(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-09
(45)【発行日】2022-08-18
(54)【発明の名称】折畳式電子デバイス組立体、及びその折畳式電子デバイス組立体のためのカバー要素
(51)【国際特許分類】
C03C 21/00 20060101AFI20220810BHJP
C03C 17/32 20060101ALI20220810BHJP
G09F 9/00 20060101ALI20220810BHJP
【FI】
C03C21/00 101
C03C17/32 A
G09F9/00 302
G09F9/00 313
(21)【出願番号】P 2018536800
(86)(22)【出願日】2017-01-13
(86)【国際出願番号】 US2017013374
(87)【国際公開番号】W WO2017123899
(87)【国際公開日】2017-07-20
【審査請求日】2020-01-14
(32)【優先日】2016-01-15
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2016-10-31
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】397068274
【氏名又は名称】コーニング インコーポレイテッド
(74)【代理人】
【識別番号】100073184
【氏名又は名称】柳田 征史
(74)【代理人】
【識別番号】100123652
【氏名又は名称】坂野 博行
(74)【代理人】
【識別番号】100175042
【氏名又は名称】高橋 秀明
(72)【発明者】
【氏名】チゥ,ポリー ワンダ
(72)【発明者】
【氏名】ドノヴァン,マイケル パトリック
(72)【発明者】
【氏名】グロス,ティモシー マイケル
(72)【発明者】
【氏名】マトス,ルイス,ジュニア
(72)【発明者】
【氏名】パンダ,プラカシュ チャンドラ
(72)【発明者】
【氏名】スミス,ロバート リー,ザ サード
【審査官】大塚 晴彦
(56)【参考文献】
【文献】米国特許出願公開第2015/0210588(US,A1)
【文献】韓国公開特許第10-2012-0016906(KR,A)
【文献】特開2003-226771(JP,A)
【文献】特開2015-193747(JP,A)
【文献】米国特許出願公開第2016/0002103(US,A1)
【文献】特表2015-533685(JP,A)
【文献】特表2014-523352(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C03C 21/00
C03C 17/32 -17/34
C03C 27/12
B32B 17/06 、17/12
G09F 9/00
(57)【特許請求の範囲】
【請求項1】
折畳式電子デバイスのためのカバー要素であって、
前記カバー要素は:
厚さ25μm~200μmの折畳式ガラス要素であって、前記ガラス要素は更に:
(a)第1の主表面、
(b)第2の主表面、及び
(c)前記ガラス要素の前記第1の主表面から前記ガラス要素内の第1の深さまで延在する圧縮応力領域
を備え、前記領域は、前記ガラス要素の前記第1の主表面における、少なくとも100MPaの圧縮応力によって規定される、折畳式ガラス要素;並びに
厚さ10μm~100μmの、前記ガラス要素の前記第1の主表面上に配置されたポリマー層
を備え、
前記ガラス要素は、前記ガラス要素を、曲率中心を前記第2の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、前記第1の主表面に引張応力としての曲げ応力σ
Bを誘発した場合に、0<σ
I+σ
B<400MPa(引張応力)となるような、応力プロファイルを特徴とし、
前記カバー要素は、前記層を有しない前記カバー要素の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで前記ペン落下高さは、落下試験1に従って測定され、前記ガラス要素の側部に配置された前記層がペンに対面する、カバー要素。
【請求項2】
前記ガラス要素は更に、前記ガラス要素の前記第1の主表面において、2μm以下の最大欠陥サイズを備える、請求項1に記載のカバー要素。
【請求項3】
前記ガラス要素の前記第1の主表面における応力は、圧縮応力としての700MPa~2000MPaであり、
更に前記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、
前記イオン交換済み金属イオンは、前記イオン交換性金属イオンの原子半径より大きな原子半径を備える、請求項1または2に記載のカバー要素。
【請求項4】
前記ポリマー層の上に配置された耐引掻きコーティングを更に備え、
前記コーティングは、ASTM試験法D3363による少なくとも5Hの鉛筆硬度を有し、
更に、前記層及び前記コーティングを備えた前記カバー要素は、前記層又は前記コーティングを有しない前記カバー要素の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで前記ペン落下高さは、落下試験1に従って測定され、前記ガラス要素の側部に配置された前記層及び前記コーティングがペンに対面する、請求項1~3のいずれか1項に記載のカバー要素。
【請求項5】
折畳式電子デバイス組立体であって、
前記折畳式電子デバイス組立体は:
折畳式電子デバイス基板と;
前記デバイス基板上に配置された折畳式ガラス要素であって、前記ガラス要素は25μm~200μmの厚さを備え、また更に:
(a)第1の主表面、
(b)第2の主表面、及び
(c)前記ガラス要素の前記第1の主表面から前記ガラス要素内の第1の深さまで延在する圧縮応力領域
を備え、前記領域は、前記ガラス要素の前記第1の主表面における、少なくとも100MPaの圧縮応力によって規定される、折畳式ガラス要素と;
厚さ10μm~100μmの、前記ガラス要素の前記第1の主表面上に配置されたポリマー層と
を備え、
前記ガラス要素は、前記ガラス要素を、曲率中心を前記第2の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、前記第1の主表面に曲げ応力σ
B(引張応力)を誘発した場合に、0<σ
I+σ
B<400MPa(引張応力)となるような、応力プロファイルを特徴とし、
前記折畳式電子デバイス組立体は、前記折畳式電子デバイス組立体の永久的な反りが、比較例の折畳式電子デバイス組立体の永久的な反りより少なくとも10%小さくなるように、永久的な反りに耐える能力を備え、ここで前記デバイス組立体の前記永久的な反りは、85℃及び相対湿度85%で480時間の試験時保持時間の後に、静的試験によって測定され、
更に、前記比較例の折畳式電子デバイス組立体は:(a)前記折畳式電子デバイス組立体の前記基板及び前記ポリマー層とそれぞれ同一の寸法及び組成を備える、比較例の基板及び比較例のポリマー層と;(b)前記比較例の基板と前記比較例のポリマー層との間に配置され、前記折畳式電子デバイス組立体の前記ガラス要素と同一の又は前記ガラス要素より小さい厚さを備えたポリイミド(PI)で構成される、比較例の折畳式ポリマー要素とを備える、折畳式電子デバイス組立体。
【請求項6】
前記折畳式電子デバイス組立体は更に、前記折畳式電子デバイス組立体の永久的な反りが、前記比較例の折畳式電子デバイス組立体の永久的な反りより少なくとも20%小さくなるような、永久的な反りに耐える能力を備える、請求項5に記載のデバイス組立体。
【請求項7】
前記ガラス要素は更に、前記ガラス要素の前記第1の主表面において、2μm以下の最大欠陥サイズを備える、請求項5又は6に記載のデバイス組立体。
【請求項8】
前記ガラス要素の前記第1の主表面における応力は、700MPa~2000MPa(圧縮応力)であり、
更に前記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、
前記イオン交換済み金属イオンは、前記イオン交換性金属イオンの原子半径より大きな原子半径を備える、請求項5~7のいずれか1項に記載のデバイス組立体。
【請求項9】
前記ポリマー層の上に配置された耐引掻きコーティングを更に備え、
前記耐引掻きコーティングは、ASTM試験法D3363による少なくとも5Hの鉛筆硬度を有し、
更に、
前記折畳式電子デバイス組立体は、前記層又は前記コーティングを有しない前記
折畳式電子デバイス組立体の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで前記ペン落下高さは、落下試験1に従って測定され、前記ガラス要素の側部に配置された前記層及び前記コーティングがペンに対面する、請求項5~8のいずれか1項に記載のデバイス組立体。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本出願は、米国特許法第119条の下で、2016年1月15日出願の米国仮特許出願第62/279,558号、及び2016年10月31日出願の米国仮特許出願第62/415,088号の優先権の利益を主張するものであり、これら両方の内容は信頼できるものであり、また参照によりその全体が本出願に援用される。
【技術分野】
【0002】
本開示は一般に、折畳式電子デバイス組立体、これらの組立体のためのカバー要素、並びにこれらの要素及び組立体を作製するための様々な方法に関する。より詳細には、本開示は、これらの要素及び組立体の、曲げ可能な、耐衝撃性かつ耐反り性のバージョン、並びにこれらを作製するための方法に関する。
【背景技術】
【0003】
従来は剛性であった製品及び構成部品の可撓性バージョンが、新規の用途のために概念化されつつある。例えば可撓性電子デバイスは、薄型、軽量及び可撓性特性を提供でき、これは例えば湾曲したディスプレイ及びウェアラブルデバイスといった新規の用途への機会を提供する。これらの可撓性電子デバイスの多くは、これらのデバイスの電子構成部品を保持及び設置するための、可撓性基板を必要とする。金属箔は、熱安定性及び耐化学性を含むいくつかの利点を有するものの、コストが高く、光透過性を有しない。ポリマー箔は、疲労破壊に対する耐性を含むいくつかの利点を有するものの、光透過性が低く、熱安定性を有さず、気密性が限定される。ポリマー箔は、下層の電子構成部品に耐衝撃性を提供する能力が限定されていることにも悩まされる。更にポリマー箔は、適用の繰り返しに関連する曲げの発生時に、その粘弾性に関連する永久的な変形に悩まされる場合がある。
【0004】
これらの電子デバイスの一部は、可撓性ディスプレイに利用することもできる。光透過性及び熱安定性は、可撓性ディスプレイ用途にとって重要な特性となることが多い。更に可撓性ディスプレイは、特にタッチスクリーン機能を有する及び/又は折り畳むことができる可撓性ディスプレイに関して、曲げ半径が小さい場合の破損に対する耐性を含む、高い疲労及び耐穿刺性を有するべきである。
【0005】
従来の可撓性ガラス材料は、可撓性基板及び/又はディスプレイ用途に必要な特性の多くを提供している。しかしながら、ガラス材料をこれらの用途に利用するための努力は、今日まで概ね成功していない。一般にガラス基板は、極めて低い厚さレベル(<25μm)に作製することによって、ますます小さな曲げ半径を達成できる。これらの「薄型」ガラス基板は、耐穿刺性が限定される。同時に、比較的良好な耐穿刺性を有する比較的厚いガラス基板(>150μm)を製作できるが、これらの基板は、好適な疲労耐性、及び曲げ時の機械的信頼性を有しない。
【0006】
更に、折畳式電子デバイス用途のための折畳式ガラス基板は、ポリマー箔を上回る透過性、安定性及び耐摩耗性の改善を提供するものの、耐衝撃性による制限を受ける場合がある。より詳細には、折畳式ガラス基板に関する耐衝撃性の懸念は、衝撃を受けた場合の基板及び/又は下層の電子構成部品への損傷として現れる場合がある。
【発明の概要】
【発明が解決しようとする課題】
【0007】
従って、可撓性基板並びに/又はディスプレイ用途及び機能における信頼できる使用のため、特に可撓性電子デバイス用途のための、改良された折畳式電子デバイス組立体、及びこれらの組立体のためのカバー要素に対して、需要が存在する。
【課題を解決するための手段】
【0008】
いくつかの実施形態によると、厚さ約25μm~約200μmの折畳式ガラス要素を含む、折畳式電子デバイスのためのカバー要素が提供され、上記ガラス要素は更に:(a)第1の主表面、(b)第2の主表面、及び(c)上記ガラス要素の上記第1の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域を備え、上記領域は、上記ガラス要素の上記第1の主表面における、少なくとも約100MPaの圧縮応力によって規定される。上記デバイスはまた、厚さ約10μm~約100μmの、上記ガラス要素の上記第1の主表面上に配置されたポリマー層を含む。更にガラス要素は、上記ガラス要素を、曲率中心を上記第2の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、上記第1の主表面に引張応力としての曲げ応力σBを誘発した場合に、σI+σB<400MPa(引張応力)となるような、応力プロファイルを特徴とする。更に、上記カバー要素は、上記層を有しない上記カバー要素の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層がペンに対面する。
【0009】
いくつかの実施形態によると、厚さ約25μm~約200μmの折畳式ガラス要素を含む、折畳式電子デバイスのためのカバー要素が提供され、上記ガラス要素は更に:(a)第1の主表面、(b)第2の主表面、及び(c)上記ガラス要素の上記第2の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域を備え、上記領域は、上記ガラス要素の上記第2の主表面における、少なくとも約100MPaの圧縮応力によって規定される。上記デバイスはまた、厚さ約10μm~約100μmの、上記ガラス要素の上記第1の主表面上に配置されたポリマー層を含む。更にガラス要素は、上記ガラス要素を、曲率中心を上記第1の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、上記第2の主表面に引張応力としての曲げ応力σBを誘発した場合に、σI+σB<200MPa(引張応力)となるような、応力プロファイルを特徴とする。更に、上記カバー要素は、上記層を有しない上記カバー要素の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層がペンに対面する。
【0010】
いくつかの実施形態によると、折畳式電子デバイス組立体が提供され、上記折畳式電子デバイス組立体は:折畳式電子デバイス基板と;厚さ約25μm~約200μmの折畳式ガラス要素であって、上記ガラス要素は更に:(a)第1の主表面、(b)第2の主表面、及び(c)上記ガラス要素の上記第1の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域を備え、上記領域は、上記ガラス要素の上記第1の主表面における、少なくとも約100MPaの圧縮応力によって規定される、折畳式ガラス要素と;厚さ約10μm~約100μmの、上記ガラス要素の上記第1の主表面上に配置されたポリマー層とを含む。更にガラス要素は、上記ガラス要素を、曲率中心を上記第2の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、上記第1の主表面に引張応力としての曲げ応力σBを誘発した場合に、σI+σB<400MPa(引張応力)となるような、応力プロファイルを特徴とする。更に、上記折畳式電子デバイス組立体は、上記ポリマー層を有しない上記折畳式電子デバイス組立体の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層がペンに対面する。
【0011】
いくつかの実施形態によると、折畳式電子デバイス組立体が提供され、上記折畳式電子デバイス組立体は:折畳式電子デバイス基板と;厚さ約25μm~約200μmの折畳式ガラス要素であって、上記ガラス要素は更に:(a)第1の主表面、(b)第2の主表面、及び(c)上記ガラス要素の上記第1の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域を備え、上記領域は、上記ガラス要素の上記第1の主表面における、少なくとも約100MPaの圧縮応力によって規定される、折畳式ガラス要素と;厚さ約10μm~約100μmの、上記ガラス要素の上記第1の主表面上に配置されたポリマー層とを含む。更にガラス要素は、上記ガラス要素を、曲率中心を上記第2の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、上記第1の主表面に引張応力としての曲げ応力σBを誘発した場合に、σI+σB<400MPa(引張応力)となるような、応力プロファイルを特徴とする。更に、上記折畳式電子デバイス組立体は、上記折畳式電子デバイス組立体の永久的な反りが、比較例の折畳式電子デバイス組立体の永久的な反りより少なくとも10%小さくなるように、永久的な反りに耐える能力を備え、ここで上記デバイス組立体の上記永久的な反りは、85℃及び相対湿度85%で480時間の試験時保持時間の後に、静的試験によって測定される。更に、上記比較例の折畳式電子デバイス組立体は:(a)上記折畳式電子デバイス組立体の上記基板及び上記ポリマー層とそれぞれ同一の寸法及び組成を備える、比較例の基板及び比較例のポリマー層と;(b)上記比較例の基板と上記比較例のポリマー層との間に配置され、上記折畳式電子デバイス組立体の上記ガラス要素と同一の又は上記ガラス要素より小さい厚さを備えたポリイミド(PI)で構成される、比較例の折畳式ポリマー要素とを備える。
【0012】
いくつかの実施形態によると、上述の実施形態のうちのいずれの、上記カバー要素は、上記ガラス要素の上記第1の主表面、上記ガラス要素の上記第2の主表面、又は上記主表面両方において、σI+σB<0MPaとなるように構成される。上記カバー要素はまた、上記ガラス要素の上記第1の主表面、上記ガラス要素の上記第2の主表面、又は上記主表面両方の下方の、少なくとも1μmの深さまで、σI+σB<0MPaとなるよう構成できる。更に、上記ガラス要素の上記第1の主表面及び/又は上記第2の主表面における応力は、圧縮応力としての約700MPa~約2000MPaとすることができ、ここで前記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、上記イオン交換済み金属イオンは、上記イオン交換性金属イオンの原子半径より大きな原子半径を備える。更に、上記圧縮応力領域の上記第1の深さは、上記ガラス要素の上記第1の主表面及び/又は上記第2の主表面から、上記ガラス要素の上記厚さのおよそ1/3以下に設定できる。
【0013】
いくつかの実施形態によると、上記カバー要素は、上述の実施形態のうちのいずれに従って構成され、また上記ガラス要素は更に、上記ガラス要素の上記第1の主表面、上記ガラス要素の上記第2の主表面、又は上記主表面両方において、2μm以下の最大欠陥サイズを備える。
【0014】
いくつかの実施形態では、上記ポリマー層は、ポリイミド、ポリエチレンテレフタレート、ポリカーボネート又はポリメチルメタクリレートを含む。いくつかの実施形態では、上記層は、接着剤によって上記ガラス要素に連結することもできる。
【0015】
いくつかの実施形態によると、上記カバー要素又は上記折畳式電子デバイス組立体は、上述の実施形態のうちのいずれに従って構成され、更に、上記ポリマー層の上に配置された耐引掻きコーティングを含む。上記コーティングは、ASTM試験法D3363による少なくとも5Hの鉛筆硬度を有する。更に上記カバー要素又は上記折畳式電子デバイス組立体は、上記層又は上記コーティングを有しない上記カバー要素又は上記デバイス組立体の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層及び上記コーティングがペンに対面する。
【0016】
いくつかの実施形態によると、上述の実施形態のうちのいずれによる上記折畳式電子デバイス組立体は、落下試験1に従って、8cm超のペン落下高さに耐えるよう構成できる。いくつかの実施形態では、上記折畳式電子デバイス組立体は、落下試験1に従って、15cm超のペン落下高さに耐えるよう構成できる。
【0017】
いくつかの実施形態によると、上述の実施形態のうちのいずれによる上記折畳式電子デバイス組立体は、上記折畳式電子デバイス組立体の永久的な反りが、上記比較例の折畳式電子デバイス組立体の永久的な反りより少なくとも20%小さくなるように、永久的な反りに耐える能力を有するよう構成できる。
【0018】
いくつかの実施形態によると、上述の実施形態のうちのいずれによる上記折畳式ガラス要素は更に、(場合によって)上記第1の主表面又は上記第2の主表面から上記ガラス要素の第2の深さまで延在する第2の圧縮応力領域を有するよう構成される。更にこの第2の圧縮応力領域は、上記ガラス要素の(場合によって)上記第1の主表面又は上記第2の主表面における、圧縮応力としての少なくとも100MPaの応力σIによって規定できる。
【0019】
いくつかの実施形態によると、上述の実施形態のうちのいずれによる折畳式電子デバイス組立体は、上記折畳式電子デバイス基板が、ディスプレイ、プリント回路基板、接着剤及び/又は他の電子構成部品のうちの1つ以上を備えるように提供される。
【0020】
いくつかの実施形態では、上述の実施形態のうちのいずれによる上記折畳式ガラス要素は更に、1つ以上の追加のガラス層と、上記第1のガラス層の下側に配置された、それぞれ1つ以上の圧縮応力領域とを備えることができる。例えば上記ガラス要素は、上記第1のガラス層の下側に、対応する追加の圧縮応力領域を備える、2つ、3つ、4つ又は5つ以上の追加のガラス層を備えることができる。
【0021】
いくつかの実施形態では、上述の実施形態のうちのいずれの上記折畳式ガラス要素のガラス層は、アルカリ非含有又はアルカリ含有の、アルミノシリケート、ボロシリケート、ボロアルミノシリケート、又はシリケートガラス組成物を含む。また上記ガラス層の厚さは、約50μm~約100μmとすることができる。いくつかの実施形態では、上記厚さは60μm~約80μmとすることができる。
【0022】
いくつかの実施形態では、上述の実施形態のうちのいずれの上記折畳式ガラス要素(又は上記要素内の上記ガラス層)の曲げ半径は、約1mm~約20mmとすることができる。他の実施形態では、上記曲げ半径は約3mm~約10mmとすることができる。上記ガラス層の曲げ半径は、折畳式ガラス要素内に組み込まれた場合に、約1mm~約5mmとすることができる。更に、このようなガラス層に関して、上記曲げ半径は約5mm~約7mmとすることもできる。
【0023】
いくつかの実施形態では、上述の実施形態のうちのいずれの上記折畳式ガラス要素の上記第1の主表面及び/又は上記第2の主表面の上記圧縮応力領域における圧縮応力は、約500~約2000MPaである。いくつかの実施形態では、上記第1の主表面及び/又は上記第2の主表面の上記圧縮応力は、約600MPa~1000MPaである。上記圧縮応力領域はまた、上記ガラス要素の上記第1の主表面及び/又は上記第2の主表面において、5μm以下の最大欠陥サイズを含むことができる。特定の場合においては、上記圧縮応力領域は、2.5μm以下、又は0.4μm以下でさえある最大欠陥サイズを備える。
【0024】
他の実施形態では、上述の実施形態のうちのいずれの上記折畳式ガラス要素内の上記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、上記イオン交換済み金属イオンは、圧縮応力を生成するよう選択される。いくつかの実施形態では、上記イオン交換済み金属イオンは、上記イオン交換性金属イオンの原子半径より大きな原子半径を有する。他の実施形態によると、上記折畳式ガラス要素及び/又は上記ガラス要素内のガラス層は更に、コア領域と、上記コア領域上に配置された第1及び第2のクラッド領域とを備えることができ、ここで更に、上記コア領域の熱膨張係数は、上記クラッド領域の熱膨張係数より高い。
【0025】
更なる特徴及び利点は、以下の「発明を実施するための形態」に記載され、またその一部は、当業者には、「発明を実施するための形態」の記載から容易に明らかとなるか、又は以下の「発明を実施するための形態」、請求項及び添付の図面を含む本明細書に記載される実施形態を実践することにより認識されるであろう。
【0026】
以上の「発明の概要」及び以下の「発明を実施するための形態」はいずれも例示的なものにすぎず、請求項の本質及び特性を理解するための概観又は枠組みを提供することを意図したものであることを理解されたい。添付の図面は、更なる理解を提供するために含まれており、また本明細書に組み込まれて本明細書の一部を構成する。これらの図面は、1つ以上の実施形態を例示し、本明細書と併せて、様々な実施形態の原理及び動作を説明する役割を果たす。本明細書中で使用される方向に関する用語、例えば「上(up)」、「下(down)」、「右(right)」、「左(left)」、「前方(front)」、「後方(back)」、「上部(top)」、「底部(bottom)」は、これらの図面が図示されている状態に関してのみ使用されるものであり、絶対的な配向を含意することを意図したものではない。
【図面の簡単な説明】
【0027】
【
図1】本開示のいくつかの実施形態による、折畳式ガラス要素と、ポリマー層と、折畳式電子デバイス基板とを備える折畳式電子デバイス組立体の斜視図
【
図1A】曲率中心を組立体の基板側とした曲げ力に供した、
図1に示すデバイス組立体の斜視図
【
図1C】いくつかの実施形態による、イオン交換プロセスによって形成された圧縮応力領域を有する折畳式ガラス要素を含むものとしての、
図1に示すデバイス組立体の断面図
【
図1D】いくつかの実施形態による、コア領域及び2つのクラッド領域を備えたガラス層を有する折畳式ガラス要素を含むものとしての、
図1に示すデバイス組立体の断面図
【
図2】本開示のいくつかの実施形態による、3つのガラス層を備えた折畳式ガラス要素と、ポリマー層と、折畳式電子デバイス基板とを備える折畳式電子デバイス組立体の斜視図
【
図2A】曲率中心を組立体の基板側とした曲げ力に供した、
図2に示すデバイス組立体の斜視図
【
