(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-08
(45)【発行日】2022-08-17
(54)【発明の名称】コネクタ用端子材
(51)【国際特許分類】
C25D 7/00 20060101AFI20220809BHJP
C25D 5/12 20060101ALI20220809BHJP
H01R 13/03 20060101ALI20220809BHJP
【FI】
C25D7/00 H
C25D5/12
H01R13/03 D
(21)【出願番号】P 2021015188
(22)【出願日】2021-02-02
【審査請求日】2022-04-18
(31)【優先権主張番号】P 2020125673
(32)【優先日】2020-07-22
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
(74)【代理人】
【識別番号】100101465
【氏名又は名称】青山 正和
(72)【発明者】
【氏名】樽谷 圭栄
(72)【発明者】
【氏名】加藤 直樹
(72)【発明者】
【氏名】久保田 賢治
【審査官】岡田 隆介
(56)【参考文献】
【文献】国際公開第2016/157713(WO,A1)
【文献】特開平07-252684(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C25D 7/00
C25D 5/12
H01R 13/03
(57)【特許請求の範囲】
【請求項1】
少なくとも表面が銅又は銅合金からなる基材と、
前記基材の上の少なくとも一部に形成された銀ニッケルカリウム合金めっき層と、
を備え、
前記銀ニッケルカリウム合金めっき層は、膜厚が0.5μm以上20.0μm以下で、
平均結晶粒径が150μm以下であり、かつ、ニッケル含有量が0.02質量%以上0.60質量%以下、カリウム含有量が0.03質量%以上1.00質量%以下であることを特徴とするコネクタ用端子材。
【請求項2】
銀ニッケルカリウム合金めっき層の平均結晶粒径は10nm以
上であることを特徴とする請求項1に記載のコネクタ用端子材。
【請求項3】
前記銀ニッケルカリウム合金めっき層の上の少なくとも一部に、ガス成分であるC、H、S、O、Nを除く銀の純度が99質量%以上、膜厚0.1μm以上5.0μm以下の銀めっき層をさらに備えることを特徴とする請求項1または2に記載のコネクタ用端子材。
【請求項4】
前記基材と前記銀ニッケルカリウム合金めっき層との間に、膜厚が0.2μm以上5.0μm以下のニッケル又はニッケル合金からなるニッケルめっき層が形成されていることを特徴とする請求項1から3のいずれか一項に記載のコネクタ用端子材。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、大電流、高電圧が印加される自動車や民生機器等の電気配線の接続に使用される有用な皮膜が設けられたコネクタ用端子材に関する。
【背景技術】
【0002】
従来、自動車等の電気配線の接続に用いられる車載用コネクタが知られている。車載用コネクタ(車載用端子)は、メス端子に設けられた接触片とメス端子内に挿入されたオス端子とが所定の接触圧で接触することで、電気的に接続されるように設計された端子対を備える。
【0003】
このようなコネクタ(端子)として、一般的に銅または銅合金板上に錫めっきを施し、リフロー処理を行った錫めっき付き端子が多く用いられていた。しかし、近年、自動車の大電流・高電圧化に伴い、銀等の貴金属めっきを施され、より大きな電流を流すことができ耐熱性及び耐摩耗性に優れた端子の用途が増加している。
【0004】
耐熱性及び耐摩耗性が求められる車載用端子として、例えば、特許文献1に記載のコネクタ用銀めっき端子が知られている。この特許文献1に記載のコネクタ用銀めっき端子は、銅又は銅合金からなる母材の表面が銀めっき層により被覆されている。
【0005】
この銀めっき層は、下層側(母材側)に位置する第1の銀めっき層と、第1の銀めっき層の上層側に位置する第2の銀めっき層を有し、第1の銀めっき層の結晶粒径が第2の銀めっき層の結晶粒径よりも大きく形成されている。すなわち、特許文献1の構成では、第1の銀めっき層の結晶粒径を第2の銀めっき層の結晶粒径よりも大きく形成することで、母材からの銅が第2の銀めっき層に拡散するのを抑制している。
【0006】
