(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-08
(45)【発行日】2022-08-17
(54)【発明の名称】磁場解析装置、解析方法、及びプログラム
(51)【国際特許分類】
G06F 30/20 20200101AFI20220809BHJP
G16Z 99/00 20190101ALI20220809BHJP
【FI】
G06F30/20
G16Z99/00
(21)【出願番号】P 2020504776
(86)(22)【出願日】2018-11-12
(86)【国際出願番号】 JP2018041831
(87)【国際公開番号】W WO2019171660
(87)【国際公開日】2019-09-12
【審査請求日】2021-05-19
(31)【優先権主張番号】P 2018040400
(32)【優先日】2018-03-07
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000002107
【氏名又は名称】住友重機械工業株式会社
(74)【代理人】
【識別番号】100105887
【氏名又は名称】来山 幹雄
(72)【発明者】
【氏名】宮崎 修司
【審査官】岡本 俊威
(56)【参考文献】
【文献】特開2003-006181(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 30/20
G16Z 99/00
(57)【特許請求の範囲】
【請求項1】
仮想空間を複数の体積要素に分割し、前記体積要素の各々に磁化を付与する磁化付与部と、
前記仮想空間の複数の観測点の各々について、前記観測点の周りの複数の前記体積要素に付与された磁化に基づいて、前記体積要素ごとに前記観測点に発生する磁場を演算し、複数の前記体積要素ごとの演算結果に基づいて、複数の前記観測点の各々に発生する磁場を求める磁場演算部と
を有し、
前記磁化付与部は、
前記仮想空間を、形状及び寸法が同一の複数のボクセルに分割し、
複数の前記ボクセルの各々に磁化を付与し、
第1方向に連続する複数の前記ボクセルをまとめて1つの前記体積要素とする粗視化を行うことにより、少なくとも一部の前記体積要素について、前記第1方向に関する寸法を、他の第2方向に関する寸法より大きくし、
粗視化された前記体積要素に含まれる複数の前記ボクセルに付与されている磁化に基づいて、粗視化された前記体積要素に磁化を付与する磁場解析装置。
【請求項2】
前記体積要素に付与される磁化と、周りの複数の前記観測点に発生する磁場との対応関係を、前記体積要素と前記観測点との相対位置ごとに保持する対応関係保持部を、さらに有し、
前記磁場演算部は、前記対応関係を用いて、前記体積要素に付与されている磁化が前記観測点に発生させる磁場を求める第1機能を持つ請求項1に記載の磁場解析装置。
【請求項3】
前記対応関係保持部は、前記体積要素の大きさごとに前記対応関係を保持しており、
前記磁場演算部は、前記体積要素に付与されている磁化が前記観測点に発生させる磁場を計算する際に、磁場を発生させるソースとなる前記体積要素の大きさに対応する前記対応関係を用いて磁場を計算する請求項2に記載の磁場解析装置。
【請求項4】
前記磁場演算部は、複数の前記ボクセルに付与されている磁化をそれぞれ磁気双極子で代表して、前記磁気双極子に基づいて前記観測点の磁場を求める第2機能を有する請求項2または3に記載の磁場解析装置。
【請求項5】
前記第2機能は、複数の前記ボクセルの前記磁気双極子によってそれぞれ前記観測点に発生する磁場を前記ボクセルごとに求め、前記ボクセルごとに求められた磁場を足し合わせる機能を含む請求項4に記載の磁場解析装置。
【請求項6】
前記第2機能は、一方向に一列に並ぶ複数の前記ボクセルの各々の前記磁気双極子を、1つの多重極展開点に多重極展開し、前記多重極展開点に対する前記観測点の相対位置に基づいて前記観測点の磁場を求める機能を含む請求項4に記載の磁場解析装置。
【請求項7】
1つの前記多重極展開点に多重極展開される複数の前記磁気双極子の大きさ及び向きは同一であり、1つの前記多重極展開点に多重極展開される複数の前記磁気双極子に対応する前記ボクセルの寸法は同一である請求項6に記載の磁場解析装置。
【請求項8】
前記磁場演算部は、磁場を発生させるソースとなる前記体積要素から前記観測点までの距離が第1距離以下の少なくとも一部の前記観測点に発生する磁場を、前記第1機能を用いて求め、前記第1距離より長い前記観測点に発生する磁場を、前記第2機能を用いて求める請求項4乃至7のいずれか1項に記載の磁場解析装置。
【請求項9】
前記磁場演算部は、磁場を発生させるソースとなる前記体積要素に付与された磁化を含む物理量を、前記体積要素の表面について面積分することにより、前記体積要素の周りの前記観測点に発生する磁場を求める第3機能を有する請求項8に記載の磁場解析装置。
【請求項10】
前記磁場演算部は、磁場を発生させるソースとなる前記体積要素から前記観測点までの距離が前記第1距離より短い第2距離以下の前記観測点に発生する磁場を、前記第3機能を用いて求める請求項9に記載の磁場解析装置。
【請求項11】
仮想空間を複数の体積要素に分割し、前記体積要素の各々に磁化を付与し、
前記体積要素に付与された磁化が前記仮想空間内の複数の観測点に発生させる磁場を前記体積要素ごとに計算し、複数の前記体積要素ごとの計算結果に基づいて、複数の前記観測点の各々に発生する磁場を求める磁場解析方法であって、
前記仮想空間を前記複数の体積要素に分割し、前記体積要素の各々に磁化を付与するにあたり、
前記仮想空間を、形状及び寸法が同一の複数のボクセルに分割し、
複数の前記ボクセルの各々に磁化を付与し、
第1方向に連続する複数の前記ボクセルをまとめて1つの前記体積要素とする粗視化を行うことにより、少なくとも一部の前記体積要素について、前記第1方向に関する寸法を、他の第2方向に関する寸法より大きくし、
粗視化された前記体積要素に含まれる複数の前記ボクセルに付与されている磁化に基づいて、粗視化された前記体積要素に磁化を付与する磁場解析
方法。
【請求項12】
仮想空間を複数の体積要素に分割し、前記体積要素の各々に磁化を付与する機能と、
前記体積要素に付与された磁化が前記仮想空間内の複数の観測点に発生させる磁場を前記体積要素ごとに計算し、複数の前記体積要素ごとの計算結果に基づいて、複数の前記観測点の各々に発生する磁場を求める機能と、