図3】本開示のいくつかの実施形態による、折畳式ガラス要素と、ポリマー層と、折畳式電子デバイス基板とを備える折畳式電子デバイス組立体の斜視図
【
図3A】曲率中心を組立体のポリマー層側とした曲げ力に供した、
図3に示すデバイス組立体の斜視図
【
図4】本開示のある態様による、ガラス構造体及びガラス要素を備えるカバー要素の斜視図
【
図4A】曲げ力に供した、
図4に示すカバー要素の斜視図
【
図5】本開示のある態様による、ガラス構造体及びガラス要素を備えるカバー要素の斜視図
【
図5A】曲げ応力を受けた
図5に示すカバー要素の斜視図
【
図6】本開示のある態様による、ガラス層の厚さの関数としての破損穿刺荷重試験のデータのプロット
【
図7A】落下試験1に供した後の、比較例の折畳式電子デバイス組立体のポリイミド層の表面及び有機発光ダイオード(OLED)層の表面の一連の写真
【
図7B】落下試験1に供した後の、本開示のいくつかの実施形態による折畳式電子デバイス組立体のポリイミド層の表面、ガラス要素の表面及び有機発光ダイオード(OLED)層の表面の一連の写真
【
図8A】本開示のいくつかの実施形態による、イオン交換プロセスステップ後の75μm厚の折畳式ガラス要素内の深さに対する圧縮応力のプロット
【
図8B】本開示のいくつかの実施形態による、イオン交換プロセスステップ及びライトエッチングステップ後の75μm厚の折畳式ガラス要素内の深さに対する圧縮応力のプロット
【
図9A】厚さ25、50及び100μm並びに曲げ半径3、5及び7mmの3つの組成物のガラス層に関する、推定応力強度係数の概略的なプロット
【
図9B】本開示のある態様による、厚さ50μm及び曲げ半径5mmの、圧縮応力領域を有する又は有しない、3つの組成物のガラス層に関する、推定応力強度係数の概略的なプロット
【
図10】本開示の更なる態様による、厚さ25、50、75及び100μm並びに曲げ半径5mmの、イオン交換プロセスによって成長させた圧縮応力領域を有する又は有しない、1つの組成物のガラス層の表面における、推定最大応力レベルの概略的なプロット
【
図11】本開示のある態様による、75μmの厚さ及びイオン交換プロセスによって成長させた圧縮応力領域を有する1つの組成物のガラス層に関する、破損穿刺荷重試験のデータのプロット
【
図12】本開示の更なる態様による、25、50、75及び100μmの厚さ並びに10及び20mmの曲げ半径と、ガラス層のコア領域とクラッド領域との間の熱膨張係数のミスマッチによって成長させた圧縮応力領域とを有する3つの組成物のガラス層に関する、推定応力強度係数の概略的なプロット
【
図13】本開示のある態様による、2グループのガラス試料に関する、破損時荷重に対する破損蓋然性のワイブルプロット
【
図14】圧縮応力が塩とガラスとの間の金属イオン交換によってもたらされる、本開示の実施形態による折畳式ガラス要素に関する応力プロファイル
【
図15】曲げ応力に供した場合の、本開示の実施形態による折畳式ガラス要素に関する応力プロファイル
【
図16】
図6及び7の応力プロファイルを加算したものを示す、結果的な応力プロファイル
【
図17】多様な異なる複数のガラス試料の2点曲げ時の、強度に対する破損蓋然性のワイブルプロット
【
図18】キューブコーナー接触後の多様な異なる複数のガラス試料の2点曲げ時の、強度に対する破損蓋然性のワイブルプロット
【
図19A】1kgf(9.80665N)の荷重下でのビッカース圧子を用いた押し込み後の、本開示の複数の態様による試料ガラス
【
図19B】2kgf(19.6133N)の荷重下でのビッカース圧子を用いた押し込み後の、本開示の複数の態様による試料ガラス
【
図19C】1kgf(9.80665N)の荷重下でのビッカース圧子を用いた押し込み後の、比較用ガラス
【
図19D】2kgf(19.6133N)の荷重下でのビッカース圧子を用いた押し込み後の、比較用ガラス
【
図21】本開示のある態様による、異なる複数のカバー要素の構成に関する、ガラス要素破損時のペン落下高さのプロット
【発明を実施するための形態】
【0028】
これより、複数の実施形態を詳細に参照し、上記実施形態の例は添付の図面に図示されている。可能な限り、図面全体を通して、同一の又は同様の部品を指すために同一の参照番号を使用する。本明細書において、範囲は「約(about)」1つの特定の値から、及び/又は「約」別の特定の値までとして表現することができる。範囲がこのように表される場合、別の実施形態は、上記1つの特定の値から、及び/又は上記別の特定の値までを含む。同様に、先行語句「約」の使用によって、値が近似値として表現されている場合、上記特定の値は別の実施形態を形成することが理解されるだろう。本明細書中の数値又は範囲の端点が「約」として記載されているかどうかにかかわらず、上記数値又は範囲の端点は、2つの実施形態、即ち:「約」で修飾された実施形態、及び「約」で修飾されていない実施形態を含むことを意図している。更に、各範囲の端点は、他方の端点との関係においても、他方の端点とは独立しても、重要であることが理解されるだろう。
【0029】
本明細書中で使用される場合、用語「実質的な(substantial)」、「実質的に、略(substantially)」及びこれらの変化形は、記載されている特徴が、数値又は記述と同一であるか又はおおよそ同等であることを記述することを意図している。例えば「略平坦な(substantially planar)」表面は、平坦な又はおおよそ平坦な表面を指すことを意図している。更に「実質的に、略」は、2つの値が等しいか又はおおよそ等しいことを指すことを意図している。いくつかの実施形態では、「実質的に、略」は、互いの約10%以内、例えば互いの約5%以内、又は互いの約2%以内である複数の値を指してよい。
【0030】
複数の特徴及び便益の中でも特に、本開示の折畳式電子デバイスのためのカバー要素及び折畳式電子デバイス組立体(及びこれらの作製方法)は、小さな曲げ半径における(例えば静止状態での張力及び疲労についての)機械的信頼性、高い耐穿刺及び衝撃性、並びに/又は永久的な反り及び変形に対する耐性を提供する。この小さな曲げ半径、高い耐穿刺及び衝撃性、並びに永久的な反りに対する耐性は、本開示のカバー要素及び折畳式電子デバイス組立体を、折畳式ディスプレイ、例えばディスプレイのある部分がディスプレイの別の部分の上部に(例えばデバイスを折り畳んだ後でディスプレイが内側又は外側となる「谷折り(in‐fold)」又は「山折り(out‐fold)」構成で)折り重ねられるディスプレイに使用する場合に有益である。更に、本明細書に記載の折畳式電子デバイスのためのカバー要素及び折畳式電子デバイス組立体は、三つ折りの又は複数回折り畳まれる構成で使用してよく、ここでは上記デバイスの2つ以上の部分が互いの上に折り重ねられる。
【0031】
例えば、カバー要素及び/又は折畳式電子デバイス組立体は:折畳式ディスプレイのユーザ側部分上、耐穿刺及び衝撃性が特に重要な箇所のカバー;デバイス自体の内部に配置され、電子構成部品がその上に配置される基板;又は折畳式ディスプレイデバイス内の他の場所のうちの1つ以上として使用してよい。あるいは、カバー要素及び/又は折畳式電子デバイス組立体は、ディスプレイを有しないものの、有益な特性のためにガラス層が使用され、折畳式ディスプレイと同様の様式で小さな曲げ半径へと折り畳まれる、デバイスにおいて使用してよい。耐穿刺及び衝撃性は、カバー要素及び/又は折畳式電子デバイス組立体を、ユーザがこのデバイスと対話するデバイスの外側で使用する場合に特に有益である。
【0032】
反りに対する耐性もまた、本開示のカバー要素及び折畳式電子デバイス組立体を、折畳式ディスプレイ、電子構成部品を備えた折畳式基板等の折り畳み駆動型の用途において使用する場合に重要となり得る。特に、これらの用途に関連する大半のデバイスは、用途に関連する折り畳み及び曲げの後にデバイスに見られる折り畳み関連痕跡を有しないことにより、利益を得ることができる。即ち本明細書において開示されるようなカバー要素及び折畳式電子デバイス組立体は、永久的な反りに対する耐性を示すことができ、これにより、これらの要素及び組立体を内包するデバイスが、用途に関連するデバイスレベルでの折り畳み及び曲げの後に、永久的な折り目、折り畳み、曲げ等に対して耐性を有するようになり、有利である。
【0033】
図1及び1Bを参照すると、折畳式電子デバイス基板150と、基板150上に配置されたカバー要素100とを含む、折畳式電子デバイス組立体200が示されている。カバー要素100は折畳式ガラス要素50を含む。ガラス要素50は、厚さ52、第1の主表面54及び第2の主表面56を含む。更にカバー要素100は、折畳式ガラス要素50の第1の主表面54上に配置された厚さ72を有するポリマー層70も含む。
【0034】
更に折畳式ガラス要素50に関して、厚さ52は、いくつかの実施形態では約25μm~約200μmとすることができる。他の実施形態では、厚さ52は、約25μm~約125μm、約50μm~約100μm、又は約60μm~約80μmとすることができる。厚さ52は、これらの範囲の間の他の厚さに設定することもできる。
【0035】
折畳式ガラス要素50は、ガラス層の第1の主表面54a及びガラス層の第2の主表面56aを有するガラス層50aを含む。更にガラス層50aは、概ね主表面54a及び56aに対して直角に構成された縁部58bも含む。ガラス層50aは更に、ガラス層厚さ52aによって規定される。
図1及び1Bに示す折畳式電子デバイス組立体200及びカバー要素100の実施形態では、折畳式ガラス要素50は1つのガラス層50aを含む。従ってデバイス組立体200及びカバー要素100に関して、ガラス層厚さ52aはガラス要素厚さ52と同等である。他の実施形態では、折畳式ガラス要素50は、2つ以上のガラス層50aを含むことができる(例えば
図2及びこれに対応する記載に示される折畳式電子デバイス組立体200c及びカバー要素100cを参照)。従ってガラス層50aの厚さ52aは、約1μm~約200μmとすることができる。例えばガラス要素50は、それぞれ約8μmの厚さ52aを有する3つのガラス層50aを含むことができる。この例では、ガラス要素50の厚さ52は約24μmとなり得る。しかしながら、ガラス要素50は、1つ以上のガラス層50aに加えて、他の非ガラス層(例えば対応するポリマー層)を含んでよいことも理解されたい。また、2つ以上のガラス層50aを備える折畳式ガラス要素50を、層50aが異なる厚さ52aを有するように構成できることも理解されたい。
【0036】
図1及び1Bでは、ガラス層50aは、アルカリ非含有アルミノシリケート、ボロシリケート、ボロアルミノシリケート及びシリケートガラス組成物から製作できる。ガラス層50aはまた、アルカリ含有アルミノシリケート、ボロシリケート、ボロアルミノシリケート及びシリケートガラス組成物から製作することもできる。特定の実施形態では、ガラス層50aの上述の組成物のうちのいずれに、アルカリ土類改質剤を添加できる。いくつかの実施形態では、以下によるガラス組成物が、ガラス層50aに好適である:(モル%で)64~69%のSiO
2;5~12%のAl
2O
3;8~23%のB
2O
3;0.5~2.5%のMgO;1~9%のCaO;0~5%のSrO;0~5%のBaO;0.1~0.4%のSnO
2;0~0.1%のZrO
2;及び0~1%のNa
2O。いくつかの実施形態では、以下の組成物がガラス層50aに好適である:(モル%で)~67.4%のSiO
2;~12.7%のAl
2O
3;~3.7%のB
2O
3;~2.4%のMgO;0%のCaO;0%のSrO;~0.1%のSnO
2;及び~13.7%のNa
2O。いくつかの実施形態では、以下の組成物もまたガラス層50aに好適である:(モル%で)68.9%のSiO
2;10.3%のAl
2O
3;15.2%のNa
2O;5.4%のMgO;及び0.2%のSnO
2。いくつかの実施形態では、ガラス層50aのための組成物は、弾性率が(他の代替的なガラスに比べて)比較的低くなるよう選択される。ガラス層50aの弾性率を低下させると、曲げ中の層50a内の引張応力を低減できる。欠陥の導入を最小化しながら低い厚さレベルに製造することの容易さ;曲げ中に生成される引張応力を相殺するために圧縮応力領域を成長させることの容易さ;光透過性;及び/又は耐腐食性を含むがこれらに限定されない、他の基準を用いて、ガラス層50aのための組成物を選択できる。
【0037】
折畳式ガラス要素50及びガラス層50aは、多様な物理的形態を採用できる。断面視野からは、要素50及び層50a(又は複数の層50a)は平坦又は平面とすることができる。いくつかの実施形態では、要素50及び層50aは、最終的な用途に応じて、非直線状のシート状形態で製作できる。一例として、楕円形のディスプレイ及びベゼルを有する移動体ディスプレイデバイスは、概ね楕円形のシート状形態を有するガラス要素50及び層50aを含んでよい。
【0038】
引き続き
図1及び1Bを参照すると、折畳式電子デバイス組立体200及びカバー要素100の折畳式ガラス要素50は、第1の主表面54aからガラス要素50の第1の深さ62まで延在する圧縮応力領域60を含むことができる。他の利点の中でも特に、圧縮応力領域60をガラス層50a内に採用することによって、曲げ時にガラス層50a内で生成される引張応力、特に第1の主表面54a付近で最大となる引張応力を相殺できる。圧縮応力領域60は、層の第1の主表面54aにおいて、圧縮応力として少なくとも約100MPaの応力σ
Iを含むことができる。いくつかの実施形態では、第1の主表面54aにおける応力σ
Iは、圧縮応力として約600MPa~約1000MPaである。他の実施形態では、ガラス層50a内で圧縮応力を生成するために採用されるプロセスに応じて、応力σ
Iは、第1の主表面54aにおける圧縮応力として1000MPaを超え、最大2000MPaとなることができる。本開示の他の実施形態では、応力σ
Iは、第1の主表面54aにおける圧縮応力として約100MPa~約600MPaとなることができる。当業者には明らかであるように、応力σ
Iは、層の第1の主表面54aにおいて、圧縮応力として約100MPa~約2000MPaのいずれのレベルとなるよう構成できる。更にいくつかの実施形態では、圧縮応力領域60は、ガラス要素50の第2の主表面56a(図示せず)から、ガラス要素50内の選択された深さまで、延在できる。また、それぞれ主表面54、56のうちの一方を始点として要素50内の選択された深さまで至る2つの圧縮応力領域60を、要素50内に存在させることができることも理解されたい。
【0039】
(ガラスの表面における、例えば折畳式ガラス要素50の主表面54、56のうちの一方における)圧縮応力は、有限会社折原製作所(日本)製FSM‐6000等の市販の機器を用いて、表面応力計(surface stress meter:FSM)によって測定される。表面応力測定は、ガラスの複屈折に関連する応力光係数(stress optical coefficient:SOC)の精密測定に依存する。SOCは、「ガラスの応力光係数の測定のための標準試験法(Standard Test Method for Measurement of Glass Stress‐Optical Coefficient)」というタイトルのASTM規格C770‐16(その内容は、参照によりその全体が本出願に援用される)に記載の手順C(ガラスディスク法)に従って測定される。
【0040】
本明細書中で使用される場合、「圧縮深さ(depth of compression:DOC)は、本明細書に記載の化学強化アルカリアルミノシリケートガラス物品内の応力が、圧縮応力から引張応力に変化する深さを意味する。DOCは、イオン交換処理に応じて、FSM又は散乱光偏光鏡(scattered light polariscope:SCALP)で測定してよい。ガラス物品内の圧縮応力が、ガラス物品内へのカリウムイオンの交換によって生成される場合は、FSMを用いてDOCを測定する。上記圧縮応力が、ガラス物品内へのナトリウムイオンの交換によって生成される場合は、SCALPを用いてDOCを測定する。ガラス物品内の圧縮応力が、ガラス内へのカリウム及びナトリウム両方のイオンの交換によって生成される場合は、ナトリウムイオンの交換深さがDOCを示し、カリウムイオンの交換深さが圧縮応力の大きさの変化(ただし圧縮応力から引張応力への応力の変化ではない)を示すと考えられるため、DOCはSCALPで測定され、上記ガラス物品内でのカリウムイオンの交換深さはFSMで測定される。
【0041】
圧縮応力領域60内では、圧縮応力はガラス層50a内において、ガラス層の第1の主表面54aから第1の深さ62へと至る深さに応じて、一定に維持できるか、低下できるか、又は上昇できる。従って、圧縮応力領域60内において様々な圧縮応力プロファイルを採用できる。更に、深さ62は、ガラス層の第1の主表面54aからおよそ15μm以下に設定できる。他の実施形態では、深さ62は、ガラス層の第1の主表面54aから、ガラス層50aの厚さ52aのおよそ1/3以下、又はガラス層50aの厚さ52aの20%以下となるように設定できる。
【0042】
図1及び1Aを参照すると、折畳式電子デバイス組立体200及びカバー要素100の折畳式ガラス要素50は、いくつかの実施形態によると、約25℃及び相対湿度約50%で少なくとも60分間、約1mm~約20mmの曲げ半径40で上記要素を保持した場合に、破損が発生しないことを特徴とし得る。
図1Aに図示され、また本明細書中で規定されるように、曲げ半径40は、特段の記載がない限り、折畳式ガラス要素50の主表面54に対して(又は
図3Aに示すような主表面56に対して)測定される。理論によって束縛されることを望むものではないが、当業者は、デバイス組立体200及び/又はカバー要素100に関連する曲げ半径を、ポリマー層70(又は存在する場合は耐引掻きコーティング90)に対して、曲げ半径40及びこれに関連する本明細書中で詳述される考慮事項に基づく値の範囲で、測定してよいことを認識するだろう。例えば、いくつかの実施形態によると、折畳式電子デバイス組立体200及び/又はカバー要素100は、約25℃及び相対湿度約50%で少なくとも60分間、ポリマー層70の外側表面に対して測定された約1mm~約20mmの曲げ半径、及びポリマー層70の厚さ72で、上記組立体及び/又は要素を保持した場合に、破損が発生しないことを特徴とし得る。本明細書中で使用される場合、用語「破損する(fail)」、「破損(failure)」等は、本開示の折畳式電子デバイス組立体、カバー要素、ガラス物品及び/又はガラス要素を意図した目的に対して不適当とする、破損、破壊、層間剥離、割れの伝播、又は他の機序を指す。これらの条件下でガラス要素50を曲げ半径40で保持する際、曲げ力42が要素50の端部に印加される。一般に、曲げ力42の印加中に、引張応力が要素50の第1の主表面54で生成され、圧縮応力が第2の主表面56で生成される。他の実施形態では、ガラス要素50は、約3mm~約10mmの曲げ半径に関して破損を回避するよう構成できる。いくつかの実施形態では、曲げ半径40は、約1mm~約5mmに設定できる。曲げ半径40は、カバー要素100の他の実施形態によると、ガラス要素50内に破損を引き起こすことなく、約5mm~約7mmに設定することもできる。いくつかの実施形態では、ガラス要素50は、約25℃及び相対湿度約50%で少なくとも120時間、約1mm~約20mmの曲げ半径40で上記要素を保持した場合に、破損が発生しないことを特徴とすることもできる。曲げ試験の結果は、上述のものとは異なる温度及び/又は湿度レベルを用いる試験条件下で変動し得る。
【0043】
再び
図1及び1Bに示す折畳式電子デバイス組立体200及びカバー要素を参照すると、折畳式ガラス要素50はまた、要素50の第2の主表面56を、(i)およそ25μm厚の、弾性率が約1GPa未満である圧力感受性接着剤(pressure‐sensitive adhesive:「PSA」)と、(ii)およそ50μm厚の、弾性率が約10GPa未満であるポリエチレンテレフタレート(「PET」)層で支持し、かつ要素50の第1の主表面54に、直径200μmの平坦な底部を有するステンレス鋼製ピンで荷重を印加した場合に、約1.5kgf(14.71N)超の耐穿刺性を特徴とし得る。本開示の実施形態による穿刺試験は、クロスヘッド速度0.5mm/分での変位制御下で実施される。ステンレス鋼製ピンは、弾性率が比較的高い材料(例えばガラス要素50)の試験に関連する上記金属製ピンの変形に起因し得るバイアスを回避するために、指定量の試験(即ち10回の試験)の後に新しいペンに交換される。いくつかの実施形態では、ガラス要素50は、ワイブルプロット内での5%以上の破損蓋然性における約1.5kgf(14.71N)超の耐穿刺性を特徴とする。ガラス要素50はまた、上記ワイブル特徴強度(即ち63.2%以上)における約3kgf(29.4199N)超の耐穿刺性を特徴とし得る。特定の実施形態では、カバー要素100のガラス要素50は、約2kgf(19.6133N)以上、2.5kgf(24.5166N)以上、3kgf(29.4199N)以上、3.5kgf(34.3233N)以上、4kgf(39.2266N)以上、及び更に高い範囲での穿刺に耐えることができる。ガラス要素50はまた、8H以上の鉛筆硬度を特徴とする。
【0044】
再び
図1及び1Bを参照すると、折畳式電子デバイス組立体200及びカバー要素100は、厚さ72を有するポリマー層70を含む。これらの構成では、ポリマー層70は、折畳式ガラス要素50の第1の主表面54上に配置される。例えばポリマー層70は、いくつかの実施形態では、折畳式ガラス要素の第1の主表面54上に直接配置できる。他の実施形態では、
図1及び1Bの例示的形態に示されているように、ポリマー層70を接着剤80で折畳式ガラス要素50に接着できる。ポリマー層70の厚さ72は、いくつかの実施形態では約1マイクロメートル(μm)~約200μm以下に設定できる。他の実施形態では、ポリマー層70の厚さ72は約10μm~約100μmに設定できる。当業者には明らかであるように、ポリマー層70の厚さ72は、約1μm~約200μm、並びに上述の値の間の他の範囲及び部分範囲のいずれのレベルとなるようにも構成できる。
【0045】
更なる実装形態によると、ポリマー層70は、低い摩擦係数を有することができる。これらの構成においては、ポリマー層70は、ガラス要素50の第1の主表面54上に配置される。本開示のカバー要素及び折畳式電子デバイスに採用される場合、ポリマー層70は、摩擦を低減する、及び/又は摩耗による表面損傷を低減する役割を果たすことができる。ポリマー層70はまた、ガラス要素50及び/又は層50aがその設計限界を超える、破損を引き起こす応力に曝露された場合に、上記要素及び/又は層の小片及び破片を保持するという、安全性のための手段も提供できる。ポリマー層70の厚さ72は、いくつかの態様では1マイクロメートル(μm)以下に設定できる。他の態様では、ポリマー層70の厚さ72は、500nm以下、又は特定の組成物に関しては10mm以下もの小ささに設定できる。更に、折畳式電子デバイス組立体200及びカバー要素100のいくつかの態様では、ポリマー層70を主表面56上に採用することによって、設計要件を超える応力に起因するガラス要素50及び/又は層50aの破片を保持するという、安全性に関する便益を提供できる。主表面56上のポリマー層70は、カバー要素100に、耐穿刺性の向上も提供できる。理論によって束縛されることを望むものではないが、ポリマー層70は、エネルギ吸収及び/又は放散及び/又は分散特性を有してよく、これによりカバー要素100が、ポリマー層70を用いなければ耐えることができない荷重を受けることができるようになる。上記荷重は静的又は動的であってよく、カバー要素100の、ポリマー層70を有する側に印加してよい。
【0046】
図1及び1Bに示す折畳式電子デバイス組立体200及びカバー要素100に配備されるように、いくつかの実施形態によると、ポリマー層70は、折畳式ガラス要素50及び/又は層50aがその設計限界を超える、破損を引き起こす応力に曝露された場合に、上記要素及び/又は層の小片及び破片を保持するという、安全性のための手段を、デバイス組立体200及びカバー要素100内に構成されたものとして提供できる。更に、折畳式電子デバイス組立体200及びカバー要素100のいくつかの実施形態では、追加のポリマー層70(図示せず)を折畳式ガラス要素50の第2の主表面56上に採用することによって、設計要件を超える応力に起因するガラス要素50及び/又は層50aの破片を(即ち第2の主表面56上又はその近傍に位置するものとして)保持するという、安全性に関する更なる便益を提供できる。
【0047】
図1及び1Bに示すように、折畳式電子デバイス組立体200及びカバー要素100に採用された折畳式ガラス要素50の主表面56上のポリマー層70はまた、上記組立体及び要素に向上された耐衝撃及び穿刺性を提供するという機能も有する。理論によって束縛されることを望むものではないが、ポリマー層70は、エネルギ吸収及び/又は放散及び/又は分散特性を有してよく、これにより折畳式電子デバイス組立体200及びカバー要素100が、ポリマー層70を用いなければ耐えることができない荷重を受けることができるようになる。上記荷重は静的又は動的であってよく、折畳式電子デバイス組立体200及びカバー要素100の、ポリマー層70を有する側に印加してよい。同様に、ポリマー層70の存在により、そうでなければ折畳式ガラス要素50に直接衝突し得る物体及び他の機器を確実にポリマー層70に衝突させることができる。これにより、静的及び/又は反復される曲げにおいて折畳式ガラス要素50の強度を低下させ得る、衝突に関連する欠陥、不良等が、折畳式ガラス要素50内で成長する可能性を低減できるという便益を提供できる。更に、ポリマー層70の存在は、衝突による応力場を、下層の折畳式ガラス要素50、及び存在する場合はいずれの折畳式電子デバイス基板150のより大きい面積に拡散させる役割を果たすこともできる。いくつかの実施形態では、ポリマー層70の存在により、折畳式電子デバイス基板150内に内包される電子構成部品、ディスプレイ特徴部分、ピクセル等に対する損傷の可能性を低減できる。
【0048】
いくつかの実施形態によると、