特許文献2には、母材としての銅又は銅合金部材の表面の少なくとも一部にアンチモン濃度が0.1質量%以下の銀又は銀合金層が形成され、この銀又は銀合金層の上に最表層としてアンチモン濃度が0.5質量%以上のビッカース硬度HV140以上の銀合金層が形成された銅又は銅合金部材が開示されている。すなわち、特許文献2の構成では、アンチモンを銀又は銀合金層に添加することで硬度を上昇させて、銅又は銅合金部材の耐摩耗性を向上させている。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2008-169408号公報
【文献】特開2009-79250公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1の構成では、母材の表面を被覆する銀めっき層は、経時変化および高温環境下での使用によって銀の結晶粒径が大きくなる(粗大化)に伴い硬度が低下するので、長時間の使用および高温環境下での耐摩耗性が低下する。この耐摩耗性の低下を補うために、銀めっき層の膜厚を厚くすることが考えられるが、コスト面での問題がある。特許文献2の構成では、加熱によってアンチモンがめっき層最表面に拡散し、濃化後、酸化して接触抵抗が増大する問題がある。
【0009】
本発明は、このような事情に鑑みてなされたもので、耐摩耗性及び耐熱性を向上できるコネクタ用端子材を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明のコネクタ用端子材は、少なくとも表面が銅又は銅合金からなる基材と、前記基材の上の少なくとも一部に形成された銀ニッケルカリウム合金めっき層と、を備え、前記銀ニッケルカリウム合金めっき層は、膜厚が0.5μm以上20.0μm以下で、平均結晶粒径が150μm以下であり、かつ、ニッケル含有量が0.02質量%以上0.60質量%以下、カリウム含有量が0.03質量%以上1.00質量%以下である。
【0011】
本発明では、基材の表面に形成された銀ニッケルカリウム合金めっき層が銀とともにニッケルとカリウムを共析していることで、銀ニッケルカリウム合金めっき層の結晶粒を微細化することができる。また、ニッケルとカリウムの共析により、硬度が高められ、耐摩耗性が向上する。さらに、ニッケルとカリウムは熱拡散しにくいため、高温環境下での銀ニッケルカリウム合金めっき層の結晶粒の粗大化を抑制できる。
この場合、銀ニッケルカリウム合金めっき層はニッケル及びカリウムを含有しているため高温環境下にさらされても結晶粒の粗大化が抑制され、高温環境下での耐摩耗性の低下も少ない。銀ニッケルカリウム合金めっき層を形成する際に、ニッケル及びカリウムが共析されない、あるいは共析量が低い場合、銀ニッケルカリウム合金めっき層の平均結晶粒径が150nmを超えることがある。この場合、ニッケルとカリウムの共析量が少なく、純銀の特性に近いめっき層となるため、高温環境下で結晶粒が粗大化して、耐摩耗性が低下するおそれがある。
【0012】
この場合、ニッケル含有量が0.02質量%未満、あるいはカリウム含有量が0.03質量%未満であると、銀ニッケルカリウム合金めっき層の平均結晶粒径が大きくなり、結晶粒の粗大化に伴う摩擦係数の増加をもたらす。ニッケル含有量が0.60質量%を超え、あるいはカリウム含有量が1.00質量%を超えると、銀ニッケルカリウム合金めっき層の析出状態が悪化して平滑性が失われ、摩擦係数が増加する。また、この場合、ニッケルとカリウム自体の電気伝導率が悪いので、ニッケルとカリウムの共析量が多くなると電気伝導率が低下し、接触抵抗が大きくなる。また、高温環境下で接触抵抗がさらに増加する。
【0013】
銀ニッケルカリウム合金めっき層の膜厚が0.5μm未満では、耐熱性及び耐摩耗性を向上できず、20.0μmを超えると、銀ニッケルカリウム合金めっき層が厚すぎて曲げ加工等により割れが生じる。
【0014】
このコネクタ用端子材において、銀ニッケルカリウム合金めっき層の平均結晶粒径は10nm以上であるとよい。
【0015】
銀ニッケルカリウム合金めっき層の平均結晶粒径は小さい方が好ましいが、10nm未満の結晶粒径を測定する場合、測定結果の信頼性が低く現実的でない。
【0016】
コネクタ用端子材の他の一つの態様としては、前記銀ニッケルカリウム合金めっき層の上の少なくとも一部に、ガス成分であるC、H、S、O、Nを除く銀の純度が99質量%以上、膜厚0.1μm以上5.0μm以下の銀めっき層をさらに備えていてもよい。
【0017】
表面に比較的軟らかい銀めっき層が形成されるので、その潤滑効果により、耐摩耗性が向上する。銀めっき層は、膜厚が0.1μm未満では薄すぎるため、耐摩耗性向上の効果に乏しく、早期に摩耗して消失し易い。5.0μmを超える厚さでは、軟らかい銀めっき層が厚いため、摩擦係数が増大する傾向にある。
