称】特許業務法人暁合同特許事務所
(72)【発明者】
【氏名】鈴木 洸
(72)【発明者】
【氏名】白石 剛之
【審査官】島田 保
(56)【参考文献】
【文献】特開2016-220504(JP,A)
【文献】特開2015-105875(JP,A)
【文献】特開2017-009577(JP,A)
【文献】特開2009-252381(JP,A)
【文献】米国特許出願公開第2016/0363630(US,A1)
【文献】特開2014-199238(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 31/36
H01M 10/48
H02J 7/00
(57)【特許請求の範囲】
【請求項1】
複数の蓄電素子を有する組電池の状態を推定する状態推定装置であって、
前記蓄電素子は、残存容量に対するOCVの変化量が平坦な低変化領域と、残存容量に対するOCVの変化量が前記低変化領域よりも大きい高変化領域とを有しており、
前記複数の蓄電素子の実容量に対する高変化領域の変化位置に基づいて組電池の状態を推定し、
前記蓄電素子は、2つの前記低変化領域の間に、前記高変化領域である中間領域を有しており、前記複数の蓄電素子の実容量に対する中間領域の変化位置に基づいて組電池の状態を推定し、
前記複数の蓄電素子の未使用時もしくは前回の使用以前における中間領域の位置である第1位置と、前記複数の蓄電素子の使用後における中間領域の位置である第2位置とに基づいて、それぞれの前記蓄電素子における実容量の変化量を算出し、組電池の状態を推定し、
それぞれの前記蓄電素子における実容量の変化量が、所定時間内に許容範囲外となる場合に、組電池に異常があると推定する、状態推定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書によって開示される技術は、状態推定装置に関する。
【背景技術】
【0002】
例えば、車両のエンジン始動用の蓄電システムとして、特開2014-225942号公報が知られている。この種の蓄電システムは、リチウムイオン電池など鉛蓄電池に比べて、小型化や軽量化が可能な二次電池を鉛蓄電池に替えて採用している。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2014-225942号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
正極にリン酸鉄系リチウム、負極にグラファイトを用いた蓄電素子を有するリチウムイオン電池は、使用電圧範囲が鉛蓄電池に似通っており、他成分の二次電池と比較して互換性が高い。しかしながら、正極にリン酸鉄系リチウム、負極にグラファイトを用いた蓄電素子のSOCとOCVとの相関関係は、SOCの約30~95[%]の広い範囲において、OCVの変化が平坦な低変化領域を有している。このため、OCVに基づく蓄電素子の劣化や異常など蓄電素子の異常状態の推定が困難となっている。
【0005】
本明細書では、蓄電素子が異常状態であるか否かを推定する技術開示する。
【課題を解決するための手段】
【0006】
本明細書によって開示される技術は、複数の蓄電素子を有する組電池の状態を推定する状態推定装置であって、前記蓄電素子は、残存容量に対するOCVの変化量が平坦な低変化領域と、残存容量に対するOCVの変化量が前記低変化領域よりも大きい高変化領域とを有しており、前記複数の蓄電素子の実容量に対する高変化領域の変化位置に基づいて組電池の状態を推定する構成とした。
【発明の効果】
【0007】
本明細書によって開示される技術によれば、各蓄電素子における高変化領域の位置の順序が入れ替わったり、蓄電素子における高変化領域の位置が許容範囲から逸脱したりするなど、いずれかの蓄電素子における高変化領域の位置が大きく変化している場合に、高変化領域の変化位置に基づいて蓄電素子、ひいては組電池に劣化や異常が生じていると推定することができる。
【図面の簡単な説明】
【0008】
図1】実施形態1における車両を示す図
図2】蓄電装置の斜視図
図3】蓄電装置の分解斜視図
図4】蓄電装置の電気的構成を示すブロック図
図5】蓄電素子のSOC-OCV相関関係を示す図
図6】蓄電素子のSOC-OCVにおける各領域のSOC範囲を示す図
図7】状態推定処理を示すフローチャート図
図8】蓄電素子の劣化とSOC-OCV相関関係との関係を示す図
図9】未使用時の各蓄電素子の残存容量-OCV相関関係を示す図
図10図9の要部拡大図
図11】使用後の各蓄電素子の残存容量-OCV相関関係を示す図
図12図11の要部拡大図
図13】実施形態2における状態推定処理を示すフローチャート図
図14】実施形態2の図11に相当する要部拡大図
図15】その他の実施形態である太陽光発電システムを示す図
【発明を実施するための形態】
