IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ファナック株式会社の特許一覧

<>
  • 特許-ドレッシング推定装置、及び制御装置 図1
  • 特許-ドレッシング推定装置、及び制御装置 図2
  • 特許-ドレッシング推定装置、及び制御装置 図3
  • 特許-ドレッシング推定装置、及び制御装置 図4
  • 特許-ドレッシング推定装置、及び制御装置 図5
  • 特許-ドレッシング推定装置、及び制御装置 図6
  • 特許-ドレッシング推定装置、及び制御装置 図7
  • 特許-ドレッシング推定装置、及び制御装置 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-08
(45)【発行日】2022-08-17
(54)【発明の名称】ドレッシング推定装置、及び制御装置
(51)【国際特許分類】
   B24B 53/00 20060101AFI20220809BHJP
   G06N 20/00 20190101ALI20220809BHJP
   B24B 49/18 20060101ALI20220809BHJP
   B23Q 15/00 20060101ALI20220809BHJP
   G05B 19/4155 20060101ALI20220809BHJP
【FI】
B24B53/00 Z
G06N20/00 130
B24B49/18
B23Q15/00 301C
G05B19/4155 V
【請求項の数】 6
(21)【出願番号】P 2019079989
(22)【出願日】2019-04-19
(65)【公開番号】P2020175482
(43)【公開日】2020-10-29
【審査請求日】2020-09-09
【前置審査】
(73)【特許権者】
【識別番号】390008235
【氏名又は名称】ファナック株式会社
(74)【代理人】
【識別番号】100106002
【弁理士】
【氏名又は名称】正林 真之
(74)【代理人】
【識別番号】100165157
【弁理士】
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100160794
【弁理士】
【氏名又は名称】星野 寛明
(72)【発明者】
【氏名】尾関 真一
【審査官】山村 和人
(56)【参考文献】
【文献】中国特許出願公開第102335872(CN,A)
【文献】特開2020-015129(JP,A)
【文献】特開2018-041208(JP,A)
【文献】特開2018-118372(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B24B 53/00
G06N 20/00
B24B 49/18
B23Q 15/00
G05B 19/4155
(57)【特許請求の範囲】
【請求項1】
任意の研削機械による研削加工における任意の被削材に対する任意の研削条件と、少なくとも前記研削条件による研削加工前のドレッシングの必要性の度合いを示すドレッシング処理の必要度を含む任意の砥石に関する砥石情報と、を含む入力データを取得する入力データ取得部と前記入力データに含まれる前記研削条件による研削加工後の前記砥石におけるドレッシング処理の必要度、を示すラベルデータを取得するラベル取得部と前記入力データ取得部により取得された入力データと、前記ラベル取得部により取得されたラベルデータと、を用いて、教師あり学習を実行し、学習済みモデルを生成する学習部とを備える機械学習装置により生成された学習済みモデルと、
研削機械による研削加工に先立って、当該研削加工に係る研削対象の被削材に対する研削条件と、少なくとも現在の前記ドレッシング処理の必要度を含む当該研削加工で用いる砥石に関する砥石情報と、を入力する入力部と、
前記学習済みモデルを用いて、前記入力部により入力された、当該研削加工で用いる砥石における、当該研削加工に係る研削条件による研削加工後のドレッシング処理の必要度を推定する推定部と、
前記推定部により推定された前記砥石のドレッシング処理の必要度が、予め設定された閾値を超過した場合、前記砥石のドレッシング処理の必要度が閾値を超過しないように、当該研削加工に係る研削条件を変更することを決定する決定部と、
を備えるドレッシング推定装置
【請求項2】
前記研削条件は、1以上の被削材に対する研削時間を含む、請求項1に記載のドレッシング推定装置。
【請求項3】
前記決定部は、前記研削条件に含まれる前記研削対象の被削材の数を調整する、請求項に記載のドレッシング推定装置。
【請求項4】
前記学習済みモデルを、前記ドレッシング推定装置からネットワークを介してアクセス可能に接続されるサーバに備える、請求項から請求項のいずれか1項に記載のドレッシング推定装置。
【請求項5】
前記機械学習装置を備える、請求項から請求項のいずれか1項に記載のドレッシング推定装置。
【請求項6】
請求項から請求項のいずれか1項に記載のドレッシング推定装置を備える、制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機械学習装置、ドレッシング推定装置、及び制御装置に関する。
