IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ライカ バイオシステムズ イメージング インコーポレイテッドの特許一覧

<>
  • 特許-衝撃再走査システム 図1
  • 特許-衝撃再走査システム 図2A
  • 特許-衝撃再走査システム 図2B
  • 特許-衝撃再走査システム 図2C
  • 特許-衝撃再走査システム 図2D
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-05
(45)【発行日】2022-08-16
(54)【発明の名称】衝撃再走査システム
(51)【国際特許分類】
   G02B 21/00 20060101AFI20220808BHJP
   G01N 21/64 20060101ALI20220808BHJP
【FI】
G02B21/00
G01N21/64 E
【請求項の数】 18
(21)【出願番号】P 2020524846
(86)(22)【出願日】2018-11-30
(65)【公表番号】
(43)【公表日】2021-05-13
(86)【国際出願番号】 US2018063469
(87)【国際公開番号】W WO2019109034
(87)【国際公開日】2019-06-06
【審査請求日】2020-11-10
(31)【優先権主張番号】62/593,119
(32)【優先日】2017-11-30
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】503293765
【氏名又は名称】ライカ バイオシステムズ イメージング インコーポレイテッド
【氏名又は名称原語表記】Leica Biosystems Imaging, Inc.
【住所又は居所原語表記】1360 Park Center Dr., Vista, CA 92081, United States of America
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【弁理士】
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【弁理士】
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100135633
【弁理士】
【氏名又は名称】二宮 浩康
(74)【代理人】
【識別番号】100162880
【弁理士】
【氏名又は名称】上島 類
(72)【発明者】
【氏名】ニコラス ニューバーグ
(72)【発明者】
【氏名】プレンタッシュ ジェロセヴィッチ
【審査官】殿岡 雅仁
(56)【参考文献】
【文献】特表2004-517349(JP,A)
【文献】特開2009-180828(JP,A)
【文献】特開2009-273056(JP,A)
【文献】特開2008-170641(JP,A)
【文献】特開2010-190424(JP,A)
【文献】特開2014-153500(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 21/00 - 21/36
(57)【特許請求の範囲】
【請求項1】
デジタル病理走査装置であって、前記デジタル病理走査装置は、
試料を支持し、前記試料を撮像システムに対して制御された方向に移動させて前記試料の一部をデジタル化するように構成される走査ステージであって、前記撮像システムは、前記制御された方向への前記試料の移動に基づいて、前記試料を複数のストライプとして走査するように構成される走査ステージと、
前記制御された方向への前記走査ステージの移動中にセンサデータを生成するように構成されたる1つまたは複数のセンサと、
前記制御された方向への前記走査ステージの移動を制御するように構成されるプロセッサと、
を備え、
前記プロセッサは、前記制御された方向への前記走査ステージの移動中に前記1つまたは複数のセンサによって生成されたセンサデータを分析するようにさらに構成され、前記プロセッサは、
前記制御された方向への前記走査ステージの移動中に、制御されていない方向への前記走査ステージの検出された移動の継続時間および距離の1つまたは複数に基づいて、前記センサデータ内のイベントを識別し、
前記識別されたイベントが所定の閾値を超える場合、前記識別されたイベントが発生したときに走査されていた前記試料の前記一部の再デジタル化のために再走査を開始し、前記所定の閾値は、前記複数のストライプのうちの1つまたは複数の隣接するストライプを重ならせない前記走査ステージの移動のドリフトを検出することに基づいて、決定され、
記所定の閾値を超える識別されたイベントがない場合、前記再走査を開始せずに前記試料の走査を続行するようにさらに構成される
デジタル病理走査装置。
【請求項2】
前記1つまたは複数のセンサは、前記制御された方向への前記走査ステージの移動を制御するために前記プロセッサと協働して動作する位置エンコーダを含む、
請求項1に記載のデジタル病理走査装置。
【請求項3】
前記1つまたは複数のセンサは、前記制御されていない方向への前記走査ステージの移動を検出するように構成される加速度計を含む、
請求項1に記載のデジタル病理走査装置。
【請求項4】
前記所定の閾値は、制御されていない方向への検出された移動の継続時間のみに基づいている、
請求項1に記載のデジタル病理走査装置。
【請求項5】
前記所定の閾値は、制御されていない方向への検出された移動の距離のみに基づいている、
請求項1に記載のデジタル病理走査装置。
【請求項6】
前記所定の閾値は、制御されていない方向への検出された移動の距離と制御されていない方向への検出された移動の継続時間との組み合わせに基づいている、
請求項1に記載のデジタル病理走査装置。
【請求項7】
方法であって、前記方法は、
撮像システムに対して制御された方向に走査ステージを移動するステップと、
