(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-05
(45)【発行日】2022-08-16
(54)【発明の名称】組織の厚さの確定
(51)【国際特許分類】
A61B 18/14 20060101AFI20220808BHJP
A61B 8/12 20060101ALI20220808BHJP
【FI】
A61B18/14
A61B8/12
【外国語出願】
(21)【出願番号】P 2017131709
(22)【出願日】2017-07-05
【審査請求日】2020-04-15
(32)【優先日】2016-07-06
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】511099630
【氏名又は名称】バイオセンス・ウエブスター・(イスラエル)・リミテッド
【氏名又は名称原語表記】Biosense Webster (Israel), Ltd.
(74)【代理人】
【識別番号】100088605
【氏名又は名称】加藤 公延
(74)【代理人】
【識別番号】100130384
【氏名又は名称】大島 孝文
(72)【発明者】
【氏名】アサフ・ゴバリ
(72)【発明者】
【氏名】アンドレス・アルトマン
(72)【発明者】
【氏名】ドミトリー・ボルキンシュタイン
【審査官】北村 龍平
(56)【参考文献】
【文献】米国特許出願公開第2016/0183915(US,A1)
【文献】米国特許出願公開第2005/0256522(US,A1)
【文献】特開2012-120841(JP,A)
【文献】特開2016-059812(JP,A)
【文献】特開2014-100568(JP,A)
【文献】特表2015-509027(JP,A)
【文献】特開2004-329930(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 18/14
A61B 8/12
(57)【特許請求の範囲】
【請求項1】
装置であって、
電気的インタフェースと、
プロセッサであって、
該電気的インタフェースを介して、
組織の一部分に印加された経時的に変化する力を示す第1の信号と、
該組織の一部分から受信した超音波反射から導出される1つ又は2つ以上の第2の信号と、
を受信し、かつ、
該第1の信号及び該第2の信号から、該組織の一部分に印加された力の増減に対して変化する該組織の一部分の厚さの前記力に対する依存性
であって、前記厚さと前記力の関数、前記厚さと前記力を対応付けた表、前記厚さと前記力の関数のフィッティングにより誘導されたパラメータ、の何れかを学習するように構成されている、プロセッサと、
を備える、装置。
【請求項2】
前記プロセッサが、前記学習した依存性に基づいて、特定の接触力で実施される前記組織の一部分のアブレーションについて、アブレーション信号の推奨出力又は推奨持続時間の内の少なくとも1つの推奨パラメータを示す出力を生成するように更に構成されている、請求項1に記載の装置。
【請求項3】
前記プロセッサが、
前記学習した依存性に基づいて、前記組織の一部分のアブレーション中に該組織の一部分に印加される前記特定の接触力から得られる、該組織の一部分の厚さを推定することと、
該推定した厚さに応じて、前記出力を生成することと、
によって、該出力を生成するように構成されている、請求項2に記載の装置。
【請求項4】
前記プロセッサが、前記学習した依存性に基づいて、前記組織の一部分のアブレーションに関する、アブレーション信号の出力又は持続時間の内の少なくとも1つのパラメータを設定するように更に構成されている、請求項1に記載の装置。
【請求項5】
前記組織の一部分が、心臓組織の一部分である、請求項1に記載の装置。
【請求項6】
前記経時的に変化する力が、カテーテルの遠位端によって前記組織の一部分に印加されたものである、請求項1に記載の装置。
【請求項7】
前記超音波反射が、前記カテーテルの前記遠位端内に配置された超音波変換器によって受信されたものである、請求項6に記載の装置。
【請求項8】
装置であって、
電気的インタフェースと、
プロセッサであって、
該電気的インタフェースを介して、
組織の一部分に印加された経時的に変化する力を示す第1の信号と、
該組織の一部分から受信した超音波反射から導出される1つ又は2つ以上の第2の信号と、
を受信し、かつ、
該第1の信号及び該第2の信号から、該組織の一部分に印加された力に対する該組織の一部分の厚さの依存性
であって、前記厚さと前記力の関数、前記厚さと前記力を対応付けた表、前記厚さと前記力の関数のフィッティングにより誘導されたパラメータ、の何れかを学習するように構成されている、プロセッサと、