【0018】
コネクタ用端子材のさらに他の一つの態様としては、前記基材と前記銀ニッケルカリウム合金めっき層との間に、膜厚が0.2μm以上5.0μm以下のニッケル又はニッケル合金からなるニッケルめっき層が形成されているとよい。
【0019】
ニッケルめっき層は基材から銅が銀ニッケルカリウム合金めっき層内に拡散することを防止する。このニッケルめっき層の膜厚が0.2μm未満であると、高温環境下では基材から銅が銀ニッケルカリウム合金めっき層内に拡散するおそれがある。銀ニッケルカリウム合金めっき層内に拡散した銅がめっき膜の表面まで拡散すると、銅が酸化して接触抵抗が大きくなり、耐熱性が低下する可能性がある。一方、ニッケルめっき層の膜厚が5.0μmを超えると、曲げ加工時等に割れが発生する可能性がある。
【発明の効果】
【0020】
本発明によれば、コネクタ用端子材の耐摩耗性及び耐熱性を向上できる。
【図面の簡単な説明】
【0021】
【
図1】本発明の第1実施形態に係るコネクタ用端子材を模式的に示す断面図である。
【
図2】本発明の第2実施形態に係るコネクタ用端子材を模式的に示す断面図である。
【
図3】本発明の第3実施形態に係るコネクタ用端子材を模式的に示す断面図である。
【
図4】本発明の第4実施形態に係るコネクタ用端子材を模式的に示す断面図である。
【
図5】試料5における加熱前のコネクタ用端子材の断面のSIM(Scanning Ion Microscope)像である。
【発明を実施するための形態】
【0022】
以下、本発明の実施形態について図面を用いて説明する。
【0023】
[第1実施形態]
第1実施形態のコネクタ用端子材1は、
図1に断面を模式的に示したように、少なくとも表面が銅又は銅合金からなる板状の基材2と、基材2の上に形成された銀ニッケルカリウム合金めっき層3と、を備えている。
【0024】
基材2は、表面が銅または銅合金からなるものであれば、特に、その組成が限定されるものではない。本実施形態では、
図1に示すように、基材2は無酸素銅(C10200)やCu-Mg系銅合金(C18665)等の銅又は銅合金からなる板材により構成されているが、銅または銅合金ではない母材の表面に銅めっき又は銅合金めっきが施されためっき材により構成されてもよい。この場合、母材としては、銅以外の金属板を適用できる。
【0025】
銀ニッケルカリウム合金めっき層3は、後述するように基材2の上に銀ストライクめっき処理を施した後に銀ニッケルカリウム合金めっき処理を施すことにより形成される。銀ニッケルカリウム合金めっき層3は、母相の銀にニッケルとカリウムとが共析することにより形成される。
【0026】
この銀ニッケルカリウム合金めっき層は、銀とともにニッケルとカリウムを共析していることで、銀ニッケルカリウム合金めっき層の結晶粒を微細化することができる。また、ニッケルとカリウムの共析により、硬度が高められ、耐摩耗性が向上する。さらに、ニッケルとカリウムは熱拡散しにくいため、高温環境下での銀ニッケルカリウム合金めっき層の結晶粒の粗大化を抑制できる。
【0027】
銀ニッケルカリウム合金めっき層3のニッケル含有量は、0.02質量%以上0.60質量%以下、カリウム含有量は0.03質量%以上1.00質量%以下である。これらの範囲のニッケル及びカリウムを含んでいるため、接触抵抗が増大せず、表面の硬度が高められ、耐摩耗性が向上する。
【0028】
ニッケル含有量が0.02質量%未満、あるいはカリウム含有量が0.03質量%未満であると、銀ニッケルカリウム合金めっき層3の平均結晶粒径が大きくなり、結晶粒の粗大化に伴う摩擦係数の増加をもたらす。
【0029】
ニッケル含有量が0.60質量%を超え、あるいはカリウム含有量が1.00質量%を超えると、銀ニッケルカリウム合金めっき層3の析出状態が悪化して平滑性が失われ、摩擦係数が増加する。また、この場合、ニッケルとカリウム自体の電気伝導率が悪いので、ニッケルとカリウムの共析量が多くなると電気伝導率が低下し、接触抵抗が大きくなる。また、後述のめっき処理において銀ニッケルカリウム合金めっき層3に巻き込んだめっき液中の不純物やニッケル及びカリウムが、高温環境下で酸化し、接触抵抗がさらに増加する。また、ニッケル及びカリウムは銀よりも電気伝導率が低いので、ニッケル含有量が0.60質量%を超え、あるいはカリウム含有量が1.00質量%を超えると、銀ニッケルカリウム合金めっき層3の接触抵抗が高くなる。
【0030】
なお、ニッケル及びカリウムは銀の母相中で熱拡散しにくいので、高温環境下でも最表面に濃化しがたい。このため、高温環境下での接触抵抗の増大を抑え、結晶粒径を小さいまま保つことができ、摩擦係数を低く維持し、耐摩耗性を保持できる。
