(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-10
(45)【発行日】2022-08-19
(54)【発明の名称】画像データ内のノイズ低減
(51)【国際特許分類】
G06T 5/00 20060101AFI20220812BHJP
A61B 5/00 20060101ALI20220812BHJP
A61B 6/03 20060101ALI20220812BHJP
G01T 1/161 20060101ALI20220812BHJP
A61B 5/055 20060101ALI20220812BHJP
G06T 1/00 20060101ALI20220812BHJP
【FI】
G06T5/00 705
A61B5/00 G
A61B6/03 360B
G01T1/161 C
A61B5/055 382
A61B5/055 383
A61B5/055 376
G06T1/00 290
(21)【出願番号】P 2019511808
(86)(22)【出願日】2017-05-15
(86)【国際出願番号】 EP2017061624
(87)【国際公開番号】W WO2017194787
(87)【国際公開日】2017-11-16
【審査請求日】2020-03-30
(32)【優先日】2016-05-13
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】518403735
【氏名又は名称】スティヒティング・カトリーク・ウニベルズィテート
【氏名又は名称原語表記】Stichting Katholieke Universiteit
(74)【代理人】
【識別番号】110001416
【氏名又は名称】特許業務法人 信栄特許事務所
(72)【発明者】
【氏名】スミット、エバウト・ヨリス
(72)【発明者】
【氏名】プロコプ、ボルフガング・マティアス
【審査官】▲広▼島 明芳
(56)【参考文献】
【文献】特表2014-505491(JP,A)
【文献】国際公開第2015/002247(WO,A1)
【文献】Adrienne M Mendrik, et al.,TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps,Physics in Medicine & Biology,米国,2011年,Volume 56, Number 13,3857-3872,http://doi.org/10.1088/0031-9155/56/13/008
【文献】Guo-Shiang Lin, et al.,A Computing Framework of Adaptive Support-Window Multi-Lateral Filter for Image and Depth Processing,IEEE Transactions on Broadcasting,米国,2014年,Vol.60, Issue.3,https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6844833
(58)【調査した分野】(Int.Cl.,DB名)
G06T 1/00 - 7/90
A61B 5/00 - 5/055
A61B 6/03
G01T 1/161
(57)【特許請求の範囲】
【請求項1】
入力画像データセットをフィルタリングするためのシステムであって、前記入力データセットが、サンプリング・ポイントiに対応する入力信号値の複数のシーケンスを包含し、それにおいて正の整数nについての各シーケンスI(x,1),I(x,2),…,I(x,n)が、属性のセットのうちの異なる属性xに対応し、入力信号値I(x,i)が、属性xおよびサンプリング・ポイントiと関連付けされ、サンプリング・ポイントiはシーケンスI(x,1),I(x,2),…,I(x,n)のインデクスを表しており、前記システムは、
サンプリング・ポイントiおよび属性xに対応する出力信号値I*(x,i)の計算をコントロールするべく構成された少なくとも1つのプロセッサ(4)を包含し、前記計算が、
k=1,…,Mとして、特定のサンプリング・ポイントiについて、かつ前記属性のセットのうちの複数のM個の異なる属性y
kのそれぞれについて、重みw(x,y
k,i)を入力信号値I(y
k,i)に、前記サンプリング・ポイントiを除く複数のサンプリング・ポイントjについての前記信号値I(x,j)およびI(y
k,j)の間における類似度S
i(x,y
k)に基づいて関連付けすることと、
k=1,…,Mとして、前記入力信号値I(y
k,i)および重みw(x,y
k,i)に基づいて、重み付け合計を計算することと、
を包含するシステム。
【請求項2】
前記属性は、場所または周波数である、請求項1に記載のシステム。
【請求項3】
前記重みw(x,y
k,i)は、前記属性xおよび前記属性y
kの間の差とは独立である、請求項1に記載のシステム。
【請求項4】
前記属性は場所であり、前記重みw(x,y
k,i)は、前記場所xおよび前記場所y
kの間の距離とは独立である、請求項3に記載のシステム。
【請求項5】
前記プロセッサ(4)は、あらかじめ決定済みの制約を前記類似度S
i(x,y)が満たす前記属性のセットのうちの属性yの中から、k=1,…,Mとして、前記複数の異なる属性y
kを選択するように構成される、請求項1に記載のシステム。
【請求項6】
前記プロセッサ(4)は、あらかじめ決定済みの制約を前記類似度S
i(x,y)が満たす前記属性yのランダム選択として、前記複数の異なる属性y
kを選択するように構成される、請求項5に記載のシステム。
【請求項7】
前記あらかじめ決定済みの制約が、前記属性xおよび前記属性y
kの間の前記差に制約を課さない、請求項5に記載のシステム。
【請求項8】
前記サンプリング・ポイントiが、時間ポイントに対応するか、または前記サンプリング・ポイントiが、測定のシーケンスを表す、請求項1に記載のシステム。
【請求項9】
前記場所は、ボリューム・データセット内のボクセルの場所、またはピクチャ・データセット内のピクセルの場所を表す、請求項2に記載のシステム。
【請求項10】
前記場所は、ガントリ上にマウントされた検出器の位置およびガントリの位置を表す、請求項2に記載のシステム。
【請求項11】
前記プロセッサ(4)は、前記入力データセットの動き補償を実行し、かつ動き補償後の入力信号値に基づいて前記出力信号値を計算するように構成される、請求項1に記載のシステム。
【請求項12】
前記入力信号値は、コンピュータ断層撮影(CT)データ、コンピュータ断層撮影灌流(CTP)データ、磁気共鳴撮影(MRI)データ、単一光子放射コンピュータ断層撮影(SPECT)データ、および陽電子放射断層撮影(PET)データのうちの少なくとも1つを包含する、請求項1に記載のシステム。
【請求項13】
さらに
、出力データセットに基づく画像を表示するように構成された表示器(6)を包含する、請求項1に記載のシステム。
【請求項14】
さらに、前記入力データセットを生成する少なくとも1つのセンサを包含する医用画像装置(1)を包含する、請求項1に記載のシステム。
【請求項15】
入力画像データセットをフィルタリングするための方法であって、前記入力データセットが、サンプリング・ポイントiに対応する入力信号値の複数のシーケンスを包含し、それにおいて正の整数nについての各シーケンスI(x,1),I(x,2),…,I(x,n)が、属性のセットのうちの異なる属性xに対応し、入力信号値I(x,i)が、属性xおよびサンプリング・ポイントiと関連付けされ、サンプリング・ポイントiはシーケンスI(x,1),I(x,2),…,I(x,n)のインデクスを表しており、前記方法は、
サンプリング・ポイントiおよび属性xに対応する出力信号値I*(x,i)の計算(206)を包含し、前記計算が、
k=1,…,Mとして、特定のサンプリング・ポイントiについて、かつ前記属性のセットのうちの複数のM個の異なる属性y
kのそれぞれについて、重みw(x,y