を備え、
前記プロセッサが、
前記第1の信号が取得された第1の期間中の、前記経時的に変化する力の方向に基づいて、該第1の期間中に受信した超音波反射が、前記組織の一部分から反射したものではなかったことを確定し、かつ
これに応じて、前記1つ又は2つ以上の第2の信号として、該第1の期間とは異なる第2の期間中に受信した前記組織の一部分からの超音波反射から導出される1つ又は2つ以上の信号を選択するように更に構成されている、装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、超音波撮像及びアブレーション処置に関するものであり、特に、心臓に関係する超音波撮像及びアブレーション処置に関するものである。
【背景技術】
【0002】
米国特許出願公開第2016/0183915号(この開示は参照により本明細書に援用される)には、カテーテルを挿入して被験者の体内の空洞の壁に接触させることにより、空洞の壁厚を測定することが記載されている。そのカテーテルの遠位セグメントには、接触力センサ及び超音波変換器が設けられている。変換器は、空洞の壁から超音波反射データを取得するように作動され、変換器の作動中、カテーテルは、空洞の壁に対して往復運動し、接触力は、カテーテルと空洞の壁との間で測定される。反射データは、接触力と相関している。接触力との最も高い相関性を有する1組の相関させた反射データが、識別される。内面と識別された組の反射データとの間の組織厚さは、それらの間の伝播時間に従って計算される。
【0003】
米国特許出願公開第2009/0093806号(この開示は参照により本明細書に援用される)には、医療用プローブについて記述されており、このプローブは可撓性の挿入チューブを含み、この挿入チューブは、患者の体腔に挿入するための遠位端と、この挿入チューブの遠位端に配置され、かつ、体腔内の組織と接触させられるように構成された遠位先端部と、を有する。弾性部材が、この遠位先端部をこの挿入チューブの遠位端に連結し、この弾性部材は、遠位先端部が組織に係合したときにこの遠位先端部にかかる圧力に応じて変形するように構成されている。プローブ内の位置センサは、挿入チューブの遠位端に対する遠位先端部の位置を検知し、この位置は弾性部材の変形に応じて変化する。
【0004】
米国特許出願公開第2011/0028848号(この開示は参照により本明細書に援用される)は、例えば異なるタイプの組織間の界面、又は組織と体液の間の界面などの、組織表面の空間的位置を測定するための装置について記述しており、これは一般に、遠位端部分を有する細長いカテーテル本体と、この遠位端部分により担持される複数の定位素子と、この遠位端部分により担持される少なくとも1つのパルス・エコー音響素子とを含む。この定位素子により、定位場内でカテーテルを定位することが可能になり(例えば位置及び/又は向き)、同時に音響素子により、組織表面(ここで、受け取る音響エネルギーが音響素子に向かって反射される)の検知が可能になる。好適なコントローラは、カテーテル本体の遠位端部分の定位により、検知された組織表面の位置を決定することができる。組織厚さは、複数(例えば、近くと遠く)の組織表面で検出された位置から導出することができる。組織厚さのマップ及びモデルも生成することができる。
【0005】
米国特許出願公開第2014/0081262号(この開示は参照により本明細書に援用される)は、アブレーション治療を心臓組織の様々な領域に送達し、この領域のそれぞれについて、少なくとも1つの超音波センサで超音波信号(この超音波信号は、心臓組織の領域で反射された超音波エネルギーに応当する)を検知することに関する、様々な実施形態について記述している。そのような実施形態は更に、心臓組織の複数の様々な領域それぞれについて、超音波信号と、ディスプレイ上の様々な領域のマップ表示とに基づいた、アブレーション治療の送達により損傷された心臓組織領域の損傷度合の指標を、各領域と関連付けることを含み得る。ユーザ入力により、様々な領域のうち1つを選択することができ、選択された1つの領域に関する指標を、マップ上に表わすことができる。
【0006】