前記制御された方向への前記走査ステージの前記移動中に、前記走査ステージによって支持された試料の一部をデジタル化するステップであって、前記撮像システムは、前記制御された方向への前記試料の移動に基づいて、前記試料を複数のストライプとして走査するように構成されるステップと、
1つまたは複数のセンサを使用して、前記制御された方向への前記走査ステージの前記移動中にセンサデータを生成するステップと、
前記制御された方向への前記走査ステージの移動中に前記1つまたは複数のセンサによって生成された前記センサデータを分析するステップと、
前記分析に基づいて前記センサデータ内のイベントを識別するステップであって、前記イベント、前記制御された方向への前記走査ステージの移動中に、制御されていない方向への前記走査ステージの検出された移動の継続時間および距離の1つまたは複数を含むステップと、
前記識別されたイベントが所定の閾値を超える場合、前記識別されたイベントが発生したときに前記撮像システムによってデジタル化されていた前記試料の前記一部の再デジタル化のために再走査を開始するステップであって、前記所定の閾値は、前記複数のストライプのうちの1つまたは複数の隣接するストライプを重ならせない前記走査ステージの移動のドリフトを検出することに基づいて、決定されるステップと、
記所定の閾値を超える識別されたイベントがない場合、前記再走査を開始せずに前記試料の走査を続行するステップと、
を含む方法。
【請求項8】
前記1つまたは複数のセンサ、前記制御された方向への前記走査ステージの移動を制御するためにプロセッサと協働して動作する位置エンコーダを含む、
請求項7に記載の方法。
【請求項9】
前記1つまたは複数のセンサは、前記制御されていない方向への前記走査ステージの移動を検出するように構成される加速度計を含む、
請求項7に記載の方法。
【請求項10】
前記所定の閾値は、制御されていない方向への検出された移動の継続時間のみに基づいている、
請求項7に記載の方法。
【請求項11】
前記所定の閾値は、制御されていない方向への検出された移動の距離のみに基づいている、
請求項7に記載の方法。
【請求項12】
前記所定の閾値は、制御されていない方向への検出された移動の距離と制御されていない方向への検出された移動の継続時間との組み合わせに基づいている、
請求項7に記載の方法。
【請求項13】
1つまたは複数の命令シーケンスを格納した非一時的コンピュータ可読媒体であって、前記1つまたは複数の命令シーケンスは、1つまたは複数のプロセッサに、
撮像システムに対して制御された方向に走査ステージを移動するステップと、
前記制御された方向への前記走査ステージの前記移動中に、前記走査ステージによって支持された試料の一部をデジタル化するステップであって、前記撮像システムは、前記制御された方向への前記試料の移動に基づいて、前記試料を複数のストライプとして走査するように構成されるステップと、
1つまたは複数のセンサを使用して、前記制御された方向への前記走査ステージの前記移動中にセンサデータを生成するステップと、
前記制御された方向への前記走査ステージの移動中に前記1つまたは複数のセンサによって生成された前記センサデータを分析するステップと、
前記分析に基づいて前記センサデータ内のイベントを識別するステップであって、前記イベント、前記制御された方向への前記走査ステージの移動中に、制御されていない方向への前記走査ステージの検出された移動の継続時間および距離の1つまたは複数を含むステップと、
前記識別されたイベントが所定の閾値を超える場合、前記識別されたイベントが発生したときに前記撮像システムによってデジタル化されていた前記試料の前記一部の再デジタル化のために再走査を開始するステップであって、前記所定の閾値は、前記複数のストライプのうちの1つまたは複数の隣接するストライプを重ならせない前記走査ステージの移動のドリフトを検出することに基づいて、決定されるステップと、
記所定の閾値を超える識別されたイベントがない場合、前記再走査を開始せずに前記試料の走査を続行するステップと、
を含むステップを実行させる非一時的コンピュータ可読媒体。
【請求項14】
前記1つまたは複数のセンサは、前記制御された方向への前記走査ステージの移動を制御するためにプロセッサと協働して動作する位置エンコーダを含む、
請求項13に記載の媒体。
【請求項15】
前記1つまたは複数のセンサは、前記制御されていない方向への前記走査ステージの移動を検出するように構成される加速度計を含む、
請求項13に記載の媒体。
【請求項16】
前記所定の閾値は、制御されていない方向への検出された移動の継続時間のみに基づいている、
請求項13に記載の媒体。
【請求項17】
前記所定の閾値は、制御されていない方向への検出された移動の距離のみに基づいている、
請求項13に記載の媒体。
【請求項18】
前記所定の閾値は、制御されていない方向への検出された移動の距離と制御されていない方向への検出された移動の継続時間との組み合わせに基づいている、
請求項13に記載の媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2017年11月30日に提出された米国仮特許出願第62/593,119号の優先権を主張するものであり、完全に記載されているかのように参照により本明細書に組み込まれる。
【0002】
本発明は、一般に、デジタルスライド走査装置に関し、より具体的には、機械的衝撃によりデジタル画像にもたらされる画像アーチファクトに関する。
【背景技術】
【0003】
デジタル病理学は、物理スライドから生成された情報の管理を可能にするコンピュータ技術によって可能になる画像ベースの情報環境である。デジタル病理学は、物理的なスライドガラス上で標本を走査し、コンピュータモニタ上で保存、表示、管理、および分析できるデジタルスライド画像を作成する、仮想顕微鏡法によって部分的に可能となる。スライドガラス全体を画像化する機能により、デジタル病理学の分野は急激に拡大し、現在、がんなどの重要な疾患のより良く、より速く、より安価な診断、予後および予測を実現するための、診断医学の最も有望な手段の1つと見なされている。
【0004】