【背景技術】
【0002】
砥石は、研削加工に使用されることにより、砥石の表面の一部分の砥粒が脱落する「目こぼれ」、砥石の表面の砥粒と砥粒の間に、ワーク等の切りくずや破片等が詰まる「目づまり」、あるいは砥石の表面の砥粒が摩耗する「目つぶれ」が起こり、加工品位や切れ味が低下する。この場合、砥石の加工品位や切れ味を取り戻すために、砥石表面を研ぐ目立て(ドレッシング)が行われている。
図1は、砥石の表面の状態の一例を示す図である。図1の左側は、砥石の表面から砥粒が一様に出ている正常な状態を示す。一方、図1の右側の上段は、表面の一部の砥粒が脱落した「目こぼれ」の一例を示す。図1の右側の中段は、表面の砥粒と砥粒の間に、ワーク等の切りくずや破片等が詰まった「目づまり」の一例を示す。図1の右側の下段は、表面の砥粒が摩耗した「目つぶれ」の一例を示す。なお、網掛けの部分は、砥粒を結合する結合剤を示す。
そこで、研削加工中に発生する音や振動等の測定値と、予め設定された閾値との比較に基づいて、砥石をドレッシングする時期を検出する技術が知られている。例えば、特許文献1、2参照。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2001-205562号公報
【文献】特開2002-307304号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、砥石の種類や研削するワークの材質等に応じて発生する音や振動が変化するため、砥石の種類や研削するワークの材質等に応じて閾値を設定する必要があり、手間がかかる。
【0005】
そこで、砥石のドレッシングを行う最適な時期を容易に検知することが望まれている。
【課題を解決するための手段】
【0006】
(1)本開示の機械学習装置の一態様は、任意の研削機械による研削加工における任意の被削材に対する任意の研削条件と、少なくとも前記研削条件による研削加工前のドレッシングの必要性の度合いを示すドレッシング処理の必要度を含む任意の砥石に関する砥石情報と、を含む入力データを取得する入力データ取得部と、前記入力データに含まれる前記研削条件による研削加工後の前記砥石におけるドレッシング処理の必要度、を示すラベルデータを取得するラベル取得部と、前記入力データ取得部により取得された入力データと、前記ラベル取得部により取得されたラベルデータと、を用いて、教師あり学習を実行し、学習済みモデルを生成する学習部と、を備える。
【0007】
(2)本開示のドレッシング推定装置の一態様は、(1)の機械学習装置により生成された学習済みモデルと、研削機械による研削加工に先立って、当該研削加工に係る研削対象の被削材に対する研削条件と、少なくとも現在の前記ドレッシング処理の必要度を含む当該研削加工で用いる砥石に関する砥石情報と、を入力する入力部と、前記学習済みモデルを用いて、前記入力部により入力された、当該研削加工で用いる砥石の候補となる砥石における、当該研削加工に係る研削条件による研削加工後のドレッシング処理の必要度を推定する推定部と、を備える。
【0008】
(3)(2)のドレッシング推定装置の一態様は、(1)の機械学習装置を備える。
【0009】
(4)本開示の制御装置の一態様は、(2)又は(3)のドレッシング推定装置を備える。
【発明の効果】
【0010】
一態様によれば、砥石のドレッシングを行う最適な時期を容易に検知することができる。
【図面の簡単な説明】
【0011】
図1】砥石の表面の状態の一例を示す図である。
図2】一の実施形態に係る数値制御システムの機能的構成例を示す機能ブロック図である。
図3図2のドレッシング推定装置に提供される学習済みモデルの一例を示す図である。
図4】砥石管理テーブルの一例を示す図である。
図5】運用フェーズにおけるドレッシング推定装置の推定処理について説明するフローチャートである。
図6図2のドレッシング推定装置に提供される学習済みモデルの一例を示す図である。
図7】数値制御システムの構成の一例を示す図である。
図8】数値制御システムの構成の一例を示す図である。
【発明を実施するための形態】
【0012】
以下、本開示の一の実施形態について、図面を用いて説明する。
<一の実施形態>
図2は、一の実施形態に係る数値制御システムの機能的構成例を示す機能ブロック図である。図2に示すように、数値制御システムは、制御装置10、研削機械20、ドレッシング推定装置30、及び機械学習装置40を有する。
【0013】
制御装置10、研削機械20、ドレッシング推定装置30、及び機械学習装置40は、図示しない接続インタフェースを介して互いに直接接続されてもよい。また、制御装置10、研削機械20、ドレッシング推定装置30、及び機械学習装置40は、LAN(Local Area Network)やインターネット等の図示しないネットワークを介して相互に接続されていてもよい。この場合、制御装置10、研削機械20、ドレッシング推定装置30、及び機械学習装置40は、かかる接続によって相互に通信を行うための図示しない通信部を備えている。なお、後述するように、制御装置10は、ドレッシング推定装置30及び機械学習装置40を含むようにしてもよい。また、研削機械20が制御装置10を含むようにしてもよい。