【0009】
(本実施形態の概要)
初めに、本実施形態にて開示する状態推定装置の概要について説明する。
複数の蓄電素子を有する組電池の状態を推定する状態推定装置であって、前記蓄電素子は、残存容量に対するOCVの変化量が平坦な低変化領域と、残存容量に対するOCVの変化量が前記低変化領域よりも大きい高変化領域とを有しており、前記複数の蓄電素子の実容量に対する高変化領域の変化位置に基づいて組電池の状態を推定する構成とした。
【0010】
一般に、正極に鉄系、負極にグラファイト系の材料を用いた未使用時の蓄電素子では、SOC-OCV相関関係において、SOCの約30~95[%]の範囲は、OCVの変化が平坦な低変化である低変化領域であり、SOCが30[%]以下や95[%]以上の範囲は、OCVの変化が低変化領域よりも大きい高変化領域であることが知られている。
【0011】
一方、本発明者らは、蓄電素子の劣化に関して研究を進めることで、正極に鉄系、負極にグラファイト系の材料を用いた蓄電素子では、蓄電素子が劣化すると、蓄電素子の劣化とSOC-OCV相関関係との関係においては、SOCが30[%]~95[%]の範囲の低変化領域が短縮するという特性を有していることを知見した。
【0012】
また、本発明者らは、蓄電素子の劣化に伴う低変化領域の短縮に伴って、蓄電素子における高変化領域の位置が変化することに着目した。
ここで、「SOC」とは、蓄電素子21の充電状態を示しており、満充電状態のSOCを100[%]としており、満充電状態の蓄電素子の残存容量(いわゆる、電池容量)に対する各時点の蓄電素子の残存容量の比率をいう。そこで、本発明者らは、残存容量とOCVとの相関関係を用い、残存容量とOCVとの相関関係において、各蓄電素子における高変化領域の変化位置を比較するなど、高変化領域の変化位置に基づいて組電池の状態を推定するという着想に至った。
【0013】
このような構成によると、各蓄電素子における高変化領域の位置の順序が入れ替わったり、蓄電素子における高変化領域の位置が許容範囲から逸脱したりするなど、いずれかの蓄電素子における高変化領域の位置が大きく変化している場合には、蓄電素子、ひいては組電池に劣化や異常が生じていると推定することができる。
【0014】
前記蓄電素子は、2つの前記低変化領域の間に、前記高変化領域である中間領域を有しており、前記複数の蓄電素子の実容量に対する中間領域の変化位置に基づいて組電池の状態を推定する構成としてもよい。
【0015】
本発明者らは、残存容量の約30~95[%]の範囲において、2つの低変化領域の間(残存容量が約65[%]付近)に僅かな電位差である中間領域(高変化領域)があり、この中間領域よりも残存容量が少ない位置における低変化領域は、蓄電素子の劣化に伴う変化がほとんど見られないものの、残存容量が多い位置における低変化領域が、蓄電素子の劣化に伴って短縮することを突き止めた。また、この種の蓄電素子は、高入出力性の双方の性能を確保するために、残存容量が約30~95[%]の範囲で使用されることに着目した。
【0016】
そこで、本発明者らは、残存容量が約30~95[%]の範囲である中間領域の変化位置に基づいて蓄電素子や組電池の状態を推定することで、例えば、残存容量が少ない位置における高変化領域や残存容量が多い位置における高変化領域において推定を行う場合に比べて、高頻度に推定を行うことができることを見出した。
【0017】
つまり、中間領域の変化位置に基づいて蓄電素子や組電池の状態を推定することで、例えば、残存容量が少ない位置における高変化領域や残存容量が多い位置における高変化領域において推定を行う場合に比べて、推定精度を向上させることができる。
【0018】
それぞれの前記蓄電素子における中間領域の変化位置の比較に基づいて組電池の状態を推定する構成としてもよい。
このような構成によると、例えば、各蓄電素子の中間領域の変化位置の順序が入れ替わるなど、各蓄電素子における中間領域の相対比較をするだけで、複雑な処理などを用いなくても、蓄電素子、ひいては組電池に劣化や異常が生じていると推定することができる。
【0019】
前記複数の蓄電素子の未使用時もしくは前回の使用以前における中間領域の位置である第1位置と、前記複数の蓄電素子の使用後における中間領域の位置である第2位置とに基づいて、それぞれの前記蓄電素子における実容量の変化量を算出し、組電池の状態を推定する構成としてもよい。
【0020】
このような構成によると、蓄電素子の未使用時、もしくは前回の使用時以前の第1位置と、使用後の第2位置とに基づく各蓄電素子の実容量の変化量から、蓄電素子が推定される劣化や異常状態を超えているなど、各蓄電素子の状態を推定することができる。
【0021】
それぞれの前記蓄電素子における実容量の変化量が、所定時間内に許容範囲外となる場合に、組電池に異常があると推定する構成としてもよい。