デジタルスライド走査装置に加えられる機械的衝撃は、結果として得られるデジタル画像に負の画像アーチファクトを引き起こす可能性がある。機械的衝撃は、デジタルスライド走査装置自体またはさまざまな外部ソースのいずれかから発生する可能性がある。従来のデジタルスライド走査装置には、機械的衝撃によって負の画像アーチファクトが引き起こされるという欠点がある。したがって、上述したような従来のシステムに見られる、これらの重大な問題を解決するシステムおよび方法が必要とされる。
【発明の概要】
【課題を解決するための手段】
【0005】
したがって、本明細書では、画像取得中にデジタル病理走査装置の走査ステージに加えられる機械的衝撃を識別するように構成されるデジタル病理走査装置について説明する。デジタル病理走査装置はまた、機械的衝撃が所定の閾値をいつ超えるかを判定し、機械的衝撃が所定の閾値を超える場合に試料(またはその一部)を再走査するように構成される。これは、新たなセンサおよび/または加速度計をデジタル病理走査装置に追加するコストをかけることなく有利に達成される。
【0006】
一実施形態では、デジタルスライド走査装置は、試料を支持し、試料を撮像システムに対して制御された方向に移動させて試料の一部をデジタル化するように構成される走査ステージ、制御された方向への走査ステージの移動中にセンサデータを生成するように構成される1つまたは複数のセンサ、および制御された方向への走査ステージの移動を制御するように構成され、制御された方向への走査ステージの移動中に1つまたは複数のセンサによって生成されるセンサデータを分析するようにさらに構成されるプロセッサを含む。プロセッサはまた、制御された方向への走査ステージの移動中に、制御されていない方向への走査ステージの検出された移動の継続時間および距離の1つまたは複数に基づいて、センサデータ内のイベントを識別するように構成される。識別されたイベントが所定の閾値を超える場合、プロセッサは、識別されたイベントが発生したときに走査されている試料の一部の再走査を開始するように構成される。
【0007】
一実施形態では、試料を走査する方法は、撮像システムに対して制御された方向に走査ステージを移動させることと、制御された方向への走査ステージの当該移動中に、走査ステージによって支持された試料の一部をデジタル化することと、制御された方向への走査ステージの当該移動中に、センサデータを生成するために、1つまたは複数のセンサを使用することと、制御された方向への走査ステージの移動中に、1つまたは複数のセンサによって生成されたセンサデータを分析することと、を含む。方法は、分析に基づいてセンサデータ内のイベントを識別することをさらに含み、イベントは、制御された方向への走査ステージの移動中に、制御されていない方向への走査ステージの検出された移動の継続時間および距離の1つまたは複数を含む。識別されたイベントが所定の閾値を超える場合、方法は、識別されたイベントが発生したときに撮像システムによってデジタル化されている試料の少なくとも一部の再デジタル化を開始することも含む。
【0008】
本発明の他の特徴および利点は、以下の詳細な説明および添付図面を検討した後、当業者により容易に明らかになるであろう。
【0009】
本発明の構造および動作は、以下の詳細な説明および同様の参照番号が、同様の部分を指す添付図面を検討することにより理解されるであろう。
【図面の簡単な説明】
【0010】
図1】本発明の一実施形態による、機械的振動に応答するスライドガラスの一部の再走査を開始するための例示的なプロセスを示す流れ図である。
図2A】本明細書で説明されるさまざまな実施形態に関連して使用され得る例示的なプロセッサ対応デバイス550を示すブロック図である。
図2B】単一のリニアアレイを有するライン走査カメラの例を示すブロック図である。
図2C】3つのリニアアレイを有する例示的なライン走査カメラを示すブロック図である。
図2D】複数のリニアアレイを有するライン走査カメラの例を示すブロック図である。
【発明を実施するための形態】
【0011】
本明細書で開示される特定の実施形態は、所定の閾値を超える画像取得中の機械的振動の検出に応答して、試料の一部の再走査を開始するシステムおよび方法を提供する。この説明を読んだ後、さまざまな代替的な実施形態および代替的な用途において、本発明をどのようにして実装するかが当業者には明らかになるであろう。しかし、本発明のさまざまな実施形態が本明細書で説明されるが、これらの実施形態は、限定ではなく、例としてのみ提示されることが理解されよう。したがって、さまざまな代替的な実施形態のこの詳細な説明は、添付の特許請求の範囲に記載される本発明の範囲または広さを限定するものと解釈されるべきではない。
【0012】
1.方法例
図1は、本発明の一実施形態による、機械的振動に応答するスライドガラスの一部の再走査を開始するための例示的なプロセスを示す流れ図である。このプロセスは、図2A図2Dに関して後述するようなデジタル病理走査装置によって実行され得る。最初に、ステップ100で、デジタル病理走査装置は、試料の一部、例えば、スライドガラス上の標本の走査を開始する。試料を走査することは、試料の画像をデジタル化する撮像システムに対して、制御された方向に走査ステージを移動することを含む。デジタル病理走査装置のプロセッサは、走査ステージの移動を制御する。制御された方向は、プロセッサが走査ステージに移動するように指示する方向を含み得る。一実施形態では、プロセッサは、任意の距離について任意のX、Y、Z方向に移動するように走査ステージに指示し得て、制御された方向は、指示された移動の方向および距離の両方を含む。
【0013】
次に、試料の走査中に、1つまたは複数のセンサがセンサデータを生成し、センサデータは、ステップ150でデジタル病理走査装置のプロセッサによって受信される。1つまたは複数のセンサは、位置/移動情報を感知する位置エンコーダを含み得る。1つまたは複数のセンサは、位置/移動情報を感知する加速度計も含み得る。次に、ステップ200で、プロセッサはセンサデータを分析する。プロセッサが、制御された方向(例えば、特定の距離で特定の方向に走査ステージを移動するプロセッサからの命令)の移動に対応しないセンサデータの情報を識別する場合、ステップ250で、制御されていない方向の移動に対応するイベントが識別される。プロセッサは、試料の全体の走査プロセス中、センサデータを受信し、分析し、イベントを識別し続ける。