図1及び1Bに(即ちポリマー層70を含むものとして)示されている折畳式電子デバイス組立体200及び/又はカバー要素100は、ポリマー層70等のポリマー層を有しない比較用の折畳式電子デバイス組立体200及び/又はカバー要素100に比べて、より大きなペン落下高さに耐えることができる。より詳細には、これらのペン落下高さは、落下試験1に従って測定できる。本明細書中で記載及び言及される場合、落下試験1(Drop Test 1)は、(場合によって)カバー要素又は折畳式電子デバイス組立体の試料を、折畳式ガラス要素(例えば折畳式ガラス要素50)の、(ポリマー層70がスタックの一部であった場合に)ポリマー層70を有する側に対して付加された(特定の高さからのペンの落下による)荷重によって試験し、ここでカバー要素又はデバイス組立体の反対側は、アルミニウムプレート(400グリットのペーパーを用いてある表面粗度まで研磨した6063アルミニウム合金)で支持される、というように実施される。ガラス要素の、アルミニウムプレート上に静置された側には、テープを使用しない。落下試験1に従って、1つのチューブを用いてペンを試料まで案内し、このチューブは、チューブの長手方向軸が試料の頂部表面に対して略垂直となるよう、試料の頂部表面と接触した状態で配置される。各チューブは、外径2.54cm(1インチ)、内径1.4cm(9/16インチ)、及び長さ90cmである。各試験のための所望の高さにペンを保持するために、アクリロニトリル・ブタジエン・スチレン(「ABS」)シムを採用する(ただし90cmで実施された試験は、この高さに関してシムを使用しなかったため除外する)。各落下後、チューブを試料に対して再配置して、ペンを試料上の異なる衝突位置へと案内する。落下試験1で採用されたペンは、直径0.7mmのタングステンカーバイド製ボールポイントチップを有し、キャップを含む重量が5.73g(キャップを除くと4.68g)である、BIC(登録商標)Easy Glide Pen(細字)である。落下試験1に従い、ボールポイントが試験用試料と相互作用できるよう、上端部(即ちチップと反対側の端部)にキャップを取り付けてペンを落下させる。落下試験1に従った落下シーケンスでは、1回のペン落下を初期高さ1cmで実施した後、最大ペン高さ90cmまで2cmずつ増加させながら連続する複数回の落下を実施する。更に、各落下の実施後、いずれの観察できる破断、破損、又は折畳式電子デバイス組立体若しくはカバー要素に対する損傷の他のエビデンスの存在を、特定のペン落下高さと共に記録する。より詳細には、本開示のデバイス組立体及びカバー要素に関して、ペン落下高さを、ポリマー層、ガラス要素及び/又はOLED内包基板に対する観察される損傷に基づいて記録する。落下試験1では、同一の落下シーケンスに従って複数の試料を試験することにより、統計が改善された集団を生成できる。また、落下試験1に従って、5回の落下毎に、及び試験される新しい試料それぞれに対して、ペンを新しいペンに変更するものとする。更に、全てのペン落下は、試料の中央又は中央付近の、試料上のランダムな位置で実施され、試料の縁部付近又は縁部にはペンを落下させない。
【0049】
いくつかの実施形態によると、
図1及び1Bに(即ちポリマー層70を含むものとして)示されている折畳式電子デバイス組立体200及び/又はカバー要素100は、ポリマー層70等のポリマー層を有しない比較用の折畳式電子デバイス組立体200及び/又はカバー要素100に関連する対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐えることができる(ここで全てのペン落下高さは、本明細書中で概説されている落下試験1に従って測定される)。更にいくつかの実施形態では、折畳式電子デバイス組立体200及び/又はカバー要素100は、落下試験1に従って測定した場合に、5cm超、6cm超、7cm超、8cm超、9cm超、10cm超、11cm超、12cm超、13cm超、14cm超、15cm超、20cm超、21cm超、22cm超、23cm超、24cm超、25cm超のペン落下高さ、及びこれらのレベルの間の全てのペン落下高さに耐えることができる。
【0050】
いくつかの実施形態によると、ポリマー層70は、多様な耐エネルギ性ポリマー材料のうちのいずれを採用できる。いくつかの実施形態では、ポリマー層70は、特に層70を含む折畳式電子デバイス組立体200又はカバー要素100をディスプレイデバイス又は関連する用途において採用する場合に、高い光透過性を有するポリマー組成物として選択される。いくつかの実施形態によると、ポリマー層70は、ポリイミド(「PI」)、ポリエチレンテレフタレート(「PET」)、ポリカーボネート(「PC」)又はポリメチルメタクリレート(「PMMA」)を含む。いくつかの実施形態では、
図1及び1Bに示すように、層70を接着剤80で折畳式ガラス要素50に連結することもできる。
【0051】
別の実装形態によると、ポリマー層70は、接着に関して典型的には機械的連結機序に依存する、例えばポリテトラフルオロエチレン(「PTFE」)、フッ素化エチレンプロピレン(「FEP」)、フッ化ポリビニリデン(「PVDF」)、並びに非晶質フルオロカーボン(例えば、DuPont(登録商標)Teflon(登録商標)AF、及びAsahi(登録商標)Cytop(登録商標)コーティング)といった熱可塑性物質を含む、表面エネルギが低いことが知られている様々なフルオロカーボン材料を採用できる。層70はまた、例えばDow Corning(登録商標)2634コーティング、又は単層若しくは複層として堆積させることができるフルオロ若しくはパーフルオロシラン(例えばアルキルシラン)といった、シラン含有調剤によって製作することもできる。いくつかの態様では、層70は、シリコーン樹脂、蝋、(酸化された)ポリエチレン、PET、ポリカーボネート(PC)、ハードコート(HC)を備えるPC、ポリイミド(PI)、HCを備えるPI、又は接着剤テープ(例えば、3M(登録商標)code471接着剤テープ)を含むことができ、これらは単独で、又は例えば酸化スズであるホットエンドコーティング、若しくは例えばパリレン及びダイヤモンド様コーティング(「DLC」)である気相堆積コーティングと組み合わせて、使用される。層70はまた、酸化亜鉛、二硫化モリブデン、二硫化タングステン、六方晶窒化ホウ素、又はホウ化アルミニウムマグネシウムを含むこともでき、これらは単独で、又は上述のコーティング組成物及び調剤中の添加剤として、使用できる。
【0052】
更にポリマー層70は、(例えば層70の材料が液体として塗布される場合のように)ガラス要素50に直接適用してよく、(例えば層70の材料がシート若しくはフィルムの形態である場合のように)ガラス要素50の頂部に配置してよく、又は例えば接着剤(例えば接着剤80)を用いてガラス層50aに結合させてよい。接着剤80が存在する場合、これは光学的に透明であってよく、圧力感受性であってよく、又はこれら両方を備えていてよい。
【0053】
あるいは、又は以上に加えて、ポリマー層70は、抗微生物性、耐割れ性、汚れ防止性、及び指紋付着防止性といった、様々な他の属性を含んでよい。更にポリマー層70自体を、2つ以上の層で作製してよく、又は1層内に異なる複数の材料を用いて作製してよく、これにより、場合によって折畳式電子デバイス組立体200又はカバー要素100に多様な機能を提供できる。
【0054】
いくつかの実施形態では、
図1及び1Bに示す折畳式電子デバイス組立体200及びカバー要素100は、ガラス層50aの第1の主表面54aにおける最大欠陥サイズが5μm以下の、圧縮応力領域60を有する折畳式ガラス要素50を含むことができる。最大欠陥サイズは、2.5μm以下、2μm以下、1.5μm以下、0.5μm以下、0.4μm以下、並びに以上の値の間の全ての範囲及び部分範囲、又は更に小さい欠陥サイズに保つこともできる。ガラス要素50、層50a及び/又は複数の層50aの圧縮応力領域における欠陥サイズを低減することにより、これらの要素及び/又は層が、曲げ力、例えば曲げ力42(
図1A参照)による引張応力の印加時に割れの伝播によって破損する性向を、更に低減できる。更に、折畳式電子デバイス組立体200及びカバー要素100のいくつかの実施形態は、制御された欠陥サイズ分布(例えばガラス層50aの第1の主表面54aにおける欠陥サイズが0.5μm以下となる)を有する表面領域を含むことができ、上記表面領域もまた、圧縮応力領域が重ねられていない。
【0055】
再び
図1Aを参照すると、折畳式電子デバイス組立体200及びカバー要素100に印加される曲げ力42は、折畳式ガラス要素50の第1の主表面54において、引張応力としての曲げ応力σ
Bをもたらす。曲げ半径40がきつくなるにつれて、引張応力である曲げ応力σ
Bが高くなる。以下の式(1)を用いて、一定の曲げ半径40での曲げを受け、かつポリマー層70、1つ以上の接着剤80、デバイス基板150及び耐引掻きコーティング90からの影響がほとんど又は全くないと仮定した場合の、デバイス組立体200又はカバー要素100内の、特に折畳式ガラス要素50の第1の主表面54における、最大引張応力σ
maxを推定できる。これらの仮定及び考慮のもとで、式(1)は以下のように与えられる:
【0056】
【0057】
ここでEはガラス要素50のヤング率であり、νはガラス要素50のポアソン比であり(典型的にはνは大半のガラス組成物に関して約0.2~0.3である)、hはガラス要素の厚さ52の屈折率であり、Rは曲げ曲率半径(曲げ半径40に相当する)である。式(1)では、Rは一定であるものと仮定される。というのは、デバイス組立体200及び/又はカバー要素100は、2つの平行プレートの間の、仮想的な、完璧な円筒形のマンドレルの周りで曲げられるためである。
【0058】
理論によって束縛されるものではないが、当業者であれば、用途に関連した曲げ、又は2つの平行プレートの間での試験により、半径Rが曲げの進展中に一定でない場合があることも認識するだろう。以下の式(1A)は、このような不均一性を説明できる:
【0059】
【0060】
ここでEは材料の弾性率(GPa)であり、νは材料のポアソン比であり、tは材料の厚さ(mm)であり、Dは上記平行プレートの間の分離距離(mm)である。式(1A)は、平行プレート曲げ装置での最大応力であり、これは式(1)とは異なる。というのは、試料が平行プレート試験装置内において(式(1)で仮定したような)均一で一定の曲げ半径を達成することはなく、より小さい最小半径を有することになるためである。最小半径(R)はD-h=2.396Rとして定義され、ここでhはガラス要素厚さ(mm)であり、tと同一である。所与のプレートの分離に関して決定される最小半径Rを式(1)において用いて、最大応力を決定できる。より一般的には、最大曲げ応力はガラス要素の厚さ52及び弾性率に正比例し、かつガラス要素の曲げ曲率半径40に反比例することが、式(1)及び(1A)から明らかである。
【0061】
折畳式電子デバイス組立体200及びカバー要素100に印加される曲げ力42は、割れの伝播が、瞬間的な又はよりゆっくりとした疲労破損機序につながる可能性をもたらすこともできる。折畳式ガラス要素50の第1の主表面54又は上記表面の直下における欠陥の存在は、これらの潜在的破損モードに寄与できる。以下の式(2)を用いると、曲げ力42を受けた折畳式ガラス要素50における応力強度係数Kを推定できる。式(2)は以下のように与えられる:
【0062】
【0063】
ここでaは欠陥サイズであり、Yは形状係数であり(典型的な破損モードであるガラス縁部から生じる割れに関して、一般に1.12であると仮定される)、σは式(1)を用いて推定されるような曲げ力42に関連する曲げ応力である。式(2)は、割れ面に沿った応力が一定であると仮定するが、これは欠陥サイズが小さい(例えば<1μmである)場合には合理的な仮定である。応力強度係数Kがガラス要素50の破壊靭性KICに達すると、瞬間的な破損が発生する。ガラス要素50中での使用に好適な大半の組成物に関して、KICは約0.7MPa√mである。同様に、Kが疲労閾値Kthresholdのレベル以上に達すると、ここでもまた破損が、ゆっくりとした周期的な疲労負荷条件によって発生し得る。Kthresholdは約0.2MPa√mであると合理的に仮定される。しかしながら、Kthresholdは実験で決定でき、全ての用途パラメータに依存する(例えばある所与の用途に関する疲労寿命が長いほど、Kthresholdは増大し得る)。式(2)によると、応力強度係数は、全体的な引張応力レベル及び/又は折畳式ガラス要素50の表面における欠陥サイズを低減することによって、低減できる。
【0064】
折畳式電子デバイス組立体200及びカバー要素100のいくつかの実施形態によると、式(1)及び(2)によって推定される引張応力及び応力強度係数は、折畳式ガラス要素50の第1の主表面54における応力分布を制御することによって最小化できる。特に、第1の主表面54及びその直下における圧縮応力プロファイル(例えば圧縮応力領域60)を、式(1)で算出された曲げ応力から減算する。従って全体的な曲げ応力レベルは低減され、これにより、式(2)によって推定された応力強度係数も低減される。折畳式電子デバイス組立体200及びカバー要素100のいくつかの実施形態によると、折畳式ガラス要素50は、ガラス要素50を、第2の主表面56の側に曲率中心を置いて、1mm~20mmの標的曲げ半径40まで曲げることによって、第1の主表面に引張応力としての曲げ応力を誘発した場合に、σI+σB<400MPa(引張応力)となるような、応力プロファイルを特徴とする。いくつかの実施形態によると、折畳式電子デバイス組立体200及び/又はカバー要素100は、折畳式ガラス要素50の第1の主表面54、上記ガラス要素の第2の主表面56、又は主表面54、56の両方において、σI+σB<0MPaとなるように構成される。カバー要素は、上記ガラス要素の第1の主表面54の下方、上記ガラス要素の第2の主表面56の下方、又は主表面54、56の両方の下方の少なくとも1μmの深さまで、σI+σB<0MPaとなるように構成することもできる。
【0065】
これもまた
図1及び1Bに示すように、折畳式電子デバイス組立体200は、厚さ152を有する折畳式電子デバイス基板150を含む。いくつかの実施形態では、上記折畳式基板は、1つ以上の折畳式特徴部分を含む。他の実施形態では、
図1及び1Bに示すように、デバイス基板150は、複数の有機発光ダイオード(「OLED」)素子160を含む。デバイス基板150は例えば、可撓性ディスプレイ、プリント回路基板、ハウジング、及び/又は可撓性電子デバイスに関連する他の特徴部分を含むことができる。折畳式電子デバイス基板150が電子ディスプレイの一部として構成される場合、例えば基板150を格納する折畳式電子デバイス組立体200は、略透明とすることができる。いくつかの実施形態では、折畳式電子デバイス組立体200は、腕時計、財布又はブレスレットといった、上述のカバー要素100を含むかその他の様式で組み込んだウェアラブル電子デバイスである。本明細書中で定義されるように、「折畳式(foldable)」は、完全な折り畳み、部分的な折り畳み、曲げ、屈曲、及び複数回折り畳むことができることを含む。
【0066】
いくつかの実施形態によると、
図1及び1Bに示す折畳式電子デバイス組立体200及びカバー要素100は、ポリマー層70の上に配置された耐引掻きコーティング90を含んでよい。コーティング90は、いくつかの実施形態では1μm以下に設定された厚さ92で構成できる。他の実施形態では、コーティング90の厚さ92は、コーティング90の特定の組成物に関して、500nm以下、又は10nm以下もの小ささ、並びに上述の値の間の全ての範囲及び部分範囲に設定できる。他の実施形態では、コーティング90は、約1μm~約100μmの厚さ92を有し、これらの境界の間の全ての厚さレベルを含む。より一般的には、耐引掻きコーティング90は、これを採用する折畳式電子デバイス組立体200及びカバー要素100に、(例えば少なくとも750gの荷重を用いて、ASTM試験法D3363に従って試験した場合の鉛筆硬度の改善によって表されるような)更なる耐引掻き性を提供する役割を果たすことができる。更に耐引掻きコーティング90は、本明細書に記載の落下試験1によって定量化されるように、折畳式電子デバイス組立体200及びカバー要素100の耐衝撃性を増強することもできる。追加の耐引掻き性(及びいくつかの実施形態では更なる耐衝撃性)は、デバイス組立体200及びカバー要素100にとって、ポリマー層70によって供給される耐穿刺及び衝撃性の有意な増大が、(例えばポリマー層70を備えないデバイス組立体及び/又はカバー要素と比較して)低減された耐引掻き性によって相殺されないことを保証するために有利となり得る。
【0067】
いくつかの実施形態では、耐引掻きコーティング90は、例えばDow Corning2634コーティング、又は単層若しくは複層として堆積させることができるフルオロ若しくはパーフルオロシラン(例えばアルキルシラン)といった、シラン含有調剤を含むことができる。このようなシラン含有処方は、本明細書中で使用される場合、ハードコーティング(「HC」)と呼ぶこともできるが、本開示の分野において理解されるように、他の処方もハードコーティングを構成できることが認識される。いくつかの実施形態では、耐引掻きコーティング90は、シリコーン樹脂、蝋、(酸化された)ポリエチレン、PET、ポリカーボネート(PC)、HC成分を備えるPC、PI、及びHC成分を備えるPI、又は接着剤テープ(例えば、3M code471接着剤テープ)を含むことができ、これらは単独で、又は例えば酸化スズであるホットエンドコーティング、若しくは例えばパリレン及びダイヤモンド様コーティング(「DLC」)である気相堆積コーティングと組み合わせて、使用される。更に、耐引掻きコーティング90はまた、接着に関して典型的には機械的連結機序に依存する、例えばポリテトラフルオロエチレン(「PTFE」)、フッ素化エチレンプロピレン(「FEP」)、フッ化ポリビニリデン(「PVDF」)、並びに非晶質フルオロカーボン(例えば、DuPont Teflon AF、及びAsahi Cytopコーティング)といった熱可塑性物質を含む、表面エネルギが低いことが知られている追加のフルオロカーボン材料を含む、他の機能的特性を有する表面層も含んでよい。いくつかの追加の実施形態では、耐引掻きコーティング90は、酸化亜鉛、二硫化モリブデン、二硫化タングステン、六方晶窒化ホウ素、又はホウ化アルミニウムマグネシウムを含むこともでき、これらは単独で、又は上述のコーティング組成物及び調剤中の添加剤として、使用できる。
【0068】
図1及び1Bに示す折畳式電子デバイス組立体200及びカバー要素100の特定の実施形態では、耐引掻きコーティング90は、(例えば少なくとも750gの荷重を用いて、ASTM試験法D3363に従って測定した場合に)少なくとも5Hの鉛筆硬度を有する。いくつかの実施形態によると、耐引掻きコーティング90は、ASTM試験法D3363に従って測定した場合に、少なくとも6H、7H、8H、9Hの鉛筆硬度、及びこれらの硬度レベルの間の全ての値を呈することができる。
【0069】
図1及び1Bに示す折畳式電子デバイス組立体200及びカバー要素100の特定の実施形態によると、1つ以上の接着剤80を、ポリマー層70と折畳式ガラス要素50との間、及び/又は折畳式電子デバイス基板150と折畳式ガラス要素50との間に採用してよい。このような接着剤の厚さは、いくつかの実施形態では一般に約1μm~100μmとすることができる。他の実施形態では、各接着剤80の厚さは、約10μm~約90μm、約20μm~約60μm、又は場合によっては、1μm~100μmの厚さの値のうちのいずれか、並びに上述の値の間の全ての範囲及び部分範囲とすることができる。好ましい実施形態では、特にディスプレイタイプの用途のために構成された折畳式電子デバイス組立体200及びカバー要素100に関して、本開示の分野の当業者には理解されるように、接着剤80はほぼ透過性であり、例えば光学的に透明な接着剤(optically clear adhesive:「OCA」)である。
【0070】
図1Cを参照すると、圧縮応力領域60aを成長させるためにイオン交換プロセスに依存する、折畳式電子デバイス組立体200a及びカバー要素100aの断面図が示されている。
図1Cに示すデバイス組立体200a及びカバー要素100aは、
図1~1Bに示したデバイス組立体200及びカバー要素100の実施形態と同様であり、同様の番号が付与された要素は、対応する構造及び機能を有する。しかしながらカバー要素100aでは、折畳式ガラス要素50の圧縮応力領域60aは、イオン交換プロセスによって成長させることができる。即ち圧縮応力領域60aは、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含むことができ、上記金属イオンは、領域60aに圧縮応力を生成するよう選択される。デバイス組立体200a及びカバー要素100aのいくつかの実施形態では、イオン交換済み金属イオンは、イオン交換性金属イオンの原子半径より大きな原子半径を有する。イオン交換性イオン(例えば、Na
+イオン)は、イオン交換プロセスに供される前の、折畳式ガラス要素50及び層50a中に存在する。イオン交換用イオン(例えば、K
+イオン)を折畳式ガラス要素50及び層50aに組み込んで、上記イオン交換性イオンの一部を置換できる。イオン交換用イオン、例えばK
+イオンの、折畳式ガラス要素50及び層50aへの組み込みは、上記要素又は上記層を、イオン交換用イオンを含有する溶融塩浴(例えば溶融KNO
3塩)に浸漬することによって実施できる。この例では、K
+イオンはNa
+イオンより大きな原子半径を有し、これが存在するいずれの場所において、ガラス中に局所的な圧縮応力を生成する傾向を有する。
【0071】
採用されるイオン交換プロセス条件に応じて、イオン交換用イオンは、第1の主表面54aから第1のイオン交換深さ62aまで付加でき、圧縮応力領域60aに関するイオン交換圧縮深さ(「DOC」)を確立する。同様に、第2の圧縮応力領域60aは、
図1Cに示すように、第2の主表面56aから第2のイオン交換深さ63aまで成長させることができる。このようなイオン交換プロセスによって、100MPaをはるかに超える、DOC内での圧縮応力レベルを達成でき、最高では2000MPaにもなる。上述のように、圧縮応力領域60a(及び存在する場合は第2の領域60a)における圧縮応力レベルは、曲げ力42によって生成されたカバー要素100a、ガラス要素50及びガラス層50a内の引張応力を相殺する役割を果たすことができ、これによりσ
I+σ
B<400MPa(引張応力)、σ
I+σ
B<200MPa(引張応力)、又はσ
I+σ
B<0MPaにさえなる。
【0072】
再び
図1Cを参照すると、折畳式電子デバイス組立体200a及びカバー要素100aのいくつかの実施形態は、1つ以上の縁部圧縮応力領域59aを含むことができ、これらはそれぞれ少なくとも100MPaの圧縮応力で規定される。折畳式ガラス要素50の縁部圧縮応力領域59aは、縁部58bから、ある縁部深さ59bまでに確立できる。圧縮応力領域60aを生成するために採用したものと同様の性質のイオン交換プロセスを展開することにより、縁部圧縮応力領域59aを生成できる。より具体的には、縁部圧縮応力領域59aを用いて、例えば縁部58bの面を横断するようなガラス要素50の曲げによって縁部58bにおいて生成された引張応力を相殺できる。あるいは、又はこれに加えて、理論によって束縛されるものではないが、圧縮応力領域59aは、縁部58bにおける又は縁部58bに対する衝突又は摩擦イベントからの悪影響を相殺できる。
【0073】
図1Dでは、圧縮応力領域60bを成長させるためにガラス層50aの複数の領域間の熱膨張係数(「CTE」)のミスマッチに依存する、折畳式電子デバイス組立体200b及びカバー要素100bが示されている。
図1Dに示すデバイス組立体200b及びカバー要素100bはいずれも、
図1~1Bに示した折畳式電子デバイス組立体200及びカバー要素100と同様であり、同様の番号が付与された要素は、対応する構造及び機能を有する。しかしながらデバイス組立体200b及びカバー要素100bでは、折畳式ガラス要素50の圧縮応力領域60bは、層50a自体の中のCTE差に依存する、ガラス層50aの調整された構造によって成長させることができる。特にガラス層50aは、コア領域55aと、コア領域55a上に配置された第1及び第2のクラッド領域57aとを含む。特にコア領域55aのCTEは、クラッド領域57aのCTEより高い。製作中にガラス層50aを冷却した後、コア領域55aとクラッド領域57aとの間のCTE差により、冷却時の不均一な体積収縮が引き起こされ、これが、
図1Dに示すような第1の主表面54a及び第2の主表面56aそれぞれの下方におけるクラッド領域57a内での圧縮応力領域60bの成長につながる。換言すると、コア領域55a及びクラッド領域57aを高温で互いに密接に接触させた後、領域55a及び57aを低温まで冷却することにより、低CTEのクラッド領域57aに対する高CTEのコア領域55aの大きな体積変化が、クラッド領域57aに圧縮応力領域60bを生成する。
【0074】
再び
図1Dを参照すると、CTEによって成長させられた圧縮応力領域60bは、ガラス層の第1の主表面54aからCTE領域深さ62bにまで達し、また第2の主表面56aからCTE領域深さ63bにまで達して、CTE関連DOCを確立する。いくつかの実施形態では、圧縮応力領域60bの圧縮応力レベルは150MPaを超えることができる。コア領域55aとクラッド領域57aとの間のCTE値の差を最大化することにより、制作後の折畳式ガラス要素50の冷却時に圧縮応力領域60bにおいて生成される圧縮応力の大きさを増大させることができ、これは、
図1Dに示す折畳式電子デバイス組立体200b及びカバー要素100bの信頼性及び性能に寄与する。
【0075】
折畳式電子デバイス組立体200b及びカバー要素100bのいくつかの実施形態では、
図1Dに示すように、コア領域55aはコア領域厚さ55bを有し、クラッド領域57aはクラッド領域厚さ57bを有する。これらの実施形態では、コア領域厚さ55bをクラッド領域厚さ57bの合計で除算した厚さ比を、3以上に設定することが好ましい。従って、コア領域55aのサイズ及び/又はそのCTEを、クラッド領域57aのサイズ及び/又はCTEに対して最大化することは、デバイス組立体200b及びカバー要素100bの圧縮応力領域60bで観察される圧縮応力レベルの大きさを増大させる役割を果たすことができる。
【0076】
いくつかの実施形態によると、
図2及び2Aは、折畳式電子デバイス組立体200c及びカバー要素100cを示し、ここで折畳式ガラス要素50は、複数のガラス層50a(例えば2つの層50a、3つの層50a、4つの層50a等)を有する。
図2及び2Aに示すデバイス組立体200c及びカバー要素100cはいずれも、