このような構成によると、例えば、1か月など所定の時間内に、全ての蓄電素子に異常が生じるような場合においても、蓄電素子の異常の推定を行うことができる。
なお、本明細書によって開示される技術は、組電池の状態を推定する状態推定方法、状態推定プログラムに適用することができる。
【0022】
<実施形態1>
本明細書に開示された実施形態について図1から図12を参照して説明する。
本実施形態は、図1に示すように、車両1のエンジンルーム2に設置される蓄電装置10を例示しており、エンジンルーム2内において、エンジン始動用のスターターモータや電装品などの車両負荷3、オルターネータなどの車両発電機4などに接続されている。
【0023】
蓄電装置10は、図2に示すように、ブロック状の電池ケース11を有している。電池ケース11内には、図3に示すように、複数(本実施形態では4つ)の蓄電素子21を直列に接続してなる組電池20や制御基板18などが収容されている。
【0024】
以下の説明において、図2および図3を参照する場合、上下方向とは、電池ケース11が設置面に対して傾きなく水平に置かれた時の電池ケース11の上下方向を基準とする。前後方向とは、電池ケース11の短辺部分に沿う方向(奥行き方向)を基準として図示左手前側を前側とする。左右方向とは、電池ケース11の長辺部分に沿う方向を基準とし、図示右手前側を右方向として説明する。
【0025】
電池ケース11は、合成樹脂製であって、図3に示すように、上方に開口する箱型のケース本体13と、複数の蓄電素子21を位置決めする位置決め部材14と、ケース本体13の上部に装着される中蓋15と、中蓋15の上部に装着される上蓋16とを備えて構成されている。
【0026】
ケース本体13内には、図3に示すように、複数の蓄電素子21が個別に収容される複数のセル室13Aが左右方向に並んで設けられている。
【0027】
蓄電素子21は、例えば、黒鉛、易黒鉛化カーボン、難黒鉛化カーボンなどのグラファイト系材料の負極活物質と、リン酸鉄リチウムなどのリン酸鉄系の正極活物質を使用したリチウムイオン電池とされている。このような蓄電素子21は、例えば、開放電圧(OCV:Open Circuit Voltage)と充電状態(SOC:State Of Charge)との間に、図5に示す相関関係(以下、「SOC-OCV相関関係」という)がある。このSOC-OCV相関関係では、図5および図6に示すように、蓄電素子21の充電状態を次の5つの領域に分けて考えることができる。
【0028】
これら5の領域のうちの領域II、IVは、蓄電素子21のOCVの変化は、SOCに対して所定値未満の傾斜を有する。すなわち、OCVの変化がSOCの変化に対して極めて小さくなっている(以下、これらの領域を「低変化領域」II,IVという)。具体的には、低変化領域は、例えば、SOCが1[%]変化するのに対して、OCVの変化が2~6[mV]未満の領域である。
【0029】
これに対して、残りの3つの領域I,III,V(低変化領域II,IV以外の領域)は、蓄電素子21のOCVの変化がSOCに対して所定値以上変化する右上がりの傾きを有する。すなわち、低変化領域に比べて、SOCに対するOCVの変化が比較的大きくなっている(以下、これらの領域を「高変化領域」I,III,Vという)。具体的には、高変化領域は、例えば、SOCが1[%]変化するのに対して、OCVの変化が2~6[mV]以上の領域であり、SOCが67[%]付近の高変化領域IIIが、2つの低変化領域IIとIVとの間の中間領域に相当する。
【0030】
位置決め部材14は、図3に示すように、複数のバスバー17が上面に配置されている。位置決め部材14がケース本体13内に配置された複数の蓄電素子21の上部に配置されることで、複数の蓄電素子21が位置決めされる。複数の蓄電素子21は、複数のバスバー17によって直列に接続されて組電池20を構成している。
【0031】
中蓋15は、平面視略矩形状をなしている。図2および図3に示すように、中蓋15の左右方向両端部には、車両1に設けられた図示しないバッテリ端子が接続される一対の外部端子部12が中蓋15に埋設された状態で設けられている。一対の外部端子部12は、例えば、鉛合金等の金属からなり、一対の外部端子部12のうち、一方が正極端子部12Pとされ、他方が負極端子部12Nとされている。
【0032】
中蓋15は、図3に示すように、制御基板18が内部に収容可能とされている。組電池20と制御基板18とは、中蓋15がケース本体13に装着されることで、接続されるようになっている。
【0033】
次に、蓄電装置10の電気的構成を説明する。
蓄電装置10は、図4に示すように、組電池20と、電池管理装置(以下、「BMU」という)(「状態推定装置」の一例)30と、電流検出抵抗41と、電流遮断装置42と、温度センサ43と、放電回路44とを備えて構成されている。