前記仮想空間を前記体積要素に分割するにあたり、少なくとも一部の前記体積要素について、前記仮想空間内の第1方向に関する寸法を、他の第2方向に関する寸法より大きくする機能と
をコンピュータに実現させるためのプログラムであって、
前記仮想空間を前記複数の体積要素に分割し、前記体積要素の各々に磁化を付与する機能は、
前記仮想空間を、形状及び寸法が同一の複数のボクセルに分割し、
複数の前記ボクセルの各々に磁化を付与し、
第1方向に連続する複数の前記ボクセルをまとめて1つの前記体積要素とする粗視化を行うことにより、少なくとも一部の前記体積要素について、前記第1方向に関する寸法を、他の第2方向に関する寸法より大きくし、
粗視化された前記体積要素に含まれる複数の前記ボクセルに付与されている磁化に基づいて、粗視化された前記体積要素に磁化を付与する機能を含むプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁場解析装置、解析方法、及びプログラムに関する。
【背景技術】
【0002】
近年、コンピュータの処理能力向上に伴い、モータ等の電気機器の設計開発の現場で、磁場解析を取り入れたシミュレーションが行われる。シミュレーションを行うと、実際にプロトタイプを作製しなくてもある程度の評価が可能となるので、設計開発のスピードが向上し得る。
【0003】
古典力学や量子力学等を基にコンピュータを用いて物質科学全般の現象を探るための方法として、分子動力学法を、マクロスケールの系を扱えるように発展させた繰り込み群分子動力学法に基づくシミュレーションが知られている(例えば、特許文献1)。分子動力学法のような粒子法は、静的な現象だけではなく流れ等の動的な現象も取り扱えるため、主として静的な現象を解析対象とする有限要素法等に代わるシミュレーション手法として注目されている。
【0004】
例えば、各粒子に磁気モーメントを付与し、各粒子の球対称性に基づく厳密解を利用して磁気的な物理量を演算対象とすることで、比較的精度の高いシミュレーション結果を高速に得ることができる磁気ビーズ法が提案されている(例えば、特許文献2)。磁気ビーズ法では、対象物を複数の要素に分割し、各要素を球形状の粒子とみなして球対称性に基づく厳密解を利用して演算を行う。このとき、対象物を複数の粒子の集合体で表すと、粒子間に隙間が生じるため、その隙間や球形状の粒子に起因する誤差が生じ得る。計算精度を高めるためには、対象物を立方体等のボクセルで隙間なく分割し、ボクセルの形状に応じた厳密解に基づく面積分を実行する必要がある。この面積分を高精度で行おうとすると計算時間が膨大になってしまう。
【0005】
磁場演算の計算時間の短縮化を図ることが可能な手法が提案されている(例えば、特許文献3)。この手法では、磁気モーメントが付与される基準粒子が発生させる磁場の数値解を、基準粒子の周りに設定される複数の格子点ごとに予め算出し、基準粒子に付与される磁気モーメントのベクトル量と、磁場の数値解との対応関係を格子点ごとに保持しておく。磁気モーメントが付与される各粒子が発生させる磁場を、この対応関係を用いて演算する。各粒子が発生させる磁場を計算する度に面積分の計算を行う必要がないため、計算時間を短縮することができる。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2009-37334号公報
【文献】特開2015-111401号公報
【文献】特開2017-194884号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
計算時間をより短縮する手法が望まれている。本発明の目的は、計算時間をより短縮することが可能な磁場解析装置、解析方法、及びプログラムを提供することである。
【課題を解決するための手段】
【0008】
本発明の一観点によると、
仮想空間を複数の体積要素に分割し、前記体積要素の各々に磁化を付与する磁化付与部と、
前記仮想空間の複数の観測点の各々について、前記観測点の周りの複数の前記体積要素に付与された磁化に基づいて、前記体積要素ごとに前記観測点に発生する磁場を演算し、複数の前記体積要素ごとの演算結果に基づいて、複数の前記観測点の各々に発生する磁場を求める磁場演算部と
を有し、
前記磁化付与部は、
前記仮想空間を、形状及び寸法が同一の複数のボクセルに分割し、
複数の前記ボクセルの各々に磁化を付与し、
第1方向に連続する複数の前記ボクセルをまとめて1つの前記体積要素とする粗視化を行うことにより、少なくとも一部の前記体積要素について、前記第1方向に関する寸法を、他の第2方向に関する寸法より大きくし、
粗視化された前記体積要素に含まれる複数の前記ボクセルに付与されている磁化に基づいて、粗視化された前記体積要素に磁化を付与する磁場解析装置が提供される。
【0009】
本発明の他の観点によると、
仮想空間を複数の体積要素に分割し、前記体積要素の各々に磁化を付与し、
前記体積要素に付与された磁化が前記仮想空間内の複数の観測点に発生させる磁場を前記体積要素ごとに計算し、複数の前記体積要素ごとの計算結果に基づいて、複数の前記観測点の各々に発生する磁場を求める磁場解析方法であって、
前記仮想空間を前記複数の体積要素に分割し、前記体積要素の各々に磁化を付与するにあたり、
前記仮想空間を、形状及び寸法が同一の複数のボクセルに分割し、
複数の前記ボクセルの各々に磁化を付与し、
第1方向に連続する複数の前記ボクセルをまとめて1つの前記体積要素とする粗視化を行うことにより、少なくとも一部の前記体積要素について、前記第1方向に関する寸法を、他の第2方向に関する寸法より大きくし、
粗視化された前記体積要素に含まれる複数の前記ボクセルに付与されている磁化に基づいて、粗視化された前記体積要素に磁化を付与する磁場解析方法が提供される。
【0010】
本発明のさらに他の観点によると、
仮想空間を複数の体積要素に分割し、前記体積要素の各々に磁化を付与する機能と、
前記体積要素に付与された磁化が前記仮想空間内の複数の観測点に発生させる磁場を前記体積要素ごとに計算し、複数の前記体積要素ごとの計算結果に基づいて、複数の前記観測点の各々に発生する磁場を求める機能と、
前記仮想空間を前記体積要素に分割するにあたり、少なくとも一部の前記体積要素について、前記仮想空間内の第1方向に関する寸法を、他の第2方向に関する寸法より大きくする機能と
をコンピュータに実現させるためのプログラムであって、
前記仮想空間を前記複数の体積要素に分割し、前記体積要素の各々に磁化を付与する機能は、