米国特許第8,317,711号(この開示は参照により本明細書に援用される)には、動的超音波画像カテーテルが記述され、これには、遠位端に音響ウィンドウを備えたカテーテル本体と、ある回転角にわたって音響ウィンドウ内で回転するように構成された超音波整相アレイ変換器と、変換器アレイと音響ウィンドウとの間の隙間を充填する音響連結流体と、変換器アレイを回転させるように構成された、カテーテル本体の近位端にある駆動モーターとが含まれる。この駆動モーターは、駆動ワイヤによって、又は駆動スプールに連結された張力ワイヤによって、回転力を超音波整相アレイ変換器に伝えることができる。駆動モーターに連結されたシステムプロセッサが、変換器アレイの回転を制御し、変換器アレイの角度方向を推定する。回転角にわたって小刻みに超音波画像を撮像することによって、動的超音波画像カテーテルは、ある体積にわたる画像を取得することができ、これを処理して、3次元複合画像を生成することができる。
【0007】
PCT国際特許公開第WO/2014/097014号(この開示は参照により本明細書に援用される)には、細長い器具の遠位先端部の配置から、その位置及び向きを導出するために構成された、トラッキング及び視点ベースの撮像装置が記述され、この装置により、前記位置及び向きに従った座標系変換を実施し、かつ、前記置からと変換の結果に基づいて、前記先端部と共に動く局所的画像を形成することができる。この装置は、移動しても、局所的画像の視野は固定されているが、そうでない局所的画像は位置及び方向と同期するように、維持することができる。リアルタイムの超音波撮像から、その先端部を含むけれどもこの先端部に伴って動くことはない、局所的画像及びより全体的な画像を、表示させることができる。この遠位先端部はカテーテルの遠位先端部であってよく、動的な局所的撮像と全体的撮像とを組み合わせることにより、相互作用的に手術を支援するため、マイクロマニピュレータに装着することができる。
【0008】
米国特許第8,562,546号(この開示は参照により本明細書に援用される)には、弾性率及び剪断弾性率を測定するためのセンサシステムと、そのセンサシステムを使用して、異常な成長の存在の判定及び/又はその特徴付けによって組織を評価する方法が記述されている。この方法は、組織の1つ又は2つ以上の位置に、異なる大きさの一群の力を印加することと、この印加された力による対応する偏位を検知することと、組織のこれらの位置に対して作用する力(これは、印加された電圧による力と、組織変形による対向力との組み合わせである)を測定することと、複数の位置について弾性率及び/又は剪断弾性率を得ることと、この弾性率及び/又は剪断弾性率から、異常な増殖侵襲性、悪性疾患又は腫瘍の存在を判定することとを含む。
【発明の概要】
【課題を解決するための手段】
【0009】
本発明のいくつかの実施形態により、電気的インタフェース及びプロセッサを含む装置が提供される。このプロセッサは、電気的インタフェースを介して、組織の一部分に印加された経時的に変化する力を示す第1の信号と、この組織の一部分から受信した超音波反射から導出される1つ又は2つ以上の第2の信号とを受信するように構成されている。このプロセッサは更に、この第1の信号及び第2の信号から、組織の一部分に印加された力に対する組織の一部分の厚さの依存性を学習するように構成されている。
【0010】
いくつかの実施形態において、このプロセッサは、この学習した依存性に基づいて、特定の接触力で実施されるその組織の一部分のアブレーションについて、少なくとも1つの推奨パラメータを示す出力を生成するように更に構成されている。
【0011】
いくつかの実施形態において、このプロセッサは、
学習した依存性に基づいて、その組織の一部分のアブレーション中にその組織の一部分に印加される特定の接触力から得られる、その組織の一部分の厚さを推定することと、
その推定した厚さに応じて、出力を生成することと、
により、出力を生成するように構成されている。
【0012】
いくつかの実施形態において、この推奨パラメータは、アブレーション信号の出力を含む。
【0013】
いくつかの実施形態において、この推奨パラメータは、アブレーション信号の持続時間を含む。
【0014】
いくつかの実施形態において、このプロセッサは、学習した依存性に基づいて、その組織の一部分のアブレーションに関する少なくとも1つのパラメータを設定するように構成されている。
【0015】
いくつかの実施形態において、この組織の一部分は心臓組織の一部分である。
【0016】
いくつかの実施形態において、この経時的に変化する力は、カテーテルの遠位端によってその組織の一部分に印加されたものである。
【0017】
いくつかの実施形態において、この超音波反射は、前記カテーテルの遠位端内に配置された超音波変換器によって受信されたものである。
【0018】
いくつかの実施形態において、このプロセッサは、
第1の信号が取得された第1の期間中の、経時的に変化する力の方向に基づいて、前記第1の期間中に受信した超音波反射が、前記組織の一部分から反射したものではなかったことを確定し、かつ