k,i)を入力信号値I(y
k,i)に、前記サンプリング・ポイントiを除く複数のサンプリング・ポイントjについての前記信号値I(x,j)およびI(y
k,j)の間における類似度S
i(x,y
k)に基づいて関連付けすること(204)と、
k=1,…,Mとして、前記入力信号値I(y
k,i)および重みw(x,y
k,i)に基づいて、重み付け合計を計算すること(205)と、
を包含する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、入力画像データセットのフィルタリングに関する。さらに本発明は、ノイズ低減、特に医用画像データ等の画像データ内のノイズ低減に関する。
【背景技術】
【0002】
X線放射が、癌を誘発するリスクを増加させることから、X線コンピュータ断層撮影(CT)スキャンは、画質と患者の放射線被曝量との間のトレードオフによって制限される。概して言えば、放射線量は、合理的に達成可能な限り低く(ALARA:As Low As Reasonably Achievable)維持される必要がある。これは、造影剤の注射後のある時間にわたる複数の逐次的な3D CTスキャンからなる4D CT灌流法(CTP)スキャンの場合に特に重要である。逐次スキャン毎に使用可能な放射線量が、したがって制限され、結果としてそれが高いレベルのノイズを招いている。
【0003】
大脳コンピュータ断層撮影灌流法(CTP)スキャンは、急性脳卒中、くも膜下出血、または頚動脈閉塞症等の脳血管性疾患を伴う患者内の異常灌流のエリアを検出するべく獲得される。4D CTPスキャンは、ある時間にわたる複数の逐次的な3D CTスキャンからなる。したがって、患者の放射線被曝を低減するために、逐次スキャン毎に使用可能なX線放射の量を制限し、その結果、高いレベルのノイズがもたらされる。異常灌流のエリアの検出には、脳血液量(CBV)、平均循環時間(MTT)、および脳血流(CBF)といった灌流パラメータがCTPデータから演繹される。灌流パラメータ、特に特異値分解を決定するアルゴリズムは、非常にノイズに敏感である。より堅牢な結果を得るために、標準特異値分解(SVD)用のグローバル・ノイズ・スレッショルドが使用され、ブロック循環行列SVDが、振動指数を使用する。しかしながら、振動指数が使用された場合でさえ、CBFマップの質は、ノイズ・レベルの増加とともに大幅に減少する。したがって、ノイズ低減は、CTP分析のための重要な前処理ステップである。4D灌流データ内においては、異なる組織タイプが、時間-強度プロファイル(4次元)内の差によって特徴付けされる。たとえば、健康な組織は、梗塞のリスクのあるエリアとは異なる時間-強度プロファイル、造影剤の集積および洗い出しを有し、白質の時間-強度プロファイルは、灰白質のそれとは異なる。灌流データにおけるノイズ低減の目標の1つは、したがって、灌流パラメータの決定に重要な時間-強度プロファイルを保存しつつノイズを低減することである。
【0004】
非特許文献1は、灌流パラメータの決定に使用される時間-強度プロファイル(4次元)を保存する一方で、4D CTPスキャン内のノイズを低減する時間-強度プロファイル類似性(TIPS)バイラテラル・フィルタを開示している。
【0005】
画像内の各ピクセル値が、類似する近隣ピクセル値の重み付け平均に置換される。ガウス接近関数c(ξ,x)は、次式のとおりに定義される。
【0006】
【0007】
3D重み付け平均カーネルが使用され、それにおいては、重みが3Dユークリッド距離および4次元の類似性に基づく。TIPS関数(p(ξ,x))は、次式のとおりに定義される。
【0008】
【0009】
これにおいて、ζ(ξ,x)は、ボクセルxと近隣ボクセルξにおける時間-強度プロファイルの間の自乗差の合計(SSD)測度である。変量σζは、類似性関数pの勾配の決定によってフィルタ強度に影響を及ぼすフィルタ・パラメータである。SSD測度は、次式のとおりに定義される。
【0010】
【0011】
これにおいて、Tは、時間次元のサイズ、I(x(x,y,z,t))は、時間ポイントtにおけるボクセルx(x,y,z)の強度値、I(ξ(x,y,z,t))は、時間ポイントtにおける近隣ボクセルξ(x,y,z)の強度値である。
【0012】
バイラテラル・フィルタリングの式は、4Dデータセット内の各ボクセルxについて、次式のとおりに定義される。
【0013】
【0014】
これにおいて、m、n、およびoは、x、y、およびz方向それぞれにおけるカーネル・サイズの半分であり、c(ξ,x)は、式1によって定義されるとおりの接近関数、p(ξ,x)は、式2によって定義されるとおりのTIPS関数、n(x)は、次式のとおりに定義される正規化係数である。
【0015】
【0016】
TIPSフィルタは、最適選択されたフィルタ・パラメータσd、σζ、および半分のカーネル・サイズm、n、およびoが与えられる特定の条件下において良好に機能する。しかしながら、ボクセルxの時間-強度プロファイルにもっとも類似する近隣ボクセルξの時間-強度プロファイルを選ぶ類似性測度pによって生じる本質的な限界が存在する。その結果、TIPSフィルタリング後の時間-強度プロファイルが、オリジナルのボクセルxのプロファイルと類似しすぎのまま残り、最適に達しないノイズ低減をもたらす可能性がある。それに加えて、半分のカーネル・サイズm、n、およびoによって与えられる類似性プロファイルを見つける上での空間的制約がある。フィルタ・カーネル内に類似する時間-強度プロファイルを伴うボクセルが充分にない場合には、効果的なノイズ抑圧を作成するフィルタリングに使用されるプロファイルが少なすぎることになる。
【先行技術文献】
【非特許文献】
【0017】
【文献】『ティップス・バイラテラル・ノイズ・リダクション・イン・4D CT・パーフージョン・スキャンズ・プロデューセズ・ハイクオリティ・セレブラル・ブラッド・フロー・マップス(TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps』フィジックス・イン・メディシン・アンド・バイオロジー(PHYSICS IN MEDICINE AND BIOLOGY) 56 (2011) 3857-3872, doi:10.1088/0031-9155/56/13/008。
【発明の概要】
【発明が解決しようとする課題】
【0018】
測定データを包含するデータセットのフィルタリングのための改良されたフィルタを有することは好都合であろう。
【課題を解決するための手段】
【0019】
この開示の態様によれば、入力画像データセットをフィルタリングするためのシステムが提供される。システムは、サンプリング・ポイントiに対応する入力信号値の複数のシーケンスを包含する入力データセットを処理するべく構成され、それにおいて各シーケンスは、属性のセットのうちの異なる属性xに対応し、入力信号値I(x,i)は、属性xおよびサンプリング・ポイントiに関連付けされる。システムは、サンプリング・ポイントiおよび属性xに対応する出力信号値I*(x,i)の計算をコントロールするべく構成された少なくとも1つのプロセッサを包含し、その計算は、次の内容を包含する。
●特定のサンプリング・ポイントiについて、かつ属性のセットのうちの複数のM個の異なる属性yk(=y1,…,yM)のそれぞれについて、重みw(x,yk,i)を入力信号値I(yk,i)に、サンプリング・ポイントiを除く複数のサンプリング・ポイントjについての信号値I(x,j)およびI(yk,j)の間における類似度Si(x,yk)に基づいて関連付けすることと、
●入力信号値I(yk,i)および重みw(x,yk,i)に基づいて、yk(=y1,…,yM)についての重み付け合計を計算すること。
【0020】