前記仮想空間を、形状及び寸法が同一の複数のボクセルに分割し、
複数の前記ボクセルの各々に磁化を付与し、
第1方向に連続する複数の前記ボクセルをまとめて1つの前記体積要素とする粗視化を行うことにより、少なくとも一部の前記体積要素について、前記第1方向に関する寸法を、他の第2方向に関する寸法より大きくし、
粗視化された前記体積要素に含まれる複数の前記ボクセルに付与されている磁化に基づいて、粗視化された前記体積要素に磁化を付与する機能を含むプログラムが提供される。
【発明の効果】
【0011】
体積要素の第1方向に関する寸法を第2方向に関する寸法より大きくすることで、体積要素の第2方向の寸法を一辺の長さとする正六面体のボクセルの個数より、体積要素の個数の方が少なくなる。このため、ボクセルごとに演算を行う場合に比べて、体積要素ごとに演算を行う方が、演算負荷が低くなる。また、磁場の空間的な変化が緩やかな方向を第1方向に選ぶと、計算精度の低下を抑制することができる。
【図面の簡単な説明】
【0012】
【
図1】
図1は、本実施例による磁場解析装置のブロック図である。
【
図2】
図2Aは、対象物の一部分を複数のボクセルに分割した状態の斜視図であり、
図2Bは、粗視化後の対象物の一部分の斜視図である。
【
図3】
図3Aは、仮想空間内に定義される座標系を示す図であり、
図3Bは、1つの体積要素の内部の磁化が一定であるとしたときに、体積要素の磁化によって観測点に発生する磁場H(r
i)を計算する方法を説明する図である。
【
図4】
図4は、ソース点となる体積要素と、その周りの複数の基準点との位置関係を示す図である。
【
図5】
図5は、磁化が付与されたボクセルと観測点との位置関係を示す図である。
【
図6】
図6は、ソース点となる体積要素と観測点Poとの位置関係を示す図である。
【
図8】
図8A及び
図8Bは、それぞれ解析対象の磁石電動機に用いられる永久磁石の平面図及び側面図であり、
図8Cは、実施例による方法で磁場解析を行った結果、及び比較例による方法で磁場解析を行った結果を示すグラフである。
【
図9】
図9は、多重極展開の方法を説明するために用いる座標系を示す図である。
【
図10】
図10Aは、個々のボクセルについて双極子近似を行い、観測点Poに発生する磁場H(r
i)を計算により求める方法を説明する図であり、
図10Bは、多重極展開手法を用い、観測点Poに発生する磁場H(r
i)を計算により求める方法を説明する図である。
【
図11】
図11は、磁場Hoに対する磁場Hcの誤差を、規格化距離の関数として示すグラフである。
【
図12】
図12は、多重極展開を行うことによる計算の高速化効果を示すグラフである。
【発明を実施するための形態】
【0013】
古典力学や量子力学等を基に計算機を用いて物質科学全般の現象を探るための方法として、分子動力学法(Molecular Dynamics Method、以下MD法と称す。)や、量子分子動力学法(Quantum Molecular Dynamics Method)や、マクロスケールの系を扱えるようにMD法を発展させた繰り込み群分子動力学法(Renormalized Molecular Dynamics、以下RMD法と称す。)に基づくシミュレーションが知られている。正確にはMD法やRMD法は運動論的手法(物理量の算出には統計力学を使う)であり、粒子法は、連続体を記述する微分方程式を離散化する手法であり、両者は別ものであるが、ここではMD法やRMD法も粒子法と呼ぶ。
【0014】
粒子法は静的な現象だけでなく流れなどの動的な現象をも取り扱えるので、主に静的な現象を解析対象とする有限要素法などに代わるシミュレーション手法として注目されている。
【0015】
粒子法には、連続体を粒子で離散化することにより解析対象の粒子系を得るという微分的な見方がある。例えば、粒子法において流体を扱う場合、ナビエストークス(Navier-Stokes)方程式を粒子で離散化することが多い。
【0016】
一方、粒子法の別の見方として、多くの粒子を集めて連続体を形成するという積分的な見方もある。これは例えば、小さな鉄の粒を集めて固めて大きな鉄球を形成するという見方である。
【0017】
一般に、多くの磁気モーメントが存在する空間内のある点(観測点)の磁場を求める場合、重ね合わせの原理により、各磁気モーメントが観測点に発生させる磁場を磁気モーメントに亘って足し合わせる。本発明者は、このような磁気モーメントの集まりから磁場を求める手法と、積分的な見方をした場合の粒子法との親和性を独自に見い出し、粒子法における粒子に磁気モーメントを付与することに想到した。これにより、対流や大変形の解析に強いという粒子法の利点を維持しつつ、粒子法の適用範囲を磁場解析にまで広げることが可能となる。
【0018】
対象物を球形の粒子の集合体で表し、各粒子の球対称性に基づく厳密解を利用することで、高速かつ高精度の演算結果を得ることができる。しかしながら、連続体である対象物を球形の粒子の集合体で表すと粒子間に隙間が生じるため、その隙間に起因する計算誤差が生じてしまう。特に、粒子間の距離が近い場合の粒子近傍の磁場を計算する場合に誤差の影響が大きくなる。計算精度を高めるためには、対象物を立方体やボロノイ多面体といったボクセルに分割し、これらのボクセルにより隙間なく対象物を分割することが好ましい。この場合、磁場を求めるために、ボクセルごとに面積分を実行する必要がある。この面積分を実行するには、計算時間が膨大となる。
【0019】
以下に説明する実施例による磁場解析装置では、計算時間の短縮化を図ることが可能である。
図1は、本実施例による磁場解析装置30のブロック図である。本実施例による磁場解析装置30は、処理装置20、記憶装置25、入力装置28、及び出力装置29を含む。処理装置20は、解析情報取得部21、磁化付与部22、磁場演算部23、及び出力制御部24を含む。記憶装置25は、データ保持部26及び対応関係保持部27を含む。
【0020】
図1に示す各ブロックは、ハードウェア的には、コンピュータの中央処理ユニット(CPU)をはじめとする素子や機械装置で実現することができ、ソフトウェア的にはコンピュータプログラム等によって実現することができる。
図1では、ハードウェア及びソフトウェアの連携によって実現される機能ブロックが示されている。従って、これらの機能ブロックは、ハードウェア及びソフトウェアの組み合わせによって、種々の態様で実現することが可能である。
【0021】