【0014】
制御装置10は、当業者にとって公知の数値制御装置であり、制御情報に基づいて動作指令を生成し、生成した動作指令を研削機械20に送信する。これにより、制御装置10は、研削機械20の動作を制御する。また、制御装置10は、当該制御情報をドレッシング推定装置30にも出力する。なお、制御情報は、制御装置10に設定される加工プログラム及びパラメータの値を含む。
また、制御装置10は、研削機械20に選択可能な砥石に関する識別情報(以下、「砥石ID」ともいう)の一覧を、砥石データテーブルとして図示しないHDD(Hard Disk Drive)等に記憶してもよい。
なお、砥石データテーブルには、砥石IDのそれぞれと関連付けられた砥石情報が含まれてもよい。砥石情報には、砥石の種類(平形、リング形、へこみ形、テーパーカップ形等)、砥粒の種類(アルミナ、炭素ケイ素、立法晶窒化ホウ素等)、粒度(粒のサイズ)、結合剤の種類(レジン、メタル、ビトリファイド)、結合度レベル(A(軟)~Z(硬))、組織(砥石内の気孔の大小)、研削中に起こりうる砥石の状態(目こぼれ、目つぶれ、目づまり)、砥石の自生作用等を含む。
【0015】
研削機械20は、制御装置10の動作指令に基づいて、砥石でワークを研削する機械である。研削機械20は、制御装置10の動作指令に基づく動作状態を示す情報を、制御装置10にフィードバックする。
なお、本実施形態は、研削機械20に限定されず、研削加工を行うことができる工作機械や産業用ロボットといった様々な機械に適用することができる。
【0016】
ドレッシング推定装置30は、運用フェーズにおいて、研削機械20による研削加工に先立って、制御装置10からの制御情報に含まれる当該研削加工に係る研削対象のワークに対する研削条件を取得してもよい。また、ドレッシング推定装置30は、例えば、少なくとも現在のドレッシングの必要性の度合いを示すドレッシング処理の必要度を含む、制御装置10のオペレータにより選択された砥石の砥石情報を取得してもよい。ドレッシング推定装置30は、取得した研削条件と砥石の砥石情報とを、後述する機械学習装置40から提供された学習済みモデルに入力することにより、選択された砥石における研削加工後のドレッシング処理の必要度を推定することができる。
【0017】
ドレッシング推定装置30を説明する前に、「ドレッシング処理の必要度」及び学習済みモデルを生成するための機械学習について説明する。
【0018】
<ドレッシング処理の必要度について>
「ドレッシング処理の必要度」は、上述のように、研削機械20による研削加工で使用された砥石に対するドレッシング処理の必要性の度合いを示す。例えば、新品の砥石、又はドレッシング直後の砥石は、切れ味が最も良い状態であることから、ドレッシング処理が必要なく、当該砥石の「ドレッシング処理の必要度」は「0%」となる。「ドレッシング処理の必要度」は、砥石が使用されるに従い目こぼれ等により増加し、ドレッシングを行う必要があるとき「100%」となる。
なお、「ドレッシング処理の必要度」は、「0%」から「100%」の範囲のパーセント値としたが、例えば、「ドレッシング処理の必要度」は、「0」から「1」の範囲の値等でもよい。
また、「ドレッシング処理の必要度」に替えて、砥石の消耗の度合いを示す「消耗度」を用いてもよい。この場合、例えば、新品の砥石、又はドレッシング直後の砥石の「消耗度」は、使用されていないため「0」とし、ドレッシングを行う必要があるときの砥石の「消耗度」は「100」としてもよい。あるいは、「ドレッシング処理の必要度」に替えて、砥石の切れ味の度合いを示す「切味度」を用いてもよい。この場合、例えば、新品の砥石、又はドレッシング直後の砥石の「切味度」は、使用されていないため「100」とし、ドレッシングを行う必要があるときの砥石の「切味度」は「0」としてもよい。
【0019】
<機械学習装置40>
機械学習装置40は、例えば、予め、任意の研削機械による研削加工における任意のワークに対する任意の研削条件と、少なくとも当該研削条件による研削加工前のドレッシング処理の必要度を含む任意の砥石に関する砥石情報と、を含む入力データを取得する。
また、機械学習装置40は、取得した入力データの研削条件による研削加工後の砥石のドレッシング処理の必要度、を示すデータをラベル(正解)として取得する。
機械学習装置40は、取得した入力データとラベルとの組の訓練データにより教師あり学習を行い、後述する学習済みモデルを構築する。
そうすることで、機械学習装置40は、構築した学習済みモデルをドレッシング推定装置30に提供することができる。
機械学習装置40について、具体的に説明する。
【0020】
機械学習装置40は、図2に示すように、入力データ取得部401、ラベル取得部402、学習部403、及び記憶部404を有する。