図1~1Bに示した折畳式電子デバイス組立体200及びカバー要素100と同様であり、同様の番号が付与された要素は、対応する構造及び機能を有する。
図2及び2Aに示すように、一体に積み重ねられた3つのガラス層50aが、折畳式ガラス要素50を構成する。圧縮応力領域60は、
図2に示すように各層50aに存在できる。層50aは、一体に直接積み重ねることができ、又はいくつかの実施形態では、これらの間に適合性中間層を配置できる。更に、デバイス組立体200c及びカバー要素100cのいくつかの実施形態では、圧縮応力領域60は、ガラス要素50内の全ての層50aに必要なわけではない。好ましくは、圧縮応力領域60は、要素50の最上層50a(例えば曲げの外側の部分)に存在する。更に、いくつかの実施形態では、1つ以上の層50aに、縁部圧縮応力領域59a(
図1C及び対応する説明を参照)、圧縮応力領域60a(
図1C及び対応する説明を参照)、並びに/又は圧縮応力領域60b(
図1D及び対応する説明を参照)を含むことも好ましい。
【0077】
一般に、
図2及び2Aに示す折畳式電子デバイス組立体200c及びカバー要素100cの層50aは、折畳式ガラス要素50を曲げたときに互いに対して移動できるよう構成され(
図2A参照);又は層50aは互いに対して緩く連結される。層50aを積み重ねることによって得られる折畳式ガラス要素50の全体的な厚さは、要素50の耐穿刺性を向上させることができる。というのは、各層50aがその上方にある層を支持するためである。更に、曲げ中にガラス層50aが互いに対して移動できることにより、曲げ半径40への曲げ時に各層50a内で生成される引張応力の量が低減される。これは、(要素50の厚さではなく)各層50aの厚さが、式(1)で推定されるように、当該層内での引張応力の生成への寄与因子であるためである。曲げ応力の生成に関して、各層50aは隣接する層50aから概ね分離されているため、デバイス組立体200c及びカバー要素100cのいくつかの実施形態は、場合によって上記組立体及びカバー要素内に存在する各層50a内に、圧縮応力領域60を組み込む。
【0078】
ここで
図3~3Bを参照すると、折畳式電子デバイス組立体200d及びカバー要素100dが図示されている。
図3~3Bに示すデバイス組立体200d及びカバー要素100dは、
図1~1Bに示す折畳式電子デバイス組立体200及びカバー要素100と同様であり、同様の番号が付与された要素は、対応する構造及び機能を有する。デバイス組立体200d及びカバー要素100dと、組立体200及びカバー要素100との違いは、後者の組立体及び要素が「山折り」構成で曲げられた(カバー要素がデバイス基板の、曲率中心とは反対側にある)ものとして示されており、引張応力としての最大曲げ応力が、折畳式ガラス要素50の第1の主表面54に関連することである。対照的に、デバイス組立体200d及びカバー要素100dは、
図3Aに示すように、「谷折り」構成で曲げられた(カバー要素がデバイス基板の、曲率中心と同じ側にある)ものであり、引張応力としての最大曲げ応力は、折畳式ガラス要素50の第2の主表面56に関連する。従ってデバイス組立体200d及びカバー要素100dは、約25μm~約200μmの厚さ52と、ガラス要素50の第2の主表面56からガラス要素内の第1の深さ62まで延在する圧縮応力領域60とを備える折畳式ガラス要素50を含むことができ(
図3参照)、上記領域は、上記ガラス要素の上記第2の主表面において、圧縮応力としての少なくとも約100MPaの応力σ
Iによって規定される。従って、折畳式ガラス要素50の第2の主表面56の近傍に圧縮応力領域60が位置することにより、圧縮応力領域60は、デバイス組立体200d及びカバー要素100dを「谷折り」構成で曲げた場合(
図3A参照)に、この位置での引張応力としての曲げ応力を確実に相殺できる。更にガラス要素50は、上記ガラス要素を、第1の主表面54の側に曲率中心を置いて、1mm~20mmの標的曲げ半径40まで曲げることによって、第2の主表面56に引張応力としての曲げ応力σ
Bを誘発した場合に、σ
I+σ
B<200MPa(引張応力)となるような、応力プロファイルを特徴とする
更に、
図3~3Bに示すデバイス組立体200d及びカバー要素100dはまた、折畳式ガラス要素50の第1の主表面54上に配置された、約10μm~約100μmの厚さ72を備えるポリマー層70も含む。更にデバイス組立体200d及びカバー要素100dは、層70を有しないカバー要素100dの対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を特徴とし、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された層70がペンに対面する。
【0079】
ここで
図4及び4Bを参照すると、本開示の更なる一態様によるカバー要素(又はガラス物品)100eが示されている。カバー要素100eは多くの点でカバー要素100~100d(
図1~3B参照)と同様であり、同様の番号が付与された要素は、特段の記載がない限り同一又は同様の構造を有する。カバー要素100eは、そのガラス層50aの厚さ52aより大きい厚さ102を有するガラス構造体110を含む。ガラス層50aは、第1の主表面54a及び第2の主表面56aを含む。第1の主表面54aは、ガラス構造体110の第1の主表面まで延在することもできる。いくつかの態様では、ガラス構造体110は、125μm以上の厚さ102を有する。ある例示的実施形態によると、上記ガラス層の厚さ52aは、約20μm~約125μmに設定できる。カバー要素100eの特定の態様では、ポリマー層70は、ガラス層50a及びガラス構造体110の第1の主表面54a上に配置できる。カバー要素100eにおいてこの目的のために採用されるポリマー層70は、カバー要素100~100dに関連して既に概説したポリマー層70に相当する構造及び機能を有する。更に
図4及び4Bに例示的な形態で示されているように、ポリマー層70は、任意の接着剤80を用いて折畳式ガラス要素50に接着できる。これもまた例示的な形態で示されているように、
図4及び4Bに示すカバー要素100eは任意に、ポリマー層70の上に配置された耐引掻きコーティング90を含んでよい。コーティング90は、いくつかの実施形態では1μm以下に設定される厚さ92を有するように構成できる。他の実施形態では、コーティング90の厚さ92は、コーティング90の特定の組成物に関して、500nm以下、又は10nm以下もの小ささ、並びに上述の値の間の全ての範囲及び部分範囲に設定できる。他の実施形態では、コーティング90は、約1μm~約100μmの厚さ92を有し、これらの境界の間の全ての厚さレベルを含む。
【0080】
図4及び4Bに示すように、カバー要素/ガラス物品100eのガラス構造体110及びガラス層50aは、互いに対してモノリシックである。しかしながらいくつかの態様では、ガラス構造体110は、ガラス層50aに結合又はその他の方法で接合される、別個の構成部品とすることができる。更にカバー要素100eにおいて、ガラス層50aは、ガラス構造体の略平行な縁部98の間の、ガラス構造体110の中央領域96に配設される。いくつかの態様では、
図4及び4Bに示すように、ガラス層50a及び中央領域96は、平行な縁部98それぞれから、ある距離だけ離間している。他の態様では、ガラス層50a及び中央領域96を、他方の平行な縁部98よりも一方の縁部98に近接させて、離間させることができる。
【0081】
図4及び4Bに示すカバー要素100(又はガラス物品)100eでは、ガラス構造体110に組み込まれたガラス層50aは、カバー要素100、100a及び100bに関連して上述したガラス層50aと本質的に同一である。従って、カバー要素100eで採用されるガラス層50aは、ガラス層50aの第1の主表面54aから第1の深さ62aにまで広がる、圧縮応力領域60、60a又は60bを含む。カバー要素100eのいくつかの態様によると、ガラス層50a内の圧縮応力領域60、60a又は60bはまた、ガラス構造体110内へと側方に広がることもできる。全ての態様において必要とされるわけではないが、ガラス層50a及びガラス構造体110全体にわたって圧縮応力領域60、60a又は60bが含まれることにより、製造性に関する便益を提供できる。例えば、イオン交換プロセスを用いて、1回の浸漬ステップで、ガラス層50a及びガラス構造体110の両方に圧縮応力領域60又は60aを成長させることができる。
【0082】
図4Aに示すように、カバー要素100e(又はガラス物品)を、ガラス層50aをある一定の曲げ半径40で曲げる曲げ力42に供することができる。ガラス層50aの厚さ52aは一般にガラス構造体110の厚さ102より小さいため、曲げ力42は、ガラス層50a内に曲げによる変位を引き起こし、隣接するガラス構造体110のセクションには曲げをほとんど又は全く引き起こさない傾向がある。従って、厚さ52aをガラス構造体110の厚さ102未満のレベルまで最小化することにより、ガラス層50aの第1の主表面54aにおける曲げ応力及び応力強度レベルは低減される。それにもかかわらず、ガラス構造体110の厚さ102の増大は、カバー要素100eの大半に関して、更なる(即ちガラス層50aを内包する中央領域96における耐穿刺性を超える)耐穿刺性を提供する。
【0083】
カバー要素100eのいくつかの更なる態様では、ガラス層50aの下側の中央領域96及び第2の主表面56aを、一般に非適合性のポリマー層で更に補強できる。この補強は、ガラス構造体110の耐穿刺性に対して、ガラス層50aの耐穿刺性のいずれの低減を相殺する傾向を有し得る。更に、カバー要素100eのガラス層50aに採用される圧縮応力領域60、60a又は60bは、カバー要素100a及び100bに関連して既に概説したイオン交換プロセス及び/又はCTEミスマッチの概念(
図1C及び1D、並びに対応する説明を参照)によって、成長させることができる。
【0084】
図5、5A及び5Bに示すように、厚さ52e、第1の主表面54e及び第2の主表面56eを有するガラス層50eを備える、ガラス物品又はカバー要素100fが提供される。第1の主表面54eもまた、ガラス構造体110の第1の主表面まで延在できる(
図5及び5B参照)。いくつかの態様では、ガラス構造体110は、125μm以上の厚さ102を有する。ある例示的実施形態によると、ガラス層50eの厚さ52eは、約20μm~約125μmに設定できる。カバー要素100fの特定の態様では、ポリマー層70は、ガラス層50eの第1の主表面54e上及び/又はガラス構造体110の一方若しくは両方の主表面上に配置できる。カバー要素100fにおいてこの目的のために採用されるポリマー層70は、カバー要素100に関連して既に概説したポリマー層70に相当する構造及び機能を有する。いくつかの実施形態によると、追加のポリマー層70を第2の主表面56e上に配置してもよい。
【0085】
図5及び5Bに示すカバー要素(又はガラス物品)100fでは、ガラス構造体110に組み込まれたガラス層50eは、カバー要素100、100a及び100bに関連して上述したガラス層50aと本質的に同一である。更に、カバー要素100fの構造及び構成は、
図4、4A及び4Bに関連して上述したカバー要素100eと同様である。しかしながら、カバー要素100fに採用されるガラス層50eは、圧縮応力領域60を含まない。
【0086】
図5Aに示すように、カバー要素100f(又はガラス物品)を、ガラス層50eをある一定の曲げ半径40で曲げる曲げ力42に供することができる。ガラス層50eの厚さ52eは一般にガラス構造体110の厚さ102より小さいため、曲げ力42は、ガラス層50e内に曲げによる変位を引き起こし、隣接するガラス構造体110のセクションには曲げをほとんど又は全く引き起こさない傾向がある。従って、厚さ52eをガラス構造体110の厚さ102未満のレベルまで最小化することにより、ガラス層50eの第1の主表面54eにおける曲げ応力及び応力強度レベルは低減される。
【0087】
しかしながら、カバー要素100f(又はガラス物品)では、ガラス構造体110の厚さ102の増大は、カバー要素の大半に関して、更なる(即ちガラス層50eを内包する中央領域96における耐穿刺性を超える)耐穿刺性を提供する。
図6に示されている結果によって実証されるように、耐穿刺性とガラス厚さとは相関し得る。
図6の結果は、116、102、87、71、60、49、33及び25μmを含む厚さを有する様々なガラス試料の耐穿刺性を測定することによって生成された。これらのガラス試料は、15体積%のHF及び15体積%のHClを含むエッチング液を用いて、130μm厚のガラス試料を上述の厚さレベルまでエッチングすることによって、調製した。可撓性ディスプレイデバイスの構造をシミュレートするために375μm適合性層スタックへと積層した状態で、各ガラス試料に対して耐穿刺性試験を実施した。375μm適合性層スタックは、以下の層からなっていた:(a)50μm厚のPSA層、(b)100μm厚のPET層、(c)100μm厚のPSA層、及び(d)125μm厚のPET層。各ガラス試料(例えば、116μm厚のガラス、102μm厚のガラス等)を、375μmの適合性の層のスタックへと積層した後、直径200μmのステンレス鋼製チップを有するフラットチッププローブを、ガラス試料の、上記適合性層スタックとは反対側の主表面に押し込んだ。次にチップを試料内へと、(光学顕微鏡での視覚的観察によって確認される)破損まで前進させ、破損時の力を(kgfを単位として)測定した。この試験の結果を
図6にプロットした。
【0088】
図6の結果によって実証されるように、ガラス試料の耐穿刺性は、ガラス層厚さが約116μmから約25μmへと減少するにつれて、約2.5kgf(24.5166N)から約0.4kgf(3.92266N)へと減少した。従ってこれらのガラス試料の耐穿刺性は、ガラス厚さに強く依存していた。更に
図6は、厚さ約116μmの、試験したガラス基板試料に関する耐穿刺性が、約2.5kgf(24.5166N)であることを実証している。3kgf(29.4199N)を超える耐穿刺性レベルを、厚さ130μm以上のガラス基板を使用して得ることができることが、外挿によって明らかである。従って、カバー要素100fの一態様(
図5、5A及び5Bを参照)は、(カバー要素100fの、より薄いガラス層50eを内包する中央領域96に近接した領域を越えた領域において)3kgf(29.4199N)の耐穿刺性を得るために、厚さ約130μm以上のガラス構造体110を採用する。カバー要素100fのいくつかの更なる態様では、ガラス層50eの下側の中央領域96及び第2の主表面56eを、一般に非適合性のポリマー層で更に補強できる。この補強は、ガラス構造体110の耐穿刺性に対して、ガラス層50eの耐穿刺性のいずれの低減を相殺する傾向を有し得る。
【0089】
図5、5A及び5Bに示すカバー要素100fでは、ガラス層50eの厚さ52eは一般に、ガラス構造体110の厚さ102より小さい。カバー要素100fの一実装形態では、カバー要素100fに関して≦2mmの曲げ半径が、およそ20~25μmの厚さ52eに適している。耐穿刺性を維持するために厚さ102を比較的高いレベルに保持しながら、このような厚さレベルを厚さ52eに関して得るために、選択的エッチングプロセスをカバー要素100fに対して実施できる。
【0090】
ある例示的な選択的エッチングプロセスにおいて、1つのステップは、ガラス構造体に、ガラス構造体110のための厚さ102に等しい略一定の厚さを提供するものである。次にコーティング材料を、ガラス構造体110のエッチング対象の中央領域96(即ち厚さ52eまでエッチングされる領域)に隣接する領域において、ガラス構造体110の第2の主表面56eに塗布して、後続のエッチングステップの間、これらの領域を保護又はマスキングする。例えばこれらの材料は、積層又はスクリーン印刷プロセスによってガラス構造体110上にコーティングできるフィルム又はインクであってよい。当業者であれば、どのようなタイプのコーティング材料が、カバー要素100fの選択的エッチングプロセスのために選択される特定のエッチング液組成物に対して好適となるかは、容易に理解するだろう。これらの材料等を中央領域96に隣接して塗布することによって、後続のエッチングステップにおいて、中央領域96のみが、採用される酸に曝露されることになる。後続の1つ以上のエッチングステップでは、上述のようなエッチング溶液(例えば15体積%のHF及び15体積%のHCl)を、マスキングされたガラス構造体に、ガラス層50eにおいて所望の厚さ52eを達成するために適切な時間にわたって塗布できる。(例えば脱イオン水でエッチング溶液を洗い流すことを含む)選択的エッチングの完了後、マスキング材料を選択的エッチングプロセスで採用した特定のマスキング材料に応じて、剥ぎ取るか、又は好適な剥離溶液を用いて剥離できる。
【0091】
カバー要素100fを製造するために採用される選択的エッチングプロセスについて再び言及すると、縁部98は、1つ以上のエッチングステップの間、コーティングされないまま残すことができる。その結果、これらの縁部98は、ガラス層50eを厚さ52eで形成する際に、ライトエッチングに供される。縁部98に対するこのライトエッチングは、縁部98の強度を改善でき、有益である。特に、選択的エッチングプロセスの前にガラス構造体を分割するために採用される切断又は単片化プロセスは、ガラス構造体110の表面内に欠陥及びその他の不良を残す場合がある。これらの欠陥及び不良は、応用環境及び使用によってカバー要素100fに応力が印加される間に伝播して、ガラスの破壊を引き起こす場合がある。これらの縁部98にライトエッチングを行うことにより、選択的酸エッチングプロセスは、これらの欠陥の少なくとも一部を除去でき、これにより、カバー要素100fの縁部の強度及び/又は破断耐性を向上させることができる。
【0092】
カバー要素(又はガラス物品)100fでは、ガラス層50eは:(a)約25℃及び相対湿度約50%で少なくとも60分、約1mm~約5mmの曲げ半径で層50eを保持した場合に、破損が発生しないこと;(b)層50eの第2の主表面56eを(i)弾性率が約1GPa未満である、およそ25μm厚の圧力感受性接着剤、及び(ii)弾性率が約10GPa未満である、およそ50μm厚のポリエチレンテレフタレート層で支持し、層50eの第1の主表面54eに、直径200μmの平坦な底部を有するステンレス鋼製ピンで荷重を印加した場合に、約1.5kgf(14.71N)超の耐穿刺性;並びに(c)8H以上の鉛筆硬度を特徴とし得る。いくつかの態様では、ガラス構造体110の厚さ102は、125μm以上であってよい。更なる態様では、ガラス層50eの厚さ52eは、上記曲げ半径を達成するために、約20μm~約125μmに設定してよい。ある例示的実施形態によると、ガラス層50eの厚さ52eは、約1mm~約5mmの曲げ半径を達成するために、約20μm~約30μmに設定できる。いくつかの態様では、(例えばアルカリ非含有アルミノボロシリケートガラス組成物を有する)ガラス層50eの厚さ52eは、約2mmの曲げ半径、及び多少の追加のライトエッチングによって約1mmの曲げ半径を得るために、約25μm以下とすることができる。
【0093】
図1~5Bに示した折畳式電子デバイス組立体200~200d及びカバー要素100~100fは、折畳式ガラス要素50/層50aを形成するための特定のステップを含む方法によって製作できる。例えば上記方法は、折畳式ガラス要素50/第1のガラス層50aを形成するステップであって、折畳式ガラス要素50/第1のガラス層50aは、第1の主表面54、54aと、ガラス要素/層50、50aの第1の主表面54、54aから第1の深さ62、62a、62bまで延在する圧縮応力領域60、60a、60bと、最終厚さ52、52aとを有する、ステップを含むことができる。
【0094】
図1~5Bに示した折畳式電子デバイス組立体200~200d及びカバー要素100~100fを形成するための方法はまた、約25μm~約125μmの厚さ52を有するガラス要素50を形成するステップも含むことができる。ここで要素50は更に、ガラス層50a、50e、第1の主表面54、及び第2の主表面56を備える。これらの態様では、ガラス要素50又はガラス層50a、50eはまた:(a)約25℃及び相対湿度約50%で少なくとも60分、約3mm~約20mmの曲げ半径40で要素50又はガラス層50a、50eを保持した場合に、破損が発生しないこと;(b)要素50の第2の主表面56を(i)弾性率が約1GPa未満である、およそ25μm厚のPSA、及び(ii)弾性率が約10GPa未満である、およそ50μm厚のPET層で支持し、要素50又はガラス層50a、50eの第1の主表面54、54a、54eに、直径200μmの平坦な底部を有するステンレス鋼製ピンで荷重を印加した場合に、約1.5kgf(14.71N)超の耐穿刺性;並びに(c)8H以上の鉛筆硬度を特徴とし得る。本方法の他の態様では、ガラス要素50又はガラス層50a、50eは、約3mm~約10mmの曲げ半径に関して、破損を回避するよう構成できる。いくつかの態様では、曲げ半径40は約1mm~約5mmに設定できる。また本方法の他の態様によると、ガラス要素50又はガラス層50a、50eに破損を引き起こすことなく、曲げ半径40を約5mm~7mmに設定することもできる。
【0095】
上記方法のいくつかの実施形態では、折畳式ガラス要素/ガラス層50、50aを形成するステップは、以下の形成プロセス:フュージョン、スロットドロー、圧延、リドロー又はフロートのうちの1つ以上を採用する。ガラス要素50/層50aの最終的な形状因子、及び/又は最終的なガラス要素50/層50aのために使用するガラス前駆体の中間寸法に応じて、他の形成プロセスも採用できる。
【0096】
形成プロセスは更に、折畳式ガラス要素50/ガラス層50aを最終厚さ52、52aに形成するために構成してよく、従って、最終厚さ52、52aを得るためのサブプロセスステップを含んでよい。折畳式ガラス要素50/ガラス層50aを形成するステップは、最終厚さ52、52aに到達するためにガラス要素50/層50aから材料を除去するよう構成された、材料除去プロセスを含むことができる。当業者には理解されるように、この目的のために様々な公知の酸エッチング/酸薄化プロセスを採用できる。例えば好適なエッチング溶液は、15体積%のHF及び15体積%のHClを含むことができる。エッチング時間及び/又はエッチング溶液濃度を制御することによって、ガラス要素50/層50aにおいて所望の最終厚さ52、52aを得ることができる。この溶液を用いた例示的なエッチング速度は、約1.1μm/分である。本方法のいくつかの実施形態では、最終厚さ52、52aに到達するために採用される材料除去プロセスは更に、第1の主表面54、54a及び/又は第2の主表面56、56a、及び/又は縁部付近における最大欠陥サイズを、例えば5μm以下、2.5μm以下、0.5μm以下まで、又は更に小さく削減するよう、構成できる。
【0097】
図1~5Bに示した折畳式電子デバイス組立体200~200d及びカバー要素100~100fを作製する方法のいくつかの実施形態によると、イオン交換プロセスを用いて、圧縮応力領域60、60a、60b及び/又は縁部圧縮応力領域59aを生成できる。既に概説したように、折畳式ガラス要素50及び/又は層50aの1つ以上の主表面から1つ以上の選択された深さまで延在する圧縮応力領域60、60a、60b、及び/又は縁部圧縮応力領域59aを形成するステップは、以下の追加のサブプロセスステップを含むことができる:イオン交換性金属イオンを含有するガラス要素50/層50a内に圧縮応力を生成するよう選択された、複数のイオン交換用金属イオンを含む、強化用浴を提供するステップ;並びにガラス要素50/層50aを強化用浴に浸漬して、ガラス要素50/層50a中の複数のイオン交換性金属イオンの一部分を、強化用浴中の複数のイオン交換用金属イオンの一部分で交換することにより、1つ以上の主表面からガラス要素50/層50a内の1つ以上の選択された深さまで延在する圧縮応力領域60、60a、60b及び/又は縁部圧縮応力領域59aを形成するステップ。本方法のいくつかの実施形態では、イオン交換用金属イオンは、ガラス要素50/層50aが含有するイオン交換性金属イオンの原子半径よりも大きな原子半径を有する。本方法の他の実施形態では、上記浸漬ステップは、ガラス要素50/層50aを、約400℃~約450℃の強化用浴中に約15分~約180分間浸漬して、1つ以上の圧縮及び/又は縁部圧縮応力領域を成長させるステップを含む。
【0098】
いくつかの実施形態によると、Corning(登録商標)Gorilla Glass(登録商標)2.0と一致する組成を有する75μm厚のガラス試料を、430℃で30分間のKNO
3浴浸漬を含むイオン交換プロセスに供した。続いてガラス層深さ(μm)に応じた圧縮応力(MPa)を測定し、その結果を
図8Aに示す。図示されているように、このイオン交換プロセスは、ガラスの表面において約889MPaの圧縮応力を生成し、また約11.4μmの深さ(即ちDOC=11.4μm)まで、明らかな圧縮応力レベルが測定された。
【0099】
本方法のいくつかの実施形態では、ガラス要素50/層50aの表面から材料を除去するための、イオン交換後プロセス(post‐ion exchange process)により、欠陥サイズの低減に関して便益を提供できる。特にこのような除去プロセスは、ライトエッチングステップを用いて、圧縮応力領域60、60aの形成後に、第1の主表面54、54aにおいて、ガラス要素52/層52aの最終厚さから約1μm~約5μmを除去できる。例えばこの除去ステップは、950ppmのF-イオン(例えばHF酸)、0.1Mのクエン酸エッチング溶液を、この目的のために約128分間使用できる。式(2)に関連して既に概説したように、ガラス要素50/層50a、特にその主表面及び/又は縁部付近における、最大欠陥サイズの低減は、上記層及び/又は要素を曲げることによって生成される応力強度係数を低減する役割を果たすことができる。
【0100】
図8Bを参照すると、イオン交換プロセス及びイオン交換後材料除去プロセスの両方に供したガラス要素/層(例えば折畳式ガラス要素50/層50a)内の圧縮応力に対する影響を観察できる。特に
図8Bは、
図8Aのプロセスに従って調製され、更にライトエッチングプロセスに供されて、表面から約1~2μmの材料が除去されたガラス層試料に関する、ガラス層深さ(μm)の関数としての圧縮応力を示す。これらの試料を測定すると、ガラスの表面における圧縮応力が約772MPaであり、また約9.6μmの深さ(即ちDOC=9.6μm)まで、明らかな応力レベルが測定された。実際には、