処理装置20は入力装置28及び出力装置29と接続される。入力装置28は、処理装置20で実行される処理に関係するユーザからのコマンド及びデータの入力を受ける。入力装置28として、例えばユーザが操作を行うことにより入力を行うキーボードやマウス、インターネット等のネットワークを介して入力を行う通信装置、CD、DVD等の記録媒体から入力を行う読取装置等を用いることができる。
【0022】
解析情報取得部21は、入力装置28を介して磁場解析情報を取得する。磁場解析情報には、磁場解析に必要な種々の情報が含まれる。例えば、仮想空間内に定義される解析対象物の形状、解析対象物をボクセルに分割する情報、ボクセルを粗視化する情報、仮想空間内に存在する磁場の空間的な変化が相対的に緩やかな方向を定義する情報等が含まれる。
【0023】
磁化付与部22は、磁場解析情報に基づき仮想空間内の対象物を複数のボクセル(正六面体要素)に分割する。ボクセル50の各々に、1つのボクセル50を特定するためのボクセル識別子(ボクセルID)が付与される。
【0024】
図2Aは、対象物の一部分を複数のボクセル50に分割した状態の斜視図である。複数のボクセル50が、x軸方向、y軸方向、及びz軸方向に並んでいる。複数のボクセル50の形状及び寸法は同一であり、複数のボクセル50は、単純立方単位胞構造を持つ。本実施例において、z軸方向に関する磁場の変化が相対的に緩やかであり、x軸方向及びy軸方向に関する磁場の変化が相対的に急峻で
ある例について説明する。ここで、磁場には、外部磁場、及び対象物が磁化されることによって発生する磁場が含まれる。
【0025】
さらに、磁化付与部22(
図1)は、ボクセル50の各々に磁化を付与する。磁化は初期条件として付与してもよいし、後述する磁場演算部23により求められた磁場に基づいて各ボクセル50に発生する磁化を計算し、計算によって求められた磁化を付与してもよい。なお、磁化は、ボクセル50内の全磁気モーメントのベクトル和の単位体積当たりの値であるから、ボクセル50ごとに磁化として1つの値を付与することは、ボクセル50に磁気モーメントの1つの値を付与することと実質的に同一である。磁化付与部22は、付与された磁化を、ボクセルIDと関連付けてデータ保持部26に登録する。
【0026】
さらに、磁化付与部22は、磁場の空間的な変化が緩やかな方向(本実施例においてz軸方向)に連続する複数のボクセル50をまとめて1つの体積要素51とする。複数のボクセル50をまとめて1つの体積要素51とする処理を粗視化という。粗視化された体積要素51の各々のz軸方向の寸法は、x軸方向及びy軸方向の寸法より大きくなる。
【0027】
図2Bは、粗視化後の対象物の一部分の斜視図である。z軸方向に並ぶ複数のボクセル50(
図2A)が粗視化されて(まとめられて)体積要素51が形成されている。1つの体積要素51に粗視化するボクセル50の個数は、磁場の変化の度合いに応じて設定するとよい。例えば、磁場の変化が緩やかであるほど、1つの体積要素51に粗視化するボクセル50の個数を多くするとよい。
図2Bでは、上下方向の中央部の近傍で磁場のz軸方向の変化が緩やかであり、上下端に近づくに従って、磁場の変化が徐々に大きくなる例を示している。このため、上下方向の中央部の近傍において、1個の体積要素51に粗視化するボクセル50の個数を相対的に多くし、上下端に近づくほど、1個の体積要素51に粗視化するボクセル50の個数を相対的に少なくしている。
【0028】
磁化付与部22(
図1)は、元のボクセル50に付与されている磁化に基づいて体積要素51に、それぞれ磁化を付与する。例えば、1つの体積要素51に粗視化された元のボクセル50に付与されている磁化のベクトル平均を、体積要素51に付与するとよい。磁化付与部22は、体積要素51に付与された磁化を、体積要素識別子(体積要素ID)と関連付けてデータ保持部26に登録する。
【0029】
磁場演算部23(
図1)は、ボクセル50に付与された磁化、または体積要素51に付与された磁化に基づいて、仮想空間内の複数の観測点における磁場を計算し、計算結果をデータ保持部26に登録する。観測点に磁場を生じさせる元となる磁化を持つボクセル50または体積要素51をソースということとする。観測点は、例えば体積要素51の各々の中心位置に配置する。磁場演算部23は、磁場を計算する3種類の機能を備えている。第1機能(テーブル参照方式)は、ソースから観測点までの距離が短いときの計算に適しており、対応関係保持部27に登録されている対応関係を利用する。第2機能(双極子近似方式)は、ソースから観測点までの距離が長いときの計算に適している。第3機能(逐次積分方式)は、観測点がソースに近接しているときの計算に適している。第1機能~第3機能の詳細については、後に詳しく説明する。
【0030】
出力制御部24(
図1)は、解析結果、例えばデータ保持部26に登録されている観測点ごとの磁場の計算結果を、出力装置29に出力する。
【0031】
[第1機能(テーブル参照方式)]
次に、
図3A~
図4を参照して、磁場演算部23の第1機能(テーブル参照方式)について説明する。
図3Aは、仮想空間内に定義される座標系を示す図である。座標系の原点をOで表し、仮想空間内の観測点Poの位置をr
iで表す。微小体積dV’の位置をr’で表す。ここで、太文字はベクトルを意味する。観測点Poの磁場H(r
i)は、微小体積dV’の磁化M(r’)によって発生する磁場を全空間に亘って積分することにより得られ、以下の式で表される。
【数1】
ここで、∇’は、位置r’における微分を意味する。
【0032】
磁性材料が分布する領域をVで表し、表面をSで表すと、式(1)は、以下のように体積分と面積分の項に分けることができる。
【数2】
ここで、dS’は、磁性材料が分布する領域の表面の微小領域であり、ベクトルn
sは、表面Sの単位法線ベクトルである。
【0033】
図3Bは、1つの体積要素51の内部の磁化が一定であるとしたときに、体積要素51に付与された磁化によって観測点Poに発生する磁場H(r
i)を計算する方法を説明する図である。j番目の体積要素51(位置r
j)に付与された磁化をM
jで表す。体積要素51の表面の微小領域をdS
jで表し、微小領域dS
jの単位法線ベクトルをn
sで表す。
【0034】
式(2)を変形して、位置r
iの観測点Poに発生する磁場H(r
i)は、以下の式で表される。
【数3】
ここで、r
jは、微小領域dS’の位置を表す。パラメータjに関するΣは、N個の体積要素51についての和をとることを意味する。表面S