入力信号値I(x,i)は、ノイズに起因するランダム・エラーを含んでいる。重み付け合計に起因して、出力信号値内のランダム・ノイズが、入力信号値と比較すると低減される。しかしながら、各属性ykに関連付けされる重みが、ykの信号値のシーケンスと属性xの信号値のシーケンスの間における類似性に基づくことから、入力信号のシーケンス内の特徴は、出力信号値の中に保存され、加重平均ステップにおいて失われることはない。ykとxの入力信号値のシーケンスの間における類似性がより高いほど、より大きな重みが割り当てられる。フィルタリング後のサンプリング・ポイントiを類似性測度の計算から除外することによって、出力信号に対するサンプリング・ポイントiにおけるランダム・ノイズの影響がなくなる。サンプリング・ポイントiにおけるノイズは、したがって、ほかのすべてのサンプリング・ポイントにおけるノイズから分離される。これによりフィルタが、サンプリング・ポイントiにおけるノイズをはるかに受けにくくなる。
【0021】
属性は、場所または周波数とすることができる。場所は、たとえば、ボクセル等のボリュメトリック領域、またはピクセル等の2次元の領域とすることが可能である。周波数は、たとえば信号値が周波数ドメインで表現されるとき、周波数または周波数の範囲とすることが可能である。
【0022】
重みw(x,yk,i)は、属性xと属性ykの間の差に非依存である。これらの属性の間の差とは独立の重みを選択することによって、出力信号値I*(x,i)の計算に寄与するべくより多くの入力信号値を使用することが可能になる。このように、類似する入力信号値I(y,i)を伴う属性を識別することが可能であり、それが結果として、向上したフィルタをもたらす。たとえば、類似する組織タイプは、それらの組織タイプが存在するボクセル間の距離とは無関係に、類似する信号値に帰結し得る。同一組織タイプの信号値を平均し、データセット内に表現されている組織についての情報を失うことなく、ノイズを低減することが可能である。また、類似性の測度Si(x,yk)は、属性xとykの間の差とは独立であるとすることができる。
【0023】
たとえば、属性が場所になる場合には、重みw(x,yk,i)が、場所xと場所ykの間の距離と独立に決定することができる。また同様に、類似性の測度Si(x,yk)は、場所xと場所ykの間の差とは独立であるとすることができる。
【0024】
プロセッサは、あらかじめ決定済みの制約を類似度Si(x,y)が満たす属性のセットのうちの属性yの中から、k=1,…,Mとして、複数の異なる属性ykを選択するべく構成され得る。このように、選択を行うことによって、システムは、より計算効率よくフィルタ結果を計算することが可能である。類似度Si(x,y)を使用して属性yを選択することによってもまだ、フィルタ結果は良好である。
【0025】
プロセッサは、あらかじめ決定済みの制約を類似度Si(x,y)が満たす属性yのランダム選択として、複数の異なる属性ykを選択するべく構成できる。ランダム選択は、実験の中で良好な結果をもたらした。
【0026】
特定の実装においては、あらかじめ決定済みの制約が、属性xと属性ykの間の差に制約を課さない。このように、加重平均に使用される属性の選択は、属性の間の差によって制限されない。たとえば、属性が場所を表すとき、この差を距離とすることができる。この距離は、ボクセルの選択においてなんらの役割も演じない。
【0027】
サンプリング・ポイントiは、時間ポイントに対応させることができる。したがって、属性xに関連付けされる入力信号値のシーケンスは、時間信号を表すことができる。
【0028】
サンプリング・ポイントiは、測定のシーケンスを表すことができる。たとえば、測定のシーケンスを、時間的な動きまたは変化を捕捉するべく実行することが可能である。たとえば、灌流の検討においてこれを応用することが可能である。
【0029】
場所は、ボリューム・データセット内のボクセルの場所、またはピクチャ・データセット内のピクセルの場所を表すことができる。
【0030】
場所は、ガントリ上にマウントされた検出器の位置およびガントリの位置を表すことができる。したがって、信号値は、任意の断層撮影の復元の実行前の、ガントリ上のセンサのセンサ値とすることができる。
【0031】
プロセッサは、入力データセットの動き補償を実行し、かつ動き補償後の入力信号値に基づいて出力信号値を計算するべく構成できる。このように、入力信号値のシーケンスは、より正確に固定された場所に対応し、それがフィルタリング結果を向上させる。
【0032】
入力信号値は、コンピュータ断層撮影(CT)データ、コンピュータ断層撮影灌流(CTP)データ、磁気共鳴撮影(MRI)データ、単一光子放射コンピュータ断層撮影(SPECT)データ、および陽電子放射断層撮影(PET)データのうちの少なくとも1つを包含し得る。
【0033】
システムは、出力データセットに基づく画像を表示するべく構成された表示器を包含できる。このことは、多くのノイズが除去された画像の観察を可能にする。
【0034】
システムは、入力データセットを生成する少なくとも1つのセンサを包含する医用画像装置を包含することができる。
【0035】
本発明の別の態様によれば、入力画像データセットをフィルタリングする方法が提供される。入力データセットが、サンプリング・ポイントiに対応する入力信号値の複数のシーケンスを包含し、それにおいて各シーケンスは、属性のセットのうちの異なる属性xに対応し、入力信号値I(x,i)は、属性xおよびサンプリング・ポイントiに関連付けされる。この方法は、
サンプリング・ポイントiおよび属性xに対応する出力信号値I*(x,i)の計算を包含し、その計算は、
特定のサンプリング・ポイントiについて、かつ属性のセットのうちの複数のM個の異なる属性yk(=y1,…,yM)のそれぞれについて、重みw(x,yk,i)を入力信号値I(yk,i)に、サンプリング・ポイントiを除く複数のサンプリング・ポイントjについての信号値I(x,j)とI(yk,j)の間における類似度Si(x,yk)に基づいて関連付けすることと、
入力信号値I(yk,i)および重みw(x,yk,i)に基づいて、yk(=y1,…,yM)についての重み付け合計を計算することと、を包含する。
【0036】
方法は、プロセッサ・システムにここで示した方法のステップを実行させるインストラクションを包含するコンピュータ・プログラム・プロダクトの形式で実装することができる。
【0037】
当業者は理解することになろうが、上で述べた特徴は、有用と思われる任意の方法で組み合わせても良い。それに加えて、システムに関して述べた修正および変形は、同様に、方法およびコンピュータ・プログラム・プロダクトに適用でき、方法に関して述べた修正および変形は、同様に、システムおよびコンピュータ・プログラム・プロダクトに適用できる。
【0038】
以下、本発明の態様を、図面の参照とともに、例示により明らかにする。これらの図面は、図式的なものであり、正確な縮尺率で描かれてはいない場合がある。
【図面の簡単な説明】
【0039】
【
図1】入力画像データセットをフィルタリングするためのシステムを含む画像化システムを示したブロック図である。
【
図2】入力画像データセットをフィルタリングする方法を示したフローチャートである。
【
図3】脳のダイナミックCT画像化における類似性フィルタの応用例を示した図である。
【
図4】胸のダイナミックPET画像化における類似性フィルタの応用例を示した図である。
【発明を実施するための形態】
【0040】
以下の詳細な説明の中で本発明の特徴をより詳細に説明する。この中に開示されている詳細は、当業者によるこの開示の理解の補助として意図されている。しかしながら、詳説される例には、この開示の範囲を限定することが意図されていない。むしろ、当業者には、この開示の修正および変形が数多く明らかになるかも知れないが、その種の変形および修正は、付随する特許請求の範囲およびそれらの均等によって定義されるとおりの本発明の精神ならびに範囲の中にある。
【0041】
この開示の態様によれば、改良された類似性フィルタが提供される。本発明のさらなる態様によれば、類似性測度を使用して、2つのボクセルの間における類似性を決定するために、一方のボクセルの時間依存の挙動と他方のボクセルの時間依存の挙動とを比較する類似性フィルタが提供される。