これに応じて、前記1つ又は2つ以上の前記第2の信号として、前記第1の期間とは異なる第2の期間中に受信した超音波反射から導出される1つ又は2つ以上の信号を選択するように更に構成されている。
【0019】
更に、本発明のいくつかの実施形態に従って、組織の一部分に印加された経時的に変化する力を示す第1の信号と、この組織の一部分から受信した超音波反射から導出される1つ又は2つ以上の第2の信号と、を受信することを含む方法が提供される。この方法は、この第1の信号及び第2の信号から、前記組織の一部分に印加された力に対する前記組織の一部分の厚さの依存性を学習することと、その学習した依存性に基づいて出力を生成することと、を更に含む。
【0020】
本発明は、その実施形態の以下の詳細な説明を図面と併せ読むことによってより深い理解がなされるであろう。
【図面の簡単な説明】
【0021】
【
図1】本発明のいくつかの実施形態による、心臓アブレーションを実施するシステムの模式図である。
【
図2】力信号及びmモード超音波画像を含む視覚的出力の模式図であり、これは、本発明のいくつかの実施形態によりディスプレイ上に表示され得る。
【
図3】本発明のいくつかの実施形態による、組織の厚さを確定するための方法の模式図である。
【発明を実施するための形態】
【0022】
概説
組織のアブレーションを行う際、アブレーション信号のパラメータを適切に設定し得るため、その組織の厚さを知ることは有用であることが多い。組織厚さを測定するための1つのオプションは、超音波撮像を使用することである。例えば、心臓アブレーションの準備を行うには、心臓内の超音波変換器が超音波信号を心臓組織へと伝達し、この信号の反射の伝播時間から、組織厚さを確定することができる。
【0023】
上述の方法における課題は、心臓組織の厚さは、アブレーション電極により組織に印加される機械的力(又は同じこととして、機械的圧力)によって変化し得ることである。本発明の実施形態は、力センサからの信号を用いて、その組織に印加されている力に対する組織厚さの依存性を学習することによって、この課題に取り組んでいる。換言すれば、力センサからの信号を使用して、印加されている力の関数として組織厚さを表わす。これにより、望ましいアブレーション接触力から得られる組織厚さが推定され、これに従って他のアブレーションパラメータが設定される。
【0024】
本発明の実施形態において、カテーテルが被験者の心臓内に挿入される。このカテーテルの遠位端は、心臓組織をアブレーションするためのアブレーション電極と、力センサと、超音波変換器とを備える。医師が心臓の組織に沿ってカテーテルの遠位端を動かすと、力センサがその遠位端により組織に印加された力を測定し、超音波変換器が組織からの超音波反射を記録する。プロセッサは力センサと超音波変換器から信号を受信し、この信号を用いて、印加された力に対する組織厚さの依存性を学習する。
【0025】
システムの説明
最初に
図1を参照する。これは、本発明のいくつかの実施形態による、心臓アブレーションを実施するためのシステム20の模式図である。
【0026】
システム20は、カテーテル28と、電気的インタフェース40(例えば、任意の好適なタイプのコネクタ、ジャック、ポート、又はプラグ)を介してコンソール36(これはプロセッサ44を含む)に接続されている近位端とを含む。下記に詳しく述べるように、プロセッサ44は、電気的インタフェース40を介して、カテーテル28から電気信号を受信し、この信号を処理し、これに応じて適切な出力を生成する。
【0027】
心臓アブレーション処置中に、医師26がカテーテル28を被験者24の心臓内に挿入する。カテーテル29の遠位端22はアブレーション電極30を含み、その電極は、被験者24の心臓組織にアブレーション信号を印加するのに使用される。超音波変換器34は遠位端22(例えば、アブレーション電極30の内側)に配置され、超音波信号を伝達し、組織からの信号反射を受信するのに使用される。受信した反射に応じて、超音波変換器34が信号を生成し、これをプロセッサ44が受信する。超音波変換器は、(i)アブレーションパラメータを適切に設定するために、アブレーションの前に組織厚さを測定することと、(ii)アブレーションの結果を評価するために、アブレーションにより生じる組織へのエコー源性の変化を査定すること、の両方のために使用される。
【0028】