jに関する面積分は、体積要素51ごとに表面全域で面積分を行うことを意味する。
【0035】
図4は、ソースとなる体積要素51Sと、その周りの複数の基準点G
kとの位置関係を示す図である。
図4では、ソースとなる体積要素51Sが、連続する4個のボクセル50を含む例を示している。本実施例においては、式(3)の面積分の演算処理を高速化させるために、ソースとなる1つの体積要素51Sの磁化M
jと、複数の基準点G
k(位置r
i)に発生する磁場H
k(r
i)との対応関係を、体積要素51Sの表面における面積分を実行することにより予め算出しておく。基準点G
kは、例えば複数のボクセル50の頂点の位置に対応して配置される。
【0036】
ソースとなる体積要素51S(位置r
j)の磁化M
jによって基準点G
kに発生する磁場H
k(r
i)は、式(3)から、以下のように表すことができる。
【数4】
ここで、面積分は、体積要素51Sの表面の全域についての面積分を意味する。
【0037】
式(4)で表される磁場H
k(r
i)は、面積分を利用した厳密解である。ここで、式(4)を変形し、磁場H
k(r
i)と磁化M
jとの対応関係を定めるテンソルT
kを用いて下記式(5)のように表すことができれば、任意の磁化M
jを持つ体積要素51によって各基準点G
kに発生する磁場H
k(r
i)を容易に計算できるようになる。
【数5】
【0038】
テンソルT
kの各要素は、以下のように表すことができる。
【数6】
ここで、n
x、n
y、n
zは、それぞれ単位法線ベクトルn
sのx成分、y成分、z成分である。x
ij、y
ij、z
ijは、それぞれソースとなる体積要素51Sの微小領域dS
jを始点とし基準点G
kを終点とするベクトルr
ijのx成分、y成分、z成分である。
【0039】
本実施例では、ソースとなる体積要素51Sに対して、複数の基準点G
kについて式(6)の面積分を実行し、テンソルT
kを複数の基準点G
kについて予め算出している。テンソルT
kは、ソースとなる体積要素51Sに付与された磁化M
jと、磁化M
jによって複数の基準点G
kの各々に発生する磁場H
kとの対応関係を示している。この対応関係は、ソースとなる体積要素51Sと観測点との相対位置ごとに準備されている。さらに、対応関係を示すテンソルT
kは、体積要素51(
図2B)の大きさごとに準備されている。例えば、粗視化するボクセル50の最大個数を10個とすると、粗視化
するボクセルの個数が1個の場合から10個の場合までのそれぞれについてテンソルT
kが準備される。
【0040】
対応関係を示すテンソルT
kは、対応関係保持部27(
図1)に記憶されている。テンソルT
kを予め計算する具体的な方法の一例が、特開2017-194884号公報に説明されている。なお、式(6)の面積分を予め実行しておく方法は、特開2017-194884号公報に示された例に限定されない。
【0041】
位置r
iの観測点Po(
図3B)の磁場H(r
i)は、観測点Poを内部に含むボクセル50の8個の頂点に相当する基準点G
kの磁場H
kを平均化することにより算出することができる。
【0042】
テーブル参照方式は、ソースとなる体積要素51Sから観測点Poまでの距離が、ある基準距離以下のときに利用される。従って、ソースとなる体積要素51Sからの距離がこの基準距離以下の基準点G
kについてテンソルT
kを準備しておけばよい。テンソルT
kを準備しておくべき基準点G
kの個数は、仮想空間内の体積要素51の個数より少ない。このため、全ての体積要素51が観測点Po(
図3B)に発生させる磁場を、その都度面積分を用いて計算する方式に比べて、対応関係を示すテンソルT
kを利用して磁場を計算するテーブル参照方式を適用する方が、演算負荷が低くなる。
【0043】
テーブル参照方式では、粗視化後の1つの体積要素51が1つのソースとなり、かつ1つの観測点となる。このため、n個のボクセル50をまとめて1つの体積要素51とすると、ソース及び観測点の個数が共に1/nになる。ソースと観測点との組み合わせの個数は1/n2になるため、磁場の演算時間がほぼn2に比例して減少する。
【0044】
[第2機能(双極子近似方式)]
次に、
図5を参照して、磁場演算部23(
図1)の第2機能(双極子近似方式)について説明する。
【0045】
図5は、磁化が付与されたボクセル50と観測点Poとの位置関係を示す図である。観測点Poは、例えば体積要素51の各々の中心に設定される。磁場を計算する元となる磁化として、粗視化前のボクセル50に付与された磁化を用いる。
【0046】
式(1)を部分積分して近似を行うと、以下の式(7)が得られる。
【数7】
【0047】
双極子近似方式は、粗視化前のボクセル50に付与された磁化M
jを、ボクセル50の中心に配置された磁気双極子で代表させて磁場を求めることと等価である。ボクセル50の体積をΔV
jで表すと、磁気モーメントはΔV
jM
jと表すことができる。双極子近似方式においては、ソース点となる体積要素51(
図2A)の各々について面積分を実行する必要が無いため、演算負荷が軽減される。
【0048】
上述の例では、体積要素51を構成する複数のボクセル50の各々に付与された磁化Mjを用いて磁場を計算したが、粗視化後の体積要素51の中心位置に、複数のボクセル50に付与された磁気双極子を多重極展開して、多重極子に基づいて観測点Poの磁場を計算してもよい。
【0049】
双極子近似方式では、粗視化後の1つの体積要素51に対応して1つの観測点Poが配置され、粗視化前の1つのボクセル50が1つのソースとなる。このため、n個のボクセル50をまとめて1つの体積要素51に粗視化すると、観測点Poの個数が1/nになり、ソースの個数は不変である。その結果、ソースと観測点との組み合わせの個数が1/nになることにより、磁場の演算時間がほぼnに比例して減少する。
【0050】
[テーブル参照方式と双極子近似方式との比較]
上述のテーブル参照方式と双極子近似方式とを比較すると、計算精度の点ではテーブル参照方式の方が優れており、演算負荷の点では双極子近似方式の方が優れている。なお、ソースとなるボクセル50から遠く離れた領域の観測点の磁場を計算する際には、ボクセル50内に分布する磁化を磁気双極子で近似しても十分な計算精度が得られる。
【0051】