【0042】
この開示のさらなる態様によれば、4Dコンピュータ断層撮影灌流(CTP)スキャン内のノイズを低減する一方、灌流パラメータを決定するために時間-強度プロファイル(4次元)を保存する時間-強度プロファイル類似性(TIPS)フィルタが提供される。
【0043】
この開示のさらなる態様によれば、複数回サンプリングされた(時間的)変量(n次元)のピクセル化データ内のランダム・ノイズを低減する方法が提供される。
【0044】
さらなる態様によれば、現在の(または、いくつかの近隣の)測定だけでなく――望ましい場合には――ノイズ低減のための(殆ど)完全なセットの測定を使用することによってボクセル値を推定する各測定についてのノイズの低減により効果的なノイズ低減のためのフィルタが開示される。
【0045】
さらなる態様によれば、フィルタが、各サンプリング・ポイントにおけるプロパティの点から見たボクセル間の類似性に基づく。これにおいて、各サンプリング・ポイントは、たとえば、時間または周波数における瞬間を表すことができる。
【0046】
さらなる態様によれば、ボクセル間の類似性が、局所的に(フィルタリングされるべきボクセルの周囲)だけでなく、グローバルに(フィルタリングされるべきボクセルとデータセット内の任意のボクセルとを比較することによって)決定され得る。
【0047】
さらなる態様によれば、測定されたデータが、特定のサンプリング・ポイントiを除くすべてのサンプリング・ポイントについて類似であれば、ボクセルが類似するプロパティを保持すること、したがって、サンプリング・ポイントiについても類似する挙動を有することがありがちであるとの仮定が使用される。
【0048】
図1は、画像化システムを図解している。この画像化システムは、スキャナ1を包含する。スキャナは、医用画像化スキャナまたはそのほかのタイプのスキャナとすることができる。特定の実装においては、スキャナが複数の測定をもたらし、それらの測定が、類似性フィルタ・システム7のための入力信号値を形成する。その種の入力信号値は、属性と関連付けされることがある。たとえば、複数のセンサが備えられ、属性が、入力信号値に帰する測定を生成したセンサのインデクスを包含することが可能である。それに代えて、またはそれに追加して、属性が、ガントリの回転角度または適用された勾配または周波数といった入力信号値を生成するために実行された測定のパラメータを包含することが可能である。特定の実施態様においては、異なるセンサの測定が組み合わされて、2次元または3次元のデータセットが形成される。その種のデータセットのピクセルまたはボクセルは、入力信号値を形成することが可能であり、属性は、各ボクセルに対応する場所の表現を包含することができる。また、属性のそれぞれについて、入力信号値のシーケンスを生成することもできる。この測定のシーケンスを、ここでは、サンプリング・ポイントと呼ぶことができる。シーケンスは、たとえば、連続して行われた一連の測定等の、時間にわたる変化を捕捉するための時間的なシーケンスとすることができる。それに代えて、シーケンスは、別のパラメータに基づく特徴の変動を捕捉することができ、たとえば、サンプリング・ポイントは、測定スペクトルにおける異なる周波数に対応することができる。特定の実施態様においては、スキャナ1が、コンピュータ断層撮影スキャナまたはMRIスキャナを包含する。そのほかのタイプの、PETやSPECTスキャナ等のスキャナを特定の実施態様の中で使用することもできる。たとえば、灌流は、対象に造影剤が流入する間における多数の連続するボリュメトリック・データセットを獲得することによって捕捉できる。サンプリング・ポイントは、その場合、連続するボリュメトリック・データセットに対応させることができる。
【0049】
画像化システムを用いて作成されたデータセットは、ノイズを含んでいることがある。その種のノイズは、測定エラーによって生じ得る。これらの測定エラーは、根底にある、測定されるプロパティの『真の』値からの測定値のランダム偏差とすることができる。データセット内の複数の測定にわたって平均のノイズをゼロとすることができる。その種のノイズは、たとえば、『真の』値からの測定値の系統的な偏差であるバイアスとは区別可能である。
【0050】
画像化システムは、病院情報システムまたは通常のファイル・サーバ等の外部ストレージ・システム2も包含できる。入力信号値および出力信号値の、この外部ストレージ・システム2へのストアおよびそこからの取り出しが可能である。
【0051】
また画像化システムは、フィルタリング済みおよび/またはフィルタリング未済の信号値を表示するための表示デバイス6も包含できる。この表示は、信号値のグラフィカル表現の形式とすることができる。
【0052】
類似性フィルタ・システム7は、スキャナ2または外部ストレージ・システム2から、またはそのほかのソースから入力信号値を受信するべく構成される通信モジュール3を包含できる。また通信モジュール3を、出力信号値を外部ストレージ・デバイス2にエクスポートし、ストアするべく、またはほかの適切なデバイスに出力信号値を送信するべく構成することもできる。
【0053】
類似性フィルタ・システム7は、さらに、メモリ5を包含することができ、それを、入力信号値、出力信号値、および計算の中間結果等のデータ20をストアするべく構成することができる。またメモリ7は、フィルタ・システム7の構成可能なパラメータをストアするべく構成することもできる。特定の実施態様においては、メモリ7が、この開示の中に示されているとおりの入力信号値をフィルタリングする方法をプロセッサ4に実行させるためのインストラクションとともにコンピュータ・プログラム10-13をストアするべく構成される。プロセッサ4は、マイクロプロセッサ、コントローラ、またはFPGA等の任意の適切なコンピュータ・プロセッサとすることができる。それに代えて、専用電子回路を備えてフィルタ動作を実装することができる。
【0054】
コンピュータ・プログラムは、機能ユニットに分割することができる。この開示には、ユニットへのコンピュータ・プログラムの分割の例が示されているが、これは単なる例に過ぎない。このほかの実装が、異なるユニットへの機能分割を包含することは可能である。
【0055】
通信モジュール3を、スキャナ1または外部ストレージ2から入力データセットを受信するべく構成できる。入力データセットは、サンプリング・ポイントiに対応する入力信号値の複数のシーケンスを包含することができ、それにおいて、各シーケンスは、属性のセットの異なる属性xに対応し、入力信号値I(x,i)は、属性xおよびサンプリング・ポイントiに関連付けされる。
【0056】
フィルタ・システム7は、信号値I(x,j)とI(yk,j)の間における類似度Si(x,yk)を、サンプリング・ポイントiを除く複数のサンプリング・ポイントjについて計算するべく構成された類似性ユニット10を包含できる。言い換えると、第1の属性xに関連付けされた入力信号値のシーケンスと、第2の属性ykに関連付けされた入力信号値のシーケンスの間における全体的な類似性の測度が決定される。これにおいては、両方のシーケンスのサンプリング・ポイントiが無視される。すなわち、これらのシーケンスは、属性xのサンプリング・ポイントiが、属性ykのサンプリング・ポイントiに対応するようにインデクスされる。類似度Si(x,yk)は、複数の異なる第2の属性yk,k=1,…,Kについて計算される。このようにして、第1の属性の入力信号値に類似する入力信号値の属性xを識別できる。特定の実施態様においては、類似性ユニット10が、出力信号値が要求されている各属性xのための演算を実行するべく構成される。また、類似性ユニット10は、同一の属性xについて演算を反復的に、毎回異なるサンプリング・ポイントiを類似性の評価Si(x,yk)から除外して、実行するべく構成することもできる。
【0057】