【0014】
識別されたイベントごとに、ステップ300で、プロセッサは制御されていない方向の移動量を決定する。例えば、プロセッサは、制御されていない方向への移動量(例えば、距離)を決定する。一実施形態では、この量は、位置センサによって記録された位置誤差の量であり得る。ステップ350で、プロセッサは、制御されていない方向の移動の継続時間も決定する。イベントの制御されていない移動の量と継続時間との組み合わせが、ステップ400で決定されるように、所定の閾値を超える場合、次いでステップ450で、プロセッサは、イベントの時点でデジタル化されていた試料の一部の再走査を開始する。あるいは、イベントの制御されていない移動の量のみが所定の閾値を超える場合、プロセッサは、やはりイベントの時点でデジタル化されていた試料の一部の再走査を開始し得る。あるいは、イベントの制御されていない移動の継続時間のみが所定の閾値を超える場合、プロセッサは、やはりイベントの時点でデジタル化されていた試料の一部の再走査を開始し得る。一実施形態では、再走査は、完全なストライプを再走査することを含む。しかし、イベントまたはイベントの任意の要素(例えば、継続時間または量)が所定の閾値を超えない場合、プロセッサは試料の走査を継続する。
【0015】
一実施形態では、制御されていない方向への移動は、例えば、デジタル病理走査装置自体によって、またはデジタル病理走査装置の外側の何らかの力によって走査ステージに加えられる振動によって引き起こされ得る。走査ステージに加えられる振動に関する重大な問題は、制御されていない方向への走査ステージの移動が、結果として得られるデジタルスライド画像の品質に悪影響を与える可能性があることである。例えば、デジタルスライド画像の焦点に悪影響を与え得る。また、デジタルスライド画像の一部(例えば、ストライプ)をデジタルスライド画像の他の部分と組み合わせる能力に悪影響を与え得る。例えば、振動が原因で走査ステージがドリフトし、結果として得られる画像ストライプが隣接するストライプと重ならない場合、重ならない領域により、ストライプをスライド画像全体に結合するデジタル病理走査装置の能力が妨げられる。
【0016】
2.実施例
一実施形態では、デジタル病理走査装置は、試料を支持し、試料を撮像システムに対して制御された方向に移動させて試料の一部をデジタル化するように構成される走査ステージを含む。デジタル病理走査装置はまた、制御された方向への走査ステージの移動中にセンサデータを生成するように構成される1つまたは複数のセンサを含む。一実施形態では、デジタル病理走査装置は3つのセンサを含み、各センサは特定の軸の移動を感知するように構成される。例えば、第1のセンサはX軸の移動を感知するように構成され、第2のセンサはY軸の移動を感知するように構成され、第3のセンサはZ軸の移動を感知するように構成される。一実施形態では、センサは位置エンコーダである。センサデータは、位置データまたは移動データ、あるいはその両方を含み得る。デジタル病理走査装置は、制御された方向への走査ステージの移動を制御するように構成され、制御された方向への走査ステージの移動中に1つまたは複数のセンサによって生成されたセンサデータを分析するようにさらに構成されるプロセッサも含む。プロセッサはまた、制御された方向への走査ステージの移動中に、制御されていない方向への走査ステージの移動の継続時間および距離の1つまたは複数に基づいて、分析されたセンサデータ内のイベントを識別するように構成される。プロセッサはまた、識別されたイベントが発生したときに、撮像システムによって走査されている試料の一部の再走査を開始するように構成される。
【0017】
一実施形態では、1つまたは複数のセンサは、制御された方向への走査ステージの移動を制御するためにプロセッサと協働して動作する1つまたは複数の位置エンコーダを含む。一実施形態では、1つまたは複数のセンサは、制御されていない方向への走査ステージの移動を検出するように構成される加速度計を含む。一実施形態では、1つまたは複数のセンサは、走査ステージの位置を検出するように構成される1つまたは複数の位置エンコーダ、および制御されていない方向への走査ステージの移動を検出するように構成される1つまたは複数の加速度計を備える。
【0018】
一実施形態では、所定の閾値は、制御されていない方向への検出された移動の継続時間のみに基づいている。一実施形態では、所定の閾値は、制御されていない方向への検出された移動の距離のみに基づいている。一実施形態では、所定の閾値は、制御されていない方向への検出された移動の距離と制御されていない方向への検出された移動の継続時間との組み合わせに基づいている。
【0019】
一実施形態では、デジタル病理走査装置を使用して試料をデジタル化する方法は、走査ステージを撮像システムに対して制御された方向に移動すること、および制御された方向への走査ステージの当該移動中に、走査ステージによって支持される試料の一部をデジタル化することを含む。制御された方向への走査ステージの移動中、方法は1つまたは複数のセンサを使用してセンサデータを生成する。センサデータは、位置データまたは移動データ、あるいはその両方を含み得る。方法は、制御された方向への走査ステージの移動中に1つまたは複数のセンサによって生成されたセンサデータを分析すること、および分析に基づいてセンサデータ内のイベントを識別することをさらに含み、識別されたイベントは、制御されていない方向への走査ステージの検出された移動の継続時間および距離の1つまたは複数を含む。方法は、識別されたイベントが所定の閾値を超える場合、識別されたイベントが発生したときに、撮像システムによってデジタル化されている試料の一部の再デジタル化を開始することも含む。