入力データ取得部401は、学習フェーズにおいて、図示しない通信部を介して、任意の研削対象のワークに対する研削条件と、少なくとも当該研削条件による研削加工前のドレッシング処理の必要度を含む任意の砥石に関する砥石情報と、を入力データとして制御装置10等から取得する。入力データ取得部401は、取得した入力データを記憶部404に対して出力する。
【0021】
ラベル取得部402は、入力データにおける研削条件による研削加工後の砥石のドレッシング処理の必要度、を示すデータをラベルデータ(正解データ)として取得し、取得したラベルデータを記憶部404に対して出力する。
なお、ラベルは、前述したように、「0%」から「100%」の範囲の値である。
【0022】
学習部403は、上述の入力データとラベルとの組を訓練データとして受け付け、受け付けた訓練データを用いて、教師あり学習を行うことにより、研削対象のワークに対してこれから行う研削条件と、選択された砥石に関する砥石情報とに基づいて、研削加工後の砥石のドレッシング処理の必要度を推定する学習済みモデル341を構築する。
そして、学習部403は、構築した学習済みモデル341をドレッシング推定装置30に対して提供する。
【0023】
ここで、教師あり学習を行うための訓練データは、多数用意されることが望ましい。例えば、熟練者により、あらゆる研削条件とあらゆる砥石との組合せそれぞれにおいて、研削加工前後の砥石のドレッシング処理の必要度が評価された訓練データを作成するようにしてもよい。あるいは、顧客の工場等で実際に稼働している様々な場所の制御装置10のそれぞれから訓練データを取得するようにしてもよい。すなわち、顧客の工場等では、顧客が様々な調整情報を用いて制御情報を調整しているので、様々な訓練データを取得することができる。
【0024】
図3は、図2のドレッシング推定装置30に提供される学習済みモデル341の一例を示す図である。ここでは、学習済みモデル341は、図3に示すように、研削対象の被削材に対する研削時間や砥石切込み量等のこれから行う研削条件と、選択された砥石の砥石情報を入力層として、この研削条件による研削加工後の砥石のドレッシング処理の必要度、を示すデータを出力層とする多層ニューラルネットワークを例示する。
ここで、これから行う研削条件には、被削材の種類(ワーク又は工具)、研削対象の被削材に対する研削時間、被削材の形状寸法、被削材の材質(ステンレスや合金鋼等の金属、セラミックス等の非金属)、被削材の熱処理(焼入れ)の有無、砥石の半径、砥石の回転速度、砥石の送り速度、砥石の切込み量等が含まれる。なお、被削材の形状寸法は、制御装置10に入力されたCAD(Computer-Aided Design)図面やNCプログラム等に基づいて解析された加工経路により取得することができる。
【0025】
なお、学習済みモデル341は、図3に示すように、研削対象のワークに対する研削時間や砥石切込み量等の研削条件、及び1つの砥石の砥石情報を入力層として、「ドレッシング処理の必要度」を出力層とする多層ニューラルネットワークとしたがこれに限定されない。例えば、学習済みモデル341は、後述するように、研削対象のワークに対する研削時間等のこれから行う研削条件、及び選択された複数の砥石それぞれの砥石情報を入力層として、選択された複数の砥石それぞれの「ドレッシング処理の必要度」を出力層とするニューラルネットワークであってもよい。
これにより、ドレッシング推定装置30は、選択された複数の砥石それぞれについての「ドレッシング処理の必要度」を並列に推定することができ、処理速度を向上させることができる。
【0026】
また、学習部403は、学習済みモデル341を構築した後に、新たな教師データを取得した場合には、学習済みモデル341に対してさらに教師あり学習を行うことにより、一度構築した学習済みモデル341を更新するようにしてもよい。
また、学習済みモデル341は、他のドレッシング推定装置30との間で共有するようにしてもよい。学習済みモデル341を複数のドレッシング推定装置30で共有するようにすれば、各ドレッシング推定装置30にて分散して教師あり学習を行うことが可能となり、教師あり学習の効率を向上させることが可能となる。
【0027】
上述した教師あり学習は、オンライン学習で行ってもよく、バッチ学習で行ってもよく、ミニバッチ学習で行ってもよい。
オンライン学習とは、研削機械20による研削が行われ、訓練データが作成される都度、即座に教師あり学習を行うという学習方法である。また、バッチ学習とは、研削機械20による加工が行われ、訓練データが作成されることが繰り返される間に、繰り返しに応じた複数の訓練データを収集し、収集した全ての訓練データを用いて、教師あり学習を行うという学習方法である。さらに、ミニバッチ学習とは、オンライン学習と、バッチ学習の中間的な、ある程度訓練データが溜まるたびに教師あり学習を行うという学習方法である。
記憶部404は、RAM(Random Access Memory)等であり、入力データ取得部401により取得された入力データ、ラベル取得部402により取得されたラベルデータ、及び学習部403により構築された学習済みモデル341等を記憶する。
以上、ドレッシング推定装置30が備える学習済みモデル341を生成するための機械学習について説明した。