いくつかの実施形態において、カテーテル28は複数の超音波変換器を備え、これらは任意の好適な配列でアブレーション電極内に配置され得る。例えば、超音波変換器は、アブレーション電極の円周周りに分布させてよく、アブレーション電極の遠位先端部にあってよく、及び/又は遠位先端部近くにあってもよい。そのような複数の超音波変換器を使用して、複数の位置及び/又は複数の方向からの超音波信号を伝達することができ、これによって、本明細書に記述される技法の実施を容易にすることができる。
【0029】
いくつかの実施形態において、遠位端22は更に、1つ又は2つ以上の温度センサ38を含み、これらを使用して、アブレーション中の組織の温度を記録することができる。温度センサ38は、記録された温度を示す信号を生成し、この信号をプロセッサ44に通信する。
【0030】
カテーテル28は、カテーテルの遠位端に、力センサ32(これは代替的に圧力センサとも呼ばれる)を更に含む。いくつかの実施形態において、力センサ32は、米国特許出願公開第2009/0093806号(この開示は参照により本明細書に援用される)に記述されるように動作する。力センサ32は、カテーテルの遠位端によって組織に対して印加される機械的力の、大きさと方向の両方を示す信号を生成するように構成される。
【0031】
典型的には、システム20は電磁気追跡システムを更に含み、そのシステムは、例えば、米国特許第8,456,182号(この開示は参照により本明細書に援用される)に記述されるように、処置中にカテーテルの遠位端の位置及び向きを追跡する。
【0032】
典型的には、コンソール36はディスプレイ42を更に含み、このディスプレイは、処置中に医師のために適切な出力を表示する。例えば、ディスプレイ42は、例えば米国特許第6,226,542号(この開示は参照により本明細書に援用される)に記述される技法を用いて構築された、被験者の心臓の電気解剖学的マップを示すことができる。代替的に又は付加的に、ディスプレイ42はプロセッサ44により駆動され、下記に詳しく述べるように、超音波変換器34と力センサ32から受信した信号の処理による出力を表示することができる。
【0033】
システム20の要素を具現化する1つの市販製品は、Biosense Webster,Inc.(3333 Diamond Canyon Road,Diamond Bar,CA 91765)から入手可能なCARTO(登録商標)3システムである。このシステムは、本明細書に説明される実施形態の原理を具現化するように、当業者によって変更されてもよい。
【0034】
一般に、プロセッサ44は、単一のプロセッサとして、又は協働的にネットワーク化若しくはクラスタ化した一連のプロセッサとして具体化されてもよい。プロセッサ44は、一般的に、中央処理装置(CPU)、ランダムアクセスメモリ(RAM)、ハードドライブ若しくはCD ROMドライブなどの不揮発性補助記憶装置、ネットワークインタフェース、及び/又は周辺デバイスを備える、プログラミングされたデジタルコンピュータデバイスである。ソフトウェアプログラムを含むプログラムコード、及び/又はデータは、当該技術分野で知られているように、CPUによる実行及び処理のためにRAMにロードされ、表示、出力、送信、又は格納のために結果が生成される。プログラムコード及び/又はデータは、例えば、ネットワークを通して電子形式でコンピュータにダウンロードされてもよく、あるいは、磁気、光学、若しくは電子メモリなどの非一時的な有形の媒体上に提供及び/又は格納されてもよい。かかるプログラムコード及び/又はデータは、プロセッサに提供されると、本明細書に記載するタスクを行うように構成された、機械若しくは専用コンピュータを作り出す。
【0035】
ここで
図2を参照する。
図2は、力信号21及びmモード超音波画像23を含む視覚的出力46の模式図であり、この図は、本発明のいくつかの実施形態に従って、ディスプレイ42に(例えば、表示されている電気解剖学的マップの上に重ねて)表示することができる。
【0036】
カテーテルを被験者の心臓に挿入したら、医師はカテーテルの遠位端を心臓組織に対して押し付ける。典型的には、心周期の経過にわたる組織の動きによって、カテーテルを用いて組織に対して押し付けられる力は変化する。代替的に又は付加的に、医師は手作業で接触力を変えることができ、及び/又は、例えば米国特許出願公開第2016/0183915号(この開示は参照により本明細書に援用される)に示されるように、カテーテルの遠位端に組み込まれたリニアアクチュエータ(図示なし)が接触力を変えることができる。接触力が変わる間に、超音波変換器が、超音波信号を組織に伝達し、かつ組織からの信号の反射を受信する。
【0037】