図8Bは、
図8Aに示したものと同様の、深さに対する圧縮応力の関係を有するが、
図8Bが事実上
図8Aの省略バージョンであり、ライトエッチングプロセスによって実際に材料が除去されたことと整合するように、第1の部分が除去されたものであることは明らかである。従って、イオン交換後材料除去プロセスは、イオン交換プロセスによって得られるDOC及び最大圧縮応力を多少低減し得るが、同時に欠陥サイズの低減に関して便益を提供する。より高い圧縮応力レベル及び/又はDOCレベルが所与の用途に関して望まれる場合、イオン交換後材料除去プロセスによる予想される効果を仮定して、標的レベルより若干高い圧縮応力及びDOCレベルを生成するよう、イオン交換プロセスを調整できる。
【0101】
いくつかの実施形態によると、上記除去プロセスを実施することによって、圧縮応力領域60、60a及び/若しくは60b並びに/又は縁部圧縮応力領域59aにおける欠陥の分布を、ガラス要素50/層50aの主表面(例えば第1の主表面54)及び/又は縁部における最大欠陥サイズが5μm以下となるように、制御できる。また上記除去ステップを実施することによって、圧縮応力領域が、ガラス要素50/層50aの1つ以上の主表面及び/又は1つ以上の縁部において、2.5μm以下、又は0.4μm以下もの小ささ、並びに上述の値の間の全ての範囲及び部分範囲の最大欠陥サイズを備えるようにすることができる。本方法のいくつかの更なる実施形態によると、上記除去ステップを実施することによって、ガラス要素50/層50aの、圧縮応力領域及び/又は縁部圧縮応力領域が重ねられていない領域内における、欠陥サイズ分布を制御することもできる。
【0102】
いくつかの実施形態によると、
図1~5Bに示した折畳式電子デバイス組立体200~200d及びカバー要素100~100fを作製する方法は、折畳式ガラス要素50/層50aを形成する特定のステップを含むことができる。このような方法は:第1の主表面54aと、ガラス層50aの第1の主表面54aからガラス層50a内の第1の深さ62へと延在する圧縮応力領域60と、最終厚さ52aとを有する、第1のガラス層50aを形成するステップであって、上記領域60は、層50aの第1の主表面54aにおける少なくとも約100MPaの圧縮応力によって規定される、ステップ;並びに約25μm~約125μmの厚さ52を有する折畳式ガラス要素50を形成するステップであって、この要素50は、ガラス層50a、第1の主表面54、及び第2の主表面56を更に備える、ステップを含むことができる。いくつかの実施形態では、要素50は1つのガラス層50aを備える。
【0103】
いくつかの実施形態では、第1のガラス層50a及び折畳式ガラス要素50を形成する上記複数のステップは、フュージョン、スロットドロー、圧延、リドロー、フロート又は他の直接的なガラス形成プロセスを用いて、ガラス層50aの最終厚さ52a(及び要素50の厚さ52)を超える暫定厚さ(例えば約200μm)を形成するステップを含むことができる。次に、暫定的なガラス要素50/層50aを、公知の切断プロセス(例えば水切断、レーザ切断等)を用いて、最終部品寸法に近い寸法に分離、切断及び/又はその他の方法で成形できる。その後、暫定的なガラス要素50/層50aを、上述のプロセスステップに従って、最終厚さ52、52a(例えば約75μm)までエッチングできる。プロセスのこの段階において最終厚さまでのエッチングを行うことにより、先行するガラス形成及び分割/切断ステップによって導入された欠陥及び他の不良が除去されるという便益を提供できる。次にガラス要素50/層50aを、上述のイオン交換プロセスを含むがこれに限定されない、圧縮応力領域60を形成するためのプロセスステップに供することができる。続いて、最終的なライトエッチングを、上述のプロセスによって圧縮応力領域60を内包するガラス要素50/層50aに対して実施できる。この最終的なライトエッチングは、上述のイオン交換プロセスによってもたらされるガラス要素50/層50aの表面の、いずれの明らかな欠陥及び不良を除去できる。本方法に従って製造されたガラス要素50又はガラス層50aは:(a)約25℃及び相対湿度約50%で少なくとも60分、約3mm~約20mmの曲げ半径で要素50又はガラス層50aを保持した場合に、破損が発生しないこと;(b)要素50又は層50aの第2の主表面56、56aを(i)弾性率が約1GPa未満である、およそ25μm厚の圧力感受性接着剤、及び(ii)弾性率が約10GPa未満である、およそ50μm厚のポリエチレンテレフタレート層で支持し、要素50又は層50aの第1の主表面54、54aに、直径200μmの平坦な底部を有するステンレス鋼製ピンで荷重を印加した場合に、約1.5kgf(14.71N)超の耐穿刺性;並びに(c)8H以上の鉛筆硬度を特徴とし得る。
【0104】
いくつかの実施形態では、第1のガラス層50a及び折畳式ガラス要素50をそれぞれ最終厚さ52a及び厚さ52に形成する上記複数のステップは、フュージョン、スロットドロー、圧延、リドロー、フロート又は他の直接的なガラス形成プロセスを用いて、実施できる。次に、ガラス層50a(及び要素50)を、公知の切断プロセス(例えば水切断、レーザ切断等)を用いて、最終部品寸法に近い寸法に分離、切断及び/又はその他の方法で成形できる。その後、ガラス層50a(及び要素50)を、上述のイオン交換プロセスを含むがこれに限定されない、圧縮応力領域60を形成するためのプロセスステップに供することができる。続いて、最終的なライトエッチングを、上述のプロセスによって圧縮応力領域60を内包するガラス層50a及び要素50に対して実施できる。この最終的なライトエッチングは、上述のイオン交換プロセスによってもたらされるガラス層50a及び要素50の表面の、いずれの明らかな欠陥及び不良を除去できる。
【0105】
本方法に従って製造された折畳式ガラス要素50又はガラス層50aは:(a)約25℃及び相対湿度約50%で少なくとも60分、約3mm~約20mmの曲げ半径で要素50又はガラス層50aを保持した場合に、破損が発生しないこと;(b)要素50又は層50aの第2の主表面56、56aを(i)弾性率が約1GPa未満である、およそ25μm厚の圧力感受性接着剤、及び(ii)弾性率が約10GPa未満である、およそ50μm厚のポリエチレンテレフタレート層で支持し、要素50又は層50aの第1の主表面54、54aに、直径200μmの平坦な底部を有するステンレス鋼製ピンで荷重を印加した場合に、約1.5kgf(14.71N)超の耐穿刺性;並びに(c)8H以上の鉛筆硬度を特徴とし得る。
【0106】
図9Aを参照すると、3つの組成「A」、「B」及び「C」のガラス層に関する、推定応力強度係数の概略的なプロットが提供されている。Aグループの組成は:(モル%で)67.1%のSiO
2;6.3%のAl
2O
3;19.9%のB
2O
3;0.5%のMgO;4.8%のCaO;0.5%のSrO;0%のSnO
2;及び0.9%のNa
2Oである。Bグループの組成は:(モル%で)66.7%のSiO
2;10.9%のAl
2O
3;9.7%のB
2O
3;2.2%のMgO;9.1%のCaO;0.5%のSrO;0.1%のSnO
2;及び0%のNa
2Oである。Cグループの組成は:(モル%で)67.4%のSiO
2;12.7%のAl
2O
3;3.7%のB
2O
3;2.4%のMgO;0%のCaO;0%のSrO;0.1%のSnO
2;及び13.7%のNa
2Oである。式(2)を用いて、
図7Aに示す推定を生成した。ガラス層「A」、「B」及び「C」の弾性率は、それぞれ57.4、69.3及び73.6GPaである。更にガラス層「A」、「B」及び「C」のポアソン比は、それぞれ0.22、0.22及び0.23である。更に、厚さ25、50及び100μm、並びに曲げ半径3、5及び7mmのガラス層「A」、「B」及び「C」に関して、応力強度係数の推定を実施した。全ての場合において、400ナノメートル(nm)の欠陥サイズを仮定した。というのは、これが、フュージョン形成されたガラス表面に関する典型的な最大欠陥サイズであるためである。これらのガラス層のいずれにおいて、圧縮応力領域は存在しないものと仮定した。
【0107】
図9Aでは、領域I、II及びIIIはそれぞれ、瞬間的疲労領域、低速疲労破損領域、及び非破損領域を指す。上記推定によって示されているように、曲げ半径を増大させるステップ及びガラス層の厚さを低減するステップは、それぞれ応力強度係数を低減する傾向を有するステップである。曲げ半径を5mm以上に保持し、ガラス層の厚さを25μm以下に保持した場合、
図9Aの推定応力強度係数は、静的張力及び疲労下において破損が生じないことを示唆している(例えば領域IIIに関して0.2<MPa√mのK)。
図9Aに示されているこれらの特定のガラス層(即ち曲げ半径5mm以下かつ厚さ25μm以下のガラス層)は、本開示の特定の態様による、相対的に中程度の耐穿刺性要件を有する折畳式電子デバイス組立体、カバー要素及びガラス物品における使用に好適となり得る。
【0108】
図9Bを参照すると、3つの組成「A」、「B」及び「C」(即ち
図9Aに示したガラス層に関して採用したものと同一の組成)のガラス層に関する、推定応力強度係数の概略的なプロットが提供されている。
図9Bに示されている推定において採用された各ガラス層は、厚さ50μm、かつ曲げ半径5mmであるものと仮定した。更に「対照(Control)」(これもまたA、B及びCで示される)グループは、重ねられた圧縮応力領域を有しないものと仮定され、また「IOX」(これもまたA、B及びCで示される)グループは、本開示のある態様による、約700MPaの表面圧縮を有する、イオン交換プロセスによって成長させられた圧縮応力領域を有すると仮定された。これらの推定値を生成する目的で、本開示のある態様による折畳式電子デバイス組立体、ガラス要素又はガラス物品を内包するデバイスの製作後に、応用段階において顧客によって導入される大型の欠陥の最悪のシナリオを反映して、2000nm(2μm)という、従来のものにより近い欠陥サイズを仮定した。
【0109】
図9Bの推定によって示されているように、イオン交換プロセスによってガラス層内に成長させた圧縮応力領域は、曲げ時に観察されるガラス層内の応力強度レベルを有意に相殺できる。曲げ中に生成された引張応力に重畳された追加の圧縮応力により、領域IIIの閾値を十分に下回る応力強度レベル(例えば領域IIIに関して<0MPa√mのK)が、厚さ50μmかつ曲げ半径5mmの「IOX」ガラス層に関して観察された。対照的に、圧縮応力領域を有しない対照グループは、領域I内の応力強度レベルを有するものと推定された。
【0110】
図10を参照すると、
図9A及び9Bに示したCグループの組成に相当するガラス組成である特定の組成のガラス層の表面における、推定応力レベルの概略的なプロットが提供されている。
図10に示されている応力推定を生成するために採用された各ガラス層は、厚さ25、50、75及び100μmかつ曲げ半径5mmであると仮定した。更に、これらのガラス層のうちのいくつかは、圧縮応力領域を有しないものと仮定し(即ち「対照」グループ)、残りのガラス層は、例えば本開示の更なる態様によるイオン交換プロセスによって成長させた、約700MPaの表面圧縮を有する圧縮応力領域を有するものと仮定した(即ち「IOX」グループ)。全ての場合において、400nmの欠陥サイズを仮定した。というのは、これが、フュージョン形成されたガラス表面に関する典型的な最大欠陥サイズであるためである。更に、安全ゾーン(即ち領域III)を、K<0.2MPa√mの応力強度安全係数に設定した。
【0111】
図10の推定によって示されているように、イオン交換プロセスによってガラス層内に成長させた圧縮応力領域は、曲げ時に観察されるガラス層内の応力強度レベルを有意に低減できる。曲げ中に生成された引張応力に重畳された追加の圧縮応力領域により、領域IIIの閾値を十分に下回る応力強度レベル(例えば領域IIIに関して<0.2MPa√mのK)が、厚さ25、50、75及び100μmかつ曲げ半径5mmの「IOX」ガラス層の全てに関して観察された。対照的に、圧縮応力領域を有しない対照グループは、全ての厚さに関して、領域I内の応力強度レベルを有するものと推定された。
【0112】
図11を参照すると、本開示のある態様により、75μmの厚さと、イオン交換プロセスによって成長させた圧縮応力領域とを有する、ある組成のガラス層に関する破損穿刺荷重データのプロットが提供されている。特に、
図11で試験した試料に関するガラス組成は:(モル%で)68.9%のSiO
2;10.3%のAl
2O
3;15.2%のNa
2O;5.4%のMgO;及び0.2%のSnO
2であった。
図11のデータの生成に使用した実験において試験された全てのガラス層を、イオン交換プロセスに供して、表面における圧縮応力が約772MPa、かつDOLが9.6μmである圧縮応力を生成した。試験を目的として、上記ガラス層を、25μmのPSA層(弾性率約1GPa未満)を備えた50μmのPET層(弾性率約10GPa未満)に積層した。穿刺試験を、外側ガラス表面に対して実施した。
【0113】
図11に示すように、試料の4つのグループを試験して、穿刺試験データを得た。各グループを、以下の異なる穿刺デバイスに対応させた:直径200μmの平坦な底部のステンレス鋼製パンチ;0.5mmのタングステンカーバイドボール;1.0mmのタングステンカーバイドボール;及び1.5mmのタングステンカーバイドボール。
図11に示すデータは、この試験に採用した特定の穿刺デバイスに対する、穿刺破損荷重データの感受性を実証している。概して、採用した各デバイスに関して、結果の変動性は同様であるように思われる。
図11に示すように、イオン交換加工によって成長させた圧縮応力領域を有する厚さ75μmのガラス層は、直径200μmの平坦な底部のステンレス鋼製パンチを用いて試験した場合に、4kgf(39.2266N)を優に超える穿刺破損荷重を有していた。
【0114】
別の例では、本開示のある態様に従って調製した、イオン交換プロセスによって生成した圧縮応力領域を有する、
図11で試験したガラス層に相当する組成を有するガラス層を、2点静的疲労曲げ試験に供した。特に、試験したガラス層は、厚さが75μmであり、その圧縮応力領域は、430℃で30分間、KNO
3中に浸漬することによって成長させた。更にガラス層を、950ppmのF
-イオン、0.1Mのクエン酸エッチング溶液中での約128分間の酸エッチングを伴う、イオン交換後材料除去プロセスに供した。試験時、ガラス層は、約5mmの曲げ半径に120時間供しても破損しなかった。
【0115】
更なる例では、75μm厚のガラス層試料を、
図11で試験した試料の組成及びイオン交換プロセスステップに従って調製した。これらの試料は、いずれの適合性層と積層させなかった。調製したままの状態で、これらの試料は105×20×0.075mmであった。次に10個の試料を、プレート間隔10mmの静的試験治具(Teflon(登録商標)材料製のプレート)内に、曲げられた構成で配設した。続いてこれらの試料を、治具内において、相対湿度85%で85℃に保持した。10個のうち9個の試料は、治具内での2ヶ月を超える試験後にいずれの破損モードも示さなかった。1つの試料は試験1日目に破損した。これらの結果及び他の分析から、加工後に残存している破損誘発性表面欠陥を有するいずれの試料を、保証試験によって取り除くことができると考えられる。
【0116】
追加の例では、75μm厚のガラス層試料を、
図11で試験した試料の組成及びイオン交換プロセスステップ(25μmのPSA層を備えた50μmのPET層への積層を含む)に従って調製した。調製したままの状態で、これらの試料は105×20×0.075mmであった(PET/PSA層を含まない)。次に5個の試料を、クラムシェル反復疲労試験に供した。クラムシェル反復疲労試験治具は、これらの試料を、10mmのプレート間隔で、周囲温度及び湿度条件下に保持した。各サイクルは、10mmのプレート間隔を保持しながらクラムシェル治具を閉鎖するステップと、その後この治具を完全に開放して、試料を曲がっていない均一な状態とするステップとを伴っていた。5個の試料はそれぞれ、このようなサイクルに45000回以上耐えた。
【0117】
ここで
図12を参照すると、本開示の更なる態様による、
図9A及び9Bで与えられた推定のために採用された試料のグループと同一の組成を有する3つの組成、グループ「A」、「B」及び「C」のガラス層に関する、推定応力強度係数の概略的なプロットが提供されている。
図12の推定のために採用された各試料は、厚さ25、50、75又は100μm、かつ曲げ半径10又は20mmである。ここで試験された各試料は、密接に接触したガラス層のコア領域及びクラッド領域を加熱した後冷却することによって成長させた圧縮応力領域を有しており、ここで上記コア領域は、上記クラッド領域のCTEより高いCTEを有していた。
図12で採用された推定は、各試料に関して、ガラス層の表面における欠陥サイズを約2μmと仮定した。更に、コア領域とクラッド領域との間のCTEミスマッチにより、これらのガラス層の圧縮応力領域に、約150MPaの圧縮応力が生成されると仮定した。
【0118】
図12の推定によって示されているように、ガラス層のコア領域とクラッド領域との間のCTEミスマッチによってガラス層内に成長させた圧縮応力領域は、曲げ時に観察されるガラス層内の応力強度レベルを有意に低減できる。曲げ中に生成された引張応力に重畳された追加の圧縮応力領域により、領域IIIの閾値を十分に下回る応力強度レベル(例えば領域IIIに関して<0.2MPa√mのK)が、厚さ25、50、75及び100μmかつ曲げ半径20mmの全てのガラス層に関して観察された。更に、厚さ25μm及び50μmかつ曲げ半径10mmのガラス層もまた、領域IIIの閾値未満の応力強度レベルを有していた。従って、CTEミスマッチアプローチを採用したこれらの特定のガラス層は、本開示の態様によると、10mm以上の曲げ半径要件を有する折畳式電子デバイス組立体、カバー要素及びガラス物品(例えば
図1Dのカバー要素100b及び対応する説明を参照)内で採用できる。
【0119】
図13では、本開示のある態様による、75μmの厚さと、イオン交換プロセスによって成長させた圧縮応力領域とを有する、ある組成のガラス層に関する穿刺荷重データに対する破損蓋然性のワイブルプロットが提供されている。特に、試験した試料に関するガラス組成は、
図11で試験したものと同等であった。
図13のデータを生成するために使用された実験において試験した全てのガラス層を、イオン交換プロセスに供して、表面における圧縮応力が約772MPa、かつDOLが9.6μmの圧縮応力領域を生成した。
図13において白い丸で表されている、ガラス層の「B」グループは、25μmのPSA層を備えた50μmのPET層に積層されたガラス試料からなっていた。全ての穿刺試験を、これらの試料の、PET/PSA層スタックから離れた外側ガラス表面に対して実施した。
図13において黒い丸で表されている、ガラス層の「A」グループは、PET/PSA層スタックに積層されていないガラス試料からなっていた。
図13に示す穿刺試験結果は、直径200μmの平坦な底部のステンレス鋼製パンチを用いて生成された。
【0120】
図13に示すように、試料の非積層「A」グループ及び積層「B」グループはそれぞれ、4.3kgf(42.1686N)及び3.3kgf(32.3619N)のワイブル特性強度値(即ち63.2%以上の破損蓋然性における値)を示した。更に、両方のグループからの全ての試料は5.5kgf(53.9366N)以上において破損した。積層「B」グループのワイブル弾性率は、非積層「A」グループのワイブル弾性率より高く、これは、試料を積層することによって破損性能の変動性を低減できることを示している。一方、非積層「A」グループは、積層「B」グループに比べて高い平均穿刺破損荷重及びワイブル特性強度を示しており、これは、積層が穿刺試験性能をある程度低減できることを示唆しており、これは、穿刺試験チップ付近のガラスの近傍の適合性層に関連する局所的な応力集中の増大によって引き起こされると思われる。従って、本開示の態様による折畳式電子デバイス組立体及びカバー要素の積層に関連する選択及びオプションは、耐穿刺性の変動性の可能な最適化、及び耐穿刺性の全体的な最大化に留意したものとすることができる。
【0121】
ガラス要素及び/又は1つ以上の層における全体的な応力プロファイル
ガラス内の引張応力は欠陥を伝播させる傾向があるが、ガラス内の圧縮応力は欠陥の伝播を抑制する傾向がある。欠陥は、ガラスの作製、取り扱い又は加工の性質に由来するものとしてガラス中に存在し得る。従って、ガラスの、欠陥を有する又は欠陥を受ける可能性がある部分(即ち主表面、及び主表面から割れが貫入し得る深さまで)を圧縮下とすることが望ましい。曲げられたガラスの片に関して、応力プロファイルは2つの主要な成分で構成され、第1のσIは、ガラスの作製及び/又は加工方法に由来してガラス内に固有のものとして存在するものであり、第2のσBは、曲げによってガラス内で誘発されるものである。
【0122】
第1の成分σ
I、即ちガラス自体の中の固有の応力の一例を、
図14に示す。線1202は、圧縮応力が756MPaであり、DOCが9.1マイクロメートルである、Corning Code 2319(Gorilla Glass 2)製の75マイクロメートル厚のガラス要素に関する応力プロファイルである。本明細書中で使用される場合、正の(+)応力は引張応力であり、圧縮応力は負(-)である。ガラス中の固有応力プロファイルは、(圧縮応力をガラスの外側層に付加し得る、上述のようなガラス積層体の場合等のような)ガラス作製時の様々なIOX条件、ガラス組成、及び/又は様々な加工条件に基づいて変動し得る。いずれの場合においても、ガラス自体が、ある固有応力プロファイルを有することになる。
【0123】
本開示の折畳式電子デバイス組立体及びカバー要素において採用される折畳式ガラス要素50が曲げられる場合、この曲げは、ガラス内の応力プロファイルに対して第2の応力成分σ
Bを誘発する。例えば折畳式ガラス要素50を、
図1Aに示す方向に曲げる場合、この曲げる動作によって誘発された引張応力は、上述の式(1)によって与えられ、外側表面、例えばガラス要素50の第1の主表面54において最大となる。第2の主表面56は圧縮下となる。曲げ誘発型応力の一例を、
図15において線1302で示す。線1302は、Corning Code 2319(Gorilla Glass 2)製の75マイクロメートル厚のガラス要素に関する曲げ応力プロットであるが、差し当たり、IOXによるガラス内の固有応力プロファイルを無視している。プロットされているように、このタイプのガラスに関する式(1)のためのパラメータは、弾性率E=71.3GPa、ポアソン比ν=0.205、厚さh=75マイクロメートル、及び曲げ半径R=4.5mmである。
【0124】
よって、ガラス(例えば折畳式ガラス要素50)内の全体的な応力プロファイルは、ここでも、2つの上述の成分の合計、即ちσ
I+σ
Bとなる。この全体的な応力は、
図16において実線1402で示されており、これは、短い破線で示されている線1202の固有応力σ
Iと、長い破線で示されている線1302の曲げ誘発型応力σ
Bとの合計である。ガラス要素50の外側表面、例えば
図1Aに示す主表面54における応力は、プロットの左側に示されており、第2の主表面56(内側)における応力は、プロットの右側に示されている。線1402から確認できるように、内側の第2の主表面56の応力は圧縮応力であり、欠陥の伝播を制限する。また、外側又は第1の主表面54の応力もまた圧縮応力であり、欠陥の伝播を制限する。図示されているように、上述の条件に関して、圧縮応力は、第1の主表面54から数マイクロメートルの深さまで延在する。外側表面における圧縮応力の量、及び外側主表面の下方の、圧縮応力が延在する深さは、これまでに及び本開示の全体を通して記載されている多数の方法で、増大させることができる。まず、曲げ誘発型引張応力をより小さくしてよい。式(1)から確認できるように、曲げ誘発型応力σ
Bは、より薄いガラス、及び/又はより大きな曲げ半径、及び/又は弾性率Eがより低いガラス、及び/又はポアソン比νがより高いガラスを用いることによって、小さくすることができる。第2に、外側表面における圧縮応力の量は、
図14に関する議論に関連して上述した様々なIOX条件、ガラス組成及び/又は様々な加工条件を用いることによって、所望の位置により大きな固有圧縮応力σ
Iを有するガラスを選択することにより、増大させることができる。
【0125】
いくつかの実施形態では、曲げ半径が≦20mmである折畳式又はロール式ディスプレイ(例えば折畳式電子デバイス組立体200~200d及びカバー要素100~100f)に関する、外側の第1の主表面、即ち折畳式ガラス要素50の曲げ部分の外側の主表面、例えば
図1Aに示す第1の主表面54において、固有応力σ
Iと曲げ応力σ
Bとの合計は、以下の式(3)で示されるように、0MPa未満となるように構成できる:
【0126】
【0127】
これもまた既に上述したように、折畳式電子デバイス組立体200~200d及びカバー要素100~100fのいくつかの実施形態は、式(3)が、固有応力σIと曲げ応力σBとの合計が400MPa未満(引張応力)、200MPa未満(引張応力)等の結果をもたらすようなものである。
【0128】
更に、折畳式電子デバイス組立体200~200d及びカバー要素100~100fの折畳式ガラス要素50内の応力プロファイルを、一部の例においては主表面54の下方に少なくとも1マイクロメートルの深さ、他の例では主表面54の下方に少なくとも2マイクロメートルの深さ、及び更に他の例では主表面54の下方に少なくとも3マイクロメートルの深さ、並びに上述の値の間の全ての範囲及び部分範囲において式(3)が満たされるように規定すると、有益となり得る。式(3)が主表面の下方の深い位置で成り立つほど、デバイスの耐久性が高くなる。即ち、欠陥(例えば製造又は使用中のデバイスの取り扱いに由来する擦過傷)が、主表面の下方の、式(3)の関係が成り立つ深さよりも深くまで延在する場合、欠陥は時間と共に伝播し、ガラス要素は破損することになる。換言すると、曲げによって誘発される応力が範囲1403に内包される、即ち線1402が0以下においてY軸と交差するように、IOXプロファイルを管理することによって、破損を最小化するべきである(