次に、運用フェーズにおけるドレッシング推定装置30について説明する。以下の説明では、学習済みモデルとして図3に記載の学習済みモデル、すなわち、被削材に対するこれから行う研削条件、及び1つの砥石の砥石情報を入力層として、「ドレッシング処理の必要度」を出力層とする多層ニューラルネットワークを用いる場合を 例示する。また、被削材としてワークを例示する。
【0028】
<運用フェーズにおけるドレッシング推定装置30>
図2に示すように、運用フェーズにおけるドレッシング推定装置30は、入力部301、推定部302、決定部303、及び記憶部304を含んで構成される。
なお、ドレッシング推定装置30は、図2の機能ブロックの動作を実現するために、CPU(Central Processing Unit)等の図示しない演算処理装置を備える。また、ドレッシング推定装置30は、各種の制御用プログラムを格納したROM(Read Only Memory)やHDD等の図示しない補助記憶装置や、演算処理装置がプログラムを実行する上で一時的に必要とされるデータを格納するためのRAMといった図示しない主記憶装置を備える。
【0029】
そして、ドレッシング推定装置30において、演算処理装置が補助記憶装置からOSやアプリケーションソフトウェアを読み込み、読み込んだOSやアプリケーションソフトウェアを主記憶装置に展開させながら、これらのOSやアプリケーションソフトウェアに基づいた演算処理を行なう。この演算結果に基づいて、ドレッシング推定装置30が各ハードウェアを制御する。これにより、図2の機能ブロックによる処理は実現される。つまり、ドレッシング推定装置30は、ハードウェアとソフトウェアが協働することにより実現することができる。
【0030】
入力部301は、研削機械20による研削加工に先立って、例えば、制御装置10の制御情報から、当該研削加工に係る研削対象のワークに対するこれから行う研削条件と、オペレータにより選択された砥石を示す砥石IDを入力する。入力部301は、後述する記憶部304に記憶される砥石管理テーブル342と、入力された砥石IDとに基づいて、少なくとも現在のドレッシング処理の必要度を含む当該砥石に関する砥石情報を取得する。
入力部301は、取得したこれから行う研削条件と、オペレータにより選択された砥石に関する砥石情報とを、推定部302に対して出力する。
【0031】
推定部302は、これから行う研削条件と、オペレータにより選択された砥石の砥石情報とを、図2の学習済みモデル341に入力し、選択された砥石の加工後のドレッシング処理の必要度を推定する。
より具体的には、推定部302は、学習済みモデル341に対して、これから行う研削条件と、選択された砥石の砥石情報を入力することで、選択された砥石における、当該研削条件による研削加工後の「ドレッシング処理の必要度」を推定することができる。これにより、推定部302は、これから行う研削条件による研削加工後の選択された砥石の「ドレッシング処理の必要度」について推定することができる。
【0032】
決定部303は、選択された砥石の研削加工後におけるドレッシング処理の必要度が閾値(例えば80%等)を超過する場合、研削加工前を当該砥石に対してドレッシング処理を行う時期として決定してもよい。この場合、決定部303は、選択された砥石に対するドレッシング処理の指示を、制御装置10及び/又は研削機械20に含まれる液晶ディスプレイ等の出力装置(図示しない)に出力してもよい。あるいは、決定部303は、オペレータに対して、別の砥石を選択させる指示を、制御装置10及び/又は研削機械20の図示しない出力装置に出力してもよい。
これにより、数値制御システムは、研削機械20による研削加工に先立って、オペレータにより選択された砥石について、これから行う研削条件で研削加工した後のドレッシング処理の必要度を推定することにより、研削加工中にドレッシング処理が必要になるか否かを事前に検知することができる。
さらに、決定部303は、後述するように、研削条件に含まれる研削対象のワークが複数個ある場合、砥石の研削加工後におけるドレッシング処理の必要度が閾値を超えないように、研削対象のワークの個数を調整してもよい。これにより、数値制御システムは、研削開始前に、どの程度研削するとドレッシングが必要になるかのタイミングを事前に予測することができる。そして、数値制御システムは、研削加工のきりのよい段階で、例えば研削機械20を停止して、砥石のドレッシング処理を行うか、又は砥石の交換を行うようにしてもよい。
なお、閾値は、例えば80%としたが、研削機械20が設置された環境等に応じて適宜設定されてもよい。
【0033】
記憶部304は、ROMやHDD等であり、各種の制御用プログラムとともに、学習済みモデル341及び砥石管理テーブル342を記憶してもよい。
【0034】
<砥石管理テーブル342>