【0031】
このニッケル含有量の好ましい範囲は0.56質量%以下、より好ましくは0.30質量%以下であり、カリウム含有量の好ましい範囲は、0.60質量%以下である。
【0032】
銀ニッケルカリウム合金めっき層3の平均結晶粒径は、10nm以上150nm以下と微細であり、ニッケル及びカリウムを含有しているため高温環境下にさらされても結晶粒の粗大化が抑制され、高温環境下での耐摩耗性の低下も少ない。銀ニッケルカリウム合金めっき層3を形成する際に、ニッケル及びカリウムが共析されない、あるいは共析量が低い場合、銀ニッケルカリウム合金めっき層3の平均結晶粒径が150nmを超えることがある。この場合、ニッケルとカリウムの共析量が少なく、純銀の特性に近いめっき層となるため、高温環境下で結晶粒が粗大化して、耐摩耗性が低下するおそれがある。平均結晶粒径は小さい方が好ましいが、10nm未満の結晶粒径を測定する場合、測定結果の信頼性が低く現実的ではない。
【0033】
銀ニッケルカリウム合金めっき層3の膜厚は、0.5μm以上20.0μm以下に設定される。銀ニッケルカリウム合金めっき層3の膜厚が0.5μm未満であると、耐熱性及び耐摩耗性を向上できず、20.0μmを超えると、銀ニッケルカリウム合金めっき層3が厚すぎて、曲げ加工等により割れが生じる。この銀ニッケルカリウム合金めっき層の好ましい膜厚は1.0μm以上10.0μm以下である。
【0034】
次に、このコネクタ用端子材1の製造方法について説明する。コネクタ用端子材1の製造方法は、基材2となる少なくとも表面が銅又は銅合金からなる板材を洗浄する前処理工程と、基材2の上に銀ストライクめっき処理を施す銀ストライクめっき工程と、銀ストライクめっき処理の後に銀ニッケルカリウム合金めっき処理を施して銀ニッケルカリウム合金めっき層3を形成する銀ニッケルカリウム合金めっき層形成工程と、を備える。
【0035】
[前処理工程]
まず、基材2として、少なくとも表層面銅又は銅合金からなる板材を用意し、この板材を脱脂、酸洗等をすることによって表面を清浄する前処理を行う。
【0036】
[銀ストライクめっき工程]
基材2に対して5~10質量%のシアン化カリウム水溶液を用いて活性化処理を行った後、基材2上に銀ストライクめっき処理を短時間施して薄い銀めっき層を形成する。
【0037】
この銀ストライクめっき処理を施すための銀めっき浴の組成は、特に限定されないが、例えば、シアン化銀(AgCN)1g/L~5g/L、シアン化カリウム(KCN)80g/L~120g/Lからなる。この銀めっき浴に対してアノードとしてステンレス鋼(SUS316)を用いて、浴温25℃、電流密度1.5A/dm2の条件下で銀ストライクめっき処理を30秒程度施すことにより、銀ストライクめっき層が形成される。この銀ストライクめっき層は、その後に銀ニッケルカリウム合金めっき層3が形成されることにより、層としての識別は困難になる。
【0038】
[銀ニッケルカリウム合金めっき層形成工程]
銀ストライクめっき処理後に銀ニッケルカリウム合金めっき処理を施して、銀ニッケルカリウム合金めっき層3を形成する。銀ニッケルカリウム合金めっき層3を形成するためのめっき浴は、例えば、シアン化銀(AgCN)30g/L~50g/L、シアン化カリウム(KCN)120g/L~200g/L、炭酸カリウム(K2CO3)15g/L~30g/L、テトラシアノニッケル(II)酸カリウム・一水和物(K2[Ni(CN)4]・H2O)120g/L~200g/L、および銀ニッケルカリウム合金めっき層3を平滑に析出させるための添加剤からなる組成のシアン浴を利用できる。この添加剤は、アンチモンを含まないものであれば、一般的な添加剤で構わない。
【0039】
このめっき浴に対してアノードとして純銀板を用いて、浴温25℃、電流密度4A/dm2~12A/dm2の条件下で銀ニッケルカリウム合金めっきを施すことにより膜厚0.5μm以上20.0μm以下の銀ニッケルカリウム合金めっき層3が形成される。
【0040】
銀ニッケルカリウム合金めっき処理の電流密度が4A/dm2未満であると、ニッケル及びカリウムの共析が妨げられ、電流密度が12A/dm2を超えると、銀ニッケルカリウム合金めっき層3の外観が損なわれる。銀ニッケルカリウム合金めっき層3を形成するためのめっき浴は、上記組成に限定されず、シアン化カリウム浴であり、かつ添加剤にアンチモンが含まれていなければ、その組成は特に限定されない。
【0041】