類似性フィルタ・システム7は、さらに、選択ユニット11を包含できる。選択ユニット11は、類似性の測度Si(x,yk)に基づいて複数の第2の属性ykを選択する。選択される属性の数を、ここではMで示す。ただし、M<=Kである。この選択は、多くの異なる方法で実行できるが、いずれの場合においても、類似性の測度Si(x,yk)が高い度合いの類似性を示すM個の属性ykが選択される。たとえば、Mがあらかじめ決定済みの数である場合には、属性xを伴う類似度Si(x,yk)のうち最大のものからM個の属性ykを選択することができる。それに代えて、最小スレッショルドを類似性に対して設定しても良く、その場合、第2の属性のうち類似度Si(x,yk)がそのスレッショルドを超える値を有するM個の属性を選択することができる。その種の選択をランダム選択としても良い。それに代えて、属性xにもっとも近い適格の属性を選択しても良い。たとえば、xが場所である場合、場所xにもっとも近いものからM個の場所ykを選択することができる。代替選択の可能性は、この中のいずれかの箇所に説明がある。以下においては、便宜上、選択された第2の属性がyk=y1,…,yMとして示されるように第2の属性の番号を付け替える。特定の実施態様においては、選択ユニット11が、出力信号値が要求されている各第1の属性xのための演算を実行するべく構成される。また、選択ユニット11も、類似度Si(x,yk)が計算される各サンプリング・ポイントiについて演算を実行するべく構成できる。
【0058】
類似性フィルタ・システム7は、さらに、特定の第1の属性xの、選択された第2の属性yk=y1,…,yMのそれぞれに重みを関連付けするための重み付けユニット12も包含できる。上で述べたとおり、サンプリング・ポイントiのうちの1つは、類似度Si(x,yk)の計算の、および/またはM個の第2の属性の選択のための考慮に入れられない。重み付けユニットは、第1の属性xと第2の属性yk、および除外されたサンプリング・ポイントiの組み合わせに重み値w(x,yk,i)を関連付けする。特定の実施態様においては、この重みが類似度の値Si(x,yk)の関数になる。特定の実施態様においては、これら2つの属性xとykの間の差が、重み値w(x,yk,i)の計算で考慮されない。概して言えば、類似度Si(x,yk)が大きい組み合わせに、より大きな重みw(x,yk,i)が関連付けされる。重み付けユニット12は、それの演算を、異なる第1の属性x、対応する第2の属性yk,k=1,…,M、および異なる除外サンプリング・ポイントiについて反復するべく構成できる。
【0059】
類似性フィルタ・システム7は、さらに、合計ユニット13を包含できる。合計ユニット13は、選択ユニットによってなされた第2の属性の選択および重み付けユニットによって決定された重みを使用して複数の入力信号値の重み付け合計を計算するべく構成できる。言い換えると、合計ユニットは、選択された属性yk=y1,…,yMのそれぞれについて、入力信号値I(yk,i)の重み付け合計を計算する。類似性関数Si(x,yk)の決定および第2の属性ykの選択から除外されたサンプリング・ポイントiに対応する入力信号値は、重み付け合計の形成に追加される。たとえば、重み付け合計は、次式のとおりに計算することができる。
【0060】
【0061】
これにおいて、演算子『・』は、たとえば、乗算を示すことができる。合計ユニット13は、それの演算を、異なる第1の属性x、対応する選択された第2の属性yk,k=1,…,M、および異なるサンプリング・ポイントiについて反復するべく構成できる。
【0062】
通信モジュール3によって出力するか、またはそれに代えて、データ20としてメモリ5内にストアできる出力信号値は、この重み付け合計に基づいている。特定の実施態様においては、出力信号値が、合計ユニット13の出力I*(x,i)である。それに代えて、出力信号値が重み付け合計I*(x,i)に基づくように、1つまたは複数の後処理ステップを実行しても良い。
【0063】
手前で述べたとおり、属性は、場所または周波数とすることができる。しかしながら、これは、限定ではない。属性は、原理的に、入力信号値のシーケンスの任意のラベリングとすることが可能である。
【0064】
特定の実施態様においては、重みw(x,yk,i)が、属性xと属性ykの間の差に非依存である。重みは、したがって、サンプリング・ポイントiを除外した、属性xおよび属性ykの入力信号値のシーケンスの類似性に基づいて決定される。同様に、属性が場所になる場合には、重みw(x,yk,i)が、場所xと場所ykの間の距離に非依存であるとすることができる。しかしながら、特定の実施態様においては、たとえば、属性ykに、属性xとの差が小さいほど大きな重みを与えることによって、この差を考慮に入れることもできる。
【0065】
プロセッサは、k=1,…,Mについて、類似度が所定のスレッショルドを超えること、または類似度が最大からM番目までの類似度のランクに入ることといったあらかじめ決定済みの制約を類似度Si(x,y)が満たす利用可能な属性のセットの属性yの中から複数の異なる属性ykを選択するべく構成できる。プロセッサは、あらかじめ決定済みの制約を類似度Si(x,y)が満たす属性yのランダム選択として、複数の異なる属性ykを選択するべく構成できる。特定の実施態様においては、あらかじめ決定済みの制約が、属性xと属性ykの間の差に制約を課さない。サンプリング・ポイントiは、測定が行われたときの時間ポイントに対応することができるか、またはサンプリング・ポイントiは、測定のシーケンスのインデクスを表すとすることができる。
【0066】
属性が場所を包含する状況の一例は、入力信号値が空間的なデータセットを表す状況であり、それにおいて場所は、ボリューム・データセット内のボクセルの場所、または2次元ピクチャのデータセット内のピクセルの場所を表す。それに代えて、場所は、ガントリ上にマウントされた検出器の位置およびガントリの位置を表すことができる。言い換えると、ガントリ上のセンサの位置およびガントリの位置を一緒にして『場所』を決定する。ここでは、『ガントリの位置』がガントリの回転角度を包含できる。
【0067】
特定の実施態様においては、プロセッサが、入力データセットの動き補償を実行し、かつ動き補償後の入力信号値に基づいて出力信号値を計算するべく構成される。この方法では、時間にわたる入力信号値のシーケンスの類似性がより良好に評価され、フィルタがより良好に働く。
【0068】
入力信号値は、たとえば、コンピュータ断層撮影(CT)データ、コンピュータ断層撮影灌流(CTP)データ、磁気共鳴撮影(MRI)データ、単一光子放射コンピュータ断層撮影(SPECT)データ、および/または陽電子放射断層撮影(PET)データを包含することができる。
【0069】
図2は、入力画像データセットをフィルタリングする方法のフローチャートを示している。ステップ201においては、入力データセットが識別される。たとえば、入力データセットは、スキャナ・デバイス等の別のデバイスから受信される。ここでは、入力データセットが、サンプリング・ポイントiに対応する入力信号値の複数のシーケンスを包含し、それにおいて各シーケンスは、属性のセットのうちの異なる属性xに対応し、入力信号値I(x,i)は、属性xおよびサンプリング・ポイントiに関連付けされる。
【0070】
ステップ202においては、xおよびyの属性のペアの入力信号値のシーケンスの間の類似度Si(x,y)が決定される。ここでは、都度、少なくとも1つのサンプリング・ポイントiが、類似性の決定から除外される。この類似性が、多くの異なる属性xおよびy、およびサンプリング・ポイントiについて計算される。
【0071】
ステップ203においては、与えられた第1の属性xおよびサンプリング・ポイントiについて、比較的大きな類似度Si(x,yk)を有する第2の属性ykのセットが選択される。これらの属性ykを選択するための基準は、この開示のいずれかの箇所に述べられている。この選択は、出力信号値が要求される各第1の属性xについて、また各サンプリング・ポイントiについて行うことができる。
【0072】