従って、ソースとなるボクセル50と観測点Poとの距離に基づいて、テーブル参照方式と双極子近似方式とのどちらを適用するか決定するとよい。例えば、ソースを中心としたある半径の球の内部の観測点Poの磁場の計算にはテーブル参照方式を適用し、この球の外側の観測点Poの磁場の計算には双極子近似方式を適用するとよい。
【0052】
[第3機能(逐次積分方式)]
次に、
図6を参照して、磁場演算部23(
図1)の第3機能(逐次積分方式)について説明する。
【0053】
図6は、ソースとなる体積要素51Sと観測点Poとの位置関係を示す図である。観測点Poは、例えば体積要素51の各々の中心に設定される。ソースとなる体積要素51S内の位置r’の磁化をM(r’)で表す。観測点Poの位置をr
iで表すと、ソースとなる体積要素51Sに付与された磁化M(r’)が観測点Poの位置に発生させる磁場H(r
i)は、式(2)に基づいて計算することができる。ここで、式(2)の体積分は、ソースとなる体積要素51S内の微小体積要素dV’について実行され、面積分は、ソースとなる体積要素51Sの表面の微小領域dS’について実行される。
【0054】
体積要素51S内の磁化M(r’)が一定であると仮定できる場合、または体積要素51S内における磁化M(r’)の空間的な変化がほぼ無視できる場合、式(2)の右辺の体積分の項が0になるため、式(2)の右辺の面積分を実行することにより、磁場H(ri)を求めることができる。
【0055】
逐次積分方式においては、テーブル参照方式で利用した基準点Gkの位置の磁場を平均化することなく、観測点Poの磁場を直接計算する。このため、テーブル参照方式に比べて、磁場の計算精度を高めることができる。特に、ソース点が観測点に近接しているときに、逐次積分方式を適用する効果が顕著である。
【0056】
また、テーブル参照方式では、ソースとなる体積要素51S(
図4)内の磁化M
jが一定であるという条件の下で磁場が計算される。逐次積分方式は、体積要素51内の磁化が空間的に変化している場合にも適用することができる。
【0057】
逐次積分方式では、粗視化後の1つの体積要素51が1つのソースとなり、かつ1つの観測点となる。このため、n個のボクセル50をまとめて1つの体積要素51に粗視化すると、ソース及び観測点の個数が共に1/nになる。その結果、ソースと観測点との組み合わせの個数が1/n2になるため、磁場の演算時間がほぼn2に比例して減少する。
【0058】
次に、
図7Aを参照して、観測点Poに発生する磁場を計算する一例について説明する。
図7Aは、ソースPsと観測点Po1、Po2との位置関係を示す図である。ソースPsを中心とした半径a1の球の内側の第1領域R1に存在する観測点Po1に発生する磁場の計算には、テーブル参照方式を適用する。これにより、計算精度を確保しつつ、演算負荷の軽減を図ることができる。第1領域R1の外側の第2領域R2に存在する観測点Po2に発生する磁場の計算には、双極子近似方式を適用する。これにより、計算精度を確保しつつ、演算負荷をさらに軽減させることができる。
【0059】
次に、
図7Bを参照して、観測点Poに発生する磁場を計算する他の例について説明する。
図7Bは、ソースPsと、観測点Po2、Po3、Po4との位置関係を示す図である。
図7Bに示した例では、第1領域R1が、ソースPsを中心とする半径a2(a2<a1)の球の内側の第3領域R3と外側の第4領域R4とに区分されている。第4領域R4内の観測点Po4に発生する磁場の計算には、
図7Aの例と同様にテーブル参照方式を適用する。第3領域R3内の観測点Po3に発生する磁場の計算には、逐次積分方式を適用する。これにより、計算精度をより高めることができる。
【0060】
実施例による磁場解析装置を用いることにより得られる効果を確認するために、実際に磁場解析を行った。次に、
図8A~
図8Cを参照して、この解析結果について説明する。
【0061】
図8A及び
図8Bは、それぞれ解析対象の磁石電動機に用いられる永久磁石の平面図及び側面図である。z軸を中心軸とする円柱の側面に沿って、円周方向に10個の永久磁石60が等間隔に配置されている。半径方向をx軸及びy軸と定義する。永久磁石60の各々の平断面は円弧状であり、半径方向に磁化されている。円周方向に隣り合う2つの永久磁石60の磁化方向は反対向きである。磁場解析において、永久磁石60を、複数のボクセル50(
図2A)に分割する。
図8Bには、粗視化後の体積要素51のz軸方向の境界を示しており、x軸方向及びy軸方向の境界は示していない。
【0062】
永久磁石60によって形成される磁場のz軸方向の変化は、x軸方向及びy軸方向の変化に比べて緩やかである。このため、z軸方向に連続する複数のボクセル50(
図2A)をまとめて体積要素51(
図2B)とする粗視化を行う。また、z
軸方向の中央近傍において磁場の変化が相対的に緩やかであり、z軸方向の両端近傍では磁場の変化が急峻になる。このため、1つの体積要素51にまとめるボクセル50の個数を、永久磁石60のz軸方向の中心近傍において相対的に多くし、z軸方向の両端近傍において相対的に少なくした。この磁場解析では、ボクセル50の個数を234,952個とし、粗視化後の体積要素51の個数を26,064個とした。比較のために、粗視化しない比較例、すなわち、すべての体積要素51の各々が1つのボクセル50で構成される例についても、磁場解析を行った。
【0063】
また、磁場解析において、
図7Bの第3領域R3と第4領域R4との境界となる球面の半径a2を、ボクセル50の一辺の長さの4倍とし、第4領域R4と第2領域R2との境界となる球面の半径a1を、ボクセル50の一辺の長さの16倍とした。
【0064】
図8Cは、実施例による方法で磁場解析を行った結果、及び比較例による方法で磁場解析を行った結果を示すグラフである。横軸は、z軸を中心とした回転方向の角度を単位「ラジアン」で表し、縦軸は磁場の強さを任意単位で表す。
図8Cのグラフには、z軸方向の中間における永久磁石60の表面における磁場の強さを示している。グラフ中の実線は実施例による磁場解析結果を示し、丸記号は、比較例による磁場解析結果を示す。
【0065】
図8Cに示すように、実施例と比較例との磁場解析結果がよく一致している。これは、粗視化しても十分な計算精度が得られていることを意味する。比較例による方法で磁場解析を行ったときの計算時間は、実施例による方法で磁場解析を行ったときの計算時間の33.9倍であった。粗視化することにより、演算負荷が軽減され、磁場解析時間の短縮化を図ることが可能であることが確認された。
【0066】
[双極子近似方式への多重極展開の適用]