図4は、砥石管理テーブル342の一例を示す図である。図4に示すように、砥石管理テーブル342は、研削加工に使用可能に管理されるすべての砥石をそれぞれ識別するための「砥石ID」を含む。また、砥石管理テーブル342は、砥石IDに対応する砥石の「砥石情報」を含む。前述したように砥石情報は、砥石IDに対応して少なくとも「砥石名」、「砥石の種類」、「砥粒の種類」、「粒度」、「結合剤の種類」、「結合度レベル」、「組織」、「研削中に起こりえる砥石の状態」、「砥石の自生作用」、及び「現在のドレッシング処理の必要度」を含む。
【0035】
砥石管理テーブル342内の「砥石ID」は、制御装置10のオペレータにより選択される砥石を識別するための情報であり、当該オペレータにより予め設定される。図4では、砥石IDとして、例えば、各砥石に一意に割り当てられた1からnの数字が設定されているが、アルファベット等で設定されてもよい。なお、nは2以上の整数である。
【0036】
砥石管理テーブル342内の「砥石名」は、上述した砥石IDの各々が割り当てられた砥石の名称(A砥石、B砥石、・・・N砥石)を示す情報が格納される。
砥石管理テーブル342内の「砥石の種類」は、上述した砥石IDの各々が割り当てられた砥石の種類(平形、リング形、へこみ形、テーパーカップ形等)を示す情報が格納される。
砥石管理テーブル342内の「砥石の粒度」は、上述した砥石IDが割り当てられた砥石の粒度の種類(アルミナ、炭素ケイ素、立法晶窒化ホウ素等)を示す情報が格納される。
砥石管理テーブル342内の「現在のドレッシング処理の必要度」は、上述した砥石IDの各々が割り当てられた砥石における前回の研削加工後にオペレータにより判定された必要度を示す情報が格納される。すなわち、砥石管理テーブル342内の「現在のドレッシング処理の必要度」は、研削加工に使用される度にオペレータによりドレッシング処理の必要度が判定され、オペレータにより入力・更新される。
【0037】
<運用フェーズにおけるドレッシング推定装置30の推定処理>
次に、本実施形態に係るドレッシング推定装置30の推定処理に係る動作について説明する。
図5は、運用フェーズにおけるドレッシング推定装置30の推定処理について説明するフローチャートである。
【0038】
ステップS11において、入力部301は、研削機械20による研削加工に先立って、制御装置10の制御情報から、研削対象のワークに対するこれから行う研削条件を取得するとともに、オペレータにより選択された砥石の砥石情報を砥石IDに基づいて、砥石管理テーブル342から取得する。
【0039】
ステップS12において、推定部302は、ステップS11で取得された、これから行う研削条件とオペレータにより選択された砥石の砥石情報を学習済みモデル341に入力し、選択された当該砥石の研削加工後の「ドレッシング処理の必要度」を推定する。
【0040】
ステップS13において、決定部303は、ステップS12で推定された砥石のドレッシング処理の必要度と、閾値とに基づいて、ドレッシング処理の必要度が閾値を超過した場合、例えば、研削加工前を当該砥石に対してドレッシング処理を行う時期として決定する。
【0041】
ステップS14において、決定部303は、ステップS13で決定された砥石に対するドレッシング処理の指示を、制御装置10及び/又は研削機械20の図示しない出力装置に出力する。
【0042】
以上により、一の実施形態に係るドレッシング推定装置30は、研削機械20による研削加工に先立って、制御装置10の制御情報から、当該研削加工に係る研削対象のワークに対するこれから行う研削条件、及び少なくとも現在のドレッシング処理の必要度を含むオペレータにより選択された砥石の砥石情報を、学習済みモデル341に入力し、選択された砥石における研削加工後のドレッシング処理の必要度を推定する。そして、ドレッシング推定装置30は、推定されたドレッシング処理の必要度と、予め設定された閾値との比較により、研削加工中にドレッシング処理が必要になるか否かを事前に検知することができる。
すなわち、ドレッシング推定装置30は、選択された砥石のドレッシング処理の必要度が閾値を超過する場合、研削加工前を当該砥石のドレッシング処理の最適な時期として検知することができる。
また、ドレッシング推定装置30は、学習済みモデル341を用いることにより、被削材の材質や砥石毎に閾値を設定することなく、選択された砥石に対するドレッシング処理、又は砥石の交換を行う最適な時期を検知することができる。
【0043】
以上、一の実施形態について説明したが、ドレッシング推定装置30、及び機械学習装置40は、上述の実施形態に限定されるものではなく、目的を達成できる範囲での変形、改良等が含まれる。
【0044】
<変形例1>
上述の実施形態では、機械学習装置40は、制御装置10、研削機械20及びドレッシング推定装置30と異なる装置として例示したが、機械学習装置40の一部又は全部の機能を、制御装置10、研削機械20又はドレッシング推定装置30が備えるようにしてもよい。
【0045】
<変形例2>
上述の実施形態では、ドレッシング推定装置30は、制御装置10や研削機械20と異なる装置として例示したが、ドレッシング推定装置30の一部又は全部の機能を、制御装置10又は研削機械20が備えるようにしてもよい。