【0034】
組電池20と、電流検出抵抗41と、電流遮断装置42とは、通電路Lを介して直列に接続されている。組電池20の正極は、電流遮断装置42を介して正極端子部12Pに接続され、負極が電流検出抵抗41を介して負極端子部12Nに接続されている。
【0035】
電流検出抵抗41は、組電池20の電流を検出する抵抗器であって、電流検出抵抗41の両端電圧がBMU30に取り込まれることで組電池20の電流が検出される。
【0036】
電流遮断装置42は、例えば、FET等の半導体スイッチやリレーである。電流遮断装置42は、BMU30からの指令(制御信号)に応答して、組電池20と正極端子部12Pとの間の電流を遮断する。
【0037】
温度センサ43は、接触式あるいは非接触式であって、組電池20の温度を測定する。
【0038】
放電回路44は、図4に示すように、蓄電素子21と並列接続となるように、各蓄電素子21にそれぞれ設けられている。放電回路44は、図示しない放電抵抗と放電スイッチとが直列に接続された回路である。放電回路44は、BMU30からの指令により、放電スイッチを閉状態にすることで蓄電素子21を個別に放電することができるようになっている。
【0039】
BMU30は、電圧検出回路31と、中央処理装置であるCPU33と、メモリ34と、計時部35とを備えて構成されており、これらは、制御基板18上に搭載されている。また、BMU30は、通電路Lに接続されることで組電池20から電力の供給を受けている。
【0040】
電圧検出回路31は、電圧検出線L2を介して、各蓄電素子21の両端にそれぞれ接続されている。電圧検出回路31は、CPU33からの指示に応答して、各蓄電素子21のセル電圧および組電池20の電池電圧(複数の蓄電素子21の総電圧)を検出する。
【0041】
メモリ34は、例えばフラッシュメモリやEEPROM等の不揮発性メモリとされている。メモリ34には、各蓄電素子21または組電池20を管理するプログラムや各蓄電素子21および組電池20の劣化や異常状態を推定する状態推定プログラムなどの各種プログラム、各種プログラムの実行に必要なデータ、例えば、各蓄電素子21の実容量や劣化許容値などが記憶されている。
【0042】
ここで、蓄電素子21の実容量とは、例えば、製造した蓄電素子21に対して定電流定電圧充電を行って、満充電状態(例えば、3.5[V]、6[A]以下)にし、続けて、放電終止電圧(例えば、2.0[V](1C))に到達するまで放電させ、満充電状態から放電終止電圧に到達するまで定格電流で放電した電流量を実容量(蓄電素子21が完全充電された状態から取り出し可能な容量)とする。
【0043】
計時部35は、時間を計時するものであって、例えば、電圧検出回路31による各蓄電素子21の電圧計測の時間および電圧計測間の時間差を計測してCPU33に出力する。
【0044】
CPU33は、中央処理装置であって、電流検出抵抗41、電圧検出回路31などの出力から蓄電素子21の電流、電圧などを監視しており、異常を検出した場合には、電流遮断装置42を作動させることで組電池20に不具合が生じることを防いでいる。
【0045】
一般に、組電池20は、複数の蓄電素子21を直列に接続すると共に、ケース本体13内において近接させた状態で設置されている。このため、蓄電装置10が使用されると、外側の蓄電素子21に比べて中央に設置された蓄電素子21が高温となる。そして、蓄電装置10を所定期間の間使用すると、中央の蓄電素子21は、通常の劣化に加え、さらに劣化が進み、実容量が低下する。
【0046】
また、組電池20の各蓄電素子21は、同一工程によって製造されるものの、実容量にばらつきが生じてしまう。具体的には、製造後未使用時の4つの蓄電素子21の実容量を前述の方法で測定した場合、例えば、第1蓄電素子が20.0[Ah]、第2蓄電素子が20.4[Ah]、第3蓄電素子が19.8[Ah]、第4蓄電素子が20.2[Ah]と各蓄電素子21の実容量にばらつきが生じてしまう。
【0047】
さらに、本発明者らは、正極に鉄系、負極にグラファイト系の材料を用いた蓄電素子21では、蓄電素子21が劣化すると、蓄電素子21の劣化とSOC-OCV相関関係との関係性では、低変化領域IV(SOC68[%]~95[%]の範囲の低変化領域)が短縮する特性を有していることを知見した。
【0048】
そこで、本発明者らは、蓄電素子21のSOC-OCV相関関係において満充電状態の位置を固定すると、低変化領域IVが短縮することに伴って高変化領域IIIが変化することに着目した。そして、高変化領域IIIの変化位置に基づいて状態推定処理を、所定の時間間隔(例えば、1か月など)で定期的または任意のタイミングで行うことで、蓄電素子21、ひいては組電池20に劣化や異常が生じていると推定できることを見出した。
【0049】