次に、
図9~
図12を参照して、双極子近似方式を用いた磁場の計算に多重極展開を適用して計算時間の短縮を図る方法について説明する。
【0067】
図9は、多重極展開の方法を説明するために用いる座標系を示す図である。磁場の変化が相対的に緩やかな方向に一列に並ぶ複数の立方体のボクセル50を粗視化して1つの体積要素51が得られている。多重極展開する複数のボクセル50の個数をNで表す。粗視化された体積要素51の中心の位置をr
cで表す。位置r
cを多重極展開点Cということとする。多重極展開点Cを原点とし、磁場の変化が相対的に緩やかな方向をz軸方向とするxyz直交座標系を定義する。多重極展開点Cに多重極展開される対象となる磁気双極子を持つ複数のボクセル50はz軸上に位置する。xyz直交座標系において、j番目のボクセル50の位置はr
j-r
cで表され、観測点Poの位置はr
i-r
cで表される。j番目のボクセル50に付与された磁化をM
jで表し、j番目のボクセル50の体積をΔV
jで表す。z軸と、多重極展開点Cから観測点Poに向かうベクトルr
i-r
cとのなす角度をθ
iで表す。
【0068】
j番目のボクセル50と観測点Poとの間の距離r
ijは、以下の式(8)で表される。
【数8】
ここで、r
ic、r
jcは、それぞれ多重極展開点Cから観測点Poまで距離、及び多重極展開点Cからj番目のボクセル50までの距離である。P
L(cosθ
i)は、cosθ
iを引数とするL次のルジャンドル多項式である。なお、式(8)は、J. D. JACKSON, CLASSICAL ELECTRODYNAMICS THIRD EDITION, p.103に説明されている。
【0069】
ベクトルr
i-r
cのx成分であるx
icで式(8)を偏微分すると、以下の式(9)が得られる。
【数9】
ここで、r
ic=r
i-r
c、r
jc=r
j-r
cである。x
jcは、位置ベクトルr
jcのx成分である。
【0070】
j番目のボクセル50はz軸上に位置するため、x
jc=y
jc=0である。この条件を式(9)に適用すると、以下の式(10)が導出される。
【数10】
ここで、g
1、g
2は以下の式で表される。
【数11】
また、z
jcは、ベクトルr
jcのz成分である。
【0071】
式(10)をx
icで偏微分した後、-x
icで割ると、以下の式が得られる。
【数12】
ここで、f
1、f
2、f
3は、以下の式で表される。
【数13】
【0072】
磁気モーメントm
jを持つj番目のボクセル50が遠方の観測点Poに作る磁場H(r
i)は、以下の式で近似することができる。
【数14】
ここで、M
j及びΔV
jは、それぞれj番目のボクセル50に付与された磁化及びj番目のボクセル50の体積である。N個のボクセル50が粗視化された体積要素51が遠方の観測点Poに作る磁場は、式(14)をN個のボクセル50について足し合わせることにより求まる。式(14)をN個のボクセル50について足し合わせると、式(7)が得られる。
【0073】
式(14)に式(10)及び式(12)を代入して整理すると、以下の式が得られる。
【数15】
ここで、中カッコ内の1段目、2段目、及び3段目の式は、それぞれx成分、y成分、及びz成分を表している。m
jzは、磁気モーメントm
jのz成分である。
【0074】
粗視化前のN個のボクセル50に対応する磁気モーメントm
jが等しいと仮定する。このとき、m
1=m
2=・・・=m
N=mと表すことができる。また、粗視化前のN個のボクセル50の一辺の長さdは等しいと仮定する。j番目のボクセル50の一辺の長さをd
jで表すと、d
1=d
2=・・・=d
N=dと表すことができる。観測点PoへのN個のボクセルからの寄与を考えると、式(15)から以下の式が導出される。
【数16】
ここで、m
zは、磁気モーメントmのz成分である。係数s
1
L、s
2
L、s
3
Lは、以下の式で定義される。
【数17】
【0075】
粗視化の対象となる複数のボクセル50がz軸方向にのみ配列しており、一辺の長さdjがすべてのボクセル50において同一である場合、式(17)に示す係数s1
L、s2
L、s3
Lは、ボクセル50を粗視化して体積要素51を定義する段階で計算することが可能である。式(16)には、位置ベクトルとしてrijが現れておらず、ricのみが現れている。このため、粗視化後の体積要素51が観測点Poに作る磁場は、多重極展開点Cの位置rcと、観測点Poの位置riとを用いて計算することが可能になる。これは、観測点Poの磁場を計算するにあたり、粗視化前のN個のボクセル50を個別に扱う必要がないことを意味する。従って、N個のボクセル50の各々の位置rjごとに磁場を計算する手法と比べて、計算時間を短縮することが可能である。
【0076】
従って、磁場の変化が相対的に緩やかな一方向(z軸方向)に一列に配列した複数のボクセル50の各々の磁気双極子を多重極展開点Cに多重極展開する手法を用いることにより、計算時間を短縮することが可能である。なお、計算時間の短縮を図るために、1つの体積要素51に粗視化されるN個の複数のボクセル50の一辺の長さdjが等しく、N個のボクセル50にそれぞれ付与される磁化Mjが等しいという条件を満たすようにシミュレーション条件を設定することが好ましい。
【0077】
係数s
1
L、s
2
L、s
3
Lの値は、実際にシミュレーション計算を行うときに用いるルジャンドル多項式の展開次数まで予め計算しておき、記憶装置25(
図1)に記憶させておくとよい。
【0078】
次に、多重極展開手法を用いることの効果を確認するために行った評価実験の結果について説明する。多重極展開の手法を用いた磁場計算と、個々のボクセル50について双極子近似を適用した磁場計算とを実際に行って両者の精度及び計算時間を比較した。
【0079】
図10Aは、個々のボクセル50について双極子近似を行い、観測点Poに発生する磁場H(r
i)を計算により求める方法を説明する図である。100個のボクセル50がz軸方向に並んで配置されている。ボクセル50の各々に磁化Mが付与されている。個々のボクセル50が観測点Poに発生させる磁場を求め、100個のボクセル50について足し合わせることにより、磁場H(r
i)を求めた。この計算によって求められた磁場をHoと表記することとする。
【0080】
図10Bは、多重極展開手法を用い、観測点Poに発生する磁場H(r
i)を計算により求める方法を説明する図である。100個のボクセル50(