あるいは、ドレッシング推定装置30の入力部301、推定部302、決定部303及び記憶部304の一部又は全部を、例えば、サーバが備えるようにしてもよい。また、クラウド上で仮想サーバ機能等を利用して、ドレッシング推定装置30の各機能を実現してもよい。
さらに、ドレッシング推定装置30は、ドレッシング推定装置30の各機能を適宜複数のサーバに分散される、分散処理システムとしてもよい。
【0046】
<変形例3>
また例えば、上述の実施形態では、図3の学習済みモデル341は、研削対象のワークに対するこれから行う研削条件、及び1つの砥石の砥石情報を入力層として、「ドレッシング処理の必要度」を出力層とする多層ニューラルネットワークとしたがこれに限定されない。学習済みモデル341は、例えば、図6に示すように、これから行う研削条件、及びオペレータにより選択された複数(M個:M≧2)の砥石それぞれの砥石情報を入力層として、M個の砥石それぞれの「ドレッシング処理の必要度」を出力層とするニューラルネットワークであってもよい。
これにより、オペレータは、これから行う研削加工に使用できる砥石がM個あった場合に、M個の砥石IDを選択することで、ドレッシング推定装置30により、M個の砥石それぞれの「ドレッシング処理の必要度」の推定を並列に行うことができ、研削に適切な砥石を迅速に選定することができ、これにより、研削処理効率を高めることができる。
図6は、図2のドレッシング推定装置30に提供される学習済みモデルの一例を示す図である。
なお、機械学習装置40は、Mが2、3・・・の各々の場合の学習済みモデル341を予め構築し、ドレッシング推定装置30は、オペレータにより選択された砥石の数に応じた学習済みモデル341を選択するようにしてもよい。
【0047】
<変形例4>
また例えば、上述の実施形態では、ドレッシング推定装置30の決定部303は、オペレータにより選択された砥石の研削加工後のドレッシング処理の必要度が閾値を超過する場合、研削加工前に選択された砥石に対してドレッシング処理を行う時期として決定したが、これに限定されない。
前述したように、決定部303は、例えば、研削条件に含まれる研削対象のワークが複数個(例えば10個等)ある場合、砥石の研削加工後におけるドレッシング処理の必要度が閾値を超えないように、ワークの個数を調整してもよい。
より具体的には、決定部303は、例えば、これから行う研削条件で複数個のワークを研削加工することで、ドレッシング処理の必要度が閾値を超える場合、さらに、(オペレータの指示により)研削条件の「研削対象の被削材に対する研削時間」を1つのワークに掛かる研削時間の整数倍(k倍:k≧1)とし、推定部302に砥石のドレッシング処理の必要度を推定させることで、閾値を超えないkの値(例えば6個等)を探索してもよい。
そして、決定部303は、例えば、k個のワークに対する研削加工後を、選択された砥石のドレッシング処理を行う時期として決定する。図1の数値制御システムは、決定された時期であるきりのよい段階で、研削機械20を停止させて砥石のドレッシング処理、又は砥石の交換を行うことができる。
これにより、数値制御システムは、研削開始前に、どの程度研削するとドレッシングが必要になるかのタイミングを事前に予測することができる。そして、数値制御システムは、研削加工中に砥石のドレッシング処理の必要性が発生することを回避することができ、加工品位の低下を回避することができる。
【0048】
<変形例5>
また例えば、上述の実施形態では、ドレッシング推定装置30は、機械学習装置40から提供された学習済みモデル341を用いて、1つの制御装置10から取得したこれから行う研削条件による研削加工後のオペレータにより選択された砥石のドレッシング処理の必要度を推定したが、これに限定されない。例えば、図7に示すように、サーバ50は、機械学習装置40により生成された学習済みモデル341を記憶し、ネットワーク60に接続されたm個のドレッシング推定装置30A(1)-30A(m)と学習済みモデル341を共有してもよい(mは2以上の整数)。これにより、新たな研削機械、制御装置、及びドレッシング推定装置が配置されても学習済みモデル341を適用することができる。
なお、ドレッシング推定装置30A(1)-30A(m)の各々は、制御装置10A(1)-10A(m)の各々と接続され、制御装置10A(1)-10A(m)の各々は、研削機械20A(1)-20A(m)の各々と接続される。
また、制御装置10A(1)-10A(m)の各々は、図1の制御装置10に対応する。研削機械20A(1)-20A(m)の各々は、図1の研削機械20に対応する。ドレッシング推定装置30A(1)-30A(m)の各々は、図1のドレッシング推定装置30に対応する。
あるいは、図8に示すように、サーバ50は、例えば、ドレッシング推定装置30として動作し、ネットワーク60に接続された制御装置10A(1)-10A(m)の各々に対して、これから行う研削条件における砥石のドレッシング処理の必要度を推定してもよい。これにより、新たな研削機械及び制御装置が配置されても学習済みモデル341を適用することができる。
【0049】