プロセッサ44が力センサ32から力信号21を受信し、その信号は組織に印加された経時的に変化する接触力「F」を示す。プロセッサ44は更に、受信した超音波反射から超音波変換器によって導出された1つ又は2つ以上の信号を、超音波変換器から受信する。そのような超音波変換器からの信号を使用して、組織のmモード超音波画像23を生成することができ、この画像は、超音波変換器の前にある組織の一部分48を示す。被験者の組織の一部分48と隣接する解剖学的部分50との間のコントラストが十分に大きいと仮定すれば、画像23は、組織の一部分48の厚さTを視覚化することができる。具体的には、Tは接触力Fの関数であることがわかる。接触力が増加すると、組織はより圧縮され、よって、厚さは減少する。逆に、力が減少すると、組織厚さは増加する。
【0038】
いくつかの実施形態において、少なくともいくつかの組織厚さは、画像23、及び/又は、被験者の心臓の表示された電気解剖学的マップから手作業で(例えば医師によって)測定することができる。ただし典型的には、この厚さは、組織から受け取った超音波反射の伝播時間に基づいて、プロセッサが自動的に取得する。複数の組織界面から反射を受け取る場合、このプロセッサは、米国特許出願公開第2016/0183915号(この開示は参照により本明細書に援用される)に記述されている技法を使って、関心対象の組織界面56からの反射を特定することができる。簡単に言うと、上述の’915号出願公開は、力信号21を、受け取った反射の経時的に変化する伝播時間と相関させることを記述している。組織界面56からの伝播時間は力信号21と高度に相関するが、他の組織界面からのものについては相関関係はより低くなる。すなわち、印加される力が増加すると、超音波変換器から組織界面56までの距離が低減され、組織界面56からの伝播時間が減少し、この逆もまた同じである。一方、他の伝播時間は、力信号21との相関関係がより低くなる。したがって、プロセッサは超音波変換器から組織界面56までの経時的に変化する距離(すなわち、望ましい組織厚さ)を取得することができる。
【0039】
次に、経時的に変化する接触力と経時的に変化する組織厚さがあるとき、この厚さの接触力に対する依存性が学習される。すなわち、プロセッサ44は「T=f(F)」を学習することができ、これは、接触力の関数として表現された組織厚さである。この依存性は、プロセッサによって学習され、保存され、次いで使用されるものであり、任意の好適な形態、例えば、「T」値と「F」値を対応させた早見表の形態、及び/又は、取得した「T」値と「F」値の関数のフィッティングにより誘導されたパラメータの形態で、具体化することができる。
【0040】
一般的に、組織厚さの接触力に対する依存性は、複数の組織部分それぞれについて学習されている。すなわち、医師が組織に沿ってカテーテルを動かすと、力信号21、及び、超音波反射に基づく信号が受信され、これらを使用して、カテーテルが動いた部分の組織部分それぞれに関する依存性を学習する。典型的には、この依存性を、意図されるアブレーション部位の局所領域について最初に学習し、次にアブレーションをこの局所領域で実施し、次にカテーテルを次の意図されるアブレーション部位に動かす。別の実施形態においては、意図されるアブレーション部位のすべてについて最初に依存性を学習し、その後でのみ、それぞれの部位をアブレーションすることができる。
【0041】
図2に示し、また上述のように、力信号21及び画像23は典型的に、ディスプレイ42に表示される。(上述のように、力信号21は典型的に力の大きさと方向の両方を含んでいるが、力信号21の表示は、重量の単位(例えばグラム)で表現される力の大きさのみを示してもよい。)代替的に、プロセッサ44は、信号又は画像をディスプレイに表示しなくとも、接触力に対する組織厚さの依存性を学習することができる。
【0042】
ここで
図3を参照する。
図3は、本発明のいくつかの実施形態による、組織の厚さを確定するための方法の模式図である。
【0043】
カテーテルの遠位端22が、力信号及び超音波反射の取得中に組織に対して垂直である場合、超音波反射は、力が印加された組織の一部分から受信することになる。一方、もし、
図3に示すように、カテーテルの遠位端が組織に対して垂直でない場合、超音波変換器は、カテーテルが押し付けられている組織の一部分から逸れており、したがって、力信号及び超音波反射信号は、組織の同じ部分に対応しなくなり得る。例えば、
図3において、カテーテルは組織の第1の部分52に接触しているが、超音波反射は組織の第2の部分54から受信する。
【0044】
ゆえに、典型的に、プロセッサは、力信号の方向付けに基づいて、超音波信号を受信した組織部分を決定するように構成されている。(この力信号の方向付けは、