図16参照)。また、更なる例では、複数の欠陥が範囲1403に内包される、即ちガラス表面からの最大欠陥深さが、線1402がX軸と交差する点を超えないように、欠陥群を管理するべきであり、これにより、欠陥がガラスの圧縮領域に内包され、伝播しなくなる。よって、領域1403を最大化することによって、欠陥を最小化しながら、より小さな曲げ半径及びより深い欠陥を許容できる。
【0129】
外側主表面は、上述の議論における第1の主表面54として示されているが、いくつかの例では、第2の主表面56が、第1の主表面54の代わりに外側主表面となってよい。他の例、例えば3重折り畳み構成では、第1の主表面54及び第2の主表面56の両方が、外側主表面となる、即ちガラス要素50の曲げ部分の外側にある部分を有してよい。いくつかの例では、折畳式電子デバイス組立体200~200d及びカバー要素100~100f(
図1~5B参照)を、第2の主表面56側に配置されたディスプレイパネルと共に使用し、一方、他の例では、これらの組立体及びカバー要素を、第1の主表面54側に配置されたディスプレイパネルと共に使用してよい。既に記載されているように、デバイス組立体200~200d及びカバー要素100~100fは、第1の主表面54及び第2の主表面56の一方又は両方の上に配置されたポリマー層70を有し、これにより、視認者は、ポリマー層70及び折畳式ガラス要素50を通してディスプレイを見ることになる。例えば
図1A、2A及び3A参照。
【0130】
耐衝撃性
既に記載したように、本開示の折畳式電子デバイス組立体及びカバー要素の耐穿刺性(及び/又は耐久性)を更に向上させるために、有利には、ガラス要素50の荷重を受承する側にポリマー層70を設けてよい。理論によって束縛されることを望むものではないが、層70がカバー要素100~100fの荷重を受承する側にある場合、層70は、荷重によるエネルギの放散を支援でき、これによりガラス要素は、荷重の増大に耐えることができる。これは特に、ステンレス鋼製チップ及びタングステンカーバイドボール試験に関連して上述した静的荷重とは反対に、荷重が動的なものである場合に当てはまり得る。動的荷重試験の一例は、「落下試験1」に関連して上述したようなペン落下試験である。
【0131】
ここで
図7Aを参照すると、落下試験1に供した後の比較用折畳式電子デバイス組立体の、ポリイミド層の表面及び有機発光ダイオード(OLED)層の表面の、一連の写真が提供されている。この比較用折畳式電子デバイス組立体の構成では、可撓性OLED内包基板(即ちSamsung(登録商標)Galaxy S6縁部可撓性OLEDモジュール)が、基板の役割を果たす。更に、
図7Aに示すように、50μm厚のポリイミド(「PI」)材料と、50μm厚の着脱式接着剤テープとの、2つの交互の層が、基板上に配置される。
【0132】
続いて、ガラス要素上に配置された折畳式ガラス要素及びポリマー層を有しない、
図7Aに示されているこの比較用デバイス構成を、組立体のPI側にペンを落下させる、様々なペン落下高さでの落下試験1に供した。
図7Aから明らかであるように、ペン落下高さ3cmにおいてPI層上に損傷が観察され、またペン落下高さ7cmにおいて下層のOLED内包基板上に損傷が観察された。従ってこの比較用構成は、ペン落下高さ7cmにおいて損傷しやすいものであった。更に、OLED内包基板の上側のPI層/接着剤構成は、いずれの追加の耐衝撃性も提供しなかった。というのは、ペン落下高さ7cmが、PI/接着剤層及び下層のOLED内包基板の両方に損傷をもたらしたためである。
【0133】
ここで
図7Bを参照すると、ペン落下高さ3cm及び17cmでの落下試験1に供した後の、本開示のいくつかの実施形態による折畳式電子デバイス組立体のポリイミド層の表面、折畳式ガラス要素の表面及び有機発光ダイオード(OLED)層の表面の、一連の写真が提供されている。この折畳式電子デバイス組立体の構成では、(PET材料を含む)可撓性OLED内包基板が、基板の役割を果たす。
図7Bに示すように、厚さ75μmの(例えば
図1~1Aに示す折畳式ガラス要素50と同等の)折畳式ガラス要素が、50μm厚の着脱式接着剤テープ層で、OLED内包基板に連結されている。これもまた
図7Bに示すように、50μm厚のPI層が、25μm厚の着脱式接着剤テープ層で、折畳式ガラス要素に連結されている。
【0134】
続いて、ガラス要素上に配置された折畳式ガラス要素及びポリマー層を含む、
図7Bに示されているこの折畳式電子デバイス構成を、組立体のPI側にペンを落下させる、様々なペン落下高さでの落下試験1に供した。
図7Bから明らかであるように、ペン落下高さ3cmにおいて、最外PI層上に小さなくぼみが観察されたが、ペン落下高さを17cmとするまで、下層のOLED内包基板には損傷が観察されなかった。従って
図7A及び7Bから、ポリマー層を上に配置した折畳式ガラス要素を含めることによって、特に下層の基板に対する衝撃関連損傷が低減される傾向があることが明らかである。
【0135】
ここで以下の表1を参照すると、本開示で概説されている落下試験1に従って、列挙された試料に対して一連のペン落下試験が実施されている。試料は表1に示すように構成され、それぞれ下層の可撓性OLED内包基板を備える。より詳細には、「OLED」は、(Samsung Galaxy S6縁部可撓性OLEDモジュールを内包するもの等の)可撓性OLED内包基板を指し;「テープ」は、(例えば
図1~1Dに図示され、本明細書において説明されている、接着剤80に相当するもの等の)着脱式接着剤テープを指し;「PI」は、(例えば
図1~1Dに図示され、本明細書において説明されている、ポリマー層70に相当するもの等の)ポリイミド層を指し;「HC」は、(例えば
図1~1Dに図示され、本明細書において説明されている、耐引掻きコーティング90に相当するもの等の)ハードコーティングを指し;「ガラス」は、(例えば
図1~1Dに図示され、本明細書において説明されている、折畳式ガラス要素50に相当するもの等の)折畳式ガラス構造体を指し;「OCA」は、(例えば
図1~1Dに図示され、本明細書において説明されている、接着剤80に相当するもの等の)光学的に透明な接着剤を指す。
【0136】
【0137】
表1の結果から明らかであるように、OLED内包基板のピクセルに対する損傷は、可撓性ガラス要素を含まない比較例、即ち比較例1及び比較例2では、約6.2cm以下という比較的低いペン落下高さで発生する。即ち、ある特定の高さまでの落下試験1の後、OLED基板において特定のピクセルが動作不能であると考えられた(例えば、落下試験1によるOLED内包基板に対するピクセル関連損傷の例に関して、
図7Aの中央及び右側の画像を参照)。更に、PI層及びOLED内包基板を備える比較例である比較例2は、ペン落下高さ約3cmにおいて、最外PI層に対するくぼみ形成タイプの損傷を受けている(例えば、落下試験1においてペン落下によって発生するくぼみの例に関して、
図7Aの左側の画像を参照)。従って、折畳式ガラス要素を採用していない試料は、ペン落下高さ約6.2cm以下において、ペン落下関連損傷を受ける。更に、比較例3において明らかであるように、OLED内包基板にHC層及びPI層を加えると、OLED内包基板組立体の耐損傷性がわずかに向上する傾向がある。特にこれらの試料は、約10cmのペン落下高さまで、それぞれの下層のOLED内包基板に対する損傷を受けなかった。同様に、比較例4が示すように、OLED内包基板に折畳式ガラス要素を含めることによっても、組立体の耐損傷性が向上する傾向がある。特にこれらの試料は、ペン落下高さ9.2cmまで、下層のOLED内包基板に対する損傷を受けなかったが、ガラス要素に対しては、ペン落下高さ約4.6cmにおいて損傷が発生した。
【0138】
しかしながら驚くべきことに、OLED内包基板上でPI層とガラス要素とを組み合わせると、本発明の試料である実施例2及び3から明らかであるように、衝撃関連損傷への耐性の有意な改善が得られる。より詳細には、実施例2及び実施例3は、落下高さ19cmまで、それぞれのガラス要素及びOLED内包基板に対する損傷を受けなかった。表1の結果にかんがみて、折畳式ガラス要素及びポリマー層をそれぞれ備えた本発明の試料である実施例2及び3は、損傷することなく、最高19cmのペン落下高さに耐えることができる。これは、折畳式ガラス要素を有するもののポリマー層を有しない比較用試料である比較例4(4.6cmという最大ペン落下高さを示す)に比べて、際立っている。従ってこれらの結果は、本開示に従ってポリマー層及び折畳式ガラス要素を有するよう構成されたカバー要素及び折畳式電子デバイス組立体が、折畳式ガラス要素は含むもののポリマー層を含まない比較用のデバイス組立体及びカバー要素に比べて、少なくとも1.5倍のペン落下高さに耐えることができることを実証している。
【0139】
ここで以下の表2を参照すると、本開示で概説されている落下試験1に従って、列挙された試料に対して一連のペン落下試験が実施されており、これは主に、表1の試料の厚さの変動が、これらの結果に対して有意な影響を有していなかったことを実証するものである。この実施例の試料は、表2に示されているように構成され、それぞれが下層の可撓性OLED内包基板を有する。より詳細には、表1中のコードは表2中のものと一致しており、「PET」は、ポリエチレンテレフタレート材料を含む可撓性ポリマー層を指す。
【0140】
【0141】
表2から明らかであるように、折畳式ガラス要素を備えた本発明の実施例である実施例3(即ち表1に列挙されている実施例3の試料と同一)を、それぞれ折畳式ガラス要素を含まないものの本発明の実施例である実施例3と同一の全体厚さを有する3つの比較例、比較例5、比較例6及び比較例7と比較できる。表2によって実証されるように、それぞれガラス要素を含まない上記比較例(比較例5~7)は全て、7cm以下のペン落下高さにおいて、下層のOLED内包基板に損傷を受けた。これに比べて、折畳式ガラス要素を備えた本発明の実施例(実施例3)は、最大19cmの落下高さにおいて、ガラス要素及びOLED内包基板に損傷を受けなかった。表2の例は全て同一の全体厚さを有するため、実施例3の試料によって実証された損傷耐性に関する便益は、ポリイミド(「PI」)を含むポリマー層と組み合わせられた折畳式ガラス要素に関連し得ることが明らかである。
【0142】
落下試験2及び落下試験3という2つの異なるバージョンのペン落下試験も使用して、本開示の原理に一致するカバー要素に対する動的荷重について研究した。
【0143】
落下試験2では、カバー要素の、(ポリマー層70がカバー要素の一部である場合に)ポリマー層70をその上に有する側に付与された荷重を用いて、試料を試験し、ここで上記カバー要素の反対側は、Kydex(登録商標)T材料製のステージによって支持されていた。このステージは長方形であり、12.7cm×10.16cm(5インチ×4インチ)と測定され、厚さが低減された7.3cm(3.875インチ)四方の中央セクションを有していた。この厚さ低減セクションの厚さは1.6mm(0.0625インチ)であり、ステージの残りの部分(周縁)の厚さは4.7mm(0.185インチ)であった。ガラス要素の、衝撃を受ける側とは反対側、即ちステージ上に静置される側を、破断片を内包できるように、3M code472テープ(0.14mm厚)でテーピングした。即ちテープの接着剤側をガラス要素に適用し、非接着剤側をステージ上に静置した。ペンを試料へと案内するためにチューブを使用し、このチューブを、ステージの中央セクションの上方に、試料の上部表面に対して略垂直となるように懸架した。チューブの外径は2.2cm(7/8インチ)であり、内径は1.7cm(21/32インチ)であった。各落下後、チューブを試料に対して再配置して、ペンを試料上の異なる衝突位置へと案内した。ペンは、直径0.8mmのボールポイントと、6.45gの重量とを有する、Paper Mate(登録商標)、FlexGrip Elite(登録商標)であった。ボールポイントが試験用試料と相互作用できるよう、ボールポイントを露出させた状態でペンを落下させた。ペンは、まず2cmの高さから落下させ、落下がガラス破断を引き起こすまで、高さを落下毎に2cm増加させた。そして、破断を引き起こす落下高さを記録した。ペンは、5回の落下毎に、及び試験される新しい試料それぞれに対して、新しいペンに変更した。
【0144】
図21は、落下試験2による、ペン落下試験を用いた様々なガラス要素の試験の結果を示す。このデータセットのためのガラス要素は、本開示の他の試料と同様の調製方法で調製した。具体的には、Corning Gorilla Glass 2.0と一致する組成を有するガラス試料を、深掘りエッチングに供して、所望の厚さである約67マイクロメートルを達成し、続いてIOX、及びIOX後のライトエッチングに供した。得られたガラス片は、67マイクロメートルの厚さを有し、また本明細書に記載の他の試料と同様の圧縮応力及びDOLを有していた。実施例セットAに関しては、上部にいずれの追加の層も備えないガラス要素を試験した。即ちペンをガラス要素上に直接落下させた。実施例セットBに関しては、ガラス要素と追加の層との間を連結するいずれの接着剤を用いずに、上部に12.7マイクロメートル厚のPET層がセットされたガラス要素を試験した。実施例セットCに関しては、ガラス要素と追加の層との間を連結するいずれの接着剤を用いずに、上部に254マイクロメートル厚のPET層がセットされたガラス要素を試験した。実施例セットDに関しては、ガラス要素と追加の層との間を連結するいずれの接着剤を用いずに、上部に127マイクロメートル厚のPC層がセットされたガラス要素を試験した。
図21から確認できるように、セットAをセットB~Dのうちのいずれか1つと比較することにより、ガラス要素は、追加の層が存在しない場合よりも、追加の層が存在する場合に、ペン落下高さの増大に耐えることができ、即ちより多くの荷重エネルギを吸収できた。更に、追加の層の特性(例えば層の厚さ、及び層が作製される材料)は、破断を起こすことなくエネルギを吸収するカバー要素の能力に影響を及ぼす。セットBをセットCと比較することにより、一般に、ポリマー層70の厚さを増大させることによって、(例えば折畳式電子デバイス組立体に採用されるような)カバー要素がより多くの荷重エネルギを吸収できるようになり、即ちカバー要素がより高いペン落下高さに耐えることができることが分かる。また、層70のための材料の選択が、カバー要素がエネルギを吸収する能力に影響を及ぼす。セットCをセットDと比較することにより、比較的薄い(127マイクロメートルの)PCの層が、比較的厚い(254マイクロメートルの)PETの層と、少なくとも同量の荷重エネルギ、即ち150cmのペン落下高さ(最大試験高さ)に耐えることができたことが分かる。
【0145】
落下試験3では、カバー要素の、(ポリマー層70がカバー要素の一部である場合に)ポリマー層70をその上に有する側に付与された荷重を用いて、試料を試験し、ここで上記カバー要素の反対側は、アルミニウムプレートによって支持されていた。ガラス要素の、アルミニウムプレート上に静置される側には、テープは使用しなかった。ペンを試料へと案内するためにチューブを使用し、このチューブを、試料の上部表面上に、チューブの長手方向軸が試料の上部表面に対して略垂直となるように載置した。チューブの外径は2.54cm(1インチ)であり、内径は1.4cm(9/16インチ)であった。各落下後、チューブを試料に対して再配置して、ペンを試料上の異なる衝突位置へと案内した。ペンは、直径0.7mmのボールポイントと、4.68gの重量とを有する、Easy‐Glide System(登録商標)を備えたBIC(細字)であった。ボールポイントが試験用試料と相互作用できるよう、キャップを上端部に取り付けてペンを落下させた。ペンは、まず1cmの高さから落下させ、落下がガラス破断を引き起こすまで、高さを落下毎に1cm増加させた。そして、破断を引き起こす落下高さを記録した。ペンは、5回の落下毎に、及び試験される新しい試料それぞれに対して、新しいペンに変更した。
【0146】
以下の表3は、落下試験3による、ペン落下試験を用いた様々なガラス要素の試験の結果を示す。このデータセットのためのガラス要素は、本開示の他の試料と同様の調製方法で調製した。具体的には、Corning Gorilla Glass 2.0と一致する組成を有するガラス試料を、深掘りエッチングに供して、所望の厚さである約75マイクロメートルを達成し、続いてIOX、及びIOX後のライトエッチングに供した。得られたガラス片は、75マイクロメートルの厚さを有し、また本明細書に記載の他の試料と同様の圧縮応力及びDOLを有していた。ポリマー層を、圧力感受性接着剤を用いてガラス要素に積層した。次にペンを、ポリマー層が落下してくるペンの方を向くようにして、試料上に落下させた。ポリマー層厚さと接着剤厚さとの様々な組み合わせを使用し、ここでは各試料セットにおいて、ポリマー層及び接着剤それぞれに関して同一の材料を使用した。この試験のセットに関して:セットEではガラス要素を単独で試験し;セットFに関しては、ガラス要素を、50マイクロメートル厚のPSA層を備えた80マイクロメートル厚のPI+HC層と積層させ、HCが落下してくるペンの方を向くようにし;セットGに関しては、ガラス要素を、50マイクロメートル厚のPSA層を備えた50マイクロメートル厚のPI+HC層に積層させ、HCが落下してくるペンの方を向くようにし;セットHに関しては、ガラス要素を、30マイクロメートル厚のPSA層を備えた80マイクロメートル厚のPI+HC層に積層させ、HCが落下してくるペンの方を向くようにした。表3から分かるように、セットEをセットF~Hのうちのいずれかと比較することにより、ガラス要素は、追加の層が存在しない場合よりも、追加の層が存在する場合に、ペン落下高さの増大に耐えることができ、即ちより多くの荷重エネルギを吸収できた。更に、追加の層の特性(例えば層の厚さ及び接着剤の厚さ)は、破断を起こすことなくエネルギを吸収する、(例えば折畳式電子デバイス組立体に採用されるような)カバー要素の能力に影響を及ぼす。セットFをセットGと比較することにより、一般に、層70の厚さを増大させることによって、カバー要素がより多くの荷重エネルギを吸収できるようになり、即ちカバー要素が、80マイクロメートル厚の層の場合は32cmという比較的高いペン落下高さに耐えることができる一方で、50マイクロメートル厚の同一材料の層の場合は18cmのペン落下高さにしか耐えることができないことが分かる。また、層をガラス要素と連結するために使用される接着剤の厚さが、カバー要素の、エネルギを吸収する能力に影響を及ぼす。セットFをセットHと比較することにより、セットFのような接着剤層の厚さが50マイクロメートルのカバー要素は、接着剤層の厚さが30マイクロメートルしかない(ガラス厚さ及び追加層の厚さ/材料は同一である)カバー要素(これは9cmのペン落下高さにしか耐えられなかった)よりも高いペン落下高さ(32cm)に耐えることができたことが分かる。ここでもまた理論によって束縛されることを望むものではないが、いくつかの例では、接着剤が厚いほど、同一材料のより薄い接着剤に比べて、落下するペンによって付与される荷重エネルギをより多く吸収及び/又は放散及び/又は分散でき、従って、接着剤が厚いほど、(例えば折畳式電子デバイス組立体に採用されるような)カバー要素のガラス要素がより良好に保護される。
【0147】
【0148】
図21及び表3の試料は特に曲げ半径に関して試験されたものではないものの、ガラス要素は本明細書中で議論されている他の試料の同一の方法で調製されているため、同等の曲げ半径を達成できると予想される。またこれは特に、カバー要素の、追加の層が存在しない側に、曲率半径が置かれるよう、カバー要素を曲げる場合に当てはまる。即ち、
図1A、2A、3A、4A又は5Aに示すようにカバー要素を曲げる場合、ポリマー層70は、2015年8月11日出願のPCT特許出願第PCT/US15/44596号明細書において議論されているような中立応力軸を有益に変位させることによって、ガラスに更なる便益を提供できる。よって、
図21及び表3に関連して上述したポリマー層70は特に、より小さい曲げ半径を達成する試みにおいてより薄いガラス要素を使用する場合に、耐穿刺性を提供するために有用となり得る。
【0149】
(ステンレス鋼製チップ又はタングステンカーバイドボールを用いる)上述の耐穿刺性試験及びペン落下試験に関する荷重条件は、静的荷重か動的荷重かという点で異なるが、方向に関して言えば、カバー要素の材料の特性及び厚さを仮定すると、これらの試験がいずれも、カバー要素が破損することなくエネルギを吸収できる能力の指標となることが、一般に予想される。即ち、カバー要素が別のカバー要素より高い静的荷重に耐える能力は一般に、上記カバー要素がより高い動的荷重に耐える能力の指標にもなる。
【0150】
IOX後のライトエッチングステップの便益
IOX強化ステップ後にエッチングステップを実施することの便益を
図17及び18に示す。これらの図は、様々な2点曲げ強度分布を示す。これらの図における2点曲げ値は、以下のように試料を試験することによって測定された。試料に、250MPa/秒という一定の割合で応力を印加した。2点曲げプロトコルに関しては、S. T. Gulati, J. Westbrook, S. Carley, H. Vepakomma, and T. Ono, “45.2: Two point bending of thin glass substrates,” in SID Conf., 2011, pp. 652-654を参照のこと。環境を、相対湿度50%及び25℃に制御した。データセットは、破損時の最大応力を示し、またこれは、破損が最小半径位置において発生すると仮定している。線1501は、200マイクロメートル厚~75マイクロメートル厚の深堀エッチングを施された試料の強度に関するワイブル分布を示す(これらの試料にはIOX又は後続のエッチングは実施されなかった)。この試料のセットは、破損蓋然性10%において約850MPaの強度を示す。線1502は、200マイクロメートル厚~75マイクロメートル厚の深堀エッチングと、これに続くIOXとを施された(ただし後続のエッチングは施されていない)試料の強度に関するワイブル分布を示す。これらの試料は、破損蓋然性10%において、線1501の深堀エッチングのみの試料に関する値からわずかに低下した、約700MPaの強度を示す。理論によって束縛されることを望むものではないが、IOXプロセスが、欠陥の延伸によって強度を低下させるものと思われる。そして線1503は、200マイクロメートル厚~75マイクロメートル厚の深堀エッチングと、線1502の試料の同一条件下でのIOXと、これに続く、各表面から<2ミクロンの厚さを除去するためのライトエッチングとを施された試料の強度に関するワイブル分布を示す。これらの試料は、破損蓋然性10%において、線1501及び1502の試料セットそれぞれに対して、約1500MPaという増大した強度を示す。従って
図17は、IOX後にライトエッチングを実施することの便益を示す。ここでもまた理論によって束縛されることを望むものではないが、IOX後のライトエッチングにより、欠陥の深さが低減され、IOXプロセス自体によって導入される割れの先端が鋭利でなくなり、これによって試料の強度が上昇すると考えられる。
【0151】
IOXは(
図17に見られるように)深堀エッチング済み試料の強度を低下させるように思われるが、
図18は、折畳式及び/又はロール式ディスプレイ用のガラスの主表面を強化することの(
図14~16に関連して上で議論したものに追加される)別の便益を示す。特に非IOXガラスは、その(曲げの)外側表面が圧縮下でないため、疲労を受ける。従って非IOXガラス試料では、時間的に遅延した破損が見られる場合が多くなる。線1601は、200マイクロメートル厚~75マイクロメートル厚の深堀エッチングだけを施された(IOXが行われなかった)試料の強度に関するワイブル分布を示し、上記試料は、キューブコーナーダイヤモンド圧子との、10gf(0.0980665N)という極めて低い荷重での接触の後、2点曲げ強度試験に供された。特にキューブコーナー試験は、キューブコーナーダイヤモンド圧子チップを用いて、株式会社ミツトヨ製HM‐200硬度試験機で実施された。10重量グラム(gf)(0.0980665N)の荷重を印加し、10秒の滞留時間にわたって保持した。この押し込みは、相対湿度50%及び温度25℃で実施した。圧痕は、2点曲げ試験で試験する際にこれが最大応力(最大半径)の位置となるよう、試験用試料の中央に位置決めされる。押し込みの後、試料を同一環境に24時間保持し、その後上述のような2点曲げ試験を行った。線1601は、破損蓋然性10%における約150MPaの強度を示す。線1603は、200マイクロメートル厚~75マイクロメートル厚の深堀エッチングを施され、IOXを施された後、各表面から2ミクロンの厚さを除去するためのエッチングを施され、続いてキューブコーナーダイヤモンド圧子との10gf(0.0980665N)という極めて低い荷重での接触の後に2点曲げ試験に供された、試料の強度に関するワイブル分布を示す。線1603は、破損蓋然性10%における約800MPaの強度を示す。線1601を線1501と比較することにより、及び線1603を線1503と比較することにより、いずれの接触が、非強化部分の強度を大きく低減することが分かる。しかしながら、線1603を線1601と比較することにより、IOX済み部分に関する圧縮深さ内に損傷が内包され、これにより、線1603の強化部分の強度が線1601の非強化部分よりも高くなることが分かる。従って、例えばIOXによる強化は、10gf(0.0980665N)という比較的低い荷重によって引き起こされる接触損傷でさえある接触損傷の影響を低減するための有益な方法である。
【0152】
ビッカース割れ開始
本開示によるガラス要素の例は、強度を制限する欠陥の形成に対する耐性を提供することもできる。これは、ガラス要素がカバーガラスに使用され、ユーザ等からの接触又は他の接触イベントを受ける場合に有益である。理論によって束縛されることを望むものではないが、IOXもまた、強度を制限する欠陥の形成に対する耐性を提供する。上で議論されているように、深堀エッチング、IOX及びこれに続くライトエッチングを施されたガラスの試料において>100マイクロメートルの割れを生成する/開始させるには、2kgf(19.6133N)超の力が必要となる。
図19A、19B、19C及び19Dは、IOXを施された(上で議論したように深堀エッチング、IOX、及びこれに続くライトエッチングに供された)
図19A及び19Bの試料と、IOXを施されていない(ただし単に深堀エッチングは施された)