【0020】
一実施形態では、1つまたは複数のセンサは、制御された方向への走査ステージの移動を制御するためにプロセッサと協働して動作する位置エンコーダを含む。一実施形態では、1つまたは複数のセンサは、制御されていない方向への走査ステージの移動を検出するように構成される加速度計を含む。一実施形態では、所定の閾値は、制御されていない方向への検出された移動の継続時間のみに基づいている。一実施形態では、所定の閾値は、制御されていない方向への検出された移動の距離のみに基づいている。一実施形態では、所定の閾値は、制御されていない方向への検出された移動の距離と制御されていない方向への検出された移動の継続時間との組み合わせに基づいている。
【0021】
3.デジタルスライド走査装置の例
本明細書に記載されるさまざまな実施形態は、図2A図2Dに関して記載されるようなデジタル病理走査装置を使用して実装され得る。
【0022】
図2Aは、本明細書で説明されるさまざまな実施形態に関連して使用され得る例示的なプロセッサ対応デバイス550を示すブロック図である。当業者には理解されるように、デバイス550の代替形態も使用し得る。図示の実施形態では、デバイス550は、1つまたは複数のプロセッサ555、1つまたは複数のメモリ565、1つまたは複数の動きコントローラ570、1つまたは複数のインターフェイスシステム575、1つまたは複数の試料590を有する1つまたは複数のスライドガラス585をそれぞれ支持する1つまたは複数の可動ステージ580、試料を照射する1つまたは複数の照明システム595、光軸に沿って移動する光路605をそれぞれ画定する1つまたは複数の対物レンズ600、1つまたは複数の対物レンズポジショナ630、(例えば、蛍光スキャナシステムに含まれる)1つまたは複数の任意選択の落射照明システム635、1つまたは複数のフォーカシング光学系610、それぞれが試料590および/またはスライドガラス585上に別個の視野625を画定する、1つまたは複数のライン走査カメラ615および/または1つまたは複数のエリア走査カメラ620を含むデジタル撮像デバイス(デジタルスライド走査装置、デジタルスライドスキャナ、スキャナ、スキャナシステム、デジタル撮像装置などとも称される)として提示される。スキャナシステム550のさまざまな要素は、1つまたは複数の通信バス560を介して通信可能に結合される。スキャナシステム550のさまざまな要素の各々は、1つまたは複数であり得るが、説明を簡単にするために、これらの要素は、適切な情報を伝達するために複数形で説明する必要がある場合を除いて単数形で説明する。
【0023】
1つまたは複数のプロセッサ555は、例えば、命令を並列に処理することができる中央処理装置(「CPU」)および別個のグラフィックス処理装置(「GPU」)を含み得るか、または1つまたは複数のプロセッサ555は、命令を並列に処理することができるマルチコアプロセッサを含み得る。特定の構成要素を制御するか、または画像処理などの特定の機能を実行するために、追加の別個のプロセッサも設けられ得る。例えば、追加のプロセッサは、データ入力を管理するための補助プロセッサ、浮動小数点演算を実行するための補助プロセッサ、信号処理アルゴリズム(例えば、デジタル信号プロセッサ)の高速実行に適したアーキテクチャを有する専用プロセッサ、メインプロセッサに従属するスレーブプロセッサ(例えば、バックエンドプロセッサ)、ライン走査カメラ615、ステージ580、対物レンズ225、および/またはディスプレイ(図示せず)を制御するための追加のプロセッサを含み得る。そのような追加のプロセッサは、別個のディスクリートプロセッサであり得るか、またはプロセッサ555と統合され得る。
【0024】
メモリ565は、プロセッサ555によって実行することができるプログラムのためのデータおよび命令の記憶領域を提供する。メモリ565は、例えば、ランダムアクセスメモリ、読み取り専用メモリ、ハードディスクドライブ、取り外し可能記憶ドライブなどの、データおよび命令を格納する1つまたは複数の揮発性および/または不揮発性のコンピュータ可読記憶媒体を含み得る。プロセッサ555は、メモリ565に格納されている命令を実行し、通信バス560を介してスキャナシステム550のさまざまな要素と通信して、スキャナシステム550の全体的な機能を実行するように構成される。
【0025】
1つまたは複数の通信バス560は、アナログ電気信号を搬送するように構成される通信バス560を含み得て、デジタルデータを搬送するように構成される通信バス560を含み得る。したがって、1つまたは複数の通信バス560を介したプロセッサ555、動きコントローラ570、および/またはインターフェイスシステム575からの通信は、電気信号およびデジタルデータの両方を含み得る。プロセッサ555、動きコントローラ570、および/またはインターフェイスシステム575は、無線通信リンクを介して走査システム550のさまざまな要素の1つまたは複数と通信するように構成され得る。
【0026】
動き制御システム570は、ステージ580および対物レンズ600のXYZ移動を(例えば、対物レンズポジショナ630を介して)正確に制御および調整するように構成される。動き制御システム570はまた、スキャナシステム550内の任意の他の可動部品の動きを制御するように構成される。例えば、蛍光スキャナの実施形態では、動き制御システム570は、落射照明システム635内の光学フィルタなどの移動を調整するように構成される。
【0027】