なお、一の実施形態における、ドレッシング推定装置30、及び機械学習装置40に含まれる各機能は、ハードウェア、ソフトウェア又はこれらの組み合わせによりそれぞれ実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
【0050】
プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(Non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAMを含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は、無線通信路を介して、プログラムをコンピュータに供給できる。
【0051】
なお、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0052】
以上を換言すると、本開示の機械学習装置、ドレッシング推定装置、及び制御装置は、次のような構成を有する各種各様の実施形態を取ることができる。
(1)本開示の機械学習装置40は、任意の研削機械による研削加工における任意の被削材に対する任意の研削条件と、少なくとも前記研削条件による研削加工前のドレッシングの必要性の度合いを示すドレッシング処理の必要度を含む任意の砥石に関する砥石情報と、を含む入力データを取得する入力データ取得部401と、入力データに含まれる研削条件による研削加工後の砥石におけるドレッシング処理の必要度、を示すラベルデータを取得するラベル取得部402と、入力データ取得部401により取得された入力データと、ラベル取得部402により取得されたラベルデータと、を用いて、教師あり学習を実行し、学習済みモデル341を生成する学習部403と、を備える。
この機械学習装置40によれば、被削材の材質や砥石毎にドレッシング処理を行う閾値を設定する必要がなく、砥石のドレッシングを行う最適な時期を検知することができる、学習済みモデル341を生成することができる。
【0053】
(2)研削条件は、1以上の被削材に対する研削時間を含んでもよい。
そうすることで、研削加工中にドレッシング処理が必要になるタイミングを回避することができる。
【0054】
(3)本開示のドレッシング推定装置30は、機械学習装置40により生成された学習済みモデル341と、研削機械20による研削加工に先立って、当該研削加工に係る研削対象の被削材に対する研削条件と、少なくとも現在のドレッシング処理の必要度を含む当該研削加工で用いる砥石に関する砥石情報と、を入力する入力部301と、学習済みモデル341を用いて、入力部301により入力された、当該研削加工で用いる砥石における、当該研削加工に係る研削条件による研削加工後のドレッシング処理の必要度を推定する推定部302と、を備える。
このドレッシング推定装置30によれば、被削材の材質や砥石毎にドレッシング処理を行う閾値を設定する必要がなく、砥石のドレッシングを行う最適な時期を検知することができる。
【0055】
(4)推定部302により推定された砥石のドレッシング処理の必要度が、予め設定された閾値を超過した場合、前記研削加工前に砥石の候補に対するドレッシング処理を行う時期として決定する決定部303をさらに備えてもよい。
そうすることで、ドレッシング推定装置30は、研削加工中に砥石のドレッシング処理の必要性が発生することを回避することができ、加工品位の低下を回避することができる。
【0056】
(5)推定部302により推定された砥石の候補のドレッシング処理の必要度が、予め設定された閾値を超過した場合、砥石のドレッシング処理の必要度が閾値を超過しないように、当該研削加工に係る研削条件を変更することを決定する決定部303をさらに備えてもよい。
そうすることで、研削開始前に、どの程度研削するとドレッシングが必要になるかのタイミングを事前に予測することができる。
【0057】
(6)決定部303は、研削条件に含まれる研削対象の被削材の数を調整してもよい。
そうすることで、研削開始前に、研削のきりのよい段階で、研削機械20を停止させてドレッシング処理、又は砥石交換のスケジュールを組むことが可能となる。
【0058】
(7)学習済みモデル341を、ドレッシング推定装置30からネットワーク60を介してアクセス可能に接続されるサーバ50に備えてもよい。
そうすることで、新たな制御装置10、研削機械20、及びドレッシング推定装置30が配置されても学習済みモデル341を適用することができる。
【0059】
(8)機械学習装置40を備えてもよい。
そうすることで、上述の(1)から(7)のいずれかと同様の効果を奏することができる。
【0060】
(9)本開示の制御装置10は、ドレッシング推定装置30を備えてもよい。
この制御装置10によれば、上述の(1)から(8)のいずれかと同様の効果を奏することができる。
【符号の説明】
【0061】
10 制御装置
20 研削機械
30 ドレッシング推定装置
40 機械学習装置
301 入力部
302 推定部
303 決定部
341 学習済みモデル
342 砥石管理テーブル
401 入力データ取得部
402 ラベル取得部
403 学習部
図1
図2
図3
図4
図5
図6
図7
図8