図19C及び19Dの試料との間の比較を示す。
図19Aは、ビッカースダイヤモンド圧子による1kgf(9.80665N)の荷重を受けたIOX済み試料を示す。ビッカース割れ開始試験を、ビッカース硬度テスターLV800AT上で実施した。試験は、押し込み装置の試料ステージ上に配置されたむき出しのガラスに対して実施した。所与の荷重において作製される10個の圧痕のうちの50%超が、強度を制限する欠陥の存在を示すまで、荷重を増大させてガラスに押し込みを行った。この押し込みは、圧痕滞留時間10秒で、周囲条件下で実施した。
図19Aに示すように、圧子は100マイクロメートル未満の欠陥を生成した。
図19Bは、ビッカース圧子による2kgf(19.6133N)の荷重を受けたIOX済み試料を示す。
図19Aと同様に、圧子は100マイクロメートル未満の欠陥を生成した。従って、本開示の実施例は、強度を制限する欠陥、即ち100マイクロメートルを超える欠陥を発生させることなく、2kgf(19.6133N)の荷重に耐えることができることが分かる。
図19Cは、ビッカース圧子による1kgf(9.80665N)の荷重を受けた非IOXガラス試料を示す。
図19Cに見られるように、圧子は100マイクロメートルを超える欠陥を生成した。
図19Dは、ビッカース圧子による2kgf(19.6133N)の荷重を受けた非IOXガラス試料を示す。
図19Dに見られるように、圧子は100マイクロメートルをはるかに超える欠陥を生成した。
図19Aと
図19Cとの比較、及び
図19Bと
図19Dとの比較は、IOXを施されたガラスが、強度を制限する欠陥、即ち100マイクロメートルを超える欠陥の形成に対する耐性を提供できることを示す。
図19Bと19Dとの比較によって確認できるように、ビッカース圧子に対する力の極めて小さな(即ち1kgf(9.80665N)から2kgf(19.6133N)への)増大が、非強化部分においては相当に大きな欠陥を生成する。理論によって束縛されることを望むものではないが、ビッカース圧子はキューブコーナー圧子よりもはるかに広い角度を有するため、強度を制限する欠陥を生成するためには、ビッカース圧子は(キューブコーナー圧子よりも)はるかに大きな力を必要とすると考えられる。
【0153】
ビッカース硬度
ガラス要素のビッカース硬度は、550~650kgf(5393.66~6374.32N)/mm2である。ビッカース硬度は、株式会社ミツトヨ製HM‐114硬度試験機で測定した。硬度は、200重量グラム(gf)(1.96133N)で押し込みを行い、得られた痕跡の2つの主要な対角線長さの平均を測定することによって測定した。硬度は、以下の等式:VHN=(P*1.8544)/d2によって算出され、ここでVHNはビッカース硬度数であり、Pは印加された荷重200gf(1.96133N)であり、dは主要な対角線長さの平均である。典型的には、10個のVHN測定値を得て、平均VHNを決定する。押し込みは相対湿度50%及び25℃において実施する。試験は、押し込み装置の試料ステージ上に配置されたむき出しのガラスに対して実施される。押し込みの滞留時間は10秒である。ビッカース硬度を含む硬度は、材料の永久的な変形の尺度である。より高いビッカース硬度数によって証明されるように、材料がより硬いほど、材料の永久的な変形は小さくなる。従って硬度は、材料の、例えば鍵、及び上記材料と接触し得る同等以下の硬度の物品に対する耐引掻き性及び他の損傷耐性の尺度である。550~650kgf(5393.66~6374.32N)/mm2のビッカース硬度は、デバイスカバーの、鍵、及び例えばユーザのポケット又はバックパック内に上記デバイスカバーと共に見られる場合がある他の物体に対する、好適な耐引掻き性及び他の損傷耐性を提供する。
【0154】
閉鎖力
折畳式又は曲げ可能なディスプレイにおける別の考慮事項は、デバイスを折り畳む又は曲げるための力である。デバイスを閉鎖するために必要な力は、ユーザがデバイスを閉鎖する際に不快にならないよう、あまり高くしてはならない。更に上記力は、デバイスを閉鎖したままとしたいときにデバイスが開こうとするほど高くしてはならない。従って、2点曲げ閉鎖力を制限する必要がある。しかしながら、2点曲げ閉鎖職は、ガラス要素の、折り線の方向に沿って延在する寸法(本明細書では「幅」と呼ぶ)にも左右されるため、上記力を、幅に基づいて正規化する必要がある。2点曲げ閉鎖力は、以下の式(4)によって与えられ、この式は、ガラスが、2つの平行なプレートの間に配置されているかのように挙動する、即ちこれにより一定の曲げ半径を有しないと仮定している。弾性率の下の項(1‐ν2)は、ガラス等の材料に関して、一方向の応力/曲げが別の方向における収縮を生成することを考慮したものである。これは、プレート状の物体の場合に典型的である。
【0155】
【0156】
ここでtは試料の厚さ(mm)であり、wは、折り線に沿ったガラス要素の幅(mm)であり、Eはガラス材料の弾性率(GPa)であり、νは材料のポアソン比であり、σmaxは、平行プレート2点曲げ法を用いた場合に、以下の式(5)によって与えられる。
【0157】
【0158】
ここでEは材料の弾性率(GPa)であり、νは材料のポアソン比であり、tは試料の厚さ(mm)であり、Dは平行プレートの間の分離距離(mm)である。式(5)は、平行プレート曲げ装置内の最大圧力であり、これは、試験装置内において試料が(式(1)に関して仮定したような)均一で一定の曲げ半径を達成せず、より小さい最小半径を有することになるという事実を考慮している点で、式(1)のものとは異なる。最小半径(R)はD-h=2.396Rとして定義され、ここでhはガラス厚さ(mm)であり、これはtと同一である。所与のプレート間隔に関して決定された最小半径Rを式(1)において使用して、最大応力を決定できる。
【0159】
式(4)の各辺を、折り線に沿ったガラス要素の幅であるwで助産すると、F/wに対する値が得られる。本発明者らが特定の有益な閉鎖力を得るために見出した、ガラス試料に関する値、即ち厚さt=.075mm、プレート分離距離D=10mm(ここでプレート分離距離は、サイクル試験に関連して以下で議論されるような、平行プレートによる2点曲げ法におけるものである)、弾性率E=71GPa、ポアソン比ν=0.205を代入することにより、本発明者らは、0.076N/mm以下というF/wの値が、許容可能な閉鎖力、即ちユーザにとって不快でない閉鎖力、及びデバイスが折り畳まれた状態にある場合にデバイスが開こうとしない閉鎖力をもたらすことを発見した。例として本発明者らは、幅が105.2mmの場合に7.99Nの閉鎖力が許容可能であることを発見した。また幅が20mmの場合、1.52Nの力が許容可能であった。従ってここでも幅に関して平準化すると、0.076N/mm以下のF/wの値が許容可能であることが分かった。
【0160】
サイクル試験
ディスプレイ又は他のデバイスの使用中、ガラス要素50は、繰り返される曲げサイクルに供される場合がある。例えばディスプレイデバイスは、繰り返し折り畳まれて広げられる場合がある。よって、デバイスの好適な寿命を決定するために、ガラス要素を折り畳んで広げることができるサイクルの回数を特性決定することが有益である。ガラス要素50の反復曲げ耐久性を試験するために、ガラス要素50を、初期分離距離Dが30mmである2つの平行プレート2102及び2104(
図20参照)の間に、湾曲させた形状で配置した。続いてこれらのプレートを、平行に保ったまま移動させて、上記分離距離を標的距離まで低減し、上記標的距離において約1秒間保持した後、30mmの初期分離距離まで戻し、この初期分離距離を約1秒間保持して、1回のサイクルを終了する。プレートは、38mm/秒の速度で移動させた。このサイクルを繰り返す。そして、ガラス要素が破損するまで、サイクルの数を計数してよい。30mmの初期分離距離Dを選択したが、他の試験では、初期分離距離は30mmより大きくても小さくてもよい。30mmという値は、ガラス要素50に対してそれほど大きな荷重が存在しない距離として選択した。標的距離を変化させることによって、試験したい標的曲げ半径を達成できる。標的曲げ半径(これは、試験されるガラス要素によって達成される最小の半径である)は、平行プレート2102、2104の分離距離の0.414倍に等しい。これは、関心対象のガラス厚さは典型的にはプレート分離距離Dよりもはるかに小さくなるため、式(5)に従った議論における最小曲げ半径Rの算出から、ガラスの厚さh(又はt)を基本的に無視した、簡略化された算出である。しかしながら、必要に応じて、上述の式(5)に従った議論における最小曲げ半径Rの算出を用いることによって、ガラス厚さを考慮できる。ガラス要素は試験装置内で完璧な半円を形成しないため、曲げ半径は単純にDの半分とはならない。よって、異なる複数の標的曲げ半径を試験するために、異なる複数の平行プレート距離を好適に算出できる。図示されているように、第1の主表面54は曲げの外側表面を形成して、平行プレートの内側表面と接触し、一方で第2の主表面56は曲げの内側表面を形成する。ポリマー層70が第1の主表面54上に存在する場合、ポリマー層70が平行プレートと接触することになる。ポリマー層70の厚さ72はいくつかの実施形態では最小(1マイクロメートル以下)であるため、プレート分離距離Dから(
図22に示すように第1の主表面54の)曲げ半径を算出する場合には、ポリマー層70の厚さは無視してよい。しかしながら、他の実施形態によると、ポリマー層70がいずれの有意な厚さを有する限りにおいて、試験対象の主表面(
図22に示す第1の主表面54)において所望の標的曲げ半径を達成するために、プレート分離距離Dを第2の層厚さの2倍だけ増大させてよい。第1の主表面54を、要素50の曲げられた構成の外側主表面として示しているが、ガラス要素50が最終的なデバイス内で取ることになる構成にとって適切となるよう、第2の主表面56を曲げの外側表面として、同様の方法を用いて曲げ半径及び反復を試験してよい。
【0161】
本開示の一例によるガラス要素は、上述のように、厚さ75マイクロメートルであり、IOX圧縮応力が775MPaであり、DOLが10マイクロメートルであり、また9mmの標的プレート分離距離Dにおいて200000回を超える曲げサイクルに耐えた。本開示の別の例による別のガラス要素は、上述のように、厚さ75マイクロメートルであり、IOX圧縮応力が775MPaであり、DOLが10マイクロメートルであり、また8mmの標的プレート分離距離Dにおいて200000回を超える曲げサイクルに耐えた。典型的なディスプレイデバイスに関して、200000回の曲げサイクルに合格することは、好適な寿命と考えられる。
【0162】
更に、動的曲げ試験について上述したが、同様の平行プレート試験装置を用いて、静的曲げ半径を試験してもよい。この場合、平行プレート2102、2104(
図20参照)は、プレート分離距離の0.414倍が、試験対象の所望の静的曲げ半径に等しくなるような、所望の分離距離Dに設定される。平行プレート2102、2104を必要な分離距離Dに設定した後、ガラス要素をこれらの平行プレートの間に配置して、
図20に示すような曲げ構成を達成する。
【0163】
永久的な反り及び変形に対する耐性
本開示の折畳式電子デバイス組立体 及び カバー要素が供給できる損傷耐性に加えて、これらのデバイス組立体及びカバー要素は、曲げ及び折り畳みの進展に関連する永久的な反り及び変形に対する耐性も提供する。OLEDディスプレイモジュールを内包するデバイスが、曲げ可能な、折畳式、又はロール式の用途のために設計される場合、繰り返される開閉によって(動的曲げ)、又は閉鎖位置若しくは部分開放位置における長時間の曲げ若しくは折り畳み状態の維持によって(静的曲げ)、これらのモジュール内に応力が生成される。これらの応力の結果として、従来のOLED内包ディスプレイモジュール内のポリマーは、これらの曲げの位置及び/又はこれらの曲げの近傍において、永久的に変形する場合がある。対照的に、本開示の折畳式電子デバイス組立体及びカバー要素は、このような永久的な反り及び変形に対する耐性が大幅に高い。
【0164】
これらの効果をシミュレートするために、高温及び高湿度曲げ試験(本明細書では「静的試験(Static Test)」とも呼ぶ)を実施した。静的試験では、試料を2つの金属合金プレートの間に設置する。これら2つの金属プレートは、指定された距離において互いに対して平行に配置される。これらのプレートを上記指定された距離まで共に移動させると、試料は所望のC字型構成へと曲げられる。特段の記載が無い限り、試料は、
図1Aに示す曲げ方向と同様に、曲げの曲率半径が、試料の、OLED内包基板側に位置するように曲げられる。従って、折畳式ガラス要素を内包する試料に関して、第1の又は外側主表面は、曲げに由来する張力下にあり、またガラス要素の第2の又は内側主表面は、曲げによる圧縮下に置かれる。更に、この静的曲げ試験を、上記2つの金属プレートの間の間隔を一定として実施する際、試料は、相対湿度85%及び温度85℃の雰囲気に曝露される。特定の試験期間(例えば120時間、240時間、480時間等)の後、試料を上記プレート及び指定された85℃/相対湿度85%の雰囲気から取り除く。1時間の緩和時間(又は別の指定された緩和時間)の後、試料に残った折り目又は曲げの高さを測定する。
【0165】
ここで以下の表4を参照すると、列挙された試料に対して一連の静的曲げ試験が実施されている。試料は表4に示すように構成され、それぞれ下層の可撓性の100μm厚のPET材料を、OLED内包基板の代用物として備える(「PET」として標識されている)。また表1に列挙されているように、「PI」は、(例えば
図1~1Dに図示され、本明細書において説明されている、ポリマー層70に相当するもの等の)ポリイミド層を指し;「ガラス」は、(例えば
図1~1Dに図示され、本明細書において説明されている、折畳式ガラス要素50に相当するもの等の)折畳式ガラス構造体を指し;「OCA」は、(例えば
図1~1Dに図示され、本明細書において説明されている、接着剤80に相当するもの等の)光学的に透明な接着剤を指す。
【0166】
【0167】
表4から明らかであるように、100μm厚のPET層を採用した比較例(比較例8)は、試験の際、480時間後に68mmの残存する曲げを示しており、これは試験外の更に168時間の緩和時間の後にも有意には低下しない。追加のポリマー材料、特にPETより粘弾性が低いPI層を追加すると(比較例9)、試験時の480時間後、及び更に168時間の緩和後における、残存する曲げの高さは、それぞれ57mm及び52mmまで低下する。更に、比較例9における曲げ高さが、168時間の緩和時間後に57mmから52mmまで低下しているため、PI層はある程度の緩和を引き起こしていると思われる。これは、永久的な反り及び変形に対する耐性の指標である。この結果は、75μm厚のガラス要素を含む本発明の試料(実施例4~6)において、はるかに明らかである。特にこれらの試料は、試験時の480時間後において約46mm~48mmの曲げ高さ、及び168時間の更なる緩和後において約34mm~42mmの曲げ高さを示す。
【0168】
従って、本開示の折畳式電子デバイス組立体200~200d(
図1~3B及び対応する説明を参照)、並びにこれらの例示的な組立体と矛盾しない変形例は、折畳式電子デバイス組立体の永久的な反りが、比較用の折畳式電子デバイス組立体の永久的な反りよりも少なくとも10%小さくなるような、永久的な反りに対する耐性を備えることができ、ここで、デバイス組立体の永久的な反りは、85℃及び相対湿度85%における480時間の試験時保持時間の後に測定される。更に比較用の折畳式電子デバイス組立体は:(a)折畳式電子デバイス組立体の基板及びポリマー層とそれぞれ同一の寸法及び組成を備える、比較用基板及び比較用ポリマー層;並びに(b)折畳式電子デバイス組立体のガラス要素と同一以下の厚さを備えるポリイミド(PI)を含む、上記比較用基板と上記比較用ポリマー層との間に配置された比較用折畳式ポリマー要素を備える。いくつかの実施形態では、折畳式電子デバイス組立体200~200dは、上記折畳式電子デバイス組立体の永久的な反りが、上記比較例の折畳式電子デバイス組立体の永久的な反りより少なくとも20%小さくなるような、永久的な反りに耐える能力を有するように、構成できる。
【0169】
当業者には理解されるように、実施例4~6と比較例9との間の、表4における結果及び試料の比較は、これらの属性を支持するエビデンスである。即ち、同一の試験条件下において:本発明の試料である実施例5及び6の、試験時の480時間後、及び更に168時間の緩和後の、残存する曲げ/折り目の高さは、約46.5mm及び41mmであり;比較例である比較例9の、残存する曲げ/折り目の高さは、それぞれ約57mm及び52mmである。従って、折畳式ガラス要素を備えた本発明の試料は、折畳式ガラス要素の代わりにPI層を備えた比較用試料に対して、(試験時の480時間後、及び480時間+168時間の緩和の後、それぞれにおいて)約18%(57-46.5/57)及び約21%(52-41/52)の、永久的な反りの改善を実証している。従って、本開示の折畳式電子デバイス組立体及びカバー要素に折畳式ガラス要素を含めることにより、上記組立体及びカバー要素の、永久的な反り及び変形に対する耐性が大幅に改善される。
【0170】
更に、本明細書中で使用される場合、用語「ガラス(glass)」は、ガラス及びガラスセラミックスを含む、少なくとも部分的にガラスからなるいずれの材料を含むことを意図している。「ガラスセラミックス(Glass‐ceramics)」は、ガラスの結晶化を制御しながら製造された材料を含む。実施形態では、ガラスセラミックスの結晶化度は約30%~約90%である。使用できるガラスセラミック系の非限定的な例としては、Li2O×Al2O3×nSiO2(即ちLAS系)、MgO×Al2O3×nSiO2(即ちMAS系)、及びZnO×Al2O3×nSiO2(即ちZAS系)が挙げられる。
【0171】
本開示の精神及び様々な原理から大幅に逸脱することなく、本開示の上述の実施形態に対して、多数の変形及び修正を行うことができる。これらの修正及び変形は全て、本開示の範囲に含まれ、かつ以下の請求項によって保護されることが意図されている。
【0172】
例えば、いくつかの実施形態では、カバー要素を、ディスプレイ用の典型的な「カバーガラス」として使用するものとして説明したが、カバー要素はデバイスハウジングのいずれの部分に対して使用してよく、またいくつかの実施形態では、(カバー要素を通して物体を視認するような場所にカバー要素を使用しない場合のように)透明とする必要はない。
【0173】
第1の例示的態様によると、カバー要素が提供され、上記カバー要素は:厚さ約25μm~約200μmの折畳式ガラス要素であって、上記ガラス要素は更に(a)第1の主表面、(b)第2の主表面、及び(c)上記ガラス要素の上記第1の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域を備え、上記領域は、上記ガラス要素の上記第1の主表面における、少なくとも約100MPaの圧縮応力によって規定される、折畳式ガラス要素;並びに厚さ約10μm~約100μmの、上記ガラス要素の上記第1の主表面上に配置されたポリマー層を備える。上記ガラス要素は、上記ガラス要素を、曲率中心を上記第2の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、上記第1の主表面に引張応力としての曲げ応力σBを誘発した場合に、σI+σB<400MPa(引張応力)となるような、応力プロファイルを特徴とする。更に、上記カバー要素は、上記層を有しない上記カバー要素の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層がペンに対面する。
【0174】
第2の例示的態様によると、カバー要素が提供され、上記カバー要素は:厚さ約25μm~約200μmの折畳式ガラス要素であって、上記ガラス要素は更に(a)第1の主表面、(b)第2の主表面、及び(c)上記ガラス要素の上記第2の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域を備え、上記領域は、上記ガラス要素の上記第2の主表面における、少なくとも約100MPaの圧縮応力によって規定される、折畳式ガラス要素;並びに厚さ約10μm~約100μmの、上記ガラス要素の上記第1の主表面上に配置されたポリマー層を備える。上記ガラス要素は、上記ガラス要素を、曲率中心を上記第1の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、上記第2の主表面に引張応力としての曲げ応力σBを誘発した場合に、σI+σB<200MPa(引張応力)となるような、応力プロファイルを特徴とする。更に、上記カバー要素は、上記層を有しない上記カバー要素の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層がペンに対面する。
【0175】
第3の例示的態様によると、上記ガラス要素の上記第1の主表面において、σI+σB<0MPaである、第1の例示的態様のカバー要素が提供される。
【0176】
第4の例示的態様によると、上記ガラス要素の上記第2の主表面において、σI+σB<0MPaである、第2の例示的態様のカバー要素が提供される。
【0177】
第5の例示的態様によると、上記ガラス要素は更に、上記ガラス要素の上記第1の主表面において、2μm以下の最大欠陥サイズを備える、第1又は第3の例示的態様のカバー要素が提供される。
【0178】
第6の例示的態様によると、上記ガラス要素は更に、上記ガラス要素の上記第2の主表面において、2μm以下の最大欠陥サイズを備える、第2又は第4の例示的態様のカバー要素が提供される。
【0179】
第7の例示的態様によると、上記層は、ポリイミド、ポリエチレンテレフタレート、ポリカーボネート又はポリメチルメタクリレートを含む、例示的態様1~6のいずれか1つのカバー要素が提供される。
【0180】
第8の例示的態様によると、上記層は、接着剤によって上記ガラス要素に連結される、例示的態様1~7のいずれか1つのカバー要素が提供される。
【0181】
第9の例示的態様によると、上記ガラス要素の上記第1の主表面の下方の少なくとも1μmの深さまで、σI+σB<0MPaである、第1又は第3の例示的態様のカバー要素が提供される。
【0182】
第10の例示的態様によると、上記ガラス要素の上記第2の主表面の下方の少なくとも1μmの深さまで、σI+σB<0MPaである、第2又は第4の例示的態様のカバー要素が提供される。
【0183】
第11の例示的態様によると、上記ガラス要素の上記第1の主表面における応力は、圧縮応力としての約700MPa~約2000MPaであり、更に前記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、上記イオン交換済み金属イオンは、上記イオン交換性金属イオンの原子半径より大きな原子半径を備える、第1又は第3の例示的態様のカバー要素が提供される。
【0184】
第12の例示的態様によると、上記ガラス要素の上記第2の主表面における応力は、圧縮応力としての約700MPa~約2000MPaであり、更に前記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、上記イオン交換済み金属イオンは、上記イオン交換性金属イオンの原子半径より大きな原子半径を備える、第2又は第4の例示的態様のカバー要素が提供される。
【0185】
第13の例示的態様によると、上記第1の深さは、上記ガラス要素の上記第1の主表面から、上記ガラス要素の上記厚さのおよそ1/3以下に設定される、第1又は第3の例示的態様のカバー要素が提供される。
【0186】
第14の例示的態様によると、上記第1の深さは、上記ガラス要素の上記第2の主表面から、上記ガラス要素の上記厚さのおよそ1/3以下に設定される、第2又は第4の例示的態様のカバー要素が提供される。
【0187】
第15の例示的態様によると、上記ポリマー層の上に配置された耐引掻きコーティングを更に備え、上記コーティングは、ASTM試験法D3363による少なくとも5Hの鉛筆硬度を有し、また更に上記層及び上記コーティングを備えた上記カバー要素は、上記層又は上記コーティングを有しない上記カバー要素の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層及び上記コーティングがペンに対面する、例示的態様1~14のいずれか1つのカバー要素が提供される。
【0188】
第16の例示的態様によると、折畳式デバイス組立体が提供され、上記折畳式デバイス組立体は:折畳式電子デバイス基板と;上記デバイス基板上に配置された厚さ約25μm~約200μmの折畳式ガラス要素であって、上記ガラス要素は更に:(a)第1の主表面、(b)第2の主表面、及び(c)上記ガラス要素の上記第1の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域を備え、上記領域は、上記ガラス要素の上記第1の主表面における、少なくとも約100MPaの圧縮応力によって規定される、折畳式ガラス要素とを備える。また上記折畳式デバイス組立体は、厚さ約10μm~約100μmの、上記ガラス要素の上記第1の主表面上に配置されたポリマー層も含む。上記ガラス要素は、上記ガラス要素を、曲率中心を上記第2の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、上記第1の主表面に曲げ応力σBを誘発した場合に、σI+σB<400MPa(引張応力)となるような、応力プロファイルを特徴とする。更に、上記折畳式電子デバイス組立体は、上記ポリマー層を有しない上記折畳式電子デバイス組立体の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層がペンに対面する。
【0189】
第17の例示的態様によると、上記ガラス要素の上記第1の主表面において、σI+σB<0MPaである、第16の例示的態様のデバイス組立体が提供される。
【0190】
第18の例示的態様によると、上記ガラス要素は更に、上記ガラス要素の上記第1の主表面において、2μm以下の最大欠陥サイズを備える、第16又は第17の例示的態様のデバイス組立体が提供される。
【0191】
第19の例示的態様によると、落下試験1に従って、8cm超のペン落下高さに耐えることができる、例示的態様16~18のいずれか1つのデバイス組立体が提供される。
【0192】