図10A)を粗視化して体積要素51を定義し、体積要素51の中心である多重極展開点Cに、100個のボクセル50の磁気モーメントを多重極展開した。立方体のボクセル50の各々の一辺の長さをdで表す。このとき、粗視化スケールは100dになる。式(17)を用いて係数s
1
L、s
2
L、s
3
Lを予め計算しておき、式(16)を用いて観測点Poの磁場H(r
i)を求めた。この計算によって求められた磁場をHcと表記することとする。磁場Hcの計算は、ルジャンドル多項式の展開次数を0次、2次、4次とした3つの場合について行った。
【0081】
図11は、磁場Hoに対する磁場Hcの誤差を、規格化距離の関数として示すグラフである。規格化距離は、多重極展開点Cから観測点Poまでの距離を粗視化スケール100dで規格化したものである。誤差は、(Hc-Ho)/Hoで定義される。
図11のグラフに示した細い実線、破線、及び太い実線は、それぞれルジャンドル多項式の展開次数を0次、2次、及び4次とした場合の誤差を示している。
【0082】
ルジャンドル多項式の展開次数を高くするほど、誤差が小さくなっていることがわかる。また、規格化距離が長くなるほど、誤差が小さくなっていることがわかる。
図7A及び
図7Bに示したように、ソースPsから観測点Poまでの距離が短い範囲で逐次積分方式やテーブル参照方式を用いる場合は、ソースPsからある程度遠い範囲において双極子近似
方式が適用される。このため、ルジャンドル多項式の展開次数を低くしても、十分高い精度が得られると考えられる。
【0083】
図12は、多重極展開を行うことによる計算の高速化効果を示すグラフである。個々のボクセル50について双極子近似を行う手法(
図10A)を適用した場合の計算時間をT
0で表し、多重極展開手法を適用した場合の計算時間をT
Cで表したとき、高速化効果をT
0/T
Cと定義する。例えば、計算時間T
Cが計算時間T
0の1/2になった場合、高速化効果は2倍である。
【0084】
ルジャンドル多項式の展開次数を低くするごとに、高速化効果が高くなっていることがわかる。ルジャンドル多項式の展開次数を2次までとした場合、約25倍の高速化効果が得られている。また、ルジャンドル多項式の展開次数を4次までとした場合でも、約5倍の高速化効果が得られている。
【0085】
図11及び
図12に示した評価実験により、多重極展開手法を適用することによって、所望の精度を維持しつつ、計算時間を短縮することが可能であることが確認された。ルジャンドル多項式の展開次数を低くすると計算時間は短くなるが、精度は低下する。求められる精度と、許容される計算時間に応じて、ルジャンドル多項式の展開次数を決めるとよい。
【0086】
図11に示したように、規格化距離が長くなるとルジャンドル多項式の展開次数を低くしても高い精度が得られる。このため、規格化距離に応じてルジャンドル多項式の展開次数を変化させてもよい。規格化距離が長くなるに従って、ルジャンドル多項式の展開次数を低くするとよい。この手法により、求められる精度を維持しつつ、計算時間をさらに短くすることが可能になる。
【0087】
次に、上記実施例の変形例について説明する。
上記実施例では、
図2Bに示したz軸方向に関する磁場の変化が、x軸方向及びy軸方向に関する磁場の変化より緩やかである場合を示した。この例は、磁化されている物体がz軸方向に長い棒状または筒状の形状を持つような場合に相当する。その他に、磁化されている物体がxy面内に広がる板状の形状を持つような場合には、x軸方向及びy軸方向に関する磁場の変化が、z軸方向に関する磁場の変化より緩やかになる。このような場合には、体積要素51のx軸方向及びy軸方向の寸法を、z軸方向の寸法より大きくするとよい。
【0088】
上記実施例による解析手法は、ボクセル50(
図2A)に内接する球形のビーズを配置し、ビーズに磁化(磁気モーメント)を付与し、ビーズの集合体からなる磁性材料の運動をシミュレーションする方法(磁気ビーズ法)にも適用することができる。磁気ビーズ法については、特開2015-111401号公報、特開2017-194884号公報に説明されている。
【0089】
式(7)に示した体積ΔVjを磁気ビーズの体積と考えると、ボクセル50の体積は、磁気ビーズの充填率γjを用いて、ΔVj/γjで表される。従って、本実施例による手法を磁気ビーズ法に適用する場合、式(7)のΔVjに代えて、ΔVj/γjを用いるとよい。
【0090】
図8A~
図8Cに示したシミュレーションでは、磁石電動機の永久磁石が磁化されている例を取り扱ったが、上記実施例による解析手法は、その他の電磁アクチュエータの磁場解析に利用することができる。また、対象物が永久磁石ではなく、鉄等の強磁性材料である場合にも、上記実施例による解析手法を適用することができる。この場合には、各ボクセル50(
図2A)には、外部磁場によって生じる磁化を付与し、この磁化による磁場を求めればよい。
【0091】
上記実施例では、解析対象をボクセル50(
図2A)に分割し、連続する複数のボクセル50を粗視化して体積要素51を形成したが、ボクセル50を経ることなく、解析対象を直接体積要素51に分割してもよい。
【0092】
上記実施例では、1つの体積要素51(
図2B)内に1つの観測点を設定したが、1つの体積要素51内に複数の観測点を設定してもよいし、ボクセル50ごとに観測点を設定してもよい。1つの体積要素51内に複数の観測点を設定し、観測点に発生する磁場に基づいて磁化を生じさせると、1つの体積要素51内に磁化の分布が生じる。テーブル参照方式を適用する場合には、1つの体積要素51内の磁化の分布を平均化した磁化M
jを用いて磁場を計算するとよい。双極子近似方式を適用する場合には、観測点の磁場から、ソースとなるボクセル50(
図5)ごとの磁化M
jを求めるとよい。逐次積分方式を適用する場合には、ソースとなる体積要素51内の均一ではない磁化M(r’)に基づいて、観測点の磁場を計算すればよい。
【0093】
上述の実施例は例示であり、異なる例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【符号の説明】
【0094】
20 処理装置
21 解析情報取得部
22 磁化付与部
23 磁場演算部
24 出力制御部
25 記憶装置
26 データ保持部
27 対応関係保持部
28 入力装置
29 出力装置
30 磁場解析装置
50 ボクセル
51 体積要素
51S ソース点となる体積要素
60 永久磁石