このようにして基材2の表面に銀ニッケルカリウム合金めっき層3が形成されたコネクタ用端子材1が形成される。そして、コネクタ用端子材1に対してプレス加工等を施すことにより、表面に銀ニッケルカリウム合金めっき層3を備えるコネクタ用端子が形成される。
【0042】
本実施形態のコネクタ用端子材1は、基材2の最表面に形成された銀ニッケルカリウム合金めっき層3がニッケル及びカリウムを共析しているので、銀ニッケルカリウム合金めっき層3の粒子を微細化することができ、高温環境下においても、硬質の銀アンチモンめっき層に比べて、接触抵抗の上昇を抑制することができる。また、端子材1の最表面の硬度を高め、耐摩耗性を向上できる。
【0043】
[第2実施形態]
図2は本発明の第2実施形態を示している。この実施形態のコネクタ用端子材11は、基材2と銀ニッケルカリウム合金めっき層3との間にニッケル又はニッケル合金からなるニッケルめっき層4が形成されている。
【0044】
ニッケルめっき層4は、基材2上にニッケル又はニッケル合金からなるニッケルめっき処理を施すことにより形成され、基材2を被覆する。ニッケルめっき層4は、ニッケルめっき層4を被覆する銀ニッケルカリウム合金めっき層3への基材2からの銅の拡散を抑制する機能を有する。
【0045】
ニッケルめっき層4の厚さ(膜厚)は、0.2μm以上5.0μm以下であることが好ましく、より好ましくは0.3μm以上2.0μm以下であるとよい。ニッケルめっき層4の厚さが0.2μm未満であると、高温環境下では基材2から銅が銀ニッケルカリウム合金めっき層3内に拡散するおそれがある。銀ニッケルカリウム合金めっき層3内に拡散した銅がめっき膜の表面まで拡散すると、銅が酸化して銀ニッケルカリウム合金めっき層3の接触抵抗値が大きくなり、耐熱性が低下する可能性がある。
【0046】
一方、ニッケルめっき層4の厚さが5.0μmを超えると、曲げ加工時に割れが発生する可能性がある。なお、ニッケルめっき層4は、ニッケル又はニッケル合金からなるものであれば、特に、その組成が限定されるものではない。
【0047】
このコネクタ用端子材11を製造する場合、前処理工程と、ニッケルめっき層形成工程と、銀ストライクめっき工程と、銀ニッケルカリウム合金めっき層形成工程と、を順に実施する。前処理工程、銀ストライクめっき工程、及び銀ニッケルカリウム合金めっき工程は第1実施形態と同様であるので説明を省略する。
【0048】
[ニッケルめっき層形成工程]
前処理を施した基材2の表面に、ニッケルめっき処理を施して、ニッケルめっき層4を基材2に形成する。具体的には例えば、スルファミン酸ニッケル350g/L、塩化ニッケル・六水和物10g/L、及びホウ酸30g/Lを含むニッケルめっき浴を用いて、浴温45℃、電流密度5A/dm2の条件下でニッケルめっき処理を施す。なお、ニッケルめっき層4を形成するニッケルめっき処理は、緻密なニッケル主体の膜が得られるものであれば特に限定されず、公知のワット浴を用いる電気めっき処理であってもよい。
【0049】
このコネクタ用端子材11は、基材2の表面がニッケルめっき層4によって覆われているので、基材2から銅が銀ニッケルカリウム合金めっき層3内に拡散することが防止され、銀ニッケルカリウム合金めっき層3の耐摩耗性、耐熱性を長期に維持できる。
【0050】
[第3実施形態]
図3は本発明の第3実施形態を示している。このコネクタ用端子材12は、銀ニッケルカリウム合金めっき層3の上にさらに銀めっき層5が形成されている。
図3には基材2と銀ニッケルカリウム合金めっき層3との間に、基材2からの銅の拡散を防止するためのニッケルめっき層4が形成された例を示している。ただし、本発明においてはニッケルめっき層4は必ずしも必要ではない。
【0051】
銀めっき層5は、高温環境下においても表面が酸化しにくく、接触抵抗の増大を抑制できる。銀めっき層5は、C、H、S、O、Nなどのガス成分を除く純度が99質量%以上、好ましくは99.9質量%以上の純銀からなる。「C、H、S、O、Nなどのガス成分を除く」とは、ガス成分の元素を除外する趣旨である。純度が99質量%以上としたのは、銀めっき層5の銀の純度が99質量%未満であると不純物が多く含まれ、接触抵抗が高くなる傾向にあるからである。
【0052】
[銀めっき層形成工程]
この銀めっき層5を形成するための銀めっき浴の組成は、特に限定されないが、例えば、シアン化銀(AgCN)40g/L~50g/L、シアン化カリウム(KCN)110g/L~130g/L、炭酸カリウム(K2CO3)10g/L~20g/L、添加剤からなる。この銀めっき浴に対してアノードとして純銀板を用いて、浴温が常温(25℃~30℃)で、電流密度2A/dm2~4A/dm2の条件下でめっき処理を施すことにより、銀めっき層5が形成される。