以下において、まず、蓄電素子21の劣化とSOC-OCV相関関係との関係性について説明し、その後、続けて、図7を参照しつつ、状態推定処理について説明する。
【0050】
ここで、「SOC」とは、蓄電素子21の充電状態を示しており、満充電状態においてSOCが100[%]となり、放電終止電圧に到達した状態においてSOCが0%となる。
【0051】
このため、蓄電素子21の劣化に関して、X軸をSOC[%]によって表すSOC-OCV相関関係をもとに未使用の蓄電素子21と劣化後の蓄電素子21とを比較すると、SOC-OCV相関関係において、未使用時も劣化時もSOC0[%]とSOC100[%]の位置は同じになる。
つまり、劣化した蓄電素子21のSOC-OCV相関関係が、未使用の蓄電素子21のSOC-OCV相関関係よりも、OCVの変化の割合がX軸方向(SOCが変化する方向)に延びた状態になってしまう。そこで、蓄電素子の残存容量とOCVとの関係を明確にするために、図8から図12に示すグラフでは、X軸を蓄電素子21の残存容量[Ah]、Y軸をOCV[V]とする残存容量とOCVとの相関関係(以下、「残存容量-OCV相関関係」という)を示した。ここで、図8から図12に示すグラフでは、未使用の蓄電素子αを実線、劣化した蓄電素子βを一点鎖線で表し、両蓄電素子21を満充電状態の位置で揃えて示した。
【0052】
図8に示すグラフでは、未使用の蓄電素子αと、劣化した蓄電素子βとを比較すると、高変化領域IIIよりも残存容量が少ない高変化領域Iおよび低変化領域IIは、蓄電素子21の劣化に伴う容量の大きさの変化がほとんど見られない。
しかしながら、劣化した蓄電素子βの低変化領域IVは、未使用の蓄電素子αの低変化領域IVに比べて、短縮しており、蓄電素子21の実容量が低下していることがわかる。
【0053】
つまり、未使用の蓄電素子21と劣化後の蓄電素子21とを満充電状態の位置で揃えることにより、蓄電素子21が劣化した場合には、図8に示すように、高変化領域IIIの位置は残存容量が高い側に移動することが分かる。
【0054】
そこで、状態推定処理では、CPU33が、各蓄電素子21の未使用時もしくは前回の使用時以前における実容量と、使用後の各蓄電素子21の実容量との容量差に基づいて各蓄電素子21の劣化量を算出し、組電池20に劣化や異常が生じているか否かを推定する。
【0055】
詳細には、図7に示すように、CPU33は、まず、各蓄電素子21が未使用であるか否か判定する(S11)。各蓄電素子21が製造後未使用である場合には(S11:YES)、未使用時点における各蓄電素子21の実容量と、その時の残存容量-OCV相関関係を測定し(S13)、最も実容量の小さい蓄電素子21である基準素子とその他の蓄
電素子21との各容量差(容量ばらつき)を第1位置(図11を参照)における容量差として算出する。
【0056】
そして、各蓄電素子21の残存容量-OCV相関関係における高変化領域IIIと、これに対応する基準素子とその他の蓄電素子21との各容量差との関係をBMU30のメモリ34に記憶する(S14)。
【0057】
具体的には、製造後未使用時の4つの蓄電素子21の実容量が、例えば、第1蓄電素子Aが19.9[Ah]、第2蓄電素子Bが20.1[Ah]、第3蓄電素子Cが19.8[Ah]、第4蓄電素子Dが20.0[Ah]として測定されたとする。このような場合、各蓄電素子21の実容量と、図10に示すように、基準素子である第3蓄電素子(19.8[Ah])とその他の蓄電素子21との各容量差(第1蓄電素子との容量差ΔCn1:0.1[Ah]、第2蓄電素子との容量差ΔCn2:0.3[Ah]、第4蓄電素子との容量差ΔCn4:0.2[Ah])を算出し、BMU30のメモリ34に記憶させる。
【0058】
また、各蓄電素子21から取得した図9および図10に示す残存容量-OCV相関関係と、基準素子とその他の蓄電素子21との各容量差(基準素子である第3蓄電素子(19.8[Ah])と第1蓄電素子との容量差ΔCn1、第2蓄電素子との容量差ΔCn2、第4蓄電素子との容量差ΔCn4)との対応関係をBMU30のメモリ34に記憶させる。
【0059】
一方、蓄電素子21が製造後未使用ではない場合には(S11:NO)、前回の状態推定処理において算出した後述する第2位置の容量差を第1位置の容量差とし、後述するS15を実行する(S12)。
【0060】
次に、CPU33は、各蓄電素子21間の充電量差が少なくなるように放電回路44によって調整しつつ、全ての蓄電素子21のSOCが100[%](満充電状態)になるまで充電する(S15)。蓄電素子21が製造後未使用の場合には、蓄電装置10を組み上げた後に、放電回路44によって調整しつつ、全ての蓄電素子21のSOCが100[%](満充電状態)になるまで充電する。
【0061】