一実施形態では、動き制御システム570は、プロセッサ555と協働して、制御された方向への走査ステージ580の移動中にセンサデータを生成するように構成される1つまたは複数のセンサを含む。例えば、1つまたは複数のセンサは、制御された方向への走査ステージ580の移動中にプロセッサ555に情報を提供する1つまたは複数の位置エンコーダを含み得て、部分的には、プロセッサ555が走査ステージ580の移動の正確な制御を可能にし、プロセッサ555が位置エンコーダ情報を分析して、部分的には、制御されていない方向の走査ステージ580の任意の移動の識別を可能にする。制御されていない方向への移動は、例えば、デジタル病理走査装置自体によって、またはデジタル病理走査装置の外側の何らかの力によって走査ステージ580に加えられる振動によって引き起こされ得る。追加的または代替的に、1つまたは複数のセンサは、制御された方向への走査ステージ580の移動中にプロセッサ555に情報を提供する1つまたは複数の加速度計を含み得て、情報は、制御された方向への走査ステージ580の移動および制御されていない方向への走査ステージ580の移動に関連する。加速度計からの情報により、プロセッサ555は制御された方向へのステージの移動を正確に制御でき、プロセッサ555はまた、加速度計の情報を分析して、制御されていない方向への走査ステージ580の移動を特定できる。有利には、1つまたは複数のセンサ(例えば、位置エンコーダまたは加速度計)は、試料のデジタル化中に走査ステージの位置および/または移動を正確に検出するように構成され、プロセッサ555は、センサデータを分析して、試料のデジタル化中の走査ステージの正確に検出された位置および/または移動に基づいて、制御されていない方向への走査ステージの望ましくない移動を識別するように構成される。
【0028】
インターフェイスシステム575は、スキャナシステム550が他のシステムおよび人間のオペレータとインターフェイスすることを可能にする。例えば、インターフェイスシステム575は、オペレータに直接的に情報を提供するための、および/またはオペレータからの直接入力を可能にするためのユーザインターフェイスを含み得る。インターフェイスシステム575はまた、走査システム550と、直接接続された1つまたは複数の外部デバイス(例えば、プリンタ、取り外し可能記憶媒体など)またはネットワーク(図示せず)を介してスキャナシステム550に接続された画像サーバシステム、オペレータステーション、ユーザステーション、および管理サーバシステムなどの外部デバイスとの間の通信およびデータ転送を容易にするように構成される。
【0029】
照明システム595は、試料590の一部を照射するように構成される。照明システム595は、例えば、光源および照明光学系を含み得る。光源は、光出力を最大にする凹面反射鏡および熱を抑制するKG-1フィルタを含む可変強度のハロゲン光源とすることができる。光源はまた、任意のタイプのアークランプ、レーザ、または他の光源とすることもできる。一実施形態では、照明システム595は、ライン走査カメラ615および/またはエリア走査カメラ620が試料590を透過する光エネルギーを感知するように、透過モードで試料590を照射する。代替的に、または追加的に、照明システム595は、ライン走査カメラ615および/またはエリア走査カメラ620が試料590から反射される光エネルギーを感知するように、反射モードで試料590を照射するように構成され得る。全体として、照明システム595は、任意の既知の光学顕微鏡モードで顕微鏡の試料590の検査に適切になるように構成される。
【0030】
一実施形態では、スキャナシステム550は、任意選択で、蛍光走査のためにスキャナシステム550を最適化するための落射照明システム635を含む。蛍光走査は、特定の波長(励起)で光を吸収することができる光子感受性分子である、蛍光分子を含む試料590の走査である。これらの光感受性分子はまた、より高い波長で光を発する(放射)。このフォトルミネッセンス現象の効率は非常に低いので、放射される光の量はしばしば非常に少ない。この少ない量の放射される光は、典型的には、試料590を走査およびデジタル化するための従来の技術(例えば、透過モード顕微鏡検査)を妨げる。有利には、スキャナシステム550の任意選択の蛍光スキャナシステムの実施形態では、複数のリニアセンサアレイを含むライン走査カメラ615(例えば、時間遅延積分(TDI)ライン走査カメラ)を使用すると、ライン走査カメラ615の複数のリニアセンサアレイのそれぞれに試料590の同じ領域を露光することによって、ライン走査カメラの光に対する感度が高められる。これは、低放射光で微弱な蛍光試料を走査する場合に特に有用である。
【0031】
したがって、蛍光スキャナシステムの実施形態では、ライン走査カメラ615は、好ましくは、モノクロTDIライン走査カメラである。有利には、モノクロ画像は、試料上に存在するさまざまなチャネルからの実際の信号のより正確な表現を提供するので、蛍光顕微鏡法において理想的である。当業者に理解されるように、蛍光試料590は、「チャネル」とも呼ばれる、異なる波長で光を放射する複数の蛍光色素で標識することができる。
【0032】
さらに、さまざまな蛍光試料のローエンドおよびハイエンド信号レベルは、ライン走査カメラ615が感知するための広いスペクトルの波長を示すので、ライン走査カメラ615が感知できるローエンドおよびハイエンド信号レベルは同様に広いことが望ましい。したがって、蛍光スキャナの実施形態では、蛍光走査システム550で使用されるライン走査カメラ615は、モノクロ10ビット64リニアアレイTDIライン走査カメラである。走査システム550の蛍光スキャナの実施形態で使用するために、ライン走査カメラ615のさまざまなビット深度を使用することができることに留意されたい。
【0033】
可動ステージ580は、プロセッサ555または動きコントローラ570の制御下で、正確なX-Y軸移動のために構成される。可動ステージはまた、プロセッサ555または動きコントローラ570の制御下で、Z軸での移動のために構成され得る。可動ステージは、ライン走査カメラ615および/またはエリア走査カメラによる画像データ取り込み中に、試料を所望の位置に配置するように構成される。可動ステージはまた、試料590を走査方向に実質的に一定の速度まで加速し、次いで、ライン走査カメラ615による画像データの取り込み中に実質的に一定の速度を維持するように構成される。一実施形態では、スキャナシステム550は、可動ステージ580上の試料590の位置を補助するために、高精度および密接に調整されたX-Yグリッドを使用し得る。一実施形態では、可動ステージ580は、X軸およびY軸の両方に使用される高精度エンコーダを備えるリニアモータベースのX-Yステージである。例えば、非常に精密なナノメータエンコーダは、走査方向の軸上および走査方向に垂直な方向の軸上ならびに走査方向と同じ平面上で使用することができる。ステージはまた、試料590がその上に配置されるスライドガラス585を支持するように構成される。