【0053】
銀めっき層5は、比較的軟質であるが、その下の硬い銀ニッケルカリウム合金めっき層3により支持されるので、潤滑効果に優れ、耐摩耗性が向上する。銀めっき層5の膜厚は0.1μm以上5.0μm以下が好ましい。銀めっき層5の膜厚が0.1μm未満では薄すぎるため、早期に摩耗して消失し易い。5.0μmを超える膜厚では、軟らかい銀めっき層5が厚くなるため、摩擦係数が増大するおそれがある。銀めっき層5の好ましい膜厚は、0.25μm以上3.0μm以下である。
【0054】
その他、細部構成は実施形態の構成のものに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
【0055】
例えば、上記実施形態では、基材2の上面全域に銀ニッケルカリウム合金めっき層3が形成されているが、これに限らず、例えば、基材2の上面の一部に銀ニッケルカリウム合金めっき層3が形成されていてもよい。ニッケルめっき層4を形成する場合は、基材2の上面の一部にニッケルめっき層4が形成され、そのニッケルめっき層4の上に銀ニッケルカリウム合金めっき層3が形成されていてもよいし、基材2の上面の全域に形成したニッケルめっき層4の上面の一部に、銀ニッケルカリウム合金めっき層3が形成されていてもよい。端子に形成された際に少なくとも接点となる部分の表面が銀ニッケルカリウム合金めっき層3であればよい。
【0056】
銀めっき層5を形成する場合は、これらのいずれの形態においても、銀ニッケルカリウム合金めっき層3の上面の全面又はその一部に形成すればよく、コネクタの接点となる部位に形成されていればよい。
図4に示す第4実施形態のコネクタ用端子材13は、基材2の全面にニッケルめっき層4が形成され、そのニッケルめっき層4の一部に銀ニッケルカリウム合金めっき層3が形成され、その銀ニッケルカリウム合金めっき層3の上に銀めっき層5が形成された例である。
【実施例】
【0057】
銅合金板からなる厚さ0.25mmの基材を用意し、この基材に脱脂、酸洗等をすることによって表面を清浄する前処理を行った(前処理工程)後、基材の表面にニッケルめっき処理を施してニッケルめっき層を形成した(ニッケルめっき層形成工程)。
【0058】
そして、10質量%のシアン化カリウム水溶液を用いてニッケルめっき表面に活性化処理を行った後に、ニッケルめっき層が被覆された基材に対して、銀ストライクめっき処理を施した(銀ストライクめっき工程)。
【0059】
その上に銀ニッケルカリウム合金めっき処理を施し(銀ニッケルカリウム合金めっき層形成工程)、その上に銀めっき処理を施し(銀めっき層形成工程)、表1、表2に示す試料を作製した。なお、表1、表2では、ニッケルめっき層をNi層、銀ニッケルカリウム合金めっき層をAgNiK層、銀めっき層をAg層と記載した。銀ニッケルカリウム合金めっき層におけるニッケル含有量(Ni含有量と表記)及びカリウム含有量(K含有量と表記)は、めっき処理のテトラシアノニッケル(II)酸カリウム・一水和物の量(表1中には「Ni-CN」と記載)とめっき処理時の電流密度とによって調整した。
なお、銀ニッケルカリウム合金めっき層を形成せずに、ニッケルめっき層の上に銀めっき層を形成したもの(比較例14)、ニッケルめっき層の上に銀アンチモン合金めっき層を形成したもの(比較例15)も作製した。
【0060】
各めっきの条件は以下のとおりとした。
<ニッケルめっき条件>
・めっき浴組成
スルファミン酸ニッケル:350g/L
塩化ニッケル・六水和物:10g/L
ホウ酸:30g/L
・浴温:45℃
・電流密度:5A/dm2
・pH:4
【0061】
<銀ストライクめっき条件>
・めっき浴組成
シアン化銀:2g/L
シアン化カリウム:100g/L
・アノード:SUS316
・浴温:25℃
・電流密度:1.5A/dm2
【0062】
<銀ニッケルカリウム合金めっき条件>
・めっき浴組成
シアン化銀:45g/L
シアン化カリウム:180g/L
炭酸カリウム:20g/L
テトラシアノニッケル(II)酸カリウム・一水和物:120g/L~200g/L
添加剤:5ml/L
・アノード:純銀板
・浴温:25℃
・電流密度:4A/dm2~14A/dm2
【0063】
<銀めっき条件>
・めっき浴組成
シアン化銀:45g/L
シアン化カリウム:115g/L
炭酸カリウム:15g/L
光沢剤:
(DDPスペシャルティ・プロダクツ・ジャパン株式会社製)SILVER GLO 3K:15ml/L
(同)SILVER GLO TY:5ml/L
・浴温:25℃
・電流密度:4A/dm2
・アノード:純銀板
【0064】