ステップ204においては、出力信号値が要求される各第1の属性xおよびサンプリング・ポイントiに関して、重みw(x,yk,i)が第2の属性ykに関連付けされる。重みは、類似度Si(x,y)に基づく。
【0073】
ステップ205においては、出力信号値が要求される各第1の属性xおよびサンプリング・ポイントiに関して、選択された第2の属性ykのサンプリング・ポイントiの重み付け合計が、重みw(x,yk,i)を使用して計算される。特定の実施態様においては、重み付け合計が、加重平均になる。
【0074】
ステップ206においては、サンプリング・ポイントiおよび属性xに対応する出力信号値I*(x,i)が決定される。これらの出力信号値は、重み付け合計に基づく。
【0075】
図3は、脳のダイナミック・コンピュータ断層撮影(CT)画像化に応用されたときの類似性フィルタの例を示している。ダイナミックCTにおいては、時間にわたって複数のスキャンが実行される。図解されているとおり、スライス301および311は、時間ポイントt
0におけるスキャンに対応し、スライス302および312は、時間ポイントt
6におけるスキャンに対応し、スライス303および313は、時間ポイントt
25におけるスキャンに対応する。図には、ダイナミックCT測定の異なる時間ポイントtにおいて獲得されたスライスからわずか数例だけが示されている。これらのスキャンから、灌流マップ304および314に示されている脳血液量等の灌流マップを計算することができる。
図3の上段は、スキャナから得られたとおりのデータ(すなわち、フィルタリング未済のスライス301、302、303)、およびフィルタリング未済のスライス301、302、303から計算された灌流マップ304を示す。これらのフィルタリング未済の画像においては、解剖学的構造を殆ど見ることができない。
図3の下段は、類似性フィルタリング後の結果、すなわち、フィルタリング済みのスライス311、312、313、およびフィルタリング済みのスライス311、312、313から計算された灌流マップ314を示す。これらのフィルタリング済の画像においては、解剖学的構造が非常に高いレベルの詳細度で現れる。
【0076】
図4は、胸部のダイナミック陽電子放射断層撮影(PET)画像化に応用されたときの類似性フィルタの例を示している。左側の画像401は、スキャナから得られたとおりのダイナミック・シリーズの動脈相を示し、解剖学的構造および右肺(画像の左側)の腫瘍を殆ど見ることができない。右側の画像402は、類似性フィルタリング後の結果を示し、それにおいては、右肺の腫瘍を含む肺を明瞭に見れ、境界線がシャープに描かれている。
【0077】
データセットのフィルタリングに使用されたアルゴリズムの実装例は、以下のとおりに説明できる。
【0078】
最初に、膨大な数のボクセルを有するデータセットが提供される。各ボクセルは、n次元の空間の要素を表す。複数回、たとえば1より大きい整数をmとし、m回にわたって各ボクセルの特徴が測定される。測定される特徴は、信号、たとえば、CT数または緩和時間等のボクセルにおける実体の物理的プロパティとすることができる。その種の物理的プロパティは、たとえば、ボクセルにおける実体の変化に起因して経時的に変化し得る。これは、たとえば、測定の間にボクセルを通って造影剤が流れるときに該当する。しかしながら、この開示の方法を使用して、そのほかの種類のボクセル・データを処理することも可能である。代替実施態様においては、各ボクセルのデータが、周波数スペクトルを表すベクトルを包含することが可能であり、それにおいてはベクトルの各成分が、異なる周波数を表す。
【0079】
データにノイズが多く含まれている場合には、特定のサンプリング・ポイントiにおいて測定された値がボクセル間で実質的に変動することがあり、それが、ほかのサンプリング・ポイントにおいても類似する挙動を呈する。充分に大きな数のその種の類似した挙動のボクセルの対応するサンプリング・ポイントiを平均することによって、サンプリング・ポイントiにおけるこれらのボクセルの真のボクセル強度の改善された推定を見つけることが可能になる。
【0080】
類似する挙動のボクセルを見つけることは、フィルタリングされるべきボクセルの特徴ベクトルと、データセット内のほかのボクセルの特徴ベクトルの間の距離測度を定義することによって可能である。これにおいて、特徴ベクトルは、特定のボクセルのサンプリング・ポイントを含んでいるベクトルである。
【0081】
ここで開示しているフィルタは、特定の属性または場所のためのサンプリング・ポイントのシーケンスが、すべて、同一の物理的な実体(たとえば、組織の同一部分)を記述することから、空間的に一貫したデータに特に有用である。これに該当しないときは、それ自体はこの分野で周知の動き補償等の前処理テクニックを適用して一貫したデータセットを作り出すことが可能である。また、フィルタは、多様なサンプリング・ポイントおよび属性(または、場所)のデータを合計するか、または平均したときノイズが相殺されるように、データセット内のノイズが相関されていないときには、特に効果的である。また、類似する挙動を有する多くの数の属性(たとえば、多くのボクセル)があることも好ましい。最良のパフォーマンスのためには、サンプリング・ポイント毎の画像ノイズが類似する必要がある。これは、それ自体はこの分野で周知の正規化ステップを使用して達成することができる。注意を要するが、これらの好ましい状況は、開示されているフィルタの限定ではない。むしろ、いくつかの、このフィルタが特に効果的な応用分野を示すことが意味されている。このほかの状況においてもまた、このフィルタは、満足のいく結果を提供できる。
【0082】
以下の説明においては、各サンプリング・ポイントについて(たとえば、各時間ポイントについて)データセットが類似するノイズを有することが仮定される。これを達成するために、オプションの正規化ステップを実行することができる。それに代えて、各サンプリング・ポイントのノイズの量を、距離測度および/またはそのほかの計算ステップの中で考慮に入れることができる。
【0083】
次に示す表は、この開示の残りの部分において使用される記号のリストである。
【0084】
【0085】
いくつかの実施態様においては、重み関数fを適格のボクセルの数に依存させることができ、かつ非対称とすることができる。
【0086】
出力信号I*(x,i)は、対応するサンプリング・ポイントiにおけるM個のボクセルyjの入力信号I(yj,i)の加重平均として計算することができる;ただし、j=1,…,M。これらのM個のボクセルyjを選択するために、距離||Ii(x),Ii(yj)||が特定の制約を満たすボクセルを選択することができる。特に、この距離が比較的小さいボクセルを選択することができる。特定の実施態様においては、加重平均を、次に示す式に基づいて計算できる。
【0087】
【0088】
これにおいて、各j=1,…,Mについてのyjは、特定の類似性条件を満たすM個のボクセルのうちの1つである。これらのM個のボクセルを選択する方法の例には、次のものが含まれる。
●||Ii(x),Ii(yj)||が最小のM個のボクセル、
●kをあらかじめ決定済みのスレッショルドとするとき、||Ii(x),Ii(yj)||<kのM個のボクセルのランダム選択、
●kをあらかじめ決定済みのスレッショルドとするとき、f(||Ii(x),Ii(yj)||)>kのM個のボクセルのランダム選択、
●||Ii(x),Ii(yj)||があらかじめ定義済みの分布(たとえば、ガウス分布)を有するM個のボクセルのランダム選択。
【0089】
yjは、n次元のデータセット全体またはボクセルx周りの局所的な部分集合から検索することができる。
【0090】
距離関数||Ii(x),Ii(y)||は、任意の適切な距離関数とすることができる。適切な距離関数の第1の例を次に示す。
【0091】
【0092】
この距離関数は、ベクトルxとyの成分の差の平方の合計である。それに代えて、この平方の合計の平方根を距離測度として使用することも可能である。別の例においては、測定のノイズσiが考慮に入れられる。