【0034】
試料590は、光学顕微鏡によって調べられ得る任意のものとすることができる。例えば、ガラス顕微鏡スライド585は、組織および細胞、染色体、DNA、タンパク質、血液、骨髄、尿、細菌、ビーズ、生検材料、または死んでいるか、生きているか、染色されているか、染色されていないか、標識されているか、標識されていないかのいずれかである、任意の他の種類の生物学的材料または物質を含む標本のための観察基板として頻繁に使用される。試料590はまた、マイクロアレイとして一般に知られている任意およびすべての試料を含む、任意の種類のスライドまたは他の基板上に堆積される任意の種類のDNAもしくはcDNA、RNAまたはタンパク質などのDNA関連材料のアレイであり得る。試料590は、マイクロタイタープレート、例えば、96ウェルプレートであり得る。試料590の他の例には、集積回路基板、電気泳動記録、ペトリ皿、フィルム、半導体材料、法医学材料、および機械加工部品がある。
【0035】
対物レンズ600は、一実施形態では、対物レンズ600によって画定される光軸に沿って対物レンズ600を移動させるために非常に精密なリニアモータを使用し得る対物レンズポジショナ630に取り付けられる。例えば、対物レンズポジショナ630のリニアモータは、50ナノメートルのエンコーダを含み得る。XYZ軸のステージ580と対物レンズ600との相対位置は、走査システム550の全体的な動作のためのコンピュータ実行可能なプログラムされたステップを含む、情報および命令を格納するためのメモリ565を使用するプロセッサ555の制御下で、動きコントローラ570を使用して、閉ループ方式で調整および制御される。
【0036】
一実施形態では、対物レンズ600は、所望の最も高い空間分解能に対応する開口数を有する平面アポクロマート(「APO」)無限補正対物レンズであり、対物レンズ600は、透過モード照明顕微鏡、反射モード照明顕微鏡、および/または落射照明モード蛍光顕微鏡(例えば、Olympus 40X、0.75NAまたは20X、0.75NA)に適している。有利には、対物レンズ600は、色収差および球面収差を補正することが可能である。対物レンズ600は無限に補正されるので、フォーカシング光学系610は、対物レンズを通過する光ビームが平行光ビームとなる対物レンズ600の上方の光路605に配置することができる。フォーカシング光学系610は、対物レンズ600によって取り込まれた光信号をライン走査カメラ615および/またはエリア走査カメラ620の光応答素子にフォーカシングさせ、フィルタ、倍率変換器レンズなどの光学部品を含み得る。フォーカシング光学系610と組み合わされる対物レンズ600は、走査システム550の全倍率を提供する。一実施形態では、フォーカシング光学系610は、チューブレンズおよび任意選択の2X倍率変換器を含み得る。有利には、2X倍率変換器は、本来の20X対物レンズ600が、40X倍率で試料590を走査することを可能にする。
【0037】
ライン走査カメラ615は、画像素子(「ピクセル」)の少なくとも1つのリニアアレイを含む。ライン走査カメラはモノクロまたはカラーであり得る。カラーライン走査カメラは、通常、少なくとも3つのリニアアレイを有するが、モノクロライン走査カメラは、単一のリニアアレイまたは複数のリニアアレイを有し得る。任意の種類の単数または複数のリニアアレイは、カメラの一部としてパッケージ化されていても、撮像電子モジュールにカスタム統合されていても、使用することができる。例えば、3つのリニアアレイ(「赤-緑-青」または「RGB」)のカラーライン走査カメラまたは96リニアアレイモノクロTDIも使用し得る。TDIライン走査カメラは、典型的には、標本の以前に撮像された領域からの強度データを合計することによって、出力信号における実質的に良好な信号対雑音比(「SNR」)を提供し、積分ステージ数の平方根に比例するSNRの増加をもたらす。TDIライン走査カメラは、複数のリニアアレイを含む。例えば、TDIライン走査カメラは24、32、48、64、96、またはそれ以上のリニアアレイで利用可能である。スキャナシステム550はまた、512ピクセルを有するもの、1024ピクセルを有するもの、および4096ピクセルと同数のピクセルを有するものを含むさまざまなフォーマットで製造されたリニアアレイをサポートする。同様に、さまざまなピクセルサイズを有するリニアアレイも、スキャナシステム550で使用することができる。任意の種類のライン走査カメラ615を選択するための顕著な要件は、試料590のデジタル画像の取り込み中に、ステージ580をライン走査カメラ615に対して移動させることができるように、ステージ580の移動をライン走査カメラ615のラインレートと同期させることができることである。
【0038】
ライン走査カメラ615によって生成された画像データは、メモリ565の一部に格納され、試料590の少なくとも一部の連続したデジタル画像を生成するために、プロセッサ555によって処理される。連続したデジタル画像は、プロセッサ555によってさらに処理することができ、処理された連続したデジタル画像もメモリ565に格納することができる。
【0039】