図3に示すように、力センサ32の屈曲により捕獲される。)超音波を受け取った組織部分が、現在接触している組織部分ではない場合、プロセッサは、超音波反射に基づく1つ又は2つ以上の信号として、異なる期間中に受信した超音波反射から導出される信号を選択する。
【0045】
例えば、
図3に示されている場合において、超音波反射に基づく信号は、組織部分52ではなく、組織部分54に対応している。ゆえに、組織部分52の依存性を学習するために、プロセッサは、組織部分52に対応する、超音波反射に基づく信号(複数)を選択し、これらの信号は、組織部分52に対する力信号を取得する前又は後に取得される。プロセッサは同様に、適正な信号セットを使用して、組織部分54についての依存性を学習する。ゆえに
図3は、2つの学習した依存性、すなわち組織部分52に対するT_52=f(F_52)、及び組織部分54に対するT_54=f(F_54)を示す。(ただし
図3において、アブレーション電極30は組織部分54に対して垂直ではないが、好適な推定技法を用いて、受け取った超音波反射に基づく信号に基づいて、組織部分54の厚さを推定することができる。例えば、T_54は、組織厚さT_54’(これは受信した超音波反射に基づいて推定される)に、適切な角度シータ(θ)のコサインを掛けることにより推定され、この角度は力センサから確定され得る。)
【0046】
上述の記述は、アブレーション電極30から伝達された超音波信号が、全般に、アブレーション電極から、アブレーション電極の中央長手方向軸58の方向に伝達されることを仮定している。上述のように、いくつかの実施形態において、複数の超音波変換器を使用して、複数の位置から及び/又は複数の方向で超音波信号を伝達することができ、これによって、
図3に描いた状況において、アブレーション電極が組織に対して垂直になっていなくても、T_52を測定することができる。
【0047】
特定の組織部分について、接触力に対する組織厚さの依存性を学習した後、その学習した依存性を使用して、その組織部分のアブレーションについて、1つ又は2つ以上のアブレーションパラメータを設定する。いくつかの実施形態において、プロセッサ44は最初に、その学習した依存性を用いて、組織部分の厚さを推定する。その厚さは、その組織分に印加される、望ましいアブレーション接触力(典型的には5~30グラムの範囲)により得られるものである。次に、推定された厚さに応じて、プロセッサはそのアブレーションについて少なくとも1つの推奨パラメータを示す出力を生成する。例えば、この出力は、アブレーション信号の推奨出力、及び/又は推奨持続時間を示すことができる。典型的には、プロセッサはそのような出力をディスプレイ42に表示し、医師はこのディスプレイ上の出力を見て、これに応じてアブレーションパラメータを設定する。
【0048】
他の実施形態において、プロセッサはその組織部分の厚さの推定を明示的には行わない。代わりに、プロセッサは望ましいアブレーション接触力から直接、推奨パラメータを確定する。例えば、学習した依存性T=f(F)があり、推奨されるアブレーション信号振幅「A」の組織厚さに対する依存性を特定する別の関数A=g(T)があるときに、プロセッサは、特定の接触力F0について、下記の2つの方法のうちいずれか1つで、推奨される振幅A0を確定することができる:
(i)プロセッサは最初にT0=f(F0)を計算し(よって、学習した依存性を明示的に用いる)、次にA0=g(T0)を計算する。
(ii)プロセッサは最初に関数A=g(f(F))=h(F)を誘導し、次にこの誘導した関数を適用して(よって、学習した依存性を暗示的に用いる)、F0からA0を確定する。
【0049】
いくつかの実施形態において、推奨されるアブレーションパラメータを示す出力を生成することの代わりに、又はこれに加えて、プロセッサは、そのようなパラメータを自動的に設定するような出力(例えば、アブレーション信号を供給するよう発生器に指示する制御信号)を生成する。
【0050】
当業者であれば、本発明が上記で具体的に図示及び記載されたものに限定されない点を理解するであろう。それよりもむしろ、本発明の範囲は、上述した様々な特徴の組み合わせ及び部分的組み合わせ、並びに上述の説明を読むことで当業者が想到するであろう、従来技術にはない特徴の変形及び修正を含む。参照により本特許出願に援用される文献は、これらの援用文献においていずれかの用語が、本明細書において明示的又は暗示的になされた定義と矛盾して定義されている場合には本明細書における定義のみを考慮するものとする点を除き、本出願の一部とみなすものとする。