【0093】
【0094】
この距離は、成分の差の平方の重み付け合計であり、異なるi毎のノイズに従って重み付けされる。それに代えて、この距離測度の平方根を使用することが可能である。別の代替は、ベクトルxとyの各成分の差の絶対値の合計である。
【0095】
【0096】
この代替においてもまた、ノイズ・レベルσiに従った重み付けはオプションである。それに加えて、このほかの周知の距離測度を、上記の例に代えて使用しても良い。
【0097】
上記の式においては、選択されたボクセルのサンプリング・ポイントiの加重平均の計算時に、重み付け関数fが測定値の重み付けに使用された。次に、有用な重み付け関数fのいくつかの例を示す。しかしながら、代わりに、このほかの重み付け関数を使用しても良い。
【0098】
第1の例は、重み付けをまったく行わない。
すべてのdについて、f(d)=d。
【0099】
第2の例は、カーネルc内において均質な重み付けを行う。
d≦cについて、f(d)=1、
d>cについて、f(d)=0。
【0100】
第3の例は、カーネルc内において三角重み付けを行うが、それにおいてcは、0より大きい数とする。
d≦cについて、f(d)=1-d/c、
d>cについて、f(d)=0。
【0101】
第4の例は、0より大きいパラメータcを使用して指数重み付けを行う。
すべてのdについて、f(d)=exp[-(1/2)(d/c)2]。
【0102】
この方法の実用的な応用例は、コンピュータ断層撮影灌流(CTP)画像化である。CTPは、造影剤の静脈注射の間に、身体の同一領域から複数のCTデータを連続して獲得するデータ獲得を包含する。
【0103】
CTデータ獲得の数を、ここではnによって表す。しばしば、画像ノイズの平方は、1/mAsに比例する。多くの応用においては、mAsを用いて表した適用線量が既知であることから、瞬時的な線量に基づいたノイズの推定を使用して正規化を適用することが可能である。i=1,…,nとするサンプリング・ポイントiは、画像獲得の時間ポイントに対応する。時間ポイントiにおけるX線管負荷をmAsiにより示す。I(x,i)は、場所xおよび時間ポイントiのボクセルのCT数を表す。Ii(x)は、時間ポイントiを除くすべての時間ポイントについての場所xにおける信号ベクトルを表す。||Ii(x),Ii(y)||は、信号ベクトルIi(x)とIi(y)の間における正規化された距離測度である。たとえば、
【0104】
【0105】
I*(x,i)は、場所xおよび時間ポイントiにおけるボクセルのノイズ低減後のCT数である。たとえば、
【0106】
【0107】
これにおいて、j=1,…,Mとするyjは、適用可能な基準(たとえば、||Ii(x),Ii(yj)||が最小(または、「充分に小さい」))を満たすボクセルであり、Mは、フィルタリング後の出力値を計算するべく平均されるボクセルの数を表す選択可能なパラメータである。このパラメータは、直観的に「線量率の増加の仮想因子」として考えることが可能である。特定の実施態様においては、通常、Mの値を30から300までの間において選択することができる。
【0108】
周知のCTPにおいては、通常、10から30までの間のCTボリューム・データセットが、造影剤の注射後に獲得されるが、CTボリューム・データセットの数は、これより多く、または少なくすることもできる。各データセットは、患者に与えられる全線量をCTボリューム・データセットにわたって分配しなければならないことから比較的低い獲得線量を有する。これらの10-30のデータセットのそれぞれは、通常、32-320の薄い断面(0.5-1mm)からなるが、このほかの断面の数、および断面の厚さも可能である。データは、上で述べたフィルタを用いた処理の前に空間的に記録され、動き、たとえば画像化される対象の動きが補償される。脳組織のコントラスト増強の時間依存性が、通常、多様な灌流パラメータの計算に使用される。たとえば、脳のCTPでは、脳血流(CBF)、脳血流量(CBV)、平均循環時間(MTT)が一般に計算され、脳卒中の疑われる患者の正常、低灌流および梗塞性の組織の区別に使用される。
【0109】
フィルタリング未済の薄い断面データは、各CTボリューム・データセットの低い線量獲得に起因して、非常に強い画像ノイズを受けている可能性がある。10-30のデータセットが獲得されることから、全獲得線量は、標準CTのそれよりまだ高い。CBF、CBV、およびMTT画像を計算するとき、このノイズが不正確な結果に導く。したがって、CBF、CBV、およびMTT画像を計算する前に画像ノイズを低減する必要がある。ノイズは、灌流画像の厚さを5-10mmに増加すること、および面内フィルタリング(通常、スムージング)を追加することによって低減できる。これらのノイズ低減テクニックは、部分ボリューム効果およびぼけを生じ、小さな異常(たとえば、ラクナ梗塞)および、断面の厚さより直径が小さい脈管に起因するアーティファクトに関して問題を作り出す。
【0110】
この開示の提案する類似性フィルタを使用したCTデータのフィルタリング後は、低いノイズおよび高い空間およびコントラスト分解能を伴うすぐれた画質を得ることが、1mmの断面でさえ、過去にCTPのために使用された放射線量レベルにおいて可能である。高品質のダイナミック4D-CT血管造影を、これらのフィルタリング後のデータから復元することができる。高い分解能および低い画像ノイズを呈するCTP画像(CBF、CBV、およびMTT)を作り出すことができる。これらのことは、1mmの断面においてさえ、小さい異常を検出することを可能にする。
【0111】
改良されたフィルタは、実質的に診断の精度を向上させ、より小さい梗塞の評価を可能にすることができる。そのほかにも新しい応用が、この方法によって可能になることもあり得る。それに代えて、診断の精度を失うことなく低減できる放射線量も可能性がある。標準的な線量レベルにおいてすぐれた品質を伴うCTPを可能にすることによって、現在、臨床診療へのCTP導入を妨げている主要な要因が払拭され得る。CTPが、特定の臨床状態を有する患者の大多数に使用される主要なスキャニング・モードとなることさえも予想される。
【0112】
この類似性フィルタは、複数の3D(または、2D)データが経時的に獲得され、CTの減衰がこれらの獲得にわたって変動する任意のCTテクニックに応用可能である。特定の実施態様においては、データを空間的に記録し、同一のボリューム要素(ボクセル)が常にまったく同じ組織をエンコードしていることを確実にする必要がある。
【0113】
換気画像においては、肺の換気における局所変異を検出するため、または肺の動きを分析するために、呼吸周期の間に複数のCTボリュームを獲得することが可能である。これにより、局所的な空気捕らえ込みや気管虚脱の評価、または縦隔または胸壁に腫瘍が固着しているか否かの評価のために診断が使用されることが期待される。
【0114】
特定の実施態様においては、多様なボリュームが、密度補正を伴うことなく互いに記録された後、ノイズの低減に類似性フィルタが適用される。これは、呼吸周期の間における動的な密度変化の分析を可能にする。記録プロセスから得られた変形野を逆に適用することによって、高い画質で動きを可視化することが可能である。
【0115】
CTPと動き評価の組み合わせもまた可能である。獲得の間に動きを受けるエリア内におけるCTP獲得を、灌流だけでなく動きの分析にも使用することができる。これは、たとえば、放射線治療が計画されている患者の体内の目標器官の動きを理解すると同時に、照射されるべき腫瘍の灌流を分析するために有用である。特定の実施態様においては、多様なボリュームが肺の密度補正を伴って互いに対して記録される。このことは、肺組織の収縮および拡張に起因する肺の密度における変化が補償されることを意味する。その後、ノイズの低減に類似性フィルタが使用される。これは、CTPのための動的な密度変化の分析を可能にする。記録プロセスから変形野を逆に適用することによって、高い画質で動きを可視化することも可能である。
【0116】