2つ以上のライン走査カメラ615を有する一実施形態では、少なくとも1つのライン走査カメラ615は、撮像センサとして機能するように構成される少なくとも1つのライン走査カメラ615と組み合わせて動作するフォーカシングセンサとして機能するように構成することができる。フォーカシングセンサは、撮像センサと同じ光軸上に論理的に配置することができるか、またはフォーカシングセンサは、スキャナシステム550の走査方向に関して撮像センサの前または後に論理的に配置し得る。フォーカシングセンサとして機能する少なくとも1つのライン走査カメラ615を有する一実施形態では、フォーカシングセンサによって生成された画像データは、メモリ565の一部に格納され、1つまたは複数のプロセッサ555によって処理されて焦点情報を生成し、スキャナシステム550が、試料590と対物レンズ600との間の相対距離を調整して、走査中の試料への焦点合わせを維持することを可能にする。さらに、一実施形態では、フォーカシングセンサとして機能する少なくとも1つのライン走査カメラ615は、フォーカシングセンサの複数の個々のピクセルのそれぞれが光路605に沿って異なる論理高さに配置されるように配向され得る。
【0040】
動作中、スキャナシステム550のさまざまな構成要素およびメモリ565に格納されたプログラムモジュールにより、スライドガラス585上に配置された試料590の自動走査およびデジタル化が可能となる。スライドガラス585は、試料590を走査するためにスキャナシステム550の可動ステージ580上に固定して配置される。プロセッサ555の制御下で、可動ステージ580は、ライン走査カメラ615による感知のために、試料590を実質的に一定の速度まで加速させ、ステージの速度はライン走査カメラ615のライン速度と同期される。画像データのストライプを走査した後、可動ステージ580は減速し、試料590を実質的に完全に停止させる。次いで、可動ステージ580は、走査方向に直交して移動し、画像データの次のストライプ、例えば、隣接するストライプの走査のために試料590を位置決めする。追加のストライプは、その後、試料590の部分全体または試料590の全体が走査されるまで走査される。
【0041】
例えば、試料590のデジタル走査中に、試料590の連続したデジタル画像が、画像ストリップを形成するために一緒に結合される複数の連続した視野として取得される。複数の隣接する画像ストリップを同様に組み合わせて、試料590の一部または試料590全体の連続したデジタル画像を形成する。試料590の走査は、垂直画像ストリップまたは水平画像ストリップを取得することを含み得る。試料590の走査は、上から下、下から上、または両方(双方向)のいずれかであり得て、試料の任意の点から開始し得る。あるいは、試料590の走査は、左から右、右から左、または両方(双方向)のいずれかであり得て、試料の任意の点から開始し得る。さらに、画像ストリップは、隣接または連続した形で取得する必要はない。さらに、結果として得られる試料590の画像は、試料590の全体または試料590の一部のみの画像であり得る。
【0042】
一実施形態では、コンピュータ実行可能命令(例えば、プログラムされたモジュールまたは他のソフトウェア)がメモリ565に格納され、実行されると、走査システム550が本明細書で説明されるさまざまな機能を実行することが可能になる。本明細書では、「コンピュータ可読記憶媒体」という用語は、プロセッサ555による実行のために、コンピュータ実行可能命令を走査システム550に格納および提供するために使用される任意の媒体を指すために使用される。これらの媒体の例には、メモリ565および走査システム550と直接的または間接的に(例えば、ネットワークを介して)通信可能に結合された任意の取り外し可能または外部記憶媒体(図示せず)が含まれる。
【0043】
図2Bは、電荷結合素子(「CCD」)アレイとして実装され得る単一のリニアアレイ640を有するライン走査カメラを示す。単一のリニアアレイ640は、複数の個々のピクセル645を含む。図示の実施形態では、単一のリニアアレイ640は4096個のピクセルを有する。代替実施形態では、リニアアレイ640は、より多くのピクセルまたはより少ないピクセルを有し得る。例えば、リニアアレイの一般的なフォーマットは、512個、1024個、および4096個のピクセルを含む。ピクセル645は、リニアアレイ640の視野625を画定するために、直線的に配置される。視野の大きさは、スキャナシステム550の倍率に従って変化する。
【0044】
図2Cは、3つのリニアアレイを有するライン走査カメラを示しており、各リニアアレイはCCDアレイとして実装され得る。3つのリニアアレイを組み合わせてカラーアレイ650を形成する。一実施形態では、カラーアレイ650の各個々のリニアアレイは、異なる色強度(例えば、赤、緑、または青)を検出する。カラーアレイ650の各個々のリニアアレイからのカラー画像データは、カラー画像データの単一の視野625を形成するために組み合わされる。
【0045】
図2Dは、それぞれがCCDアレイとして実装し得る、複数のリニアアレイを有するライン走査カメラを示す。複数のリニアアレイを組み合わせてTDIアレイ655を形成する。有利には、TDIライン走査カメラは、標本の以前に撮像された領域からの強度データを合計することによって、出力信号における実質的に良好なSNRを提供し、リニアアレイ(積分ステージとも呼ばれる)の数の平方根に比例するSNRの増加をもたらし得る。TDIライン走査カメラは、より多様な数のリニアアレイを含み得る。例えば、TDIライン走査カメラの一般的なフォーマットは、24、32、48、64、96、120、およびそれ以上のリニアアレイを含む。
【0046】
開示された実施形態の上記の説明は、本発明を製造または使用することをいずれの当業者にも可能にするために提供される。これらの実施形態に対するさまざまな修正は、当業者には容易に明らかであり、本明細書に記載された一般的な原理は、本発明の精神または範囲から逸脱することなく、他の実施形態に適用することができる。したがって、本明細書で提示する説明および図面は、本発明の現在の好ましい実施形態を表し、したがって、本発明によって広く企図されている主題を表すことを理解されたい。本発明の範囲は、当業者にとって明らかになり得る他の実施形態を完全に包含し、したがって、本発明の範囲は限定されないことがさらに理解される。
図1
図2A
図2B
図2C
図2D