【0051】
〔実施の態様〕
(1) 装置であって、
電気的インタフェースと、
プロセッサであって、
該電気的インタフェースを介して、
組織の一部分に印加された経時的に変化する力を示す第1の信号と、
該組織の一部分から受信した超音波反射から導出される1つ又は2つ以上の第2の信号と、
を受信し、かつ、
該第1の信号及び該第2の信号から、該組織の一部分に印加された力に対する該組織の一部分の厚さの依存性を学習するように構成されている、プロセッサと、
を備える、装置。
(2) 前記プロセッサが、前記学習した依存性に基づいて、特定の接触力で実施される前記組織の一部分のアブレーションについて、少なくとも1つの推奨パラメータを示す出力を生成するように更に構成されている、実施態様1に記載の装置。
(3) 前記プロセッサが、
前記学習した依存性に基づいて、前記組織の一部分のアブレーション中に該組織の一部分に印加される前記特定の接触力から得られる、該組織の一部分の厚さを推定することと、
該推定した厚さに応じて、前記出力を生成することと、
によって、該出力を生成するように構成されている、実施態様2に記載の装置。
(4) 前記推奨パラメータが、アブレーション信号の出力を含む、実施態様2に記載の装置。
(5) 前記推奨パラメータが、アブレーション信号の持続時間を含む、実施態様2に記載の装置。
【0052】
(6) 前記プロセッサが、前記学習した依存性に基づいて、前記組織の一部分のアブレーションに関する少なくとも1つのパラメータを設定するように更に構成されている、実施態様1に記載の装置。
(7) 前記組織の一部分が、心臓組織の一部分である、実施態様1に記載の装置。
(8) 前記経時的に変化する力が、カテーテルの遠位端によって前記組織の一部分に印加されたものである、実施態様1に記載の装置。
(9) 前記超音波反射が、前記カテーテルの前記遠位端内に配置された超音波変換器によって受信されたものである、実施態様8に記載の装置。
(10) 前記プロセッサが、
前記第1の信号が取得された第1の期間中の、前記経時的に変化する力の方向に基づいて、該第1の期間中に受信した超音波反射が、前記組織の一部分から反射したものではなかったことを確定し、かつ
これに応じて、前記1つ又は2つ以上の第2の信号として、該第1の期間とは異なる第2の期間中に受信した超音波反射から導出される1つ又は2つ以上の信号を選択するように更に構成されている、実施態様1に記載の装置。
【0053】
(11) 組織の一部分に印加された経時的に変化する力を示す第1の信号と、
該組織の一部分から受信した超音波反射から導出される1つ又は2つ以上の第2の信号と、
を受信することと、
該第1の信号及び該第2の信号から、該組織の一部分に印加された力に対する該組織の一部分の厚さの依存性を学習することと、
該学習した依存性に基づいて出力を生成することと、
を含む、方法。
(12) 前記出力が、特定の接触力で実施される前記組織の一部分のアブレーションに関して、少なくとも1つの推奨パラメータを示す、実施態様11に記載の方法。
(13) 前記出力を生成することが、
前記学習した依存性に基づいて、前記組織の一部分のアブレーション中に該組織の一部分に印加される前記特定の接触力から得られる、該組織の一部分の厚さを推定することと、
該推定した厚さに応じて、前記出力を生成することと、
を含む、実施態様12に記載の方法。
(14) 前記推奨パラメータが、アブレーション信号の出力を含む、実施態様12に記載の方法。
(15) 前記推奨パラメータが、アブレーション信号の持続時間を含む、実施態様12に記載の方法。
【0054】
(16) 前記出力が、前記組織の一部分のアブレーションに関する、少なくとも1つのパラメータを設定する、実施態様11に記載の方法。
(17) 前記組織の一部分が、心臓組織の一部分である、実施態様11に記載の方法。
(18) 前記経時的に変化する力が、カテーテルの遠位端によって前記組織の一部分に印加されたものである、実施態様11に記載の方法。
(19) 前記超音波反射は、前記カテーテルの前記遠位端内に配置された超音波変換器が受信したものである、実施態様18に記載の方法。
(20) 前記第1の信号が取得された第1の期間中の、前記経時的に変化する力の方向に基づいて、該第1の期間中に受信した超音波反射が、前記組織の一部分から反射したものではなかったことを確定することと、
これに応じて、前記1つ又は2つ以上の第2の信号として、該第1の期間とは異なる第2の期間中に受信した超音波反射から導出される1つ又は2つ以上の信号を選択することと、
を更に含む、実施態様11に記載の方法。