生データに基づく分析もまた可能である。上で開示したテクニックは、画像空間内の、すでに復元済みの3Dデータに応用できる。しかしながら、同一テクニックを、画像復元前の生データ(すなわち、検出器の読み)のフィルタリングに使用することも可能である。これには、先進の新しい反復的な復元アルゴリズムが、類似性フィルタによって得られるノイズ低減を利用し、さらに画質を向上させるか、または必要放射線量を下げることができるという利点がある。特定の実施態様においては、それを行うために次のステップが取られる。最初に、3Dボリュームが生データから復元される。続いて、これらのボリュームが空間的に記録され、動きが補償される。次に、動き補正後のデータが逆投影されて、動き補正後の生データセットが作られる。オプションで、具体的なスキャナの技術的詳細の補償に、追加の補正を適用することができる。結果として得られる生データセットは、類似性フィルタを使用してフィルタリングされる。ここでは、ガントリ角およびガントリ上のセンサの位置が位置ベクトルxを表すとすることができ、各位置xについての連続する検出がサンプリング・ポイントiを形成するとすることができる。フィルタリング後の生データは、その後、反復復元または逆投影を含む、任意のコンピュータ断層撮影法の復元テクニックを使用して復元することが可能である。
【0117】
磁気共鳴撮影(MRI)データもまた、類似性フィルタを使用して向上させることが可能である。MRIにおいては、空間分解能の向上が、より長い獲得持続時間を必要とするか、または実質的により高い画像ノイズを生じさせる。長すぎるスキャナ時間を回避するために、複数ボリュームの時間シーケンスが復元されるべき状況においては、通常、高分解能の獲得が回避される。空間分解能の向上またはスキャン持続時間の短縮、またはこれらの組み合わせに類似性フィルタを使用することが可能である。ここでもまた、特定の実施態様においては、ボリューム・データセットのシーケンスの空間的な記録が、類似性フィルタの適用前に実行される。
【0118】
ダイナミック・コントラスト増強磁気共鳴撮影(DCE-MRI)は、CTPと類似する原理に基づく:3Dデータが、造影剤の流れの検討が可能となるように、造影剤の注射の間、多数回にわたって次から次へと獲得される。類似性フィルタは、いくつかの異なる方法でダイナミック・コントラスト増強MRIに使用することができる。特定の実施態様においては、類似性フィルタが、獲得手順の変更を伴うことなくCTPの場合と類似する方法で使用される。言い換えると、上で開示したテクニックを使用し、連続するボリュメトリックMRIデータセットをフィルタリングできる。これは、ノイズの低減によって画質を向上させるが、空間分解能を高めること、または獲得時間を短縮することは、これら2つのパラメータが変更されないためにない。いくつかの実施態様においては、3Dデータセット当たりの獲得時間が、既存のDCE-MRIデータ獲得手順と比較して短縮される。その方法によれば、時間分解能および/または空間分解能を高め、造影剤の動脈流入のより良好な分析を補助することができる。特定の実施態様においては、獲得時間の増加を伴うか、または伴わずに、マトリクス・サイズが増加される。これは、空間分解能を高めることになる。
【0119】
拡散強調画像法(DWI)は、獲得パラメータ(b値)の変化を伴う複数のMR獲得に基づく。このb値は、適用される拡散強調の程度を表す。類似性フィルタを、DCE-MRIの場合と類似の態様で、時間ではなくbをパラメータとして使用することが可能である。この場合もまた、より高い画質、より高速な獲得、またはより高い空間分解能の間での選択がある。類似性フィルタは、ユーザの選択に応じて、これらの因子(画質、獲得速度、および空間分解能)のうちの1つまたは複数または全部を向上させることができる。
【0120】
ASL(Arterial Spin Labeling;動脈スピン・ラベリング)は、灌流を反映するノイズの多い時間分解のMRIデータを作り出すテクニックである。その種のデータに対して、CTPまたはDCE-MRIのためのアプローチと類似する方法で類似性フィルタを適用することができる。
【0121】
核医学においては、高い画像ノイズおよび不充分な画質から、動的検査が殆ど行われない。類似性フィルタは、ダイナミック・シンチグラフィ、すなわち、トレーサの注射後に複数の投影画像が獲得され、灌流および目標領域内へのトレーサの集積を呈する2Dテクニックにおける画質の回復に使用することが可能である。
【0122】
動的な単一光子放射コンピュータ断層撮影(SPECT)は、その長い獲得時間から、まだ(充分に)開発されていない。特定の実施態様においては、次に示すステップを採用して、SPECTに類似性フィルタを適用することが可能である:検出器リングは、高速回転モード(原理的に、可能な限り高速;通常、回転当たり10秒超)で患者の周囲を移動する。各(半)回転からのデータが、3Dデータセット(通常は、これが深刻なノイズを受ける)の作成に使用される。特定の時間、たとえばSPECTの獲得のために使用される完全な規定時間の間に作られる(半)回転についてのこれらのデータを復元することによって、多様な時間ポイントにおいて復元される複数の3D獲得を包含する時間分解の4Dデータセットが作り出される。
【0123】
品質を向上させるために、データを、オプション(追加)として呼吸および心拍でゲートし動きを補償して動きの補正を可能にする。
【0124】
その後、類似性フィルタが、標準SPECT検査の画質に近づく画質を提供することが可能であるが、標準SPECT検査とは対照的に、各動態について、別々のボリュメトリック画像が取り込まれる。
【0125】
陽電子放射断層撮影(PET)においては、偶然同時計数または散乱からノイズが発生し得る。フィルタを使用して、たとえば、PETの外れ値低減を次の方法で達成することができる。最初に、合計の獲得時間を、別々に復元されるm個のビンに分割する。サンプリング・ポイントiとしてのこれらのm個のデータセットに類似性フィルタを使用し、データの矛盾(散乱、偶然同時計数)を除去する。その後、m個のビンのそれぞれを用いて獲得されたデータセットを、再び結合して最終的な補正後の画像を得る。コンピュータ断層撮影法の場合と同様に、このフィルタリング・テクニックは、センサ位置を場所xとし、ビンをサンプリング・ポイントiとして使用し、センサ・データ(サイノグラム)に対しても適用できる。
【0126】
本発明の態様のいくつかまたはすべては、ソフトウエアの形式、特にコンピュータ・プログラム・プロダクトの形式で実装することができる。その種のコンピュータ・プログラム・プロダクトは、当該ソフトウエアがストアされるメモリ等のストレージ媒体を包含できる。またコンピュータ・プログラムは、光ファイバ・ケーブルまたは空気等の伝送媒体によって運ばれる光信号または電磁気信号等の信号によって表すことができる。コンピュータ・プログラムは、部分的に、または全体が、コンピュータ・システムによる実行に適した、ソース・コード、オブジェクト・コード、または擬似コードの形式を有する。たとえば、コードは、1つまたは複数のプロセッサによって実行できる。
【0127】
ここで述べた例および実施態様は、本発明を限定するものではなく、むしろ例示としての働きを有する。この分野の当業者であれば、特許請求の範囲からの逸脱なしに、代替実施態様を設計できるであろう。請求項内の括弧で囲まれた参照記号は、特許請求の範囲の限定として解釈されないものとする。請求項または説明の中の分離された実体として記述された項目は、ここに述べられているアイテムの特徴を組み合わせる単一のハードウエアとして、またはソフトウエア・アイテムとして実装されることがある。
【符号の説明】
【0128】
1 スキャナ
2 外部ストレージ・システム
3 通信モジュール
4 プロセッサ
5 メモリ
6 表示デバイス
7 類似性フィルタ・システム
10 類似性ユニット
11 選択ユニット
12 重み付けユニット
13 合計ユニット
20 データ
401 画像
402 画像