そして、CPU33は、例えば、自己放電や車両搭載後の車両負荷3への放電により、各蓄電素子21を放電させる。そして、基準素子(第3蓄電素子)のOCVが、残存容量-OCV相関関係において高変化領域IIIに到達した時間を計時部35に計時し、計時した時間を基準時間として、メモリ34に記憶する(S16)。
【0062】
ここで、自己放電や車両搭載後の車両負荷3への放電は、OCVの変化が無いような電流値が小さい暗電流による放電であり、例えば、1[A]以下の放電電流とする。
【0063】
また、他の全ての蓄電素子21が高変化領域IIIに到達する到達時間を計時する(S17)。そして、メモリ34に記憶された各蓄電素子21の残存容量-OCV相関関係と、これに対応する基準素子とその他の蓄電素子21との各容量差との関係をもとに、基準時間と他の蓄電素子21の到達時間との時間差から、基準素子(第3蓄電素子)と他の蓄電素子21との容量差を第2位置(図11を参照)における容量差として算出する(S18)。
【0064】
また、第2位置における基準素子と他の蓄電素子21との容量差は、例えば、各蓄電素子21が、残存容量-OCV相関関係において高変化領域IIIに到達する到達時間と、その時の放電電流値により算出することもできる。
【0065】
次に、CPU33は、S12において記憶した第1位置の各容量差と、これらに対応するS14において算出した第2位置の各容量差との差を各蓄電素子21の劣化量として算出する(S19)。そして、各蓄電素子21の劣化量が劣化許容値よりも小さいか否か推定(S20)する。各蓄電素子21の劣化量が劣化許容値以下の場合(S20:YES)、組電池(蓄電素子21)20の劣化度合が小さく、組電池20が異常状態ではないと推定し、継続して組電池20を使用することができると判定する(S21)。
【0066】
一方、劣化差が劣化許容値を超えて大きい場合(S20:NO)、組電池(蓄電素子21)20の劣化度合が大きく、組電池20が異常な状態であると推定し、組電池20が使用不可であると判定する(S22)。
【0067】
具体的には、図11および図12に示すグラフは、例えば、蓄電素子21の未使用時と使用後における残存容量-OCV相関関係を示している。ここで、二点鎖線Zによって表される曲線は未使用時の蓄電素子21であり、それ以外の曲線は、使用後の各蓄電素子21を表している。残存容量が13[Ah]付近の高変化領域IIIは第1位置に相当し、残存容量が14.5-16.0[Ah]付近の高変化領域IIIは第2位置に相当する。
【0068】
したがって、例えば、図12に示す使用後(第2位置)の基準素子(第3蓄電素子C)と第4蓄電素子Dとの容量差ΔCu4が0.3[Ah]であって、図10に示す製造後未使用時(第1位置)の容量差ΔCn4が20.0[Ah]-19.8[Ah]=0.2[Ah]の場合、第4蓄電素子の劣化量は0.3[Ah]-0.2[Ah]=0.1[Ah]と算出される。ここで、例えば、劣化許容値が0.2[Ah]の場合には、第4蓄電素子Dの劣化度合は、劣化許容量よりも小さく、許容範囲内であるから、組電池20が異常状態ではないと推定し、継続して組電池20を使用することができると判定する。
【0069】
一方、図12に示す使用後(第2位置)の基準素子(第3蓄電素子C)と第2蓄電素子Bとの容量差ΔCu2が、1.6[Ah]であって、図10に示す製造後未使用時(第1位置)の容量差ΔCn2が20.1[Ah]-19.8[Ah]=0.3[Ah]の場合、第2蓄電素子Bの劣化量は1.6[Ah]-0.3[Ah]=1.3[Ah]と算出される。したがって、劣化許容値が0.2[Ah]の場合には、劣化量が劣化許容値を超えることで、第2蓄電素子Bの劣化度合が大きく、異常な状態であると推定する。
【0070】
以上のような場合には、第3蓄電素子Cと、第4蓄電素子Dとに異常はないものの、第2蓄電素子Bが異常な状態であるとして、組電池20は使用不可であると判定する。
なお、例えば、基準素子(第3蓄電素子C)と第2蓄電素子Bとにおける劣化量が0.4[Ah]であり、第3蓄電素子Cと第4蓄電素子Dとにおける劣化量も0.4[Ah]である場合、いずれも劣化差が劣化許容値(0.2[Ah])を超えている。
このような場合には、第3蓄電素子Cの劣化度合が大きく、第3蓄電素子Cが異常な状態であると推定し、組電池20が使用不可であると判定する。
【0071】
すなわち、状態推定処理では、組電池(蓄電素子21)20に劣化などによる異常が生じていないか推定する。推定の結果、組電池(蓄電素子21)20に異常が生じていると推定された場合には、例えば、車両1の室内に設けられた表示部5(図1を参照)に蓄電装置10が使用不可であることを表示して、使用者に注意を促すことができる。
【0072】