第20の例示的態様によると、落下試験1に従って、15cm超のペン落下高さに耐えることができる、例示的態様16~19のいずれか1つのデバイス組立体が提供される。
【0193】
第21の例示的態様によると、上記層は、ポリイミド、ポリエチレンテレフタレート、ポリカーボネート又はポリメチルメタクリレートを含む、例示的態様16~20のいずれか1つのデバイス組立体が提供される。
【0194】
第22の例示的態様によると、上記層は、接着剤によって上記ガラス要素に連結され、上記ガラス要素は、接着剤によって上記デバイス基板に連結される、例示的態様16~21のいずれか1つのデバイス組立体が提供される。
【0195】
第23の例示的態様によると、上記ガラス要素の上記第1の主表面の下方の少なくとも1μmの深さまで、σI+σB<0MPaである、例示的態様16~22のいずれか1つのデバイス組立体が提供される。
【0196】
第24の例示的態様によると、上記ガラス要素の上記第1の主表面における応力は、約700MPa~約2000MPa(圧縮応力)であり、更に上記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、上記イオン交換済み金属イオンは、上記イオン交換性金属イオンの原子半径より大きな原子半径を備える、例示的態様16~23のいずれか1つのデバイス組立体が提供される。
【0197】
第25の例示的態様によると、上記第1の深さは、上記ガラス要素の上記第1の主表面から、上記ガラス要素の上記厚さのおよそ1/3以下に設定される、例示的態様16~24のいずれか1つのデバイス組立体が提供される。
【0198】
第26の例示的態様によると、上記ポリマー層の上に配置された耐引掻きコーティングを更に備え、上記コーティングは、ASTM試験法D3363による少なくとも5Hの鉛筆硬度を有し、また更に上記折畳式電子デバイス組立体は、上記層又は上記コーティングを有しない上記折畳式電子デバイス組立体の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層及び上記コーティングがペンに対面する、例示的態様16~25のいずれか1つのデバイス組立体が提供される。
【0199】
第27の例示的態様によると、折畳式電子デバイス組立体が提供され、上記折畳式電子デバイス組立体は:折畳式電子デバイス基板と;上記デバイス基板上に配置された折畳式ガラス要素であって、上記ガラス要素は約25μm~約200μmの厚さを備え、また更に:(a)第1の主表面、(b)第2の主表面、及び(c)上記ガラス要素の上記第1の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域を備え、上記領域は、上記ガラス要素の上記第1の主表面における、少なくとも約100MPaの圧縮応力によって規定される、折畳式ガラス要素とを備える。上記折畳式デバイス組立体はまた、厚さ約10μm~約100μmの、上記ガラス要素の上記第1の主表面上に配置されたポリマー層を含む。上記ガラス要素は、上記ガラス要素を、曲率中心を上記第2の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、上記第1の主表面に曲げ応力σBを誘発した場合に、σI+σB<400MPa(引張応力)となるような、応力プロファイルを特徴とする。更に、上記折畳式電子デバイス組立体は、上記折畳式電子デバイス組立体の永久的な反りが、比較例の折畳式電子デバイス組立体の永久的な反りより少なくとも10%小さくなるように、永久的な反りに耐える能力を備え、ここで上記デバイス組立体の上記永久的な反りは、85℃及び相対湿度85%で480時間の試験時保持時間の後に、静的試験によって測定される。更に、上記比較例の折畳式電子デバイス組立体は:(a)上記折畳式電子デバイス組立体の上記基板及び上記ポリマー層とそれぞれ同一の寸法及び組成を備える、比較例の基板及び比較例のポリマー層と;(b)上記比較例の基板と上記比較例のポリマー層との間に配置され、上記折畳式電子デバイス組立体の上記ガラス要素と同一の又は上記ガラス要素より小さい厚さを備えたポリイミド(PI)で構成される、比較例の折畳式ポリマー要素とを備える。
【0200】
第28の例示的態様によると、上記折畳式電子デバイス組立体は、上記折畳式電子デバイス組立体の永久的な反りが、上記比較例の折畳式電子デバイス組立体の永久的な反りより少なくとも20%小さくなるような、永久的な反りに耐える能力を備える、第27の例示的態様のデバイス組立体が提供される。
【0201】
第29の例示的態様によると、上記ガラス要素の上記第1の主表面において、σI+σB<0MPaである、第27又は第28の例示的態様のデバイス組立体が提供される。
【0202】
第30の例示的態様によると、上記ガラス要素は更に、上記ガラス要素の上記第1の主表面において、2μm以下の最大欠陥サイズを備える、例示的態様27~29のいずれか1つのデバイス組立体が提供される。
【0203】
第31の例示的態様によると、上記層は、ポリイミド、ポリエチレンテレフタレート、ポリカーボネート又はポリメチルメタクリレートを含む、例示的態様27~30のいずれか1つのデバイス組立体が提供される。
【0204】
第32の例示的態様によると、上記層は、接着剤によって上記ガラス要素に連結され、上記ガラス要素は、接着剤によって上記デバイス基板に連結される、例示的態様27~31のいずれか1つのデバイス組立体が提供される。
【0205】
第33の例示的態様によると、上記ガラス要素の上記第1の主表面の下方の少なくとも1μmの深さまで、σI+σB<0MPaである、例示的態様27~32のいずれか1つのデバイス組立体が提供される。
【0206】
第34の例示的態様によると、上記ガラス要素の上記第1の主表面における応力は、約700MPa~約2000MPa(圧縮応力)であり、更に上記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、上記イオン交換済み金属イオンは、上記イオン交換性金属イオンの原子半径より大きな原子半径を備える、例示的態様27~33のいずれか1つのデバイス組立体が提供される。
【0207】
第35の例示的態様によると、上記第1の深さは、上記ガラス要素の上記第1の主表面から、上記ガラス要素の上記厚さのおよそ1/3以下に設定される、例示的態様27~34のいずれか1つのデバイス組立体が提供される。
【0208】
第36の例示的態様によると、上記ポリマー層の上に配置された耐引掻きコーティングを更に備え、上記耐引掻きコーティングは、ASTM試験法D3363による少なくとも5Hの鉛筆硬度を有し、また更に上記折畳式電子デバイス組立体は、上記層又は上記コーティングを有しない上記折畳式電子デバイス組立体の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層及び上記コーティングがペンに対面する、例示的態様27~35のいずれか1つのデバイス組立体が提供される。
【0209】
第37の例示的態様によると、上記折畳式ガラス要素は更に、上記ガラス要素の上記第2の主表面から上記ガラス要素の第2の深さまで延在する第2の圧縮応力領域を備え、上記第2の領域は、上記ガラス要素の上記第2の主表面における、圧縮応力としての少なくとも100MPaの応力σIによって規定される、第1又は第3の例示的態様のカバー要素が提供される。
【0210】
第38の例示的態様によると、上記折畳式ガラス要素は更に、上記第1の主表面から上記ガラス要素の第2の深さまで延在する第2の圧縮応力領域を備え、上記第2の領域は、上記ガラス要素の上記第1の主表面における、圧縮応力としての少なくとも100MPaの応力σIによって規定される、第2又は第4の例示的態様のカバー要素が提供される。
【0211】
第39の例示的態様によると、上記折畳式ガラス要素は更に、上記第2の主表面から上記ガラス要素の第2の深さまで延在する第2の圧縮応力領域を備え、上記第2の領域は、上記ガラス要素の上記第2の主表面における、圧縮応力としての少なくとも100MPaの応力σIによって規定される、例示的態様16~26のいずれか1つのデバイス組立体が提供される。
【0212】
第40の例示的態様によると、上記折畳式ガラス要素は更に、上記第2の主表面から上記ガラス要素の第2の深さまで延在する第2の圧縮応力領域を備え、上記第2の領域は、上記ガラス要素の上記第2の主表面における、圧縮応力としての少なくとも100MPaの応力σIによって規定される、例示的態様27~36のいずれか1つのカバー要素が提供される。
【0213】
第41の例示的態様によると、ガラス物品が提供され、上記カバー要素は:厚さ約25μm~約75μmの折畳式ガラス要素であって、上記ガラス要素は更に(a)第1の主表面、(b)第2の主表面、及び(c)上記ガラス要素の上記第1の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域を備え、上記領域は、上記ガラス要素の上記第1の主表面における、少なくとも約100MPaの圧縮応力によって規定される、折畳式ガラス要素を備える。上記ガラス要素は、上記ガラス要素を、曲率中心を上記第2の主表面の側として標的曲げ半径1mm~10mmまで曲げることにより、上記第1の主表面に引張応力としての曲げ応力σBを誘発した場合に、σI+σB<0MPaとなるような、応力プロファイルを特徴とする。更に、上記カバー要素は、上記ガラス要素単独の場合より高い高さからのペン落下に耐える能力を備える。
【0214】
第42の例示的態様によると、上記ガラス要素は、落下試験2に従って40cm超、又は落下試験3に従って3cm超の高さからのペン落下に耐えることができる、第41の例示的態様のガラス物品が提供される。
【0215】
第43の例示的態様によると、上記ガラス要素の上記第1の主表面上に配置された層を更に備え、上記層を備えた上記ガラス物品は、上記層を備えない上記ガラス物品の少なくとも2倍のペン落下高さに耐えることができ、上記ペンは、落下試験2又は落下試験3に従って落下させられ、上記層は、上記ガラス要素の、落下してくる上記ペンに対面する側に配置される、第41又は第42の例示的態様のガラス物品が提供される。
【0216】
第44の例示的態様によると、上記層は、ポリイミド(PI)、ポリエチレンテレフタレート(PET)又はポリカーボネート(PC)を含む、例示的態様41~43のいずれか1つのガラス物品が提供される。
【0217】
第45の例示的態様によると、上記層は、接着剤によって上記ガラス要素に連結される、例示的態様41~44のいずれか1つのガラス物品が提供される。
【0218】
第46の例示的態様によると、上記第1の主表面の下方の少なくとも1マイクロメートルの深さまで、σI+σB<0MPaである、例示的態様41~45のいずれか1つのガラス物品が提供される。
【0219】
第47の例示的態様によると、上記ガラス要素は、8H以上の鉛筆硬度を備える、例示的態様41~46のいずれか1つのガラス物品が提供される。
【0220】
第48の例示的態様によると、上記ガラス要素は複数の層を更に備える、例示的態様41~47のいずれか1つのガラス物品が提供される。
【0221】
第49の例示的態様によると、上記ガラス要素の上記第1の主表面における圧縮応力は、約700MPa~2000MPaである、例示的態様41~48のいずれか1つのガラス物品が提供される。
【0222】
第50の例示的態様によると、上記第1の深さは、上記ガラス要素の上記第1の主表面から、上記ガラス要素の上記厚さのおよそ1/3以下に設定される、例示的態様41~49のいずれか1つのガラス物品が提供される。
【0223】
第51の例示的態様によると、上記圧縮応力領域は更に、上記ガラス要素の上記第1の主表面において、5μm以下の最大欠陥サイズを備える、例示的態様41~50のいずれか1つのガラス物品が提供される。
【0224】
第52の例示的態様によると、上記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、上記イオン交換済み金属イオンは、上記イオン交換性金属イオンの原子半径より大きな原子半径を有する、例示的態様41~51のいずれか1つのガラス物品が提供される。
【0225】
第53の例示的態様によると、折畳式特徴部分を有する電子デバイスを備える、折畳式電子デバイスが提供され、上記折畳式特徴部分は、例示的態様41~52のいずれか1つのガラス物品を備える。
【0226】
第54の例示的態様によると、ガラス物品を作製するための方法が提供され、上記方法は、以下のステップ:厚さ約25μm~約125μmの折畳式ガラス要素を形成するステップであって、上記ガラス要素は更に(a)第1の主表面、(b)第2の主表面、及び(c)上記ガラス要素の上記第1の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域を備え、上記領域は、上記ガラス要素の上記第1の主表面における、少なくとも約100MPaの圧縮応力によって規定される、ステップを含む。上記ガラス要素は:(a)上記ガラス要素を、曲率中心を上記第2の主表面の側として標的曲げ半径1mm~10mmまで曲げることにより、上記第1の主表面に引張応力としての曲げ応力σBを誘発した場合に、σI+σB<0MPaとなるような、応力プロファイル;及び(b)上記ガラス要素の上記第1の主表面に、直径1.5mmのタングステンカーバイドボールで荷重を印加した場合に、約1.5kgf(14.71N)を超える耐穿刺性を特徴とする。
【0227】
第55の例示的態様によると、上記ガラス要素は、落下試験2に従って40cm超、又は落下試験3に従って3cm超の高さからのペン落下に耐えることができる、第54の例示的態様の方法が提供される。
【0228】
第56の例示的態様によると、上記ガラス要素の上記第1の主表面上に配置された層を更に備え、上記層を備えた上記ガラス物品は、上記層を備えない上記ガラス物品の少なくとも2倍のペン落下高さに耐えることができ、上記ペンは、落下試験2又は落下試験3に従って落下させられ、上記層は、上記ガラス要素の、落下してくる上記ペンに対面する側に配置される、第54又は第55の例示的態様の方法が提供される。
【0229】
第57の例示的態様によると、上記層は、ポリイミド(PI)、ポリエチレンテレフタレート(PET)又はポリカーボネート(PC)を含む、例示的態様54~56のいずれか1つの方法が提供される。
【0230】
第58の例示的態様によると、上記層は、接着剤によって上記ガラス要素に連結される、例示的態様54~57のいずれか1つの方法が提供される。
【0231】
第59の例示的態様によると、上記第1の主表面の下方の少なくとも1マイクロメートルの深さまで、σI+σB<0MPaである、例示的態様54~58のいずれか1つの方法が提供される。
【0232】
第60の例示的態様によると、上記第1のガラス層を形成する上記ステップは、フュージョン、スロットドロー、圧延、リドロー及びフロートプロセスからなる群から選択される形成プロセスを含み、上記形成プロセスは更に、上記ガラス層を最終厚さへと形成するよう構成される、例示的態様54~59のいずれか1つの方法が提供される。
【0233】
第61の例示的態様によると、上記第1のガラス層を形成する上記ステップは、フュージョン、スロットドロー、圧延、リドロー及びフロートプロセスからなる群から選択される形成プロセスと、上記ガラス層から材料を除去して最終厚さに到達させる材料除去プロセスとを含む、例示的態様54~60のいずれか1つの方法が提供される。
【0234】
第62の例示的態様によると、上記ガラス層の上記第1の主表面から上記ガラス層内の上記第1の深さまで延在する上記圧縮応力領域を形成するステップは:上記ガラス層が含有する複数のイオン交換性金属イオンの原子半径より大きな原子半径を有する複数のイオン交換用金属イオンを含む、強化用浴を提供するステップ;及び上記ガラス層を上記強化用浴に浸漬させて、上記ガラス層内の上記複数のイオン交換性金属イオンの一部分を、上記強化用浴中の上記複数のイオン交換用金属イオンの一部分と交換することにより、上記第1の主表面から上記ガラス層内の上記第1の深さまで延在する上記圧縮応力領域を形成するステップを含む、例示的態様54~61のいずれか1つの方法が提供される。
【0235】
第63の例示的態様によると、上記浸漬ステップは、上記ガラス層を、約400℃~約450℃の上記強化用浴に、約15分~約180分間浸させるステップを含む、第62の例示的態様の方法が提供される。
【0236】
第64の例示的態様によると、上記圧縮応力領域を形成する上記ステップの後に、上記第1の主表面において、上記ガラス層の上記最終厚さから約1μm~約5μmを除去するステップを更に含み、上記除去ステップは、上記ガラス層を浸漬させる上記ステップの後に実施される、第61の例示的態様の方法が提供される。
【0237】
第65の例示的態様によると、上記圧縮応力は約700MPa~2000MPaである、例示的態様54~64のいずれか1つの方法が提供される。
【0238】
第66の例示的態様によると、上記ガラス要素は、8H以上の鉛筆硬度を備える、例示的態様54~65のいずれか1つの方法が提供される。
【0239】
第67の例示的態様によると、上記ガラス要素は複数の層を更に備える、例示的態様54~66のいずれか1つの方法が提供される。
【0240】
以下、本発明の好ましい実施形態を項分け記載する。
【0241】
実施形態1
折畳式電子デバイスのためのカバー要素であって、
上記カバー要素は:
厚さ約25μm~約200μmの折畳式ガラス要素であって、上記ガラス要素は更に:
(a)第1の主表面、
(b)第2の主表面、及び
(c)上記ガラス要素の上記第1の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域
を備え、上記領域は、上記ガラス要素の上記第1の主表面における、少なくとも約100MPaの圧縮応力によって規定される、折畳式ガラス要素;並びに
厚さ約10μm~約100μmの、上記ガラス要素の上記第1の主表面上に配置されたポリマー層
を備え、
上記ガラス要素は、上記ガラス要素を、曲率中心を上記第2の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、上記第1の主表面に引張応力としての曲げ応力σBを誘発した場合に、σI+σB<400MPa(引張応力)となるような、応力プロファイルを特徴とし、
上記カバー要素は、上記層を有しない上記カバー要素の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層がペンに対面する、カバー要素。
【0242】
実施形態2
上記ガラス要素の上記第1の主表面において、σI+σB<0MPaである、実施形態1に記載のカバー要素。
【0243】
実施形態3
上記ガラス要素は更に、上記ガラス要素の上記第1の主表面において、2μm以下の最大欠陥サイズを備える、実施形態1又は2に記載のカバー要素。
【0244】
実施形態4
上記層は、ポリイミド、ポリエチレンテレフタレート、ポリカーボネート又はポリメチルメタクリレートを含む、実施形態1~3のいずれか1つに記載のカバー要素。
【0245】
実施形態5
上記層は、接着剤によって上記ガラス要素に連結される、実施形態1~4のいずれか1つに記載のカバー要素。
【0246】
実施形態6
上記ガラス要素の上記第1の主表面の下方の少なくとも1μmの深さまで、σI+σB<0MPaである、実施形態1~5のいずれか1つに記載のカバー要素。
【0247】
実施形態7
上記ガラス要素の上記第1の主表面における応力は、圧縮応力としての約700MPa~約2000MPaであり、
更に前記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、
上記イオン交換済み金属イオンは、上記イオン交換性金属イオンの原子半径より大きな原子半径を備える、実施形態1~6のいずれか1つに記載のカバー要素。
【0248】
実施形態8
上記第1の深さは、上記ガラス要素の上記第1の主表面から、上記ガラス要素の上記厚さのおよそ1/3以下に設定される、実施形態1~7のいずれか1つに記載のカバー要素。
【0249】
実施形態9
上記ポリマー層の上に配置された耐引掻きコーティングを更に備え、
上記コーティングは、ASTM試験法D3363による少なくとも5Hの鉛筆硬度を有し、
更に、上記層及び上記コーティングを備えた上記カバー要素は、上記層又は上記コーティングを有しない上記カバー要素の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層及び上記コーティングがペンに対面する、実施形態1~7のいずれか1つに記載のカバー要素。
【0250】
実施形態10
折畳式電子デバイス組立体であって、
上記折畳式電子デバイス組立体は:
折畳式電子デバイス基板と;
上記デバイス基板上に配置された折畳式ガラス要素であって、上記ガラス要素は約25μm~約200μmの厚さを備え、また更に:
(a)第1の主表面、
(b)第2の主表面、及び
(c)上記ガラス要素の上記第1の主表面から上記ガラス要素内の第1の深さまで延在する圧縮応力領域
を備え、上記領域は、上記ガラス要素の上記第1の主表面における、少なくとも約100MPaの圧縮応力によって規定される、折畳式ガラス要素と;
厚さ約10μm~約100μmの、上記ガラス要素の上記第1の主表面上に配置されたポリマー層と
を備え、
上記ガラス要素は、上記ガラス要素を、曲率中心を上記第2の主表面の側として標的曲げ半径1mm~20mmまで曲げることにより、上記第1の主表面に曲げ応力σB(引張応力)を誘発した場合に、σI+σB<400MPa(引張応力)となるような、応力プロファイルを特徴とし、
上記折畳式電子デバイス組立体は、上記折畳式電子デバイス組立体の永久的な反りが、比較例の折畳式電子デバイス組立体の永久的な反りより少なくとも10%小さくなるように、永久的な反りに耐える能力を備え、ここで上記デバイス組立体の上記永久的な反りは、85℃及び相対湿度85%で480時間の試験時保持時間の後に、静的試験によって測定され、
更に、上記比較例の折畳式電子デバイス組立体は:(a)上記折畳式電子デバイス組立体の上記基板及び上記ポリマー層とそれぞれ同一の寸法及び組成を備える、比較例の基板及び比較例のポリマー層と;(b)上記比較例の基板と上記比較例のポリマー層との間に配置され、上記折畳式電子デバイス組立体の上記ガラス要素と同一の又は上記ガラス要素より小さい厚さを備えたポリイミド(PI)で構成される、比較例の折畳式ポリマー要素とを備える、折畳式電子デバイス組立体。
【0251】
実施形態11
上記折畳式電子デバイス組立体は更に、上記折畳式電子デバイス組立体の永久的な反りが、上記比較例の折畳式電子デバイス組立体の永久的な反りより少なくとも20%小さくなるような、永久的な反りに耐える能力を備える、実施形態10に記載のデバイス組立体。
【0252】
実施形態12
上記ガラス要素の上記第1の主表面において、σI+σB<0MPaである、実施形態10又は11に記載のデバイス組立体。
【0253】
実施形態13
上記ガラス要素は更に、上記ガラス要素の上記第1の主表面において、2μm以下の最大欠陥サイズを備える、実施形態10~12のいずれか1つに記載のデバイス組立体。
【0254】
実施形態14
上記層は、ポリイミド、ポリエチレンテレフタレート、ポリカーボネート又はポリメチルメタクリレートを含む、実施形態10~13のいずれか1つに記載のデバイス組立体。
【0255】
実施形態15
上記層は、接着剤によって上記ガラス要素に連結され、上記ガラス要素は、接着剤によって上記デバイス基板に連結される、実施形態10~14のいずれか1つに記載のデバイス組立体。
【0256】
実施形態16
上記ガラス要素の上記第1の主表面の下方の少なくとも1μmの深さまで、σI+σB<0MPaである、実施形態10~15のいずれか1つに記載のデバイス組立体。
【0257】
実施形態17
上記ガラス要素の上記第1の主表面における応力は、約700MPa~約2000MPa(圧縮応力)であり、
更に上記圧縮応力領域は、複数のイオン交換性金属イオン及び複数のイオン交換済み金属イオンを含み、
上記イオン交換済み金属イオンは、上記イオン交換性金属イオンの原子半径より大きな原子半径を備える、実施形態10~16のいずれか1つに記載のデバイス組立体。
【0258】
実施形態18
上記ポリマー層の上に配置された耐引掻きコーティングを更に備え、
上記耐引掻きコーティングは、ASTM試験法D3363による少なくとも5Hの鉛筆硬度を有し、
更に、上記層及び上記コーティングを備えた上記カバー要素は、上記層又は上記コーティングを有しない上記カバー要素の対照ペン落下高さの少なくとも1.5倍のペン落下高さに耐える能力を備え、ここで上記ペン落下高さは、落下試験1に従って測定され、上記ガラス要素の側部に配置された上記層及び上記コーティングがペンに対面する、実施形態10~17のいずれか1つに記載のデバイス組立体。
【符号の説明】
【0259】
40 曲げ半径、曲げ曲率半径
42 曲げ力
50 折畳式ガラス要素
50a ガラス層
52 ガラス要素50の厚さ
52a ガラス層50aの厚さ
52e ガラス層50eの厚さ
54 第1の主表面
54a ガラス層50aの第1の主表面
54e ガラス層50eの第1の主表面
55a コア領域
55b コア領域厚さ
56 第2の主表面
56a ガラス層50aの第2の主表面
56e ガラス層50eの第2の主表面
57a 第1及び第2のクラッド領域
57b クラッド領域厚さ
58b 縁部
59a 縁部圧縮応力領域
59b 縁部深さ
60 圧縮応力領域
60a 圧縮応力領域
60b 圧縮応力領域
62 第1の深さ
62a 第1のイオン交換深さ
62b CTE領域深さ
63a 第2のイオン交換深さ
63b CTE領域深さ
70 ポリマー層
72 ポリマー層70の厚さ
80 接着剤
90 耐引掻きコーティング
92 コーティング90の厚さ
96 ガラス構造体110の中央領域
98 ガラス構造体110の縁部
100 カバー要素
100a カバー要素
100b カバー要素
100c カバー要素
100d カバー要素
100e カバー要素(又はガラス物品)
100f カバー要素(又はガラス物品)
102 ガラス構造体100の厚さ
110 ガラス構造体
150 折畳式電子デバイス基板
152 折畳式電子デバイス基板150の厚さ
200 折畳式電子デバイス組立体
200a 折畳式電子デバイス組立体
200b 折畳式電子デバイス組立体
200c 折畳式電子デバイス組立体
200d 折畳式電子デバイス組立体
2102 平行プレート
2104 平行プレート