各試料について、銀ニッケルカリウム合金めっき層の膜厚、銀ニッケルカリウム合金めっき層中のニッケル含有量、カリウム含有量、及び銀ニッケルカリウム合金めっき層の平均結晶粒径、銀めっき層及びニッケルめっき層の膜厚を測定した。
【0065】
[各めっき層の膜厚の測定]
銀ニッケルカリウム合金めっき層、銀めっき層及びニッケルめっき層の膜厚は、以下のように測定した。セイコーインスツル株式会社製の集束イオンビーム装置:FIB(型番:SMI3050TB)を用いて各試料に断面加工を行い、形成した断面を走査イオン顕微鏡(SIM:Scanning Ion Microscop)で観察し、傾斜角60°の断面SIM像における任意の3箇所の膜厚を測長し、その平均を求めた後、実際の長さに変換した。
【0066】
[銀ニッケルカリウム合金めっき層の平均結晶粒径の測定]
銀ニッケルカリウム合金めっき層を形成しためっき材をFIBを使用して、厚さが50nm程度の断面試料に加工した。その断面試料の加工面の銀ニッケルカリウム合金めっき層をEBSD((Electron Back Scatter Diffraction)装置付透過型電子顕微鏡(TEM:Transmission Electron Microscope:TEM)を用いて、加速電圧200kVで電子線を照射しながら、測定範囲200nm×400nm、測定ステップ2nmで結晶方位を2回測定した。次いで、この結晶方位のデータを解析ソフトを用いて解析し、隣接する測定点間の方位差が5°以上となる測定点間を結晶粒界とみなして、銀ニッケルカリウム合金めっき層の結晶粒径(双晶を含む)を測定した。
【0067】
測定に用いた装置、解析ソフトは次のとおりである。
EBSD装置:EDAX/TSL社製OIM Data Collection
解析ソフト:EDAX/TSL社製OIM Data Analysis ver.5.2
【0068】
なお、銀ニッケルカリウム合金めっき層中のニッケルとカリウムの含有量が下限以下のサンプル(比較例10)については、結晶粒径が大きいと予想されるため、下記方法で測定を行った。
【0069】
銀ニッケルカリウム合金めっき層の電析の成長方向(基材の板厚方向)に沿った断面をイオンミリング法によって加工し、EBSD装置付き電界放出型走査電子顕微鏡(FE-SEM:Field Emission-Scanning Electron Microscope(日本電子株式会社製JSM-7001FA)を用いて、加速電圧15kV、測定範囲25μm×3.0μm、測定ステップ0.02μmで結晶方位を測定した。そして、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなして、銀ニッケルカリウム合金めっき層の結晶粒径(双晶を含む)を測定した。
測定に用いた装置、解析ソフトは前述と同一である。
【0070】
得られた結晶粒径を面積円に近似し、面積で重み付けをした加重平均によって平均結晶粒径を算出した。
【0071】
[ニッケル含有量(Ni含有量)及びカリウム含有量(K含有量)の測定]
各試料に対して、GD-MS(Glow Discharge-Mass Spectrometry:グロー放電質量分析法)で銀ニッケルカリウム合金めっき層中のニッケルおよびカリウムの含有量(質量%)を測定した。
【0072】
測定には、Nu Instruments社製のGD-MS装置であるAstrum(商品名)を使用し、主成分についてファラデーカップ、不純物についてICマルチプライヤで検出した。検出条件は以下の通りである。
・グロー放電:定電流モード
・放電電流:0.7mA
・放電電圧:0.5kV
・放電ガス:Ar(>99.9999%)
・深さ方向分解能:0.05μm/スキャン
【0073】
これらの測定結果を表1に示す。なお、試料11は、接触抵抗の測定のためのインデント加工時にクラックが入ったため、銀ニッケルカリウム合金めっき層の結晶粒径、接触抵抗、摩擦係数の測定を行わなかった。これら測定を行わなかったものについては、表1に「-」を記した。
【0074】
【0075】
[接触抵抗の測定]
各試料を、60mm×30mmの試験片αと60mm×10mmの試験片βとに切り出し、平板の試験片αをオス端子の代用(オス端子試験片)とし、平板に曲率半径5mmの半球状の凸部を形成するインデント加工を行った試験片βをメス端子の代用(メス端子試験片)とした。
【0076】
これらの試験片について、加熱前及び180℃で500時間加熱後に、それぞれ接触抵抗(mΩ)を測定した。測定に際しては、ブルカー・エイエックスエス株式会社の摩擦摩耗試験機(UMT-Tribolab)を用い、水平に設置したオス端子試験片にメス端子試験片の凸部の凸面を接触させ、10Nの荷重をかけた時のオス端子試験片の接触抵抗値を4端子法により測定した。