以上のように、本発明者らは、残存容量-OCV相関関係(SOC-OCV相関関係)との関係において、図8および図11に示すように、各蓄電素子21の変化曲線を満充電状態の位置で揃えた場合、蓄電素子21が劣化すると、低変化領域IVが短縮し、高変化領域IIIの変化位置が移動することに着目した。そして、この変化位置(高変化領域IIIの第1位置から第2位置への変化)をもとに組電池(蓄電素子21)20の劣化度合が推定できることを見出した。
【0073】
つまり、本実施形態の状態推定処理によると、組電池(蓄電素子21)20の未使用時もしくは前回の使用以前(第1位置)における各蓄電素子間の容量差と、組電池20(蓄電素子21)の使用後(第2位置)における各蓄電素子間の容量差とを算出する。次に、これらの容量差(残存容量-OCV相関関係における変化位置)から各蓄電素子21の劣化量を算出することで、組電池(蓄電素子21)20の劣化度合を推定することができる。
【0074】
そして、この劣化度合から、組電池(蓄電素子21)20が異常状態か推定し、継続使用可能か否かを判定することができる。
【0075】
ところで、上述のように状態推定処理において、組電池(蓄電素子21)20の劣化度合を推定することができるものの、その頻度が少ない場合には、組電池(蓄電素子21)20の使用の可否の精度が低下してしまう。
【0076】
ところが、本実施形態によると、車両1においてエンジン始動に必要なクランキング放電や車両減速時における回生充電など高入出力性の双方の性能を確保するために使用される組電池20の残存容量が、約30~95[%]の範囲内の高変化領域IIIの変化位置に基づいて状態推定処理を行って、組電池(蓄電素子21)20の劣化度合を推定する。
【0077】
すなわち、例えば、高変化領域であっても、高変化領域Iや高変化領域Vにおいて状態推定処理を行う場合に比べて、状態推定処理を行う頻度を高くすることができる。つまり、本実施形態によると、組電池(蓄電素子21)20が異常状態であるか否かを推定する推定精度を向上させることができる。
【0078】
また、本実施形態によると、劣化度合を算出し、劣化許容値と比較することで、組電池(蓄電素子21)20の使用の可否を推定している。これにより、例えば、蓄電素子同士の劣化量を相対的に比較する場合に比べて、組電池(蓄電素子21)20が異常状態であるか否かを推定する推定精度をさらに向上させることができる。
【0079】
<実施形態2>
次に、実施形態2について図13および図14を参照して説明する。
実施形態2は、実施形態1における状態推定処理におけるS14の処理とS18以降の処理を変更したものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。
【0080】
実施形態2の状態推定処理は、図13に示すように、S13において各蓄電素子21の実容量を測定後、CPU33が各蓄電素子21の実容量に基づいて、蓄電素子21の未使用時もしくは前回の使用以前である順位を第1位置の順位として決定し、この順位をBMU30のメモリ34に記憶する(S24)。
【0081】
一方、S17における到達時間の計時後、CPU33は、S16およびS17において計時した基準時間と到達時間により、組電池(蓄電素子21)20の使用後の実容量に基づく順位を第2位置の順位として決定する(S28)。
【0082】
そして、CPU33は、S24において記憶した各蓄電素子21の第1位置の順位と、S28において決定した各蓄電素子21の第2位置の順位とに変化がないか判定する(S29)。順位に変化がなかった場合(S29:YES)、著しく劣化した蓄電素子21がなく組電池20の劣化度合が小さいとして、組電池20が異常状態ではないと推定し、継続して組電池20を使用することができると判定する(S30)。
【0083】
一方、順位に変化があった場合(S29:NO)、著しく劣化した蓄電素子21があり、組電池20の劣化度合が大きく、組電池20が異常な状態であるとして、組電池20が使用不可であると判定する(S31)。
【0084】
具体的には、蓄電素子21の残存容量-OCV相関関係において、図10に示すように、組電池使用前の各蓄電素子21の高変化領域IIIに到達する時間の順位が、第3蓄電素子C、第1蓄電素子A、第4蓄電素子D、第2蓄電素子Bであった場合、各蓄電素子21の実容量が低い順から第3蓄電素子C、第1蓄電素子A、第4蓄電素子D、第2蓄電素子Bであると決定する。
【0085】
そして、組電池20を使用して、劣化した後の各蓄電素子21の高変化領域IIIに到達する時間の順位が、図14に示すように、第3蓄電素子C、第1蓄電素子A、第2蓄電素子B、第4蓄電素子Dであった場合、各蓄電素子21の実容量が低い順から第3蓄電素子C、第1蓄電素子A、第2蓄電素子B、第4蓄電素子Dであると決定する。
【0086】
次に、組電池20の使用前と使用後との順位に変化がないか判定する。
ここで、第2蓄電素子Bと第4蓄電素子Dとの順位が使用前(図10参照)と使用後(図14参照)とで逆転している。つまり、第2蓄電素子Bと第4蓄電素子Dとのいずれかの蓄電素子21の劣化度合が大きく、組電池20が異常な状態であるとして、組電池20が使用不可であると推定する。
【0087】
すなわち、各蓄電素子21同士の容量差を算出したり、各蓄電素子21の劣化量を算出したりするなど複雑な処理をしなくても、未使用時もしくは前回の使用以前における各蓄電素子21の順位と使用後の各蓄電素子21の順位とを比較することで、組電池20が異常状態であるか否かを推定することができる。これにより、組電池(蓄電素子21)20の使用の可否を判定することができる。
【0088】
このように、本実施形態では、未使用時もしくは前回の使用以前の各蓄電素子21の順位と使用後の各蓄電素子21の順位の比較のみを行った。しかしながら、これに限らず、順位に変化があった場合にのみ、各蓄電素子21の容量差を算出して劣化量の推定を行ってもよく、順位に変化があった蓄電素子21についてのみ劣化量の推定を行ってもよい。
【0089】
<他の実施形態>
本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
【0090】
(1)上記実施形態では、蓄電装置10が車両1に搭載される構成とした。しかしながら、これに限らず、図15に示すように、太陽の光を起電力とする光発電装置101と負荷103とにパワーコンディショナ102を介して接続された家庭用太陽光発電システムの蓄電装置110に適用してもよく、大容量発電システムの蓄電装置として適用してもよい。
また、大容量発電システムの場合には、遠隔地からリモート操作などによりサーバなどを介して状態推定処理を実行してもよい。
【0091】
(2)上記実施形態1では、蓄電素子21の残存容量-OCV相関関係(SOC-OCV相関関係)を5つの領域に分割し、分割された領域のうちの高変化領域IIIの変化位置(第1位置から第2位置への変化)に基づいて各蓄電素子21の劣化量を算出する構成にした。しかしながら、これに限らず、分割された領域のうちの高変化領域Iや高変化領域Vにおける使用頻度が高い場合には、高変化領域Iや高変化領域Vの変化位置に基づいて各蓄電素子21の劣化量を算出する構成にしてもよい。
【0092】
(3)上記実施形態では、状態推定処理において、各蓄電素子21の劣化量を算出し、許容劣化値と比較し、劣化量が許容劣化値を超えた場合に組電池20が異常状態であると推定する構成にした。しかしながら、これに限らず、各蓄電素子の劣化量同士を比較し、各蓄電素子の劣化量の差が所定値を超えた場合に、組電池が異常状態であると推定する構成にしてもよい。
【0093】
(4)上記実施形態では、状態推定処理のS16の放電は、OCVの変化が無いような電流値が小さい暗電流による放電とした。しかしながら、これに限らず、一定時間継続する定電流放電により容量差(容量ばらつき)が検出可能であれば、電流値はこれに限られず、例えば、20Aの定電流放電が10秒程度継続するものであってもよい。
【0094】
(5)上記実施形態では、状態推定処理において、各蓄電素子21を満充電状態にした後、放電させることで蓄電素子21同士の容量差(容量ばらつき)を検出する構成とした。しかしながら、これに限らず、各蓄電素子21を放電終止電圧まで放電した後、定電流充電させることで蓄電素子21同士の容量差(容量ばらつき)を検出する構成にしてもよい。
【0095】
(6)上記実施形態では、車両1に設置される蓄電装置10の電池管理装置30において、状態推定処理を行って蓄電素子21が異常状態であるか否かを推定した。しかしながら、これに限らず、様々な蓄電装置に対して、複数の蓄電素子を有する組電池の状態を推定する状態推定方法であって、蓄電素子が、実容量に対するOCVの変化量が平坦な低変化領域と、実容量に対するOCVの変化量が前記低変化領域よりも大きい高変化領域とを有しており、複数の蓄電素子の実容量に対する高変化領域の変化位置に基づいて組電池の状態を推定する状態推定方法を適用してもよい。
【0096】
(7)上記実施形態では、X軸を蓄電素子21の残存容量[Ah]、Y軸をOCV[V]とする残存容量とOCVとの相関関係の高変化領域IIIの変化位置(高変化領域IIIの第1位置から第2位置への変化)をもとに組電池(蓄電素子21)20の劣化度合を推定した。しかしながら、これに限らず、X軸を蓄電素子のSOC[%]、Y軸をOCV[V]とする残存容量とOCVとの相関関係の高変化領域IIIの変化位置をもとに組電池の劣化度合を推定してもよい。
【符号の説明】
【0097】
21:蓄電素子
20:組電池
30:電池管理装置(「状態推定装置」の一例)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15