【0077】
[摩擦係数の測定、耐摩耗性試験(摺動試験)]
耐摩耗性を評価するために次のようにして摩擦係数を測定した。
接触抵抗の測定に用いた試験片と同じ形状の試験片α、βを用意した。試験片βの凸部の凸面と試験片αとを荷重5Nで相互に押圧して、摺動速度1.33mm/secの条件で、10mmの距離を移動させ、摩擦係数の変化を測定した。移動距離5mmから10mmの間で得られた摩擦係数の平均値を摩擦係数とした。
【0078】
なお、摩擦係数はめっき膜厚に依存する。そのため、銀めっき層と銀ニッケルカリウム合金めっき層との合計の膜厚が大きくなると、薄い膜厚の試料と同じ条件での摩擦係数と比較することにならないため、銀めっき層と銀ニッケルカリウム合金めっき層との膜厚の合計が8.0μmを超えている試料については、摩擦係数測定に代えて、摺動試験を実施した。
【0079】
この摺動試験では、ブルカー・エイエックスエス株式会社の摩擦摩耗試験機(UMT-Tribolab)において、水平に設置した試験片αに試験片βの凸部の凸面を接触させ、5Nの荷重を負荷した状態で、オス端子試験片を水平に移動距離5mmで50回繰り返し摺動させた。摺動試験後に試験片の下地のニッケルめっき層が露出しているか否かで耐摩耗性を判定した。この際、摺動試験後に下地のニッケルめっき層が露出していないものを良好「A」、摺動試験後に下地のニッケルめっき層が露出しているものを不可「B」とした。
【0080】
これらの結果を表2に示す。
【0081】
【0082】
表1及び表2からわかるように、銀ニッケルカリウム合金めっき層の膜厚が0.5μm以上20.0μm以下で、ニッケル含有量が0.02質量%以上0.60質量%以下、カリウム含有量が0.03質量%以上1.00質量%以下である試料1~9は、加熱前後の接触抵抗が低く安定しており、摩擦係数も低い値であった。
【0083】
ただし、試料1は試料2より銀ニッケルカリウム合金めっき層が薄いにもかかわらず、摩擦係数が高い数値を示した。これは、試料1は、試料2とは異なり銀めっき層がないため、銀めっき層の潤滑効果がないことが理由である。
【0084】
試料6は、銀ニッケルカリウム合金めっき層中のニッケルやカリウムの含有量が低いために銀ニッケルカリウム合金めっき層が軟らかく、また銀めっき層が厚いので、摩擦係数がやや高めになった。
【0085】
試料9は銀ニッケルカリウム合金めっき層におけるニッケル及びカリウムの含有量が高いので、析出がやや荒くなっているが、その分、銀ニッケルカリウム合金めっき層が硬くなっているため、摩擦係数はそれほど高くなかった。
【0086】
これらの中でも、試料2,4,5,8は、接触抵抗が加熱後であっても0.41mΩ以下と低く、摩擦係数も0.89以下と低く抑えられており、良好である。
【0087】
図5は、試料5の断面SIM像であり、基材表面のニッケルめっき層(Niと表記)の上に、銀ニッケルカリウム合金めっき層(AgNiKと表記)、銀めっき層(Agと表記)が形成されていることが示されている。銀ニッケルカリウム合金めっき層中の結晶粒径が小さいことがわかる。
【0088】
以上の試料に比べて、試料10は銀ニッケルカリウム合金めっき層中のニッケル及びカリウムの含有量が低いために、銀ニッケルカリウム合金めっき層の平均結晶粒径が大きくなり、その結果、摩擦係数が高くなった。試料12は、銀ニッケルカリウム合金めっき層が薄く、軟らかい銀めっき層が厚いので、これら両方の膜厚の合計として膜厚が近い試料8と比較すると摩擦係数は高くなった。また、試料13は銀ニッケルカリウム合金めっき層のニッケルやカリウムの含有量が多かったことから、その析出が荒くなり、摩擦係数が高くなった。また、加熱後の接触抵抗も高く、耐熱性が劣っている。試料14は、銀ニッケルカリウム合金めっき層を形成せず、銀めっき層のみであるため、耐摩耗性が劣っており、摺動試験後、下地のニッケルめっき層が露出した。銀めっき層の膜厚が試料14と近い試料7は、摺動試験後、下地のニッケルめっき層は露出していない。試料15は、銀ニッケルカリウム合金めっき層ではなく、銀アンチモン合金めっき層を形成した試料であり、摩擦係数は低いが、耐熱性に劣っている。
【産業上の利用可能性】
【0089】
本発明によれば、耐摩耗性及び耐熱性を向上したコネクタ用端子材を提供できる。
【符号の説明】
【0090】
1,11,12,13 コネクタ用端子材
2 基材
3 銀ニッケルカリウム合金めっき層
4 ニッケルめっき層
5